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’t Hooft tensors as Kalb-Ramond fields of generalized monopoles
in all odd dimensions: dÄ3 and dÄ5
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Rank d21 antisymmetric tensor fields ind Euclidean dimensions, known as Kalb-Ramond fields, can
describe monopole-like solutions. Ind53 dimensions this Kalb-Ramond monopole is the~singular! Dirac
monopole, which in turn can be described by the~regular! ’t Hooft-Polyakov monopole, via the ’t Hooft tensor
construction. This construction is extended to arbitrary odd dimensions by performing thed55 case explicitly,
exploiting the~regular! ‘‘monopoles’’ of generalized Georgi-Glashow models and identifying their ’t Hooft
tensors as the Kalb-Ramond fields. The relevant ‘‘magnetic charges’’ are expressed as topological invariants.

PACS number~s!: 14.80.Hv, 02.40.2k
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I. INTRODUCTION

In three Euclidean space dimensions, a Dirac@1# mag-
netic monopole is a singular static solution ofU(1) Maxwell
electromagnetism with nonvanishing magnetic flux ove
sphere surrounding the monopole. Dirac’s original desc
tion of such an object involved a string-like singularity, e
tending from the location of the monopole to infinity. A
important step in the description of the Dirac monopo
which avoids the ‘‘Dirac string’’ involves Wu-Yang@2#
fields on overlapping coordinate patches~which in math-
ematical terms correspond to a nontrivialU(1) fiber bundle
over S2), but the magnetic field strength still exhibits a si
gularity at the location of the monopole.

’t Hooft @3# showed that the soliton solution of thed53
Georgi-Glashow ~GG! model, which is known as the
’t Hooft-Polyakov monopole, can be interpreted as a regu
realization of the Dirac magnetic monopole, identifying t
unbrokenU(1) subgroup of the soliton with Maxwell mag
netism and the topological soliton charge with magne
charge. This is done using the ’t Hooft tensor which is ide
tified with the magneticU(1) curvature of the ’t Hooft–
Polyakov @3,4# monopole outside the core. In a regul
gauge, the ’t Hooft tensor supports a description of the
pology and hence the magnetic charge in terms of the H
field only @5#, whereas in singular gauge, the ’t Hooft tens
restores the Wu-Yang description of the Dirac monopole

Dirac’s monopole construction in Maxwell theory can
extended to theories involving higher rank antisymme
field strength tensors generalizing the usual rank two M
well tensor. Such~Abelian! antisymmetric tensor fields wer
considered long ago@6# and in the context of duality trans
formations in Abelian spin systems on the lattice were fi
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introduced by Wegner@7,8#. They were later introduced by
many authors@9–12# in the context of string theory@9#.
More recently such fields have played a major role also
supersymmetric field theories of gravity and strings theor
@13,14#.

In the present work we restrict ourselves to rankd21
antisymmetric tensor field strengths ind Euclidean dimen-
sions, calledKalb-Ramond~KR! fields. The KR theories
constructed from these~Abelian! field strengths afford a gen
eralization of the Dirac monopole construction, and they s
port monopole-like configurations which were first discuss
by Savit@15#, Orland@16# and Pearson@17#, who studied the
phase structure in these theories. These higher dimens
KR monopoles were also studied by Nepomechie@18# in the
continuum, where a Wu-Yang type construction allows t
introduction of KR potentials for the monopoles witho
string singularities. The Dirac quantization condition invol
ing this generalized magnetic charge and the general
electric charge pertaining to the corresponding~higher form!
electric field, was also established@18,19#.

We note that Orland’s work@16#, and subsequent mor
recent works by Quevedo and Trugenberger@20# and by Ell-
wanger @21#, are based on the work of Polyakov@22# on
compact QED in 211 dimensions, giving a particular gene
alization of the latter to higher dimensions. It is interesti
that one of our main motivations in the present work w
another generalization of Polyakov’s work@22# in 211 di-
mensions, namely the construction of a dilute Coulomb
of instantons, to the case of 311 dimensions employing a
generalized non-Abelian Higgs model. As it turns out t
construction of a dilute gas in this way is only possible
odd dimensions, as will be shown below, and discussed
ther in Sec. V.

It is our intention in the present work, to supply regul
solitonic realizations of KR monopoles and to generalize
construction of the ’t Hooft tensor to higher dimensions. Th
is done concretely for dimensiond55, in a sufficiently gen-
©2000 The American Physical Society02-1
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eral framework which points clearly to the systematic gen
alization toall odd dimensions.

To realize our objective, there are two main ingredie
needed. The first is a natural generalization of the GG mo
in higher dimensions, which supports solitonic solutions s
bilised by a topological charge. The second is the const
tion of a generalization of the ’t Hooft electromagnetic te
sor, which describes the Abelian field strength to
identified with the higher dimensional KR field. The first
these, namely the generalized GG~GGG! models, are readily
obtained by subjecting members of the hierarchy of Ya
Mills ~YM ! models in 4p dimensions@23# to dimensional
descent. Examples of the resulting Higgs models in vari
dimensions can be found in Refs.@24#. The second, namely
the definition of ’t Hooft tensors in all odd dimensions,
entirely new. We have done this concretely ind55, and
shown that such a ’t Hooft tensor can be implemented inodd
dimensions only. The construction relies on the proper d
nition of the CP densites that present the lower bounds on
relevant GGG models. These CP densities are obtaine
subjecting the original Chern-Pontryagin~CP! densities in
4p dimensions, to dimensional descent@25#.

In Sec. II, we consider the gauge and Higgs fields, alo
with the gauge group, its representation and the Higgs m
tiplets, that we need if we are to satisfy the requisite to
logical properties necessary for the desired constructio
This includes also a description of theregular andsingular
~Dirac! gauges. Section III is divided into two subsections.
the first we discusses the candidates for the generalized
models that can be employed, while in the second, the
responding CP charge densities descended from the CP
sities in higher dimensions are discussed. Section IV,
which we present the main results, is divided into three s
sections. In the first, we prove that the CP charge equals
Higgs field winding number in regular gauge in all dime
sions, and that the CP charge can be interpreted as mag
KR @18# charge in odd dimensions. In the second subsect
we use the Dirac gauge to construct Wu-Yang type KR
tentials for the CS forms and interpret the solitonic solutio
to the odd dimensonal models as regular realizations of
monopoles. This motivates the nomenclature ‘‘GGG mo
poles’’ for these regular solutions. In the third subsection
construct the generalized ’t Hooft tensors which we iden
with the KR field strengths, and show in which sense thes
Hooft tensors contain the~odd dimensional! results of the
two previous subsections. Section V is devoted to a disc
sion of our results. In Appendix A we give a brief descri
tion of KR fields and KR monopole constructions in all d
mensions, that is relevant to the present work. In Appendi
we list the action or energy functionals of the four simple
GGG models, as well as the relevant CP densities and t
Chern-Simons~CS! forms.

II. GAUGE GROUPS AND TOPOLOGY

Our primary considerations in this work are the topolo
cal properties of gauged Higgs systems, and their relatio
KR monopoles in odd dimensions. To this end we set up
topological framework by selecting the required gau
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groups, their representations, as well as the representatio
the Higgs fields. Irrespective of the detailed dynamics, wh
is discussed in the next section, we can impose the fi
action or energy conditions which are expected to lead
topologically nontrivial configurations, and which yield th
asymptotic fields. We will discuss these asymptotic fie
both in theregular and thesingular ~Dirac! gauges.

In d Euclidean dimensions, we consider ad vector mul-
tiplet Higgs fieldfs which we write in isovector represen
tation

F5fs«d11gs ~2.1!

where$g1 , . . . ,gd% are the Euclidean gamma matrices ind
dimensions, and«d11 is an ‘‘anti-Hermitian factor.’’ In even
dimensions,d52M , there exists a chiral matrixg2M11
5gd115 ig1•••g2M which is used as anti-Hermitean facto
«2M115g2M11, whereas no chiral matrix exists in odd d
mensionsd52M11, and the imaginary uniti is used in-
stead,«2M125 i , hence

«d11ªH gd11 ~d even!,

i ~d odd!.
~2.2!

The Higgs fields under consideration are gauged withSO(d)
gauge potentialsA taking values in theso(d) algebra with
anti-Hermitian generatorsgmn52 1

4 @gm ,gn#,

A5Am
[rs]grsdxm. ~2.3!

Boldface letters here denote forms, in componentsA
5Amdxm. The corresponding field strength isF5dA1A
`A5 1

2 Fmndxm`dxn.
Both Higgs and gauge fields can be assumed to be reg

on Rd, a property wich is not destroyed by regulargauge
transformations given by SO(d)-valued functions g
5exp(Rmngmn) on Rd with

F°gFªgFg21 ~2.4!

A°gAªgAg211gdg21. ~2.5!

Physical quantities, in particular the energy functional defi
ing a concrete theory, have to be invariant under regu
gauge transformations.

The existence of an energy functional yields further co
straints on the fields considered, because it involves an i
gral which has to converge for a given field configuratio
Therefore, finite energy configurations are characterized b
particular asymptotic behavior of the fields (F,A). Denoting
the asymptotic fields~i.e., the leading terms of an asymptot
1/r expansion ofF and A) by F̄ and Ā, appropriate finite
energy conditions for a large class of models, including th
discussed in Sec. III, read

F̄2521 ~2.6!

D̄F̄ªdF̄1@Ā,F̄#50. ~2.7!
2-2
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’t HOOFT TENSORS AS KALB-RAMOND FIELDS OF . . . PHYSICAL REVIEW D 62 045002
Conditions~2.6! and ~2.7! anticipate the general features
the generalized GG models to be introduced in Sec. II
below.

If the fields (F,A) are regular onRd, then the asymptotic

fields labeled by overbars, (F̄,Ā), are defined onSd21, and
Eq. ~2.7! can be solved for asymptotic gauge potential,

dF̄1@Ā,F̄#50⇒Ā52
1

4
@F̄,dF̄#, ~2.8!

hence the asymptotic configurations in regular gauge are
termined by the Higgs field alone which at infinity yields
mapping

F̄:Sd21→Sd21. ~2.9!

Therefore, any finite energy configuration in regular gau
can be topologically classified in terms of the homoto
group

Pd21~Sd21!>Z ~2.10!

using the ~integer! winding numberof the ~asymptotic!
Higgs field

~2.11!

as topological invariant, whereWd is a normalization con-
stant.

The simplest example with these topological propert
are the radially symmetric configurations which in regu
gauge are given by

F (P)5«d11h~r !gmx̂m , A(P)5
11 f ~r !

r
gmnx̂ndxm,

~2.12!

with xm5rx̂m andx̂m
2 51. Requiring finite energy, the profil

functionsh and f have to satisfyh(r→`)51, f (r→`)50,
whereas regularity at the origin meansh(0)50, f (0)521.
From a topological point of view, the particular shape
h(r ), f (r ) is not important since it does not affect th
asymptotic radially symmetric fields

F̄(P)5«d11gmx̂m , Ā(P)5
1

r
gmnx̂ndxm ~2.13!

as well as the asymptotic field strength given by

F̄(P)52
1

2r 2
~gmn1 x̂[mgn]lx̂l!dxm`dxn. ~2.14!

Obviously, interpreted as the mapping

F̄(P) :Sd21→Sd21 ~2.15!
04500
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the asymptotic Higgs field of any radially symmetric co

figuration ~2.12! has winding number 1,W (d)$F̄(P)%51.
Higher winding number requiresAnsätze with more in-
volved, e.g., axial, symmetry properties.

Besides the regular gauge transformations discusse
far, there are also singular gauge transformations which
defined only on some subset ofRd, the corresponding gaug
transformed fields also being defined only on that subset
singular on the~generally point- or string-like! complement.
Those singular gauge transformations are of particular in
est because they allow the transformation of the fields to
Dirac gaugein which the Higgs field always points in th
isospaced-direction. In particular, the asymptotic Higgs fie
of finite energy configurations trivializes to6«d11gd in the
Dirac gauge which allows the characterization of two distin
Dirac gauges,positiveandnegative. Using this characteriza
tion, ~positive or negative! Dirac gauge transformations ar
regular on

R6
d
ªRd\$~0, . . . ,0,7x!ux>0% ~2.16!

but singular on either the positive or the negatived-axis.
Therefore, the fields (6F,6A) in positive or negative Dirac
gauge are also singular on the negative or positived-axis,
respectively, commonly known as ‘‘Dirac string.’’

To describe a finite energy configuration (F,A) on Id in
Dirac gauge, one always needs (1F,1A) in positive Dirac
gauge, defined onR1

d , as well as (2F,2A) in negative Dirac
gauge, defined onR2

d . Both (1F,1A) and (2F,2A) have
to be gauge equivalent to (F,A). It follows that on the over-
lap of the positive and negative Dirac gauge definiti
ranges,R0

d
ªR1

d ùR2
d , there exists atransition gauge trans-

formationT with

T~2F,2A!5~1F,1A!. ~2.17!

Asymptotically, the trivialization of the Higgs field in Dirac
gauge no longer allows one to express the asymptotic ga
field in terms of the asymptotic Higgs field since Eq.~2.8!
requires regularity of the fields onRd. Instead, the finite en-
ergy condition~2.7! forces the breaking of the gauge sym
metry of the asymptotic gauge field according to

d6F̄1@6Ā,6F̄#50⇒@6Ā,gd#50⇒6Ā56Ām
[ i j ]g i j dxm

~2.18!

hence6Ā takes values in theso(d21) subalgebra ofso(d)
and is defined onSd21\$0, . . . ,0,71% which is the d21
dimensional sphere ‘‘at infinity,’’ excluding the south o
north pole, respectively. To describe the asymptotic ga
fields onSd21, it is sufficient to consider6Ā on the upper or
lower half spheresS6

d21 , respectively, which overlap on th
equator Sd225S1

d21ùS2
d21 .

In regular gauges, finite energy configurations could
topologically classified in terms of the asymptotic Hig
field winding numberW (d)$F%. In the Dirac gauge, the

asymptotic Higgs fields6F̄56«d11gd do not carry any
topological information, but the fact that one needs bo
positive and negative Dirac gauge to describe a single fi
2-3
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D. H. TCHRAKIAN AND F. ZIMMERSCHIED PHYSICAL REVIEW D62 045002
energy configuration now yields the topological characteri
tion. This can be be expressed in terms of the asympt
transition gauge transformation~2.17! which reverses the
sign of the asymptotic Higgs field, hence

T̄~2«d11gd!T̄215«d11gd⇒$T̄,gd%50. ~2.19!

T̄ takes values in the subsetH(d),SO(d) defined by Eq.
~2.19!, H(d)>Sd22, and transforms2A to 1A on the over-
lap of their definition ranges which is the equatorSd22. This
means that T̄is topologically equivalent to a mapping

T̄:Sd22→Sd22, ~2.20!

which enables the classification of a finite energy configu
tion in the Dirac gauge in terms of the homotopy group

Pd22~Sd22!>Z, ~2.21!

expressed by the degree of the~asymptotic! transition gauge
transformation

~2.22!

whereDd is a normalization constant.
Considering the example of the radially symmetric fie

configuration discussed above, the singular gauge trans
mations

g65
1

A2~16 x̂d!
$~16 x̂d!16gdx̂ig i%, ~2.23!

which are well defined onR6
d , respectively, transform

(F (P) ,A(P)) in Eq. ~2.12! to the positive or negative Dira
gauges, (6F (P) ,6A(P))5g6(F (P) ,A(P)). The asymptotic
fields are

g6~F̄(P)!:5
6F̄(P)56«d11gd ~2.24!

g6~Ā(P)!:5
6Ā(P)5

1

r

1

16 x̂d

g i j x̂ jdxi , ~2.25!

with gauge field strength,

6F̄(P)52
1

2r 2 S g i j 1
1

16 x̂d

x̂[ ig j ]kx̂kD
3dxi`dxj6

1

r 2
g ikx̂kdxi`dxd. ~2.26!

The explicit expressions~2.25!,~2.26! show that the gauge
group of the asymptotic hedgehog configuration in Dir
gauge breaks down asSO(d)→SO(d21), whereas the
asymptotic Higgs field~2.24! trivializes.
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The transition gauge transformation T(P) ,
T(P)(2F (P) , 2A(P))5(1F (P) ,1A(P)), is in this case given
by

T(P)5g1g2
215

1

A12 x̂d
2
gdx̂ig i . ~2.27!

Restricting T̄(P)5T(P) to the equatorx̂d50 yields

T̄(P)u x̂d505gdx̂ig i , ~2.28!

which is a mappingSd22→Sd22 of degree 1,D (d)$T̄(P)%
51.

III. MODELS AND TOPOLOGICAL CHARGES

In the previous section we selected the gauge group to
SO(d) and the representation of the Higgs field to be thed
component vector. This choice was made on topological
teria, including the possibility of having a Dirac gauge. He
we further require that models like these must also supp
solitonic solutions which means that the action or energy
bounded from below by a topological charge. In any giv
dimensiond, there are in principle an infinite number of suc
models, out of which it is reasonable to select the simp
one. These are all derived from members of the 4p dimen-
sional YM hierarchy@23# with the gauge field in one of the
two chiral representations ofSO6(4p), whose action density
is given by

~3.1!

whereF is the so(4p) valued 2-form gauge field strengt
~curvature!, and * denotes the Hodge dual. As in 4 dime
sions, the action density~3.1! is bounded from below by the
2p-th CP densityC2p

E L(4p)>E C2p . ~3.2!

It is known that when Eq.~3.2! is saturated, the resulting
self-duality equations have both spherically@26# and axially
@27# symmetric solutions.

The derivedd-dimensional gauged Higgs models res
from the dimensional descent of the inequality~3.2! over
some (4p2d)-dimensional compact coset spaceK4p2d

E
Rd3K4p2d

L(4p)>E
Rd3K4p2d

C2p . ~3.3!

After performing the~compact! integration over theK4p2d

coordinates, we are left with the inequality for th
d-dimensional action or energy density of the residu
gauged Higgs model, bounded from below by residual
density. We will discuss these two quantities in a little mo
2-4
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detail in the following two subsections. Before proceedi
however, we make two remarks.

First, the choice of the compact coset spaceK4p2d is not
important for our purposes since we are not concerned w
the gauge coupling constant explicitly, so we will have
mind the simplest variantK4p2d5S4p2d when discussing
the symmetry breaking that occurs in the dimensional
scent, and refer to the corresonding residual models as
eralized Georgi-Glashow~GGG! models.

Secondly, we will restrict to the simplest of all possib
residual system in any dimensiond. It is clear from Eq.~3.3!
that the descent tod dimensions can start from any dime
sion 4p.d. The simplest systems will result, obviousl
when 4p is the smallest number that is larger thand. We
shall refer to these as theminimal GGG models. In our con-
siderations below, we will always restrict ourselves to the
choices. Familiar examples of such residual models are
three dimensional GG model~in the Prasad-Somerfield limit!
and the Abelian Higgs model, both descended fr
SO6(4)5SU(2) p51 ~i.e., usual! YM.1

A. The generalized GG models and finite energy conditions

Having explained the general procedure used in the d
vation of residual Higgs models above, we now discuss so
properties of minimal GGG systems ind52,3,4,5 which are
used in the subsequent section. They arise respectively,
the dimensional reduction of thep51, SO6(4)5SU(2)(d
52,3), and thep52, SO6(8) (d54,5), members of the YM
hierarchy, and are given explicitly in the Appendix B. W
have denoted the energy or action density of the resid
models byE (p,d) and will refer to them as energy densitie
henceforth, since in the familiar 3 dimensional case this
incides with the definition of an energy density. We note t
the d52 modelE (1,2) thus obtained is nothing but the usu
Abelian Higgs model, whereasE (1,3) equals the GG model in
the Prasad-Somerfield limit, but we do not make a distinct
on this acount because this limit makes no difference to
considerations below, the latter being sensitive only to
asymptotic values rather than the detailed decays of t
fields.

An important general feature of the energy densities
these residual models is, that the curvatureF, the covariant
derivative of the Higgs fieldDF and the ‘‘square root’’ of
the Higgs selfinteraction potential S52(F211 ) all must
decay asymptotically at the same rate to satisfyfinite energy
conditions. The reason for this is easily explained. Denoti
the curvatures in 4p dimensions that appear in Eq.~3.1! with
indicesM5m,m, with m labeling the coordinates of xPRd
and m those of yPS4p2d, as a result of the dimensiona
reduction we have, ford oddandevenrespectively,

1If by contrast the descent tod53 is started from thep52 YM
system, another variant of the GG model is obtained@28#. Its
asymptotic properties are identical to those of the usual GG m
and hence it yields nothing new in the present context. We there
exclude all such models from consideration here.
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FMN5H Fmn5Fmn ^ Y~y!

Fmm5DmF ^ Ym~y!

Fmn5S^ Ymn~y!

,

~3.4!

FMN5H Fmn5Fmn
(1)

^ Y(1)~y!1Fmn
(2)

^ Y(2)~y!

Fmm5Dmw ^ Ym
(1)~y!2Dmw†

^ Ym
(2)~y!

Fmn5s1 ^ Ymn
(1)~y!1s2 ^ Ymn

(2)~y!

where s15ww†21, s25w†w21, and the Y’s, are y
PS4p2d dependent tensor-spinor bases whose details do
concern us here~see for example Refs.@24# for details!. In
the even dimensional cases, the Higgs fieldF, and the gauge
potential Am are composed of the corresponding fieldsw, w†

and Am
(6) ~whose curvatures are Fmn

(6)) as follows:

Am5FAm
(1) 0

0 Am
(2)G , F5F 0 w

2w† 0G . ~3.5!

What is interesting here is that the substitution of Eq.~3.4!
into Eq. ~3.1!, which yields the residual energy density ind
dimensions, results in a sum of terms each of which cons
of 2p factors of all possible types of components listed
Eq. ~3.4!. It follows that each of the fields Fmn , DmF, and
(F211) must have the same asymptotic decay rate if
energy is to be finite. This means that DmF and S52(F2

11) can be neglected in asymptotic expansions which ju
fies the conditions~2.6! and ~2.7! defining the asymptotic

fields (F̄,Ā).
Another important property of the models under cons

eration is that they support nontrivial, stable finite ener
solutions to which we will refer to as solitons in accord wi
our nomenclatureE (p,d) as energy density. In particular, th
radially symmetricAnsatz~2.12! minimizes the energy func
tionals, i.e., the profile functionsf (r ) andh(r ) can be cho-
sen such that they solve the Euler-Lagrange equations o
radial subsystem~which in general requires numerical inte
gration techniques!. The corresponding radially symmetri
solution is called ‘‘hedgehog.’’

B. Topological charges of generalized monopoles

Under dimensional reduction, the left hand side of E
~3.3! yields the residual subsystems which are the candid
for GGG models. The right hand side, which is the dime
sionally reduced CP density, presents the lower bounds
the GGG energy densities,

E (p,d)>% (p,d). ~3.6!

The volume integral over this CP density is called CP cha
q(p,d),

q(p,d)5E
Rd

% (p,d)ddx. ~3.7!

The normalization of% (p,d) andE (p,d) in Eq. ~3.6! is chosen
such that the hedgehog~2.12! has unit CP charge.q(p,d) is
commonly also called topological charge of the GGG mo

el
re
2-5
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D. H. TCHRAKIAN AND F. ZIMMERSCHIED PHYSICAL REVIEW D62 045002
E (p,d) since it is closely related to the topological propert
of finite energy configurations discussed in Sec. II. This
shown in Sec. IV A, making use of the most important pro
erty of the CP densities% (p,d), namely that they are tota
divergences,

% (p,d)5]lVl
(p,d) . ~3.8!

This was shown in numerous cases in Refs.@25#, both for
even and odd values of the residual dimensionsd, which we
do not exhibit here, except for the four examples discusse
Appendix B. Vl

(p,d) is the residual CS density andV(p,d)

5Vl
(p,d)(*dxl) the residual CS form which we refer to a

the CS formpertaining to the modelE (p,d), in the sense tha
it allows us to write the CP charge~3.7! as a surface integra
over the boundary ofRd,

q(p,d)5 lim
r→`

E
Sd21(r )

x̂lVl
(p,d)dS5 lim

r→`
E

Sd21(r )
V(p,d).

~3.9!

We point out that theseCS forms, aregauge invariant in odd,
and gauge variant in even, dimensions@25#. This is clearly
seen from Eqs.~B15!–~B18! of Appendix B. This property
of these CS forms will be very important in our subsequ
considerations.

For use in the next section, we now introduce t
asymptotic expressions of CS formsV(p,d) appearing in Eq.
~3.9!. We denote them, again with an overbar, as

V̄(d)
ªV(p,d)u(F̄,Ā) , ~3.10!

where (F̄,Ā) are the asymptotic fields defined in Eqs.~2.6!
and~2.7!. We have labeledV̄(d) with the residual dimension
d and not with the labelp that specifies the model, since
does not depend on the latter. This is because of the gen
structure of the asymptotic CS forms which is discussed
low. Accordingly the CP charge, evaluated by the surfa
integral ~3.9!, also is independent ofp and we express it as

q(d)5E
Sd21(r )

V̄(d). ~3.11!

The asymptotic CS formsV̄(d) inherit the important property
of theV(p,d), namely that they are gauge invariant for oddd
and gauge variant for evend. Accordingly we treat the two
cases separately.

In 2M11 (odd) dimensions, the asymptotic CS forms fo
the two examplesd53 andd55 which will be needed be
low, can be readily extracted from the general CS for
~B16! and ~B18! given in Appendix B, using the finite en
ergy requirements. They are

V̄(3)5
1

c3
tr@F̄F̄# ~3.12!

V̄(5)5
1

c5
tr@F̄F̄`F̄#. ~3.13!
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In general,V(p,2M11) consists of products ofF, DF, and S.
As a consequence of the finite energy conditions,
asymptotic formV̄(2M11) consists ofM factorsF and one
Higgs field. By virtue of the identity

~3.14!

then, the asymptotic CS form in odd dimensions takes
form

~3.15!

wherec2M11 is a normalization constant. From Eq.~3.15!, it
is obvious thatV̄(2M11) is gauge invariant.

In 2M (even) dimensions, following similar arguments as
before now applied to Eqs.~B15! and ~B17!, yield the
asymptotic CS forms for thed52 and d54 dimensional
models,

V̄(2)5
1

c2
tr@g3Ā#5:

1

c2
v(1)@Ā,F̄# ~3.16!

V̄(4)5
1

c4
trFg5S F̄`Ā2

1

3
Ā`Ā`ĀD G5:

1

c4
v(2)@Ā,F̄#.

~3.17!

In Eqs.~3.16! and~3.17!, we have introduced a new symbo
v(M ) used in Ref.@30#, for M51 andM52, because is will
be useful in the work of subsequent sections for generalM.
In general,V(p,2M ) consists of products ofF, DF, S, and of
A. As a consequence of the finite energy conditions,
asymptotic formV̄(2M ) consists only of the Higgs indepen
dent terms, and equals the trace of the chiralSO(2M ) matrix
g2M11 times the products ofA andF that appear in the trace
of the CS form of the~chiral! SO6(2M ) Yang-Mills fields
without a Higgs field. Using@A,g2M11#50 one can show
@30# that this is an exact form,

~3.18!

Unlike the corresponding expression~3.15! which can be
expressed for alld52M11, the corresponding expression
in even dimensions have a more complicated dependenc
d52M , abbreviated byv(M ). These are easy to find explic
itly in any given case and ford56 andd58 can be found in
the first item in Refs.@25#. One can show that it is this term
which contributes the leading asymptotic behavior of the
form, hence the asymptotic CS from in even dimensions
be written as

V̄(2M )5
1

c2M
v(M )@Ā,F̄#. ~3.19!
2-6
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Equations~3.15! and ~3.19! show that the asymptotic CS
form really depends on the dimension only and not on
particular model characterized byp, the member of the YM
hierarchy the underlying model was derived from.

We emphasise that the asymptotic CS forms in odd
mensions always involve one Higgs field in addition to
antisymmetric curvatureM-form, while in even dimensions
the Higgs field is absent and is replaced by the chiralSO(d)
matrix.

IV. KALB-RAMOND FIELDS AND ’t HOOFT TENSORS

This section is divided in three subsections. In the first
evaluate the CP charge in the regular gauge identifyin
with the winding number of the Higgs fieldW (d)$F%, and
finding that in odd dimensions this gives rise to the desc
tion of magnetic KR@18# charge. The second subsection
devoted to the corresponding considerations in the D
gauge. There, we have shown that the CP charge in e
dimensions cannot be evaluated as a surface integral in
Dirac gauge, while that is possible in odd dimensions. It w
also shown that the CP charge results from a surface inte
over Wu-Yang type KR potentials, and that it can be co
puted as the degreeD (d)$T% of the transition gauge transfor
mation between positive and negative Dirac gauges. Fin
in the third subsection, we have given the prescription
construct ’t Hooft tensors for all odd dimensional monopo
as a natural extension of the content of the previous
subsections.

A. Regular gauge

The CP charge can be evaluated directly by simply ins
ing a field configuration in regular gauge into the surfa
integral ~3.11!. For the hedgehog field configuration
(F (P) ,A(P)), ~2.12!, the asymptotics~2.13! yield

V̄(P)
(d)

ªV(p,d)u(F̄(P) ,Ā(P))

5
1

kd21

x̂m

r d21
~*dxm!⇒E

S21
V̄(P)

(d) 51, ~4.1!

in which kd21 denotes surface ofSd21. This direct evalua-
tion does not, however, demonstrate the topological natur
the CP charge, i.e., its relation to the topological invaria
of a finite energy configuration discussed in Sec. II.

In regular gauge, a relation between the CP chargeq(d)

and the winding number of the Higgs fieldW (d)$F% is easy
to find. Using Eq.~2.8! to rewrite the asymptotic gauge field
in terms of the asymptotic Higgs fields,

Ā52
1

2
F̄dF̄, F̄52

1

4
dF̄`dF̄ ~4.2!

and inserting Eq.~4.2! into Eqs.~3.12!, ~3.13!, ~3.16!, ~3.17!
we find

V̄(2)52
1

2c2
tr@g3F̄dF̄# ~4.3!
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V̄(3)52
1

4c3
tr@F̄dF̄`dF̄# ~4.4!

V̄(4)5
1

6c4
tr@g5F̄dF̄`dF̄`dF̄# ~4.5!

V̄(5)5
1

16c5
tr@F̄dF̄`dF̄`dF̄`dF̄#. ~4.6!

By virtue of Eqs. ~4.3!–~4.6!, the CP chargeq(d) can be
identified with the winding number of the Higgs field define
by Eq. ~2.11!,

q(d)5W (d)$F%, ~4.7!

in both even and odd dimensions. This justifies our desc
tion of CP charges as topological charges in the previ
section. We stress that Eq.~4.2! is valid in regular gauge
only, therefore, Eq.~4.7! cannot be used to express the C
charge in Dirac gauge by performing a singular gauge tra
formation, according toW (d)$6F%50Þq(d).

Because a factor of one Higgs field appears in the o
dimensional asymptotic CS forms~3.15!, it follows that
these areclosedforms, namely that

~4.8!

We should emphasize that this result follows from the pr

ence in Eq.~4.8! of D̄F̄ which is vanishing asymptotically
according to Eq.~2.7!.

In even dimensions however, the expression correspo
ing to Eq.~4.8! is

~4.9!

which is nonvanishing, i.e., V̄(2M ) is not a closed form.
Being aclosed form, the asymptotic CS form in 2M11

dimensions can be identified with aKalb-Ramond field
strength~cf. Appendix A! on S2M which supports magnetic
flux equal to the CP charge,Qm5q(2M11).

This allows us to interpret the CP chargeq(d) solitons of
the GGG model with energy densityE (p,2M11) @e.g., the
hedgehog~2.12! with q(d)51# as the KR monopole~A11!
with magnetic chargeQm5q(d). In other words, we can de
scribe the singular KR monopole field as the 2M11 dimen-
sional ~regular! soliton of the appropriate GGG model.

B. Dirac gauge

The situation in Dirac gauge is different from that in reg
lar gauge in so far as it is not possible to evaluate the
charge ineven dimensionsusing the surface integral~3.11!, a
2-7
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fact already emphasized in Ref.@29#. For example, inserting
the hedgehog~2.12! into the asymptotic CS formV̄(2M )

yields

E
S2M21

6V̄(P)
(2M )50, ~4.10!

where 6V̄(P)
(2M ) is the asymptotic CS form in the positive o

negative Dirac gauge for the hedgehog field configurat
given by Eqs.~2.24! and~2.25!. This is because of the gaug
variance ofV̄(P)

(2M ) under the large gauge transformatio
~2.23! which take the regular hedgehog to positive or ne
tive Dirac gauge. We will demonstrate this in detail in 2M
52 and 2M54 and will then give the general case.

In 2M52 dimensions where

6V̄(P)
(2) 5

1

c2
tr@g3

6Ā(P)# ~4.11!

we find

6V̄(P)
(2) 5V̄(P)

(2) 1
1

c2
tr@g3g6dg6

21#50. ~4.12!

It turns out that the two terms in Eq.~4.12! simply cancel
out.

In 2M54 dimensions, where

6V̄(P)
(4) 5

1

c4
tr@g5~6F̄(P)`6Ā(P)2

1
3

6Ā(P)`6Ā(P)`6Ā(P)!#

~4.13!

we find

6V̄(P)
(4) 5V̄(P)

(4) 1
1

c4
H d tr@g5Ā(P)`dg6

21#

2
1

3
tr@g5~g6dg6

21!`~g6dg6
21!`~g6dg6

21!#J
50 ~4.14!

where again the sum of terms in Eq.~4.14! cancel out.
Finally in general where, with the notation of Eq.~3.19!

6V̄(P)
(2M )5

1

c2M
v(M )@6Ā(P) ,6F̄(P)# ~4.15!

the CS form in Dirac gauge can be rewritten as

6V̄(P)
(4) 5V̄(P)

(4) 1
1

c2M
$da(M )@Ā,g#1v(M )@g6dg6

21,0#%.

~4.16!

Here, we have used the transformation properties ofv(M ) in
the notation of Ref.@30#. Note that the general expressio
~4.16! is exactly of the same form as the special case~4.14!
for M52, while theM51 case~4.12! is of a simpler form.
Note also that in Eq.~4.16!, the exact form da(M )@Ā,g# does
04500
n

-

not contribute in the surface integral~4.10!, in which case
the other two terms cancel out.

In odd dimensionson the other hand, the surface integr
of 6V̄(2M11) over S2M does yield the correct value for th
CP charge@29#, like in the regular gauge. In this case th
asymptotic CS form of a finite energy configuratio
(6F,6A) in Dirac gauge, can be given explicitly for th
general case. As a consequence of the asymptotic form o

Higgs field in this gauge,6F̄56 ig2M11, and Eq.~3.15!,

~4.17!

This quantity is defined on the sphereS2M\$(0, . . . ,0,71)%
excluding the south or north pole, respectively. As a con
quence of the manifest gauge invariance of Eq.~4.17!,

V̄(2M11)56V̄(2M11). ~4.18!

Another important property of the CS formsV̄(2M11),
besides their gauge invariance, is that they are closed fo
This was used in Sec. IV A to interpret them as of KR fie
strengths onS2M. Moreover in this case, namely in the Dira
gauge, the expression~4.17! makes it possible to express th
KR fields ascurls of KR potentials on the simply connecte
regionsS6

2M . Following Nepomechie@18#, we denote these
KR potentials by6B(2M11),

V̄(2M11)5d6B(2M11) ~4.19!

in the notation of Appendix B. We will construct these W
Yang type KR potentials explicitly in three and five dime
sions first and will then present the general case.

In 2M1153 dimensions, the gauge group of6F̄ breaks
down to SO(2) by virtue of @g3 ,6F̄#50, as discussed in
Sec. II. We then have

6V̄(3)56
i

c3
tr@g3

6F̄#56
i

c3
d tr@g3

6Ā#, ~4.20!

which yields

6B(3)56
i

c3
tr@g3

6Ā#. ~4.21!

In 2M1155 dimensions,6F̄ hasSO(4) gauge symmetry
by virtue of @g5 ,6F̄#50, from which it follows that

6V̄(5)56
i

c5
tr@g5

6F̄`6F̄#

56
i

c5
d trFg5S 6F̄`6Ā2

1

3
6Ā`6Ā`6ĀD G ,

~4.22!

thus
2-8
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6B(5)56
i

c5
trFg5S 6F̄`6Ā2

1

3
6Ā`6Ā`6ĀD G .

~4.23!

We now note that the forms on the right hand sides of E
~4.20! and ~4.22! coincide with the formsv(1) and v(2) in
the corresponding even dimensional (d52,4) cases~3.16!
and~3.17!. In general 2M11 dimensions,6F̄ is aSO(2M )
gauge field strength according to Eq.~2.18!. This enables us
to write the KR potentials of the asymptotic CS forms
general 2M11 dimensions with the help ofv(M ) @which
was used in Eq.~3.19! in the context of even dimensional C
forms# as follows:

6B(2M11)56
i

c2M11
v(M )@6Ā,6F̄#. ~4.24!

The KR potentials6B(2M11) can be used to rewrite th
CP charge surface integral corresponding to Eq.~3.11!, over
S2M, as an integral over the equatorS2M21. First splitting the
integral ~3.11! into two integrals over the upper and low
half spheresS6

2M , respectively, one can use the gauge inva
ance of the odd dimensional CS forms, Eq.~4.18!, to evalu-
ate the CP chargeq(2M11) without integrating over the sin
gularities in the Dirac gauge. Finally, using the KR potenti
~4.19! and applying Stoke’s theorem on]S1

2M52]S2
2M

5S2M21 yields

q(2M11)5E
S1

2M
1V̄(2M11)1E

S2
2M

2V̄(2M11)

5E
S2M21

~1B(2M11)22B(2M11)!. ~4.25!

According to the discussion in Appendix A 2, the integr
over thetransition form

U(2M11)51B(2M11)22B(2M11) ~4.26!

in Eq. ~4.25! determines the KR magnetic charge of the W
Yang type KR potentials6B(2M11) which enables us agai
to identify the CP chargeq(2M11) with magnetic KR charge
Qm .

In the context of the GGG models, the transition for
U(2M11) is a composite field which can be written explicit
in terms of the asymptotic gauge potentials6Ā and the
asymptotic transition gauge transformation T¯which takes the

negative to the positive Dirac gauge,T̄(2F̄,2Ā)

5(1F̄,1Ā). Again, we first present this result in the thre
and five dimensional case, giving the general odd dim
sional result afterwards.

In three dimensions, using$T̄,g3%50, ~2.19!, we find

1B(3)5
i

c3
tr@g3

T̄~2Ā!#52B(3)1
i

c3
tr@g3T̄dT̄21#,

~4.27!
04500
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yielding U(3)5( i /c3)tr@g3T̄dT̄21#. Substituting this into the
equatorial integral~4.25! leads to

q(3)5
i

c3
E

S1
tr@g3T̄dT̄21#. ~4.28!

In five dimensionswe find in the same way, using$g5 ,T̄%
50,

U(5)5
i

c5
H d tr@g5

2Ā`dT̄21#

2
1

3
tr@g5~ T̄dT̄21!`~ T̄dT̄21!`~ T̄dT̄21!#J .

~4.29!

Substituting this into the equatorial~closed surface! integral
~4.25!, by Stokes’ theorem the first term in Eq.~4.29! does
not contribute and the rest yields

q(5)52
i

3c3
E

S3
tr@g5~ T̄dT̄21!`~ T̄dT̄21!`~ T̄dT̄21!#.

~4.30!

The five dimensional example already shows the struc
of the general case. Using the same notationsa(M ) andv(M )

introduced in Eq.~4.16! but taking care of the anticommuta
tor$g2M11 ,T̄%50,

U(2M11)5
i

c2M11
$da(M )@2Ā,T̄#1v(M )@ T̄dT̄21,0#%.

~4.31!

Substituting this into the equatorial integral~4.25!, in which
the term da(M )@2Ā,T̄# does not contribute, we can write th
CP charge in the general case as

q(2M11)5
i

c2M11
E

S2M21
v(M )@ T̄dT̄21,0#. ~4.32!

Finally, we see that the CP charges~4.28! and ~4.30!
equal, respectively, the degrees of the transition gauge tr
formations~2.22!, in three and five dimensions. In the ge
eral case withq(2M11) given by Eq.~4.32!, we have

q(2M11)5D (2M11)$T%. ~4.33!

C. Construction of the ’t Hooft tensor

In this section, we give the prescription for constructing’t
Hooft tensors@3,5# pertaining to the GGG monopoles, in a
odd dimensions. This encapsulates the results of both pr
ous Secs. IV A and IV B simultaneously. In three dime
sions, the ’t Hooft tensor is identified with the residual Ma
well field of the Dirac monopole. In general odd dimension
the Dirac monopole generalizes to KR monopoles descri
in terms of KR fields~which coincide with Maxwell fields in
d53 dimensions!. The construction of ’t Hooft tensors in
higher dimensions then follows naturally.
2-9
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We first repeat the construction in three dimensions, us
the notation developed above and pointing out the main s
as a guideline for the five dimensional case presented su
quently. This construction can be systematically extende
all odd dimensions.

In three dimensions, the asymptotic CS form~3.12! can
be written as

V̄(3)5
1

c3
tr@F̄F̄#5

1

c3
tr@F̄~dĀ1Ā`Ā!#. ~4.34!

The plan now is to add an asymptotically vanishing, gau
invariant, expression which cancels the second~highest order
in Ā’s! term in Eq.~4.34!, such that the result consists of a
exact form plus a term depending on the Higgs fields on
To be concrete, one can check the identity

05tr@F̄D̄F̄`D̄F̄#5tr@F̄~dF̄`dF̄14Ā`Ā!24dF̄`Ā#

~4.35!

which is asymptotically zero by virtue ofD̄F̄50. Multiply-
ing the identity ~4.35! by the normalization factor
2(4c3)21, and adding this to the asymptotic CS for
~4.34!, we have the desired definition of the usual ’t Hoo
tensor

H(3)
ªV̄(3)2

1

4c3
tr@F̄D̄F̄`D̄F̄# ~4.36!

5dB(3)2
1

4c3
tr@F̄dF̄`dF̄# ~4.37!

with

B(3)5
1

c3
tr@F̄Ā#. ~4.38!

In the definition equation~4.37!, we have used the symbo
H(3) for the ’t Hooft tensor, which is also the symbol for th
KR field strength introduced in Appendix A. This is becau
V̄(3) on the left hand side of Eq.~4.34! describes both thes
quantities, and the ’t Hooft tensor can be identified with t
KR field strength. The CP charge now equals the surf
integral of this KR field strengthH(3), which by virue of Eq.
~A9!, defines magnetic KR charge,

q(3)5E
S2

V̄(3)5E
S2

H(3)
ªQm . ~4.39!

In the regular gauge, where the surface integral is ov
the entire~closed! S2, the term dB(3) in Eq. ~4.37! does not
contribute. It follows that the only contribution comes fro
the second term

q(3)5E
S2

H(3)52
1

4c3
E

S2
tr@F̄dF̄`dF̄#5W (3)@F#.

~4.40!
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This reproduces the result~4.7! of Sec. IV A in three dimen-
sions.

In theDirac gauge, the surface integral is carried out ov
the sphere with a hole around the negative or positive~south
or north! Dirac string singularity, and the Higgs field is
constant. As a consequence of the constancy of the H

field, the term tr@F̄dF̄`dF̄# in Eq. ~4.37! vanishes so tha
the only contribution to the surface integral comes from
residue of the singularity in the first term. This is the~closed
S1) line integral of

B(3)u(6F̄,6Ā)56
i

c3
tr@g3

6Ā#56B(3), ~4.41!

in the notation of Eq.~4.21!. Here 6B(3) are the KR poten-
tials of the KR field strengthH(3)5d6B(3) on S6

2 . This re-
produces the results of Sec. IV B.

In five dimensions, the asymptotic CS form~3.13! can be
written as

V̄(5)5
1

c(5)
tr~F̄F̄`F̄!

5
1

c(5)
tr@F̄~dĀ`dĀ1dĀ`Ā`Ā

1Ā`Ā`dĀ1Ā`Ā`Ā`Ā!#. ~4.42!

As in the three dimensional case, the plan now is to add
asymptotically vanishing, gauge invariant, expression wh
cancels the fourth~highest order inĀ’s! term in Eq.~4.42!,
such that the result consists of an exact form plus a te
depending on the Higgs fields only. Unlike in the three
mensional case where there is only one such candidate

tr@F̄D̄F̄`D̄F̄# in Eq. ~4.35!, now there are two, namely

tr@F̄D̄F̄`D̄F̄`D̄F̄`D̄F̄# and tr@F̄F̄`D̄F̄`D̄F̄#. It only
remains to find the relative numerical coefficients of the
two terms, such that they result in the elimination of the s
term. To be concrete, one can check the identity

05tr@F̄~D̄F̄`D̄F̄28F̄!`D̄F̄`D̄F̄#

5tr@F̄dF̄`dF̄`dF̄`dF̄#216 tr@F̄Ā`Ā`Ā`Ā#

28d trF F̄S dF̄`dF̄1dF̄`ĀF̄1
1

3
ĀF̄`ĀF̄D`ĀG

28 tr@F̄~dĀ`Ā`Ā1Ā`dĀ`Ā1Ā`Ā`dĀ!#

18 tr@dF̄~dĀ`Ā1Ā`dĀ1Ā`Ā`Ā!#. ~4.43!

Multiplying the identity ~4.43! by the normalization factor
(16c3)21, and adding this to the asymptotic CS form~4.42!,
we have the definition of the ’t Hooft tensor in five dime
sions,

H(5)
ªV̄(5)1

1

16c5
tr@F̄~D̄F̄`D̄F̄28F̄!D̄F̄`D̄F̄#

~4.44!
2-10
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5dB(5)1
1

16c5
tr@F̄dF̄`dF̄`dF̄`dF̄#

~4.45!

with

B(5)5
1

2c(5)
trF F̄S dĀ`Ā1Ā`dĀ1Ā`Ā`Ā

2
1

3
Ā`F̄ĀF̄`ĀD1dF̄`~F̄dF̄1F̄ĀF̄!`AG

~4.46!

Again, we have used the symbolH(3) in the definition equa-
tion ~4.37! which is also the symbol for the KR field streng
introduced in Appendix A, defining the KR field streng
describing the monopoles of the GGG models as the ’t Ho
tensor~4.45!. The CP charge then is the surface integral
the KR field strengthH(5) over S4 in analogy to Eq.~4.39!,

q(5)5E
S4

V̄(5)5E
S4

H(5)5Qm . ~4.47!

In the regular gauge, where the surface integral is ov
the entire~closed! S4, the term dB(5) in Eq. ~4.45! does not
contribute. It follows that the only contribution comes fro
the second term

q(5)5E
S4

H(5)

5
1

16c5
E

S4
tr@F̄dF̄`dF̄`dF̄`dF̄#

5W (5)@F#. ~4.48!

This reproduces the result~4.7! of Sec. IV A in five dimen-
sions.

In theDirac gauge, the surface integral is carried out ov
the sphere with a hole around the negative or positive~south
or north! Dirac string singularity, and the Higgs field is
constant. As a consequence of the constancy of the H

field, the term tr@F̄dF̄`dF̄`dF̄`dF̄# in Eq. ~4.45! van-
i‘shes so that the only contribution to the surface integ
comes from the residue of the singularity in the first ter
This is the~closedS3) integral of

B(5)u(6F̄,6Ā)56
i

c5
trFg5S 6F̄`6Ā2

1

3
6Ā`6Ā`6ĀD G

56B(5) ~4.49!

in the notation of Eq.~4.23!. 6B(5) are the KR potentials o
the KR field strengthH(5)5d6B(5) on S6

4 . This reproduces
the result of Sec. IV B.

It is now clear that the prescription for the construction
the ’t Hooft tensor in three and five dimensions can be s
tematically extended to any odd dimension. The result can
stated formally, omitting the expression corresponding
Eqs.~4.36! and ~4.44! in the definitions of the ’t Hooft ten-
04500
ft
f

r

r

gs

l
.

f
-
e

o

sors, and restricting to the result corresponding to Eqs.~4.37!
and ~4.45!. It is

~4.50!

whereW2M115(24)Mc2M11 is the normalization constan
appearing in Eq.~2.11!. In the Dirac gauge, the expressio
corresponding to Eqs.~4.41! and ~4.49! is

B(2M11)u(6F̄,6Ā)56
i

c2M11
v(M )@6Ā,6F̄#56B(2M11)

~4.51!

which yields the KR potential~4.24! on S6
2M for the KR field

strengthB(2M11) which we generally define as the ’t Hoo
tensor of an odd dimensional GGG model.

V. SUMMARY AND DISCUSSION

We have studied the topological properties of the solito
of the generalized Georgi-Glashow~GGG! models, which
we have described along with the corresponding redu
Chern-Pontryagin~CP! densities and Chern-Simons~CS!
forms in theregular and the theDirac gauges, in all dimen-
sions. In common with the familiar three dimensional ca
the topology of these monopoles can be described ex
sively by theSO(d) isovector Higgs fields in theregular
gauge, identifying the CP charge with the Higgs field win
ing number. All this was carried out in all, even and od
dimensions.

Just as the magnetic Maxwell field, which is the reduc
CS form pertaining to the monopole of the three dimensio
GG model, can be identified as the Dirac monopole fi
strength, we have identified the reduced CS forms,
scended from higher order CP densities, as Kalb-Ram
~KR! monopole fields in all odd dimensions. The role ana
gous to that of the ’t Hooft-Polyakov monopole is played
the solitons of the GGG models, which we have called GG
monopoles. This construction is not possible in even dim
sions.

Just as in the three dimensional case, the study of
GGG monopoles and the corresponding CS forms, both
the regular and Dirac gauges, led us to define the ’t Hoo
tensors in all odd dimensions. These are identified with
relevant KR field strengths of the GGG monopoles. All o
concrete constructions were carried out using the hedge
~spherically symmetric! GGG monopoles in three and fiv
dimensions, but the results hold generally.

We now discuss briefly, connections of our results w
physically relevant problems.

The first is concerned with the construction of dilute gas
of GGG monopoles. KR theory is linear in the sense that
sum of two solutions is again a solution to the KR equatio
~A2! and~A8!. This allows the construction of adilute gasof
KR monopoles in analogy to the Coulomb gas in usual M
well theory. This Coulomb gas was used in Polyakov’s wo
@22# to construct a dilute gas of ’t Hooft-Polyakov mono
2-11
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poles of the usual GG model in three dimensions, yieldin
mechanism for confinement in the resulting QCD toy mod
One can thus expect that Polyakov’s construction can
adopted to the GGG models in odd dimensions, but unfo
nately not in even dimensions — and particularly not in t
physically interesting cased54, where the significance o
the GGG modelE (2,4) has recently been pointed out@31#.
Indeed, the construction of a dilute gas from KR monopo
in arbitrary dimensions was carried out long ago in the c
text of lattice field theory@15–17#.

Perhaps of most topical interest is the relevance of
results to the modern concept of branes. In usual Maxw
theory, the elementary electrically charged objects are po
like ~zero dimensional!, and their time evolution is describe
by aworldline. The Maxwell potential describing a magnet
field, on the other hand, is a 1-form which can be integra
along the worldline of the electric charge. This line integr
multiplied by the electric charge coupling constante, yields
the interaction energy~or, in Minkowskian spacetime, ac
tion! between the electric charge and the Maxwell magn
field. Generalizing this construction to higher dimensio
the electrically charged objects which couple tod22 form
KR potentials must have ad22 dimensional world volume
such that the interaction between the electrically charged
ject and the KR field is described as the integral of the
potential over this world volume. This means that the el
trically charged object itself is ad23 brane. Nepomechie
@18# has shown that the existence of a KR monopoles w
magnetic chargeQm leads to a quantization condition for th
electric charge of the branes which couple to the KR mo
pole field in the way described above. Therefore the G
monopoles in 2M11 dimensions which we have discuss
yield the quantization of the elementary electric charge
2M22 branes in analogy to the ’t Hooft-Polyakov mon
pole which forces the quantization of elementary elec
point charges~which are 0-branes!. KR fields, on the other
hand, arise naturally in the context of string theories@9#
which are the background of all modern brane physics,
that we expect strings and D-branes to be the correct con
in which our constructions may be of some significance.

Finally, we discuss a generalization of the GGG mon
poles used in this work. The dynamics of the systems stud
was described by the so-called GGG models, and in part
lar the solitons they support in odd spatial dimensions are
GGG monopoles alluded to above. These GGG monop
are the classical solutions to the Euler-Lagrange equation
the temporal gauge A050. When the odd spatial dimension
are restricted tod54M21, the GGG monopoles are in fac
solutions to the relevant first order Bogomol’nyi or se
duality equations. These were discussed in Ref.@32# and the
analytic proof of existence given in Ref.@33#. These self-
dual GGG monopoles, which are generalizations of
Bogomol’nyi-Prasad-Sommerfield~BPS! monopoles in three
(M51) dimensions, are entirely suited for generalization
the corresponding ‘‘dyons’’ following the prescription use
by Julia and Zee@34# in the M51 case. This task can b
performed systematically and will be reported elsewhe
The question here is, can such ‘‘dyons’’ be described as
fields?
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APPENDIX A: KALB-RAMOND THEORY
AND MAGNETIC MONOPOLES

In this appendix, we summarize the theory of static Ka
Ramond~KR! fields and KR monopoles@15–18#, following
the explicit continuum constructions of Nepomechie@18#.

1. Free KR theory

Kalb-Ramond~KR! theories@9# generalize Maxwell elec-
tromagnetism as they deal with higher-rank antisymme
tensor field strength instead of the rank two Maxwell fie
strength tensor. In mathematical terminology, KR fie
strengths are real valuedr-forms in d11 Minkowskian
spacetime dimensions. Static KR theory involvingr-forms
on d dimensional spaceRd then generalizes Maxwell mag
netostatics.

Here, we consider the special caser 5d21 in d spatial
dimensions and simply refer to this special case of magn
KR theories as the ‘‘KR theory ind dimensions’’ since it is
this type of magnetic KR theory which we consider in t
main part of this work. It is defined in terms of the magne
KR field strength (d21)-form

H5
1

~d21!!
Hm1 . . . md21

dxm1` . . . `dxmd215H̃m~*dxm!,

~A1!

Hm1 . . . md21
ªenm1 . . . md21

H̃n

which is closed onRd,

dH50⇔em1 . . . md
]m1

Hm2 . . . md
50⇔]mH̃m50. ~A2!

Poincare´’s lemma then allows us to introduce the KR pote
tial (d22)-form

B5
1

~d22!!
Bm1 . . . md22

dxm1` . . . `dxmd22

5
1

2
B̃m1m2

* ~dxm1`dxm2!,

~A3!

Bm1 . . . md22
5

1

2
em1 . . . md22n1n2

B̃n1n2

such that

H5dB⇔Hm1 . . . md21
5] [m1

Bm2 . . . md21]⇔H̃m5]nB̃mn .
~A4!

B is well defined up to an exact (d22)-form dL,
2-12
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L5
1

~d23!!
Lm1 . . . md23

dxm1` . . . `dxmd23

5
1

3!
L̃m1m2m3

* ~dxm1`dxm2`dxm3!,

Lm1 . . . md23
5

1

3!
em1 . . . md23n1n2n3

L̃n1n2n3
~A5!

which means thatH is invariant under KR transformations

B°B1dL⇔Bm1 . . . md22
°Bm1 . . . md22

1] [m1
Lm2 . . . md22]

⇔B̃m1m2
°B̃m1m2

1]nL̃nm1m2
~A6!

and a KR energy functional is supposed to preserve this
variance.

Free KR theory is given by the energy functional

EKR
(d)@H#ª

1

2ERd
H`* Hª

1

2~d21!! ERd
Hm1 . . . md21

2

5
1

2ERd
H̃m

2 . ~A7!

Varying EKR
(d) with respect toB yields the magnetic KR equa

tion

*d* H50⇔]nHnm1 . . . md22
50⇔] [m1

H̃m2]50. ~A8!

Equations~A2! and ~A8! are thed-dimensional generaliza
tion of the magnetic Maxwell equations ind53 space di-
mensions.

2. KR monopoles ind dimensions

Assuming the existence of ‘‘magnetic’’ charges chang
the mathematical structure of KR theory. From the analog
Maxwell magnetostatics, the flux of the magnetic KR fie
strength form through the sphereSd21 equals a magnetic KR
chargeQm ,

Qm5E
Sd21

H. ~A9!

SinceSd21 is not simply connected, dH50 does not enforce
the existence of a global KR potential form. However, on
simply connected upper and lower half sphe
S1

d21 ,S2
d21,Sd21, KR potential forms exist,HuS

6
d215d6B.

In order to yield a well-defined field strength formH, the
potential forms1B and 2B on the overlap of their definition
ranges, i.e., the equatorS1

d21ùS2
d215Sd22, differ by atran-

sition form U51BuSd2222BuSd22 which has to be closed
dU50. The magnetic KR charge is determined byU,
04500
n-

s
f

e
s

Qm5E
Sd21

H

5E
S1

d21
d1B1E

S2
d21

d2B

5E
Sd22

~1B22B!

5E
Sd22

U. ~A10!

In analogy to the corresponding construction for the Dir
monopole, Eq.~A10! can be called the Wu-Yang constru
tion for magnetic KR charge. The crucial point in the co
struction is thatU is not exact on the equatorSd22 although
it is closed.

An actual solutionH(P) of the KR equations~A2! and
~A8! on Sd21 with nonvanishing flux~A9! is called a~mag-
netic! KR monopole. One can show@18,35# that the only
such solution is given by

H(P)5
Qm

kd21

x̂m

r d21
~*dxm! ~A11!

with H(P)5d6B(P) on S6
d21 , respectively. The explicit ex-

pressions for6B(P) , which do not concern us here, a
given in Ref.@18#. Interpreting this as (d21)-form onRd in
distributional sense~i.e., including the singularity at the ori
gin! and using

]mS x̂m

r d21D 5kd21d~x! ~A12!

yields

dH(P)5Qmd~x!~*1 !, ~A13!

i.e., Eq.~A2! is modified by a point charge acting as sour
for the KR field strength.

APPENDIX B: MINIMAL GENERALIZED GEORGI-
GLASHOW MODELS IN dÄ2,3,4,5 DIMENSIONS

In this appendix we give the explicit expression for t
energy densities, CP densities and CS densities or form
the minimal GGG models ind52,3,4,5 dimensions.

Using S52(F211), the energy densities are

E (1,2)5
1

C(1,2)
trF2

1

4
Fmn

2 2
1

2
~DmF!21

1

2
S2G ~B1!

E (1,3)5
1

C(1,3)
trF2

1

4
Fmn

2 2
1

2
~DmF!2G ~B2!

E (2,4)5
1

C(2,4)
tr@$Fm[nFrs]%

214$F[mn ,Dr]F%2218~$S,Fmn%

1@DmF,DnF#!2254$S,DmF%2154S4# ~B3!
2-13
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E (2,5)5
1

C(2,5)
tr@$Fm[nFrs]%

21$F[mn ,Dr]F%2224~$S,Fmn%

1@DmF,DnF#!2248$S,DmF%2#. ~B4!

C(p,d).0 are normalization constants to be discussed bel
The corresponding residual CP densities% (p,d)<E (p,d)

are found to be

% (1,2)5
1

2C(1,2)
i emn tr@g3~SFmn1DmFDnF!# ~B5!

% (1,3)52
1

4C(1,3)
emnr tr@FmnDrF# ~B6!

% (2,4)5
18

C(2,4)
emnrs tr@g5„S

2FmnFrs22S$Fmn ,DrF%DsF

12~SFmn1DmFDnF!~SFrs1DrFDsF!…# ~B7!

% (2,5)52
24

C(2,5)
i emnrst tr@3SFmnFrsDtF

12FmnDrFDsFDtF#. ~B8!

The volume integral~3.7! of the CP densities yields the C
chargeq(p,d). It is usual to choose the normalization co
stantsC(p,d) such that the hedgehog~2.12! has unit topologi-
cal charge.

The CP charges can be written as total divergences o
CS densitiesVl

(p,d) ,

% (p,d)5]lVl
(p,d) . ~B9!

The corresponding explicit expressions for the CS dens
are

Vl
(1,2)52

1

C(1,2)
i elm trFg3S Am2

1

2
FDmF D G ~B10!

Vl
(1,3)52

1

4C(1,3)
elmn tr@FFmn# ~B11!
hy
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Vl
(2,4)52

108

C(2,4)
elmnr trFg5S FmnAr2

2

3
AmAnAr2

1

2
~211F2!

3F$Fmn ,DrF%1
1

3
FDmFDnFDrF D G ~B12!

Vl
(2,5)5

24

C(2,5)
i elmnrs tr@~311F2!FFmnFrs

22FDmFDnFFrs#. ~B13!

Note that in thed52 formulas~B1!, ~B5! and~B10!, the
gauge field Am52 iAmg3 is Abelian, and the Higgs field
then has only two components as seen from Eq.~2.1!, or
alternatively can be parametrized by a single complex fielw
in Eq. ~3.5!. It is then obvious that Eq.~B1! pertains to the
usual Abelian Higgs model.

Finally, we give the explicit expressions for the CS form
V(p,d) of the four minimal GGG models~B1!–~B4! in the
language of differential forms used in this work. They a
defined as Hodge duals of the CS density 1-forms with co
ponentsVl

(p,d) given by Eqs.~B10!–~B18!,

V(p,d)5Vl
(p,d)~*dxl!, ~B14!

thus

V(1,2)52
1

C(1,2)
i trFg3S A2

1

2
FDF D G ~B15!

V(1,3)52
1

2C(1,3)
tr@FF# ~B16!

V(2,4)52
216

C(2,4)
trFg5S F`A2

1

3
A`A`A2

1

2
~211F2!

3F$F,DF%1
1

6
FDF`DF`DF D G ~B17!

V(2,5)5
96

C(2,5)
i tr@~311F2!FF`F2FDF`DF`F#.

~B18!
7
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