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Gravitational Berry’s quantum phase
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We investigate the behavior of a scalar quantum particle in a class of space-times generated by defects. In
these backgrounds the wave functions associated with the particle acquires a phase~Berry’s quantum phase!
when transported along a closed path surrounding the defect. We also examine this problem in the framework
of Kaluza-Klein theory.

PACS number~s!: 03.65.Bz, 02.40.Ky
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I. INTRODUCTION

Topological defects are predicted in some unified theo
of particle interactions. They may have been formed at ph
transitions in the very early history of the Universe@1#. Ex-
amples of such topological defects are the domain wall@2#,
the cosmic string@2,3#, and the global monopole@4#. In par-
ticular, cosmic strings provide a bridge between the phys
in microscopic and macroscopic scales.

The appearance of topological phases in the quantum
namics of a single particle moving freely in multiply con
nected space-times has been studied in a variety of phy
systems. The prototype of this phase is the electromagn
Aharonov-Bohm one@5#, which appears as a phase factor
the wave function of an electron which moves around a m
netic flux line. The gravitational analogue of this effect h
also been investigated and discussed@6#.

The quantum phase holonomy@7# has purely geometrica
origin and plays an important and fundamental role in va
ous areas of physics. In the early 1980s Berry discovered@8#
that a slowly evolving~adiabatic! quantum system retain
information of its evolution when returned to its origin
physical state. This information corresponds to what
termed Berry’s phase. The appearance of this phase has
generalized to the case of nonadiabatic@9# evolution of a
quantum system. In any case, the phase depends only o
geometrical nature of the pathway along which the sys
evolves. This phenomenon has been investigated in sev
areas of physics. There are various experiments which h
been reported concerning the appearance of the adiabatic
nonadiabatic geometric phases, including the observation
photons @10#, neutrons@11#, and nuclear spins@12#. The
manifestations of Berry’s quantum phase in high-ene
electron diffraction in a deformed crystal, which contains
screw dislocation, has been observed@13#. In this case the
equation that governs high-energy electron diffraction
shown to be equivalent to a Schro¨dinger equation with a
time-dependent Hamiltonian.

Some works@14# concerning the investigation of Berry’
phase in the context of gravitation and cosmology were d
in recent years. In particular, Cai and Papini@15# obtained a
covariant generalization of the Berry’s phase and applied
0556-2821/2000/62~4!/045003~5!/$15.00 62 0450
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result to problems involving weak gravitational fields. R
cently Corichi and Pierri@16# studied the behavior of a quan
tum scalar particle in a class of stationary space-times
investigated the phase acquired by the particle when tra
ported along a closed path surrounding a rotating cos
string.

The aim of this paper is to obtain Berry’s phase for
scalar particle in the space-times of a chiral cosmic str
and a multiple chiral cosmic string in the context of Einste
theory and also in Kaluza-Klein theory and emphasize
role played by these topological defects in the geome
phase.

II. GEOMETRIC PHASE IN THE SPACE-TIME
OF A CHIRAL COSMIC STRING

In this section we proceed in analogy with the treatm
of Corichi and Pierri@16# in order to determine the geometr
phase associated with a scalar quantum test particle ind
by a chiral cosmic string. The line element which describ
this space-time is given by@17#

ds25~dt14Jtdf!22dr22a2r2df2~dz14Jzdf!2.
~1!

If Jt50 and Jz50 the metric~1! represents a cosmi
string. ForJz50 this metric represents the rotating cosm
string with angular momentumJt. For Jt50 the metric de-
scribes a cosmic dislocation. This metric is locally flat as
can see performing a simple redefinition of the coordinatet
andz. But this space-time is not globally flat and as a co
sequence it presents some surprising results connected
its global structure. As an example, we can mention the
lonomies associated with the parallel transport of vectors
spinors along curves located in the plane perpendicular to
string and surrounding it. In this case the holonomies
nontrivial @18# and depend on the angular momentumJt, on
the angular deficit, given bya, and on the Burgers vecto
which is proportional toJz.

The behavior of a scalar quantum particle is determin
by the covariant Klein-Gordon equation

~h1M2!C50, ~2!
©2000 The American Physical Society03-1
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whereM is the mass of the particle and\51 andc51 were
chosen.

Now, let us consider the Klein-Gordon equation in t
metric ~1! which is given by

H ] t
22

1

r
]r~r]r!2

1

a2r2
@~4Jt] t2]f!21~4Jz]z2]f!2

132JtJz] t]z1a2r2~]z
22M2!#J C~ t,r,f,z!50.

~3!

The background described by Eq.~1! is time independen
and symmetric underz translations, therefore the solution o
Eq. ~3! can be written as

Cn~ t,r,f,z!5exp~2 iEnt !exp~ iknz!cn~r,f!, ~4!

whereEn are the eigenvalues of energy andkn are the wave
vectors in thez direction. Using the Dirac phase facto
method we can writecn(r,f) as

cn~r,f!5expS 24i E
f0

f

~EnJt2knJz!df Dc0~r,f!, ~5!

with c0(r,f) being a solution of the equation

F1

r
]r~r]r!1

1

a2r2
]f

2 2~M22En
22kn

2!Gc0~ t,r,f,z!50,

~6!

which comes out from the Klein-Gordon equation in the m
ric ~1! for Jt50 andJz50. In this way we find the solution
of a more complicated equation@Eq. ~3!# from the solution of
a simpler one@Eq. ~6!#.

Now we will investigate Berry’s phase in the space-tim
of a chiral cosmic string. For this case the geometric ph
angle does depend on the spectral label just as in the rota
cosmic string case@19#. Therefore, each different eigenmod
labeled byn acquires a different geometric phase, and a
consequence the appropriate treatment of this problem is
tained using the non-Abelian generalization@19# of the Ber-
ry’s phase. In order to compute this phase let us confine
quantum system to a perfectly reflecting box such that
wave packet is nonzero only in the interior of the box and
given by a superposition of different eigenfunctions. T
vector that localizes the box in relation to the defect is cal
RW . This vector is oriented from the origin of the coordina
system~localized on the defect! to the center of the box. Cal
Ri the components ofRW , given byRi5(R0 ,f0 ,z0) and such
that R0.4Jt/a. This condition imposed onR0 allows us to
get rid of two problems: the multivaluedness of the wa
function and the existence of closed timelike curves.

From Eqs.~4! and ~5! we conclude that whenJt5Jz50,
the wave function has the formcn(xW2RW ), wherexW localizes
the particle relative to the center of the box. If we consid
JtÞ0 andJzÞ0, then the wave function is sensitive to the
parameters and can be obtained by the Dirac phase fa
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given by Eq.~5!, inside the box. Let the box be transporte
around a closed curveC threaded by the defect. Since th
space-time is axisymmetric we can transport the box al
the rotational Killing vector fieldRa5(]/]f)a.

Due to degeneracy of the energy eigenvalues, in orde
compute Berry’s geometric phase, it is necessary to use
non-Abelian version of the corresponding connection@19#
given by

An
IJ5^cn

I ~xW2RW !u¹Rcn
J~xW2RW !&, ~7!

whereI andJ stand for possible degeneracy labels.
The inner product in Eq.~7! may be evaluated using b

using the Dirac phase factor as follows:

^c I~xi2Ri !u¹Rcn
J~xi2Ri !&

5 i R
S
dScn*

I~xi2Ri !@4~knJz2EnJt!cn
J~xi2Ri !

1¹Rcn
J~xi2Ri !#. ~8!

Computing the integrand we get the result

^c I~xi2Ri !u¹Rcn
J~xi2Ri !&54i ~EnJt2knJz!d IJ . ~9!

Berry’s phase can be obtained from expression~9! and is
given by

gn~C!58p~EnJt2knJz!, ~10!

where the labelsI ,J, andd IJ have been omitted. This repro
duces the results of Corrichi and Pierri@16# and Mostafaza-
deh @19# in the case of a spinning cosmic string. As point
out in @16#, the effect can be observed by an interference
the wave function associated with the particle in the tra
ported box and another corresponding to a particle in a
that followed the orbits along the timelike Killing vecto
field ta.

III. BERRY’S PHASE IN THE SPACE-TIME
OF MULTIPLE CHIRAL STRINGS

In a recent paper Gal’tsov and Letelier@17# obtained the
solution for multiple chiral strings, whose line element
Cartesian coordinate is given by

ds25Fdt2(
i 51

N

Ai~Wi
1dy2Wi

2dx!G2

2e24V~dx21dy2!

2Fdz2(
i 51

N

Bi~Wi
1dy2Wi

2dx!G2

, ~11!

where

Ai54Ji
t , Bi54Ji

z , ~12!

with Ji
t andJi

z corresponding to the angular momentum a
torsion of thei th chiral cone, respectively, andWi

1 andWi
2

are given by
3-2
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Wi
15

x2xi

urW 2r i
W u2

, Wi
25

y2yi

urW 2r i
W u2

. ~13!

In this section we compute the Berry’s quantum pha
associated with a scalar particle in the space-time ofN par-
allel chiral cosmic strings. In this case the direct calculat
of the Dirac phase from the solution of the Klein-Gord
equation is complicated. In order to avoid this difficult w
shall adopt an inductive derivation based on the fact that
phase factor acquired by a vector when parallel transpo
in the space-time corresponding to a multiple chiral cosm
string is affected only by the chiral strings inside the curv
along which the vector is parallel transported@18#. Then, let
us calculate the Dirac phase factor for two chiral cones,
three, and successively forN chiral cones. We conside
firstly two chiral cones, the one localized atr1 and the other
at r2. We perform the transport of the box that contains
particle along a closed loopC1 around the chiral cone. In thi
case, the Dirac phase factor is identical the one given by
~5! and can be written as

cn
1~r,f!5expF24i ~EnJ1

t 2knJ1
z!E

f0

f

dfGc0~r,f!.

~14!

Now, we transport the statecn
1(r,f) around the cone, local

ized atr2, along the loopC2, which results in

cn
2~r,f!5expF24i ~J2

t En2knJ2
z!E

f0

f

dfcn
1~r,f!G .

~15!

Substituting Eq.~14! into Eq. ~15!, we obtain the following
result:

cn
2~r,f!5expH 24i @~J2

t 1J1
t !En

2kn~J2
z1J1

z!#E
f0

f

dfJ c0~r,f!. ~16!

The generalization of this result forN chiral cones local-
ized atr1 ,r2 ,r3 , . . . ,rN is given by

cn
1,2, . . . ,N~r,f!5expH 24i F (

j 51

N

~Jj
tEn2knJj

z!G
3E

f0

f

dfJ c0~r,f!. ~17!

Therefore, we can compute Berry’s connection using
wave function given in Eq.~17! which results in

An
IJ524i(

i 51

N

~Ji
tEn2knJi

z!dR2d IJ , ~18!
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wheredR2 is the polar angle associated with the center of
box. In this way, Berry’s phase can be obtained from E
~18! and is given by

gn~C!58p(
i 51

N

~Ji
tEn2knJi

z!, ~19!

where we have omitted the labelsI ,J corresponding to dif-
ferent eigenmodes, for convenience. This result gives
phase of one particle in the box that performs one circuiC
around multiple chiral cones.

IV. BERRY’S PHASE IN KALUZA-KLEIN THEORY

In this section we consider Berry’s quantum phase o
scalar quantum particle induced by a space-time backgro
in the framework of a Kaluza-Klein theory. We analyze t
behavior of a scalar particle in the space-time of a magn
chiral flux string @20# in Kaluza-Klein theory, whose line
element is given by

ds25~dt14Jtdf!22dr22a2r2df2~dz14Jzdf!2

2S dx51
F

2p D 2

, ~20!

where F is the magnetic flux. The dynamics of a scal
quantum particle in this background is described by the
lowing equation:

H ] t
22

1

r
]r~r]r!2

1

a2r2 F]f24Jt] t24Jz]z

2
F

2p
]x5G2

2M2J C~ t,r,f,z,x5!50. ~21!

From this point we proceed in analogy with the previo
sections. The solution of this equation can be written as

C~ t,r,f,z,x5!5e2 iEnteiknzeiQx5
c~r,f!. ~22!

Substituting Eq.~22! into Eq. ~21! we get

H 1

r
]r~r]r!1

1

ar2 F]f24iEnJt24iknJz2
FQ

2p G2

1En
22kn

22Q21M2J w~r,f!50. ~23!

For this case, the Dirac phase factor is given by

cn~r,f!5expH F24i ~EnJt2knJz!

2 iQ
F

2pG E
f0

f

dfJ c0~r,f!. ~24!
3-3
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Consider that the quantum particle is in a box located
distanceRi from the string. Then the associated connect
to Berry’s quantum phase is given by

An
IJ5F24i ~EnJt2knJz!2 i

QF

2p GdR2d IJ . ~25!

Therefore, the geometric Berry’s phase for this problem

gn~C!58p@EnJt2knJz#1QF. ~26!

Note that forJt5Jz50 we obtain Berry’s quantum phas
corresponding to the electromagnetic Aharonov-Bohm ef
@8#; for Jz50 andF50 we get the gravitational geometr
phase of Corrichi and Pierri@16#. For F50, we reobtain our
previous result.

V. BERRY’S PHASE IN MULTIPLE MAGNETIC STRING
SPACE-TIME IN KALUZA-KLEIN THEORY

Now, let us generalize the result of the previous sect
for the space-time generated by multiple magnetic chiral c
mic strings in Kaluza-Klein theory. Using the solutions
Azreg-Ainou and Clement@20# for the chiral cone in Kaluza-
Klein theory we do the generalization for multiple chir
cones in Kaluza-Klein. Firstly, let us write Eq.~20! in a
Cartesian coordinate systemx5r cosw,y5r sinw, which
reads

ds25S dt24Jt
xdy2ydx

r2 D 2

2e24V~dx21dy2!

2S dz14Jz
xdy2ydx

r2 D 2

2S dx52
F

2p

xdy2ydx

r2 D 2

,

~27!

whereV52m ln r.
In this context, the generalization of the chiral cone to

multiple chiral cone can be obtained by introducing the
rametersm i , Ji

t , Ji
z , andF i with i 51,2, . . . ,N associated

with each chiral string located at the pointsrW 5r i
W of the

planez50. The resulting metric has the form given by E
~27! with the following interchanges:

Jt
xdy2ydx

r2
→(

i 51

N

Ji
t~x2xi !dy2~y2yi !dx

urW 2r i
W u2

, ~28!

Jz
xdy2ydx

r2
→(

i 51

N

Ji
z~x2xi !dy2~y2yi !dx

urW 2r i
W u2

, ~29!

F

2p

xdy2ydx

r2
→(

i 51

N
F i

2p

~x2xi !dy2~y2yi !dx

urW 2r i
W u2

, ~30!
04500
a
n

ct

n
s-

a
-

V52m ln r→V5(
i 51

N

m i ln@r222rr icos~w2w i !1r i
2#.

~31!

Therefore, the line element for the space-time generated bN
multiple chiral magnetic flux strings can be written as

ds25Fdt2(
i 51

N

Ai~Wi
1dy2Wi

2dx!G2

2e24V~dx22dy2!

2Fdz2(
i 51

N

Bi~Wi
1dy2Wi

2dx!G2

2Fdx52(
i 51

N

Ci~Wi
1dy2Wi

2dx!G2

, ~32!

where

Ai54Ji
t , Bi54Jiz, Ci5

F i

2p
~33!

and

Wi
15

x2xi

urW 2r i
W u2

, Wi
25

y2yi

urW 2r i
W u2

. ~34!

Let us return to the same procedure used in the cas
multiple chiral space-time and get the Dirac phase for o
two, etc.,N strings. For one magnetic flux string the Dira
phase method gives us the following expression:

cn
1~r,f!5expH F24i ~EnJ1

t 2knJ1
z!

2 iQ
F1

2pG E
f0

f

dfJ c0~r,f!, ~35!

Now, we transport the statecn
1(r,f) around the second

string, localized atr2, along the curveC2. The procedure
results in

cn
2~r,f!5expH F24i ~J2

t En2knJ2
z!

2 i
QF2

2p G E
f0

f

dfJ c1~r,f!. ~36!

Substituting Eq.~36! into Eq. ~34!, we obtain the result
3-4
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cn
2~r,f!5expH 24i F ~J2

t 1J1
t !En2kn~J2

z1J1
z!

1
iQ~F11F2!

2p G E
f0

f

dfJ c0~r,f!. ~37!

The generalization of this result forN magnetic chiral
strings localized atr1 ,r2 ,r3 , . . . ,rN follows the analogy
with the previous case and results in

cn
1,2, . . . ,N~r,f!5expH F24i S (

i 51

N

~Ji
tEn2knJi

z!D
1

iQ

2p (
i 51

N

F i G E
f0

f

dfJ c0~r,f!.

~38!

Using the results given by Eq.~38! and the same procedur
of the previous section we get

gn~C!5(
i

N

@8p~Ji
tEn2knJi

z!1QF i #, ~39!

which is the geometric Berry’s quantum phase for a sca
particle in the space-time generated byN magnetic flux
.

04500
r

strings in the framework of Kaluza-Klein theory. Note th
for convenience we have dropped the labelsI ,J which are
connected with the degeneracy of the energy.

VI. CONCLUSION

We have found the geometric phase for a class of spa
times corresponding to topological defects using the Di
phase factor@16# method. In all the cases the geometr
phase depends on the spectral labels due to degeneracy
energy. Therefore, in order to do the appropriate treatmen
this problem we used the non-Abelian generalization of B
ry’s phase@19#. Following in this way we found the geome
ric phase of a scalar field induced by a chiral cosmic str
and multiple chiral cosmic strings. In this last case we us
the fact that from the global point of view the strings loca
ized outside the curves do not affect the holonomy@18# and
as a consequence do not affect the Berry’s phase. Using
same approach and considerations of the previous case
extended our calculation to the framework of the Kaluz
Klein theory obtaining similar results.
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