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Gravitational Berry’s quantum phase
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We investigate the behavior of a scalar quantum particle in a class of space-times generated by defects. In
these backgrounds the wave functions associated with the particle acquires dB#rags quantum phage
when transported along a closed path surrounding the defect. We also examine this problem in the framework
of Kaluza-Klein theory.
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[. INTRODUCTION result to problems involving weak gravitational fields. Re-
cently Corichi and Pierfi16] studied the behavior of a quan-
Topological defects are predicted in some unified theoriegum scalar particle in a class of stationary space-times and
of particle interactions. They may have been formed at phasévestigated the phase acquired by the particle when trans-
transitions in the very early history of the Univerigd. Ex-  ported along a closed path surrounding a rotating cosmic
amples of such topological defects are the domain &)l ~ String.
the cosmic string2,3], and the global monopolet]. In par- The aim of this paper is to obtain Berry's phase for a
ticular, cosmic strings provide a bridge between the physic§calar particle in the space-times of a chiral cosmic string
in microscopic and macroscopic scales. and a multiple chiral cosmic string in the context of Einstein

The appearance of topological phases in the quantum dy'€0ry and also in Kaluza-Klein theory and emphasize the
namics of a single particle moving freely in multiply con- role played by these topological defects in the geometric

nected space-times has been studied in a variety of physicgpase'
systems. The prototype of this phase is the electromagnetic
Aharonov-Bohm oné5], which appears as a phase factor in

the wave function of an electron which moves around a mag-

netic flux line. The gravitational analogue of this effect has |n this section we proceed in analogy with the treatment

also been investigated and discusfed of Corichi and Pierr[16] in order to determine the geometric
The quantum phase holonorfiy] has purely geometrical phase associated with a scalar quantum test particle induced

origin and plays an important and fundamental role in vari-by a chiral cosmic string. The line element which describes

ous areas of physics. In the early 1980s Berry discovi8d this space-time is given byl 7]

that a slowly evolving(adiabati¢ quantum system retains

information of its evolution when returned to its original ~ ds’=(dt+4J'd¢)?—dp?— a®p?dp— (dz+4I%d ).

Il. GEOMETRIC PHASE IN THE SPACE-TIME
OF A CHIRAL COSMIC STRING

physical state. This information corresponds to what is (€N)
termed Berry’s phase. The appearance of this phase has been
generalized to the case of nonadiabd®¢ evolution of a If J'=0 and J?=0 the metric(1) represents a cosmic

guantum system. In any case, the phase depends only on thgsing. ForJ*=0 this metric represents the rotating cosmic
geometrical nature of the pathway along which the systenstring with angular momenturd'. For J'=0 the metric de-
evolves. This phenomenon has been investigated in severatribes a cosmic dislocation. This metric is locally flat as we
areas of physics. There are various experiments which haw&n see performing a simple redefinition of the coordinates
been reported concerning the appearance of the adiabatic andd z. But this space-time is not globally flat and as a con-
nonadiabatic geometric phases, including the observations ggequence it presents some surprising results connected with
photons[10], neutrons[11], and nuclear spin$12]. The its global structure. As an example, we can mention the ho-
manifestations of Berry’s quantum phase in high-energyonomies associated with the parallel transport of vectors and
electron diffraction in a deformed crystal, which contains aspinors along curves located in the plane perpendicular to the
screw dislocation, has been obsenfd@]. In this case the string and surrounding it. In this case the holonomies are
equation that governs high-energy electron diffraction isnontrivial [18] and depend on the angular momentdinon
shown to be equivalent to a Schiinger equation with a the angular deficit, given by, and on the Burgers vector
time-dependent Hamiltonian. which is proportional tal®.

Some workd 14] concerning the investigation of Berry’'s The behavior of a scalar quantum particle is determined
phase in the context of gravitation and cosmology were donby the covariant Klein-Gordon equation
in recent years. In particular, Cai and Pagith] obtained a
covariant generalization of the Berry’s phase and applied this (O+M?)¥ =0, (2
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whereM is the mass of the particle arfid=1 andc=1 were given by Eq.(5), inside the box. Let the box be transported

chosen. around a closed curv€ threaded by the defect. Since the
Now, let us consider the Klein-Gordon equation in thespace-time is axisymmetric we can transport the box along
metric (1) which is given by the rotational Killing vector fieldR®=(d/d¢)?.

Due to degeneracy of the energy eigenvalues, in order to

) 1 . ) , 5 compute Berry’'s geometric phase, it is necessary to use the
‘9t_;‘9p(P‘9p)_ 7 2L (430=dy)"+ (40, —dy) non-Abelian version of the corresponding connectjas]
a“p .
given by
+32310%0,0,+ a?p?(2—M?)]{ ¥ (t,p,$,2)=0. AN =(y! (x—R)|Vrrd(x—R)), (7)

3 wherel andJ stand for possible degeneracy labels.
The inner product in Eq(7) may be evaluated using by
The background described by H@) is time independent using the Dirac phase factor as follows:
and symmetric undez translations, therefore the solution of

Eq. (3) can be written as (X —R)IVrii(xi —R))
\Pn(t!p1¢)'z):exq_iEnt)quiknz)wn(pid))! (4) :| %Ed :|(Xi_Ri)[4(knJZ_ Eth)‘//‘r]](Xi_Ri)

whereE,, are the eigenvalues of energy akdare the wave

vectors in thez direction. Using the Dirac phase factor +VR¢ﬂ(xi—Ri)]. (8

method we can write),(p,¢) as
Computing the integrand we get the result

(¢
‘ﬂ"(”*‘i’):em( 4] ¢O(En"t"‘""z)d¢) Volp:#). ) (0= R) Vs = R)) =41 (B =k J) 5. (9)
with o(p, &) being a solution of the equation _ Berl;y’s phase can be obtained from expresg®rand is
given by

o(t,p,#,2)=0, ¥n(C) =8m(Eqd'—kuJ%), (10

(6)  where the label$,J, and §,; have been omitted. This repro-

] ] o duces the results of Corrichi and Pigti6] and Mostafaza-
vyhlch com?s out fronzw the Kleln_-Gordon equation in the_met-deh[lg] in the case of a spinning cosmic string. As pointed
ric (1) for J’=0 andJ*=0. In this way we find the solution ¢ jn[16], the effect can be observed by an interference of
of a more complicated equati¢Bg. (3)] from the solution of  he wave function associated with the particle in the trans-
a simpler ondEq. (6)]. ported box and another corresponding to a particle in a box

Now we will investigate Berry's phase in the space-timeinat followed the orbits along the timelike Killing vector
of a chiral cosmic string. For this case the geometric phasgg|q ta.

angle does depend on the spectral label just as in the rotating
cosmic string casgl9]. Therefore, each different eigenmode
labeled byn acquires a different geometric phase, and as a
consequence the appropriate treatment of this problem is ob-
tained using the non-Abelian generalizat{d®] of the Ber- In a recent paper Gal'tsov and Letel{dr7] obtained the
ry’s phase. In order to compute this phase let us confine thgolution for multiple chiral strings, whose line element in
quantum system to a perfectly reflecting box such that thecartesian coordinate is given by

wave packet is nonzero only in the interior of the box and is

given by a superposition of different eigenfunctions. The
vector that localizes the box in relation to the defect is called ds*=

R. This vector is oriented from the origin of the coordinate
system(localized on the defegto the center of the box. Call

R, the components dR, given byR, = (Ry, $o,2,) and such
that Ry>4J" . This condition imposed oR, allows us to
get rid of two problems: the multivaluedness of the waveyhere
function and the existence of closed timelike curves.

From Egs.(4) and(5) we conclude that whed!=J?=0, Ai=4J}, Bi=4J7, (12
the wave function has the forg,(x— R), wherex localizes
the particle relative to the center of the box. If we considemwith J; andJ? corresponding to the angular momentum and
J'+0 andJ?+#0, then the wave function is sensitive to thesetorsion of theith chiral cone, respectively, ant/;" and W?
parameters and can be obtained by the Dirac phase factare given by

1 1
=9,(pdy)+ —— 05— (M?~E3—k})
p a“p

Ill. BERRY'S PHASE IN THE SPACE-TIME
OF MULTIPLE CHIRAL STRINGS

2
—e”N(dx?+dy?)

N
dt— > A(Wrdy—W2dx)
i=1

2
; (13)

N
—[dz—z Bi(Widy—W?dx)
=1
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wheredR? is the polar angle associated with the center of the

X=X -V
ilza—é'z, ,2=Y—Z'2 (13 box. In this way, Berry’'s phase can be obtained from Eq.
lp—pil lp—pil (18 and is given by
In this section we compute the Berry’s quantum phase N
associated with a scalar particle in the space-timal gfar- ’}/n(C):8’7T_21 (JIE,—knJ?), (19
=

allel chiral cosmic strings. In this case the direct calculation
of the Dirac phase from the solution of the Klein-Gordon
equation is complicated. In order to avoid this difficult we
shall adopt an inductive derivation based on the fact that th
phase factor acquired by a vector when parallel transportefl
in the space-time corresponding to a multiple chiral cosmié®
string is affected only by the chiral strings inside the curves
along which the vector is parallel transpor{dd]. Then, let IV. BERRY’S PHASE IN KALUZA-KLEIN THEORY
us calculate the Dirac phase factor for two chiral cones, for
three, and successively fdd chiral cones. We consider
firstly two chiral cones, the one localized@t and the other
at p,. We perform the transport of the box that contains th
particle along a closed lodp, around the chiral cone. In this
case, the Dirac phase factor is identical the one given by E
(5) and can be written as

where we have omitted the labdls) corresponding to dif-
ferent eigenmodes, for convenience. This result gives the
hase of one particle in the box that performs one cirCuit
round multiple chiral cones.

In this section we consider Berry’s quantum phase of a
scalar quantum particle induced by a space-time background
in the framework of a Kaluza-Klein theory. We analyze the

behavior of a scalar particle in the space-time of a magnetic
chiral flux string[20] in Kaluza-Klein theory, whose line

%Flement is given by

ds?=(dt+4J'd¢)%—dp?— a?p?dp— (dz+ 4J%d )?
2

1 — YT t_ z ¢
Vip. ) =exp —ai(E3i—,3D) [ " 4o volp. ).
%o , (20)

dx®+ i
(14) T2

2

Now, we transport the staig}(p,¢) around the cone, local- where ® is the magnetic flux. The dynamics of a scalar
ized atp,, along the loopC,, which results in guantum particle in this background is described by the fol-
lowing equation:

¢
wﬁ(p,¢>=exp[—4i<J5En—knJ§> f dwﬁ(p.@} 1 1
%o J—=3,(pd,) — ?{%—M&t—uzaz
p a“p

(15
Substituting Eq(14) into Eq. (15), we obtain the following 2
result: —5- 0| M2 ¥(t,p,h,2x°)=0. (21)
tpﬁ(p,¢>)=ex —Ai[(35+IDE, From this point we proce_ed in ar_lalogy with th(_a previous
sections. The solution of this equation can be written as

—kn(J3+39)] f : d¢] o(p, ). (16) V(t,p,d,2x%) =€ Enekne@Cy(p ¢). (22
0

Substituting Eq(22) into Eq.(21) we get
The generalization of this result fdt chiral cones local-

ized atpq,p5,p3, - - - PN IS given by 1 1 PQJ?
—3d,(pd,)+—| 94— HE I —4ik I — ——
N p p(p p) ap2 [ n n 20
¢%~2v---“<p,¢>=exp{—4i > (J}En—knaﬁ}
i=1
+EZ—Ki—Q*+ M?( ¢(p,$)=0. (23
¢
<[ d¢] Jolp. ). an | . -
bo For this case, the Dirac phase factor is given by
Therefore, we can compute Berry’s connection using the ) . ,
wave function given in Eq(17) which results in nlp,d)=exp | —4i(Exd —knJ?)

N D[
A'nJ=—4ii§1 (JEn—knJP)dR24,5, (18 —iQ E} f¢0d¢}t/fo(p,¢). (24)
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Consider that the quantum particle is in a box located at a N
distanceR; from the string. Then the associated connection V=2ulnp—V= E wiln[ p2—2pp;cod ¢ — <p|)+p|]
to Berry’s quantum phase is given by 31)

Qd

. . Therefore, the line element for the space-time generatéd b
A= | —4i(E =k =i 5—|dRS,. (25 | Spaceime gonere ea by

multiple chiral magnetic flux strings can be written as

Therefore, the geometric Berry’s phase for this problem is N
ds?=|dt— >, A(W dy—W3dx)
i=1

2
—e N(dx?—dy?)

yn(C)=87[E, I —k,J?]+ Q. (26)
Note that forJ'=J?=0 we obtain Berry’s quantum phase N 2
corresponding to the electromagnetic Aharonov-Bohm effect - E Wldy Wzdx)
[8]; for J*=0 and® =0 we get the gravitational geometric =
phase of Corrichi and PierfiL6]. For ® =0, we reobtain our
previous result. r N

—dx®— >, C;(W dy—W?2dx)
=1

2

(32

V. BERRY’'S PHASE IN MULTIPLE MAGNETIC STRING
SPACE-TIME IN KALUZA-KLEIN THEORY

Now, let us generalize the result of the previous sectlonWhere

for the space-time generated by multiple magnetic chiral cos-

mic strings in Kaluza-Klein theory. Using the solutions of ‘ D,

Azreg-Ainou and Clemerj20] for the chiral cone in Kaluza- Ai=4d, Bi=4diz, Ci=5— (33

Klein theory we do the generalization for multiple chiral

cones in Kaluza-Klein. Firstly, let us write E¢20) in a

Cartesian coordinate system= p cosg,y=psing, which  and

reads

W.l: X=X
==

lp—pil

ol YV
R e

_ 2 34)
xd dx (
XAy~ yax 2y ) —e ¥V(dx?+dy?)

p

d52=(dt—4.]‘ >

2 2 Let us return to the same procedure used in the case of
_ dZ+4JZXdy_de> —(dx5— @ xdy—ydx multiple chiral space-time and get the Dirac phase for one,
2 p? two, etc.,N strings. For one magnetic flux string the Dirac

phase method gives us the following expression:

(27)

whereV=2xIn p.

In this context, the generalization of the chiral cone to a
multiple chiral cone can be obtained by introducing the pa-
rameterse;, J¢, J7, and®; withi=1,2,... N associated ] 1| (¢
with each chiral string located at the poings=p; of _'Q_}f d¢} Yolp: ), (35

p; of the 2| ) g,
planez=0. The resulting metric has the form given by Eq.
(27) with the following interchanges:

—4i(Epd;—KqJ?)

¢%<p,¢>=exp{

Now, we transport the statq!r%(p,qb) around the second
string, localized afp,, along the curveC,. The procedure

dey ydx E (X=x)dy— (y2 yi)dx 28 results in
p? =1 lp—pil
wdv—vdx N (x—x)dy—( Jdx nlp,P) xp[ —4i(J5E,—k,J3)
’ yp : ~ X IPy PTZ = e
B ' Q) (¢ )
) ey “%daﬁ]t/f (p. o). (36)
) xdy ydx ®; (x—=x;)dy—(y—y;)dx
T = R

Substituting Eq(36) into Eq. (34), we obtain the result

p? lp—pi
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w§<p.¢>>=exp+ —4i{<3‘2+Ji>En— Kn(J5+J7)

N iIQ(d;+dy)
21

¢
L d¢] polp.#). (37

The generalization of this result fdd magnetic chiral
strings localized apq,p5,p3, - - - .oy follows the analogy
with the previous case and results in

N
—4i(2 (JfEn—kan)>
i=1

wﬁvzv---’“(p,qs):exp{

iQ
+Z|Zlq)|:|

¢
f dd’] Yolp, ).
%0

(38)

Using the results given by E@38) and the same procedure

of the previous section we get

N
yo(C)=2, [87(IE,—KnJD) +Qd;], (39)
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strings in the framework of Kaluza-Klein theory. Note that
for convenience we have dropped the labels which are
connected with the degeneracy of the energy.

VI. CONCLUSION

We have found the geometric phase for a class of space-
times corresponding to topological defects using the Dirac
phase factof16] method. In all the cases the geometric
phase depends on the spectral labels due to degeneracy of the
energy. Therefore, in order to do the appropriate treatment of
this problem we used the non-Abelian generalization of Ber-
ry’s phasd 19]. Following in this way we found the geomet-
ric phase of a scalar field induced by a chiral cosmic string
and multiple chiral cosmic strings. In this last case we used
the fact that from the global point of view the strings local-
ized outside the curves do not affect the holond¥] and
as a consequence do not affect the Berry’s phase. Using the
same approach and considerations of the previous cases we
extended our calculation to the framework of the Kaluza-
Klein theory obtaining similar results.
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