PHYSICAL REVIEW D, VOLUME 62, 045002

't Hooft tensors as Kalb-Ramond fields of generalized monopoles
in all odd dimensions:d=3 and d=5

D. H. Tchrakiari
Department of Mathematical Physics, National University of Ireland Maynooth, Maynooth, Ireland
and School of Theoretical PhysieBIAS, 10 Burlington Road, Dublin 4, Ireland

F. Zimmerschied
Department of Mathematical Physics, National University of Ireland Maynooth, Maynooth, Ireland

(Received 20 January 2000; published 7 July 2000

Rank d—1 antisymmetric tensor fields id Euclidean dimensions, known as Kalb-Ramond fields, can
describe monopole-like solutions. bth=3 dimensions this Kalb-Ramond monopole is {isengulay Dirac
monopole, which in turn can be described by tfegulay 't Hooft-Polyakov monopole, via the 't Hooft tensor
construction. This construction is extended to arbitrary odd dimensions by performidg-thease explicitly,
exploiting the(regulay “monopoles” of generalized Georgi-Glashow models and identifying their 't Hooft
tensors as the Kalb-Ramond fields. The relevant “magnetic charges” are expressed as topological invariants.

PACS numbd(s): 14.80.Hv, 02.40-k

I. INTRODUCTION introduced by Wegnel7,8]. They were later introduced by
many authorg9-12] in the context of string theory9].

In three Euclidean space dimensions, a Dirldd mag-  More recently such fields have played a major role also in
netic monopole is a singular static solutionldfl) Maxwell ~ supersymmetric field theories of gravity and strings theories
electromagnetism with nonvanishing magnetic flux over §13,14.
sphere surrounding the monopole. Dirac’s original descrip- In the present work we restrict ourselves to raik 1
tion of such an object involved a string-like singularity, ex- antisymmetric tensor field strengths éhEuclidean dimen-
tending from the location of the monopole to infinity. An sions, calledKalb-Ramond(KR) fields. The KR theories
important step in the description of the Dirac monopoleconstructed from thes@belian) field strengths afford a gen-
which avoids the “Dirac string” involves Wu-Yandg2] eralization of the Dirac monopole construction, and they sup-
fields on overlapping coordinate patché@shich in math-  port monopole-like configurations which were first discussed
ematical terms correspond to a nontrivid{1) fiber bundle by Savit[15], Orland[16] and Pearsofil7], who studied the
over $?), but the magnetic field strength still exhibits a sin- phase structure in these theories. These higher dimensional
gularity at the location of the monopole. KR monopoles were also studied by Nepomedhig in the

't Hooft [3] showed that the soliton solution of thk=3  continuum, where a Wu-Yang type construction allows the
Georgi-Glashow (GG) model, which is known as the introduction of KR potentials for the monopoles without
't Hooft-Polyakov monopole, can be interpreted as a regulastring singularities. The Dirac quantization condition involv-
realization of the Dirac magnetic monopole, identifying theing this generalized magnetic charge and the generalized
unbrokenU (1) subgroup of the soliton with Maxwell mag- electric charge pertaining to the correspondihigiher form)
netism and the topological soliton charge with magneticelectric field, was also establishgti8,19.
charge. This is done using the 't Hooft tensor which is iden- We note that Orland’s work16], and subsequent more
tified with the magnetidJ(1) curvature of the 't Hooft— recent works by Quevedo and Trugenberi@® and by Ell-
Polyakov [3,4] monopole outside the core. In a regular wanger[21], are based on the work of Polyak¢22] on
gauge, the 't Hooft tensor supports a description of the tocompact QED in 21 dimensions, giving a particular gener-
pology and hence the magnetic charge in terms of the Higgalization of the latter to higher dimensions. It is interesting
field only [5], whereas in singular gauge, the 't Hooft tensorthat one of our main motivations in the present work was
restores the Wu-Yang description of the Dirac monopole. another generalization of Polyakov’s wofR2] in 2+1 di-

Dirac’s monopole construction in Maxwell theory can be mensions, namely the construction of a dilute Coulomb gas
extended to theories involving higher rank antisymmetricof instantons, to the case oftd dimensions employing a
field strength tensors generalizing the usual rank two Maxgeneralized non-Abelian Higgs model. As it turns out the
well tensor. SucliAbelian) antisymmetric tensor fields were construction of a dilute gas in this way is only possible in
considered long agf6] and in the context of duality trans- odd dimensions, as will be shown below, and discussed fur-
formations in Abelian spin systems on the lattice were firstther in Sec. V.

It is our intention in the present work, to supply regular
solitonic realizations of KR monopoles and to generalize the
*Email address: tigran@thphys.may.ie construction of the 't Hooft tensor to higher dimensions. This
"Email address: zimmers@thphys.may.ie is done concretely for dimensiah=5, in a sufficiently gen-
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eral framework which points clearly to the systematic genergroups, their representations, as well as the representations of
alization toall odd dimensions the Higgs fields. Irrespective of the detailed dynamics, which
To realize our objective, there are two main ingredientsis discussed in the next section, we can impose the finite
needed. The first is a natural generalization of the GG modedction or energy conditions which are expected to lead to
in higher dimensions, which supports solitonic solutions statopologically nontrivial configurations, and which yield the
bilised by a topological charge. The second is the construcasymptotic fields. We will discuss these asymptotic fields
tion of a generalization of the 't Hooft electromagnetic ten-both in theregular and thesingular (Dirac) gauges.
sor, which describes the Abelian field strength to be In d Euclidean dimensions, we considedaector mul-
identified with the higher dimensional KR field. The first of tiplet Higgs field ¢ which we write in isovector represen-
these, namely the generalized G&GGG) models, are readily tation
obtained by subjecting members of the hierarchy of Yang-

Mills (YM) models in 4 dimensions[23] to dimensional O=0d"q11Ys (2.1
descent. Examples of the resulting Higgs models in various _ _ _
dimensions can be found in Ref4]. The second, namely where{y;, ...,yq} are the Euclidean gamma matricesdin

the definition of 't Hooft tensors in all odd dimensions, is dimensions, andg ; is an “anti-Hermitian factor.” In even

entirely new. We have done this concretelyds5, and dimensions,d=2M, there exists a chiral matrixy,y ;1

shown that such a 't Hooft tensor can be implementeodd = yg+1=i7%1- - - Y2m Which is used as anti-Hermitean factor,

dimensions only. The construction relies on the proper defie 1= Y2m+1, Whereas no chiral matrix exists in odd di-

nition of the CP densites that present the lower bounds on theensionsd=2M + 1, and the imaginary unit is used in-

relevant GGG models. These CP densities are obtained kstead,e,y-,=1, hence

subjecting the original Chern-Pontryagi@P) densities in

4p dimensions, to dimensional desc¢fb. v4+1 (deven,
In Sec. Il, we consider the gauge and Higgs fields, along Ed+1'7] (d odd).

with the gauge group, its representation and the Higgs mul-

tiplets, that we need if we are to satisfy the requisite topo-The Higgs fields under consideration are gauged ®id{d)

logical properties necessary for the desired constructiongjauge potential#\ taking values in theso(d) algebra with
This includes also a description of thegular andsingular  gnti-Hermitian generators,,= — [ v, ,7,]
mv wr Fvls

(Dirac) gauges. Section lll is divided into two subsections. In

the first we discusses the candidates for the generalized GG A=AlPol,, gy (2.3
o Y padXE :

models that can be employed, while in the second, the cor-

responding CP charge densities descended from the CP defip|dface letters here denote forms, in components
sities in higher dimensions are discussed. Section IV, in-a dx~. The corresponding field strength B=dA+A
which we present the main results, is divided into three suby\A’; 1F,,dx#/\dx”.

sections. In the first, we prove that the CP charge equals the poth Higgs and gauge fields can be assumed to be regular

Higgs field winding number in regular_ gauge in all dimen- on RY, a property wich is not destroyed by reguigauge
sions, and that the CP charge can be interpreted as magnefignsformations given by SO(d)-valued functions g
KR [18] charge in odd dimensions. In the second subsection.. expR*’y,.) on RY with

j7a%

we use the Dirac gauge to construct Wu-Yang type KR po-

2.2

tentials for the CS forms and interpret the solitonic solutions O—9P:=ghg ! (2.9
to the odd dimensonal models as regular realizations of KR
monopoles. This motivates the nomenclature “GGG mono- A—9A:=gAg~ 1+ gdg L. 2.5

poles” for these regular solutions. In the third subsection we

construct the generalized 't Hooft tensors which we identifypy, gica| quantities, in particular the energy functional defin-
with the KR field stre_ngths, and ;how in which sense these fng a concrete theory, have to be invariant under regular
Hooft tensors contain théodd dimensionalresults of the gauge transformations.
two previous subsections. Section V is devoted t0 a disCus- g eyistence of an energy functional yields further con-
sion of our results. In Appendix A we give a brief descrip- gyaints on the fields considered, because it involves an inte-
tion O_f KR fleld_s and KR monopole constructions in all (_j" ral which has to converge for a given field configuration.
mensions, that is relevant to the present work. In Appendix Brygefore, finite energy configurations are characterized by a
we list the action or energy functionals of the four simplest,, icar asymptotic behavior of the field® (A). Denoting
gk?e?nrg?rigiggsé)ﬁglrlma; the relevant CP densities and thefpe 45y mptotic fieldé.e., the leading terms of an asymptotic

' 1/r expansion ofd andA) by & and A, appropriate finite

energy conditions for a large class of models, including those
Il. GAUGE GROUPS AND TOPOLOGY discussed in Sec. I, read

Our primary considerations in this work are the topologi-

=
cal properties of gauged Higgs systems, and their relation to 7=l (2.6
KR monopoles in odd dimensions. To this end we set up the L

topological framework by selecting the required gauge DO:=dd+[A,P]=0. (2.7

045002-2



't HOOFT TENSORS AS KALB-RAMOND FIELDS @ . .. PHYSICAL REVIEW D 62 045002

Conditions(2.6) and (2.7) anticipate the general features of the asymptotic Higgs field of any radially symmetric con-
the generalized GG models to be introduced in Sec. '“Afiguration (2.12 has winding number 1W(d){¢,(P)}:1_

below. g _ Higher winding number requiref\nsaze with more in-

If the fields (@,A) are regular oR®, then the asymptotic ,g|yeq e.g., axial, symmetry properties.
fields labeled by overbars@(A), are defined org?~*, and Besides the regular gauge transformations discussed so
Eq. (2.7 can be solved for asymptotic gauge potential, far, there are also singular gauge transformations which are

defined only on some subsetBf, the corresponding gauge
transformed fields also being defined only on that subset and
singular on thggenerally point- or string-likecomplement.
Those singular gauge transformations are of particular inter-
hence the asymptotic configurations in regular gauge are dest because they allow the transformation of the fields to the
termined by the Higgs field alone which at infinity yields a Dirac gaugein which the Higgs field always points in the
mapping isospacal-direction. In particular, the asymptotic Higgs field

of finite energy configurations trivializes tbey. 1y4 in the

@-si-1_,gd-1 (2.9  Dirac gauge which allows the characterization of two distinct

Dirac gaugespositiveandnegative Using this characteriza-
Therefore, any finite energy configuration in regular gaugdion, (positive or negativeDirac gauge transformations are
can be topologically classified in terms of the homotopyregular on

group

db+[A,0]=0=A=— %[q?dcf], (2.9

RY:=RA{(0, . ..,07x)|x=0} (2.19
d—1\ — 7
Ma-1(ST)=2 (2.19 but singular on either the positive or the negatikaxis.
using the (integed winding numberof the (asymptotig  Therefore, the fiel.ds?cp,iA) in positive or negative Dirac
Higgs field gauge are also singular on the negative or positheis,
respectively, commonly known as “Dirac string.”
1 o ~ To describe a finite energy configuratio® (A) on 19 in
WOLPL= WJ o tleg @ dPA L AdD] (212 Dirac gauge, one always needsd§,” A) in positive Dirac
s T ' gauge, defined oﬁ‘i ,as wellas (@, A) in negative Dirac
gauge, defined oY . Both ("®,"A) and ("®, A) have
to be gauge equivalent tab(,A). It follows that on the over-
as topological invariant, wherd/y is a normalization con- lap of the positive and negative Dirac gauge definition
stant. rangesBS:R‘iﬂR‘i , there exists @ransition gauge trans-
The simplest example with these topological propertieformationT with
are the radially symmetric configurations which in regular

gauge are given by T(C®,"A)=(T®,"A). (217
. 1+£(r) . Asymptotically, the trivialization of the Higgs field in Dirac
D py=eq+1N(r)y,X,, A(P):f?’wxvdxﬂi gauge no longer allows one to express the asymptotic gauge

(212 field in terms of the asymptotic Higgs field since EJ.8)
: requires regularity of the fields ak®. Instead, the finite en-
ergy condition(2.7) forces the breaking of the gauge sym-

. _ ~ "2_ .. . .
with x,,=rx,, andx;, = 1. Requiring finite energy, the profile metry of the asymptotic gauge field according to

functionsh andf have to satishh(r —«)=1, f(r—=)=0,

whereas regularity at the origin mean@)=0, f(0)=-1. digﬂix t(g]:():[igyd]:():tg: iK[ij],y__dX,u,
From a topological point of view, the particular shape of ’ ’ # ”(2 18
h(r), f(r) is not important since it does not affect the '
asymptotic radially symmetric fields hence™A takes values in theo(d— 1) subalgebra ofo(d)
L and is defined or8®"1\{0, ...,0+1} which is thed—1
T : A TS s dimensional sphere “at infinity,” excluding the south or
Py =ear1¥uXus ARy YurXelX 213 north pole, respectively. To describe the asymptotic gauge

fields ons~1, it is sufficient to conside* A on the upper or
lower half sphere§f’;1, respectively, which overlap on the
equator §-2=54"1ngi" 1,
In regular gauges, finite energy configurations could be
(2.19 . A e
topologically classified in terms of the asymptotic Higgs
field winding numberWw(@{®}. In the Dirac gauge, the

as well as the asymptotic field strength given by

— 1 ~ ~
F(p): _P( yMV+ X[My,,])\x)\)dx"/\dx”.

Obviously, interpreted as the mapping asymptotic Higgs fields"®=+¢4.,y4 do not carry any
_ topological information, but the fact that one needs both
Py Sttt (2.159  positive and negative Dirac gauge to describe a single finite
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energy configuration now yields the topological characteriza- The transition gauge transformation  (pY,
tion. This can be be expressed in terms of the asymptotiE(P)(‘d)(p),‘A(p))=(+d>(p),+A(p)), is in this case given
transition gauge transformatiof2.17) which reverses the by
sign of the asymptotic Higgs field, hence
1
T(—eqr17a)T "=egr17=>{T.7a}=0. (2.19 T(P):g+9:1:—A YdXi Vi - (2.27)
V1-X3

T takes values in the subskit(d) C SO(d) defined by Eq.
(2.19, H(d)=S""?, and transforms A to *A on the over-  Restricting Te)=T(p) to the equatoxy=0 yields
lap of their definition ranges which is the equa®3r 2. This

means that Ts topologically equivalent to a mapping ﬁp)|;<d:0= YaXiYi» (2.28

T-cd-2 -2 _
[ESE (220 \yhich is a mappingS’ 2—S%"2 of degree 1,D({T )}

which enables the classification of a finite energy configura-zl'

tion in the Dirac gauge in terms of the homotopy group
11l. MODELS AND TOPOLOGICAL CHARGES

d—2Y\ ~ 7
Hg-o(ST9=7, 2.23 In the previous section we selected the gauge group to be
expressed by the degree of tresymptoti¢ transition gauge SO(d) and the representation of the Higgs field to be dhe
transformation component vector. This choice was made on topological cri-
teria, including the possibility of having a Dirac gauge. Here,
1 we further require that models like these must also support
DT} = —J e (TdT H/A ... A(TdT1)] solitonic solutions which means that the action or energy is
D, Jgi—2 74 (2.22 . :
bounded from below by a topological charge. In any given
dimensiond, there are in principle an infinite number of such
models, out of which it is reasonable to select the simplest
whereDy is a normalization constant. one. These are all derived from members of tipedimen-
Considering the example of the radially symmetric fieldsional YM hierarchy[23] with the gauge field in one of the
configuration discussed above, the singular gauge transfotwo chiral representations &O. (4p), whose action density
mations is given by

d—2

1 LA =t(FN .. . NFN(FA ... N\
(2.23 WFRARNIR AP gy

g:=———{(1£X)1* ygX; i},
V2(1%Xg) 2 2

which are well defined onRi, respectively, transform
(PP ,A(p%) in Eq. (2.12 to the positive or negative Dirac

where F is theso(4p) valued 2-form gauge field strength
(curvature, and * denotes the Hodge dual. As in 4 dimen-

* =0+ i
?alléges, Ppy . "Ar) (P(p) . Amy)- The asymptotic sions, the action densi§8.1) is bounded from below by the
Ields are 2p-th CP densityC,,,
9 (Dp): =Dy =* €44 174 (2.24)
(P) (P) +1 j L(4p)2j C (32)
o n y_+x 1 1 S Ay
“(Ap):="Ar=7 1+ % ipXiax, (229 1t is known that when Eq(3.2) is saturated, the resulting

self-duality equations have both sphericdl®6] and axially
[27] symmetric solutions.

with gauge field strength, ; . ! )
gaug g The derivedd-dimensional gauged Higgs models result

o 1 1 from the dimensional descent of the inequal{8:2) over
“Fpy=— o5 Yit =X yj]k;(k) some (4 —d)-dimensional compact coset space ¢
2r 1*Xxg4
. 1 L j da 7d£(4p)2j dea 7d62p- 3.3
XA AdX ==y dX Adx?. (2.26 ROXKAP RO K 4P
r

After performing the(compact integration over the<*P~¢
The explicit expression§2.25),(2.26 show that the gauge coordinates, we are left with the inequality for the
group of the asymptotic hedgehog configuration in Diracd-dimensional action or energy density of the residual
gauge breaks down aSQ(d)—SO(d—1), whereas the gauged Higgs model, bounded from below by residual CP
asymptotic Higgs field2.24) trivializes. density. We will discuss these two quantities in a little more
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detail in the following two subsections. Before proceeding Fuw=FL0Y(y)

however, we make two remarks. _
First, the choice of the compact coset sp&é8~ 9 is not Fun=1 Fum=DuP@Ym(y),

important for our purposes since we are not concerned with Fon=S®Y mn(Y)

the gauge coupling constant explicitly, so we will have in (3.9
. . . . . =g + (=) -

mind the simplest varianK*?~9=S%~9 when discussing Fu=Fa oY (y)+F,)JevO(y)

the symmetry breaking that occurs in the dimensional de- Fun=13 Fum=D,e@Y(y)-D,e"@Y((y)

scent, and refer to the corresonding residual models as gen- _ +) -)

eralized Georgi-GlashowGGG) models. Fnn=$+@Ying (¥) +5-®Yimn (¥)
Secondly, we will restrict to the simplest of all possible where s, = pp'—1, s_.=¢Te—1, and the Y’s, are y

that the descent td dimensions can start from any dimen- concern us heré¢see for example Ref§24] for details. In
sion 4p>d. The simplest systems will result, obviously, the even dimensional cases, the Higgs fibldand the gauge

when 4p is the smallest number that is larger thdnWe potential A)J’ are composed of the corresponding ﬁews(PT
shall refer to these as tmeinimal GGG models. In our con- gnd A(f) (whose curvatures areEjE)) as follows:

siderations below, we will always restrict ourselves to these

choices. Familiar examples of such residual models are the AEL” 0 0 o
three dimensional GG modéh the Prasad-Somerfield limit A= 0o A =l _ot ol (3.9
and the Abelian Higgs model, both descended from w ¢
— — i 1
SO.(4)=SU(2) p=1 (i.e., usual YM. What is interesting here is that the substitution of E3j4)

into Eq. (3.2), which yields the residual energy densitydn
dimensions, results in a sum of terms each of which consists
of 2p factors of all possible types of components listed in
Having explained the general procedure used in the deriEg. (3.4). It follows that each of the fields f, D,®, and
vation of residual Higgs models above, we now discuss somé®2+1) must have the same asymptotic decay rate if the
properties of minimal GGG systems ah+ 2,3,4,5 which are  energy is to be finite. This means tha® and S= — (P2
used in the subsequent section. They arise respectively, from1) can be neglected in asymptotic expansions which justi-
the dimensional reduction of the=1, SO.(4)=SU(2)(d fies the conditiong2.6) and (2.7) defining the asymptotic
=2,3), and thp=2, SO..(8) (d=4,5), members of the YM  a1ds (q_)g)
hierarchy, and are given explicitly in the Appendix B. We  another important property of the models under consid-
have denoted the energy or action density of the residugdration is that they support nontrivial, stable finite energy

models by ™% and will refer to them as energy densities ojytions to which we will refer to as solitons in accord with
henceforth, since in the familiar 3 dimensional case this cogr nomenclatureg®® as energy density. In particular, the

incides with the definition of an energy density. We note thatradially symmetricAnsatz(2.12 minimizes the energy func-
the d=2 model&™*? thus obtained is nothing but the usual tjgnals ie.. the profile function&(r) andh(r) can be cho-

. . 113 . ) . " N
Abelian Higgs model, w'he'rea‘§ 'equals the GG modelin - sen such that they solve the Euler-Lagrange equations of the
the Prasad-Somerfield limit, but we do not make a distinctionagjial subsystenwhich in general requires numerical inte-

on th_is acqunt because this limit mz_ikes no (_ji_fference to Ouﬁration techniques The corresponding radially symmetric
considerations below, the latter being sensitive only to theq|ution is called “hedgehog.”

asymptotic values rather than the detailed decays of the

A. The generalized GG models and finite energy conditions

fields. . .
. " B. Topological charges of generalized monopoles
An important general feature of the energy densities of p g'_ g 'g 'z P _
these residual models is, that the curvatBrehe covariant Under dimensional reduction, the left hand side of Eq.

derivative of the Higgs field® and the “square root” of (3.3 yields the residual subsystems which are the candidates
the Higgs selfinteraction potential=S-(®2+1) all must for GGG models. The right hand side, which is the dimen-
decay asymptotically at the same rate to satisfige energy ~ sionally reduced CP density, presents the lower bounds on
conditions The reason for this is easily explained. Denotingthe GGG energy densities,

fche_curvatures in p.dimension_s that appear_in E®.1) with £GPz o(p.d) 3.6
indicesM = u,m, with u labeling the coordinates ofexRy : :

_d . .
and m those of y=S*, as a result of the dimensional The yolume integral over this CP density is called CP charge
reduction we have, fod oddandevenrespectively, q(P-9

(p.d) = (p,d)qdy 3.
Yf by contrast the descent =3 is started from th@=2 YM q f\HdQ S

system, another variant of the GG model is obtaih2d]. Its

asymptotic properties are identical to those of the usual GG model he normalization oD ande®? in Eq. (3.6) is chosen
and hence it yields nothing new in the present context. We thereforsuch that the hedgehd@.12 has unit CP chargey®¥ is
exclude all such models from consideration here. commonly also called topological charge of the GGG model
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£®9 since it is closely related to the topological propertiesin general Q"2+ consists of products df, D®, and S.
of finite energy configurations discussed in Sec. II. This isAs a consequence of the finite energy conditions, its
shown in Sec. IV A, making use of the most important prop-asymptotic formQ(?M*1) consists ofM factorsF and one
erty of the CP densitieg™?, namely that they are total Higgs field. By virtue of the identity
divergences,

———— [ —

M M

oPI=5, QP (3.9

This was shown in numerous cases in R¢&S], both for

even and odd values of the residual dimensidnahich we  then, the asymptotic CS form in odd dimensions takes the
do not exhibit here, except for the four examples discussed ifprm

Appendix B. QP is the residual CS density an@("9
=P (*dx") the residual CS form which we refer to as __ _
the CS formpertaining to the modef ("%, in the sense that Comel uf OFA ... /\F] (3.1
it allows us to write the CP chard8.7) as a surface integral M

over the boundary oRY,

qP 9= lim f

r—o (

OeM+D =

. . wherec,y, + 1 is a normalization constant. From Eg.15), it
. 0P dds=lim Js‘H Qb9 is obvious thatQ?M*1) s gauge invariant.
» e ® 39 In 2M (even) dimensiongollowing similar arguments as
(3.9 before now applied to Eqs(B15 and (B17), yield the

We point out that thes€S formsaregauge invariant in odd, asymptotic CS forms for thel=2 andd=4 dimensional

and gauge variant in even, dimensidigs]. This is clearly ~Models,

seen from Eqs(B15)—(B18) of Appendix B. This property 1 1

of these CS forms will be very important in our subsequent Q@)= —t{ y,A]=: —w[A,F] (3.16
considerations. C2 C2

For use in the next section, we now introduce the

asymptotic expressions of CS forf¥P? appearing in Eq. QW= itr[ Ys(E/\K— EK/\K/\K”: : iw(z)[KE].
(3.9. We denote them, again with an overbar, as Cy 3 Cy '( 2
3.1

In Egs.(3.16 and(3.17), we have introduced a new symbol
— o o o™ used in Ref[30], for M=1 andM =2, because is will
where (©,A) are the asymptotic fields defined in EG8.6) e yseful in the work of subsequent sections for gerldal
and(2.7). We have labele®(? with the residual dimension |n general Q(2) consists of products d&, D®, S, and of

d and not with the labep that specifies the model, since it A, As a consequence of the finite energy conditions, its

does not depend on the latter. This is because of the generé’éymptotic formQM) consists only of the Higgs indepen-

structure of the asymptotic CS forms which is discussed begant terms. and equals the trace of the ct&@2M) matrix

!ow. Accordingly t.he. CP charge, evaluated by the Tc,un‘aceyzwI+l times the products oA andF that appear in the trace
integral (3.9), also is independent qf and we express it as of the CS form of the(chiral) SO..(2M) Yang-Mills fields

without a Higgs field. Usind A, y,u+1]=0 one can show

Q) ;=Q(p,d)|(qj’;), (3.10

(d):fd . O (3.11) [30] that this is an exact form,
ST
_ — de™
The asymptotic CS form&(@ inherit the important property L yam 1 F N .. AF]=de A F]. (3.18
of the QP9 namely that they are gauge invariant for atid M
and gauge variant for evath Accordingly we treat the two
cases separately. Unlike the corresponding expressidB.15 which can be

In 2M +1 (odd) dimensionsthe asymptotic CS forms for - eypressed for altl=2M+1, the corresponding expressions
the two examplesl=3 andd=5 which will be needed be- i, even dimensions have a more complicated dependence on
low, can be readily extracted from the general CS formquZM, abbreviated byo™). These are easy to find explic-
(B16) and (B18) given in Appendix B, using the finite en- iy in any given case and fat=6 andd==8 can be found in

ergy requirements. They are the first item in Refs[25]. One can show that it is this term
1 which contributes the leading asymptotic behavior of the CS
QB = —tr[cgf] (3.12  form, hence the asymptotic CS from in even dimensions can
Cs be written as
_ 1 — _ 1 —
QB = —tr[®FAF]. (3.13 QM = —M[A F]. (3.19
Cs Com
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Equations(3.15 and (3.19 show that the asymptotic CS _ 1 @ ——
form really depends on the dimension only and not on the QB)=— Etr[(bdd)/\d(l)] (4.4
particular model characterized lpy the member of the YM 3
hierarchy the underlying model was derived from. o 1 o

We emphasise that the asymptotic CS forms in odd di- QW =—tr ys®dD/\dD\dD] (4.5
mensions always involve one Higgs field in addition to an 6¢c,
antisymmetric curvatur®-form, while in even dimensions

the Higgs field is absent and is replaced by the ct8@{d) Q6= 1 tr[d_>dd_>/\d5/\d$/\d5] (4.6)
matrix. 16cs ' '
H d
IV. KALB-RAMOND FIELDS AND 't HOOFT TENSORS By virtue of Egs.(4.9~(4.6), the CP charge® can be

identified with the winding number of the Higgs field defined
This section is divided in three subsections. In the first weby Eq. (2.11),

evaluate the CP charge in the regular gauge identifying it
with the winding number of the Higgs fiel@{d}, and q@=w e}, 4.7
finding that in odd dimensions this gives rise to the descrip- . . o .
tion of magnetic KR[18] charge. The second subsection isin both even and odd d|menS|ons. This Justlflgs our desgrlp—
devoted to the corresponding considerations in the Diradion of CP charges as topological charges in the previous
gauge. There, we have shown that the CP charge in everEction. We stress that E(4.2) is valid in regular gauge
dimensions cannot be evaluated as a surface integral in Y, therefore, Eq(4.7) cannot be used to express the CP
Dirac gauge, while that is possible in odd dimensions. It wagharge in Dirac gauge bydpe+rform|ng . sdmgular gauge trans-
also shown that the CP charge results from a surface integrttﬂrmat'onv according tov! ){_q_)}zo?ﬁ q'. _
over Wu-Yang type KR potentials, and that it can be com- Because a factor of one Higgs field appears in the odd
puted as the degre® D{T! of the transition gauge transfor- dimensional asymptotic CS formg.15, it follows that
mation between positive and negative Dirac gauges. Finalljh€se ar&losedforms, namely that

in the third subsection, we have given the prescription to dOCM D= t[D® FA ... AF]=0
construct 't Hooft tensors for all odd dimensional monopoles Com+1 —_—— " (49
as a natural extension of the content of the previous two M

subsections.

We should emphasize that this result follows from the pres-

ence in Eq.(4.8) of D® which is vanishing asymptotically
The CP charge can be evaluated directly by simply insertaccording to Eq(2.7).

ing a field configuration in regular gauge into the surface |n even dimensions however, the expression correspond-

integral (3.11). For the hedgehog field configurations ing to Eq.(4.9) is

(Ppy,Ap), (2.12, the asymptotic2.13 yield

A. Regular gauge

_ 1 o
dQP" = —d ™[ A,F]

o — ¢
Qgg)) ::Q(Pvd)|(¢(P) A 21M
_ © (d) _ Comr 4.9
.- rdl(*dX”’):}Jslﬂ(P) 1, (4.2 —"‘—‘M

in which x4_, denotes surface &% 1. This direct evalua- L - PR

tion does not, however, demonstrate the topological nature d¥Nich isnonvanishingi.e., = is not a closed form

the CP charge, i.e., its relation to the topological invariants Being aclosed form the asymptotic CS form inf+1

of a finite energy configuration discussed in Sec. II. dimensions can be identified with Kalb-Ramond field
In regular gauge, a relation between the CP chafde  Strength(cf. Appendix A on vzlzh'\ﬁhl)supports magnetic

and the winding number of the Higgs fiel#@{d} is easy flux equal to the CP charg&Qn=q .

to find. Using Eq(2.8) to rewrite the asymptotic gauge fields  17is @llows us to interpret the CP chargé solitons of

in terms of the asymptotic Higgs fields, the GGG model with energy densig®2" Y [e.g., the
hedgehog2.12 with q@=1] as the KR monopol¢A11)

_ l—— 01— — with magnetic charg®,,=q?. In other words, we can de-
=—5%d®, F=- Zd‘b/\d‘b (4.2)  scribe the singular KR monopole field as thel 2 1 dimen-

sional (regulay soliton of the appropriate GGG model.
and inserting Eq(4.2) into Egs.(3.12, (3.13, (3.16), (3.17
we find B. Dirac gauge

1 The situation in Dirac gauge is different from that in regu-
Q@ =_ —tf 73‘1_)0'5] (4.3) lar gauge in so_far as it is_ not possible to evaluate the CP
2¢C, charge ineven dimensiongsing the surface integrés.11), a
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fact already emphasized in R¢R29]. For example, inserting

the hedgehog2.12 into the asymptotic CS fornf2(2™)
yields

(4.10

where = Q2W)

() is the asymptotic CS form in the positive or

PHYSICAL REVIEW D 62 045002

not contribute in the surface integrét.10, in which case
the other two terms cancel out.
In odd dimensionsn the other hand, the surface integral

of *QCM*1 over S?M does yield the correct value for the
CP chargdg29], like in the regular gauge. In this case the
asymptotic CS form of a finite energy configuration
(*®,*A) in Dirac gauge, can be given explicitly for the
general case. As a consequence of the asymptotic form of the

negative Dirac gauge for the hedgehog field configuratior]_”ggs field in this gauge*®= *iy,y 1, and Eq.(3.15,

given by Egs(2.24 and(2.29. This is because of the gauge
variance ofﬂgé’;") under the large gauge transformations

(2.23 which take the regular hedgehog to positive or nega-

tive Dirac gauge. We will demonstrate this in detail iM2
=2 and M =4 and will then give the general case.
In 2M =2 dimensions where

oot e
Q(P)—C_Ztr[ Y3Am@)] (4.1

we find

1 )
Bt g, M ysg-dgz"1=0.  (4.12

It turns out that the two terms in E¢4.12 simply cancel
out.
In 2M =4 dimensions, where

+ o ( l + = + + + n +
79%9):(:_4”[ vs("Fey/ N AR — 3 AR/ N AR\ AR)]

(4.13

we find
oW _aw. L N —1
Q(P):Q(P)+C_4 dtf ysApy/\dg. 7]

1 dg:H A\ (g.dg; YA\ (g.dg:t
3tr[75(gt 0+ )\ (9= o} )\ (9= g )]

0 (4.19

where again the sum of terms in Eg.14) cancel out.
Finally in general where, with the notation of E®.19

(4.15

o

1 _
J+ —{da™[A,g]+ &™[g.dg. *,0]}.
Com N
(4.16

Here, we have used the transformation propertie@d? in
the notation of Ref[30]. Note that the general expression
(4.16 is exactly of the same form as the special caké4)
for M=2, while theM =1 case(4.12 is of a simpler form.

Note also that in Eq4.16), the exact form d‘M)[A,g] does

L i

eM+1)_ 4

t yopre1 F/A L. ATF]
—— e

M

Com+1 (4.17)

This quantity is defined on the sphe®"\{(0, ...,071)}
excluding the south or north pole, respectively. As a conse-
guence of the manifest gauge invariance of &ql7),

(_)(2M+l)= iﬁ(ZM +1).

(4.18

Another important property of the CS form@(M+1),
besides their gauge invariance, is that they are closed forms.
This was used in Sec. IV A to interpret them as of KR field
strengths or5?M. Moreover in this case, namely in the Dirac
gauge, the expressidd.17) makes it possible to express the
KR fields ascurls of KR potentials on the simply connected
regionsS2™ . Following Nepomechi¢18], we denote these
KR potentials by*B(M*1),

QEM+1_ grgM+1) (4.19

in the notation of Appendix B. We will construct these Wu-
Yang type KR potentials explicitly in three and five dimen-
sions first and will then present the general case.

In 2M + 1=3 dimensions, the gauge group oF breaks

down to SQ(2) by virtue Of['y3,iE]=0, as discussed in
Sec. Il. We then have

_ i — i =
=QB)= o tlysFl=+dtfy;Al, (420
3 3
which yields
(4.20

i —
iB(3>:tC—tr[ygA].
3

In2M+1=5 dimEnsions,iEhasSO(4) gauge symmetry
by virtue of[ y5,*F]=0, from which it follows that

_ i —
QG =+ —tr yg F/A\"F]
Cs
i + = A+ n 1+_ + A A+ A
:t—dtr[%(—F/\—A———A/\—A/\—A”,
Cs 3

(4.22
thus
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i 1 yielding U®) = (i/cz)tr] ysTdT1]. Substituting this into the
* 5)_ * * * * *
B )—tc—str[ ?’5( F/A A_§ ANTAN AH equatorial integra(4.25 leads to
(4.23

We now note that the forms on the right hand sides of Eqs.
(4.20 and (4.22 coincide with the formsw® and ® in -
the corresponding even dimensional=2,4) caseq3.16 In five dimensionsve find in the same way, usingys, T}
and(3.17. In general M+ 1 dimensions,*F is aSO(2M) =0,

gauge field strength according to E8.18. This enables us .

to write the KR potentials of the asymptotic CS forms in U(s):'_(dt,[yg/\d?l]

general M+1 dimensions with the help of™) [which Cs °

was used in Eq3.19 in the context of even dimensional CS

forms] as follows: _E TAT- A (THT- I\ A (THT-1
3tr[y;,(TdT YAN(TAT HA(TAT )]y

i —
q®=— f t ysTdT 1] (4.29
CaJs!

=g(M+1)_ 4+ :

o™[*A *F]. (4.24) (4.29

Substituting this into the equatori&tlosed surfaceintegral
(4.25, by Stokes’ theorem the first term in E@t.29 does
not contribute and the rest yields

Com+1

The KR potentials®BM*1) can be used to rewrite the
CP charge surface integral corresponding to (Bdl1), over
S?M  as an integral over the equa®™ ~ 1. First splitting the i
integral (3.11) into two integrals over the upper and lower ()= — _f tr[ 75(?(1?—1)/\(?(1?—1)/\(?(1?—1)].
half sphere§2i'\" , respectively, one can use the gauge invari- 3C3)s?
ance of the odd dimensional CS forms, KE4.18), to evalu- (4.30
ate the CP charggq®™ %) without integrating over the sin-

gularities in the Dirac gauge. Finally, using the KR potentials¢ e general case. Using the same notatieft8 and ™

. ’ 2M __ 2M
(4§2?)A fjlmd- Iaclipplymg Stoke’s theorem oS = —dS” introduced in Eq(4.16 but taking care of the anticommuta-
= ields =
y tor{ yom+1,T1=0,

q(2M+l): f 2M+(_2(2M+1)+ f 2M_§(2M+1) U(2M+1): | {da(M)[—A_\,ﬂ+w(M)[?d?_l,O]}
S S- Com+1
(4.3)

Substituting this into the equatorial integ(dl.25), in which

the term d¥™)[~A, T] does not contribute, we can write the
According to the discussion in Appendix A2, the integral CP charge in the general case as
over thetransition form

The five dimensional example already shows the structure

= +Rp(2M+1)_ —p(2M+1)
fsm_l( B B ). (4.2

qeM+D=

CZMHLZM_lw(M)[?d?l,OJ. (4.32

yeM+1)_ +g(@M+1)_ —g(2M+1) (4.26

in Eq. (4.25 determines the KR magnetic charge of the Wu-  Finally, we see that the CP chargé4.28 and (4.30
Yang type KR potentials B *1) which enables us again equal, respectively, the degrees of the transition gauge trans-
to identify the CP chargg®™ *1) with magnetic KR charge formations(2.22, in three and five dimensions. In the gen-

Qpn. eral case witlg®™* %) given by Eq.(4.32), we have
In the context of the GGG models, the transition form
UM*+1) is a composite field which can be written explicitly qEMTD=pEMFIIT], (4.33
in terms of the asymptotic gauge potentia?s!? and the
asymptotic transition gauge transformatiomvfiich takes the C. Construction of the 't Hooft tensor
negative to the positive Dirac gauge,?(*a,*ﬁ_\) In this section, we give the prescription for constructing

:(+q_)’+p—0_ Again, we first present this result in the three Hooft_tensors{3,5] pertaining to the GGG monopoles, in all _
. : . o . odd dimensions. This encapsulates the results of both previ-
and five dimensional case, giving the general odd dimen- d imul | h di
sional result afterwards. ous Secs. IVA an IVB_ simu tg_neou; y. In ree dimen-
) ) I ) sions, the 't Hooft tensor is identified with the residual Max-
In three dimensionsusing{T, ys} =0, (2.19, we find well field of the Dirac monopole. In general odd dimensions,
the Dirac monopole generalizes to KR monopoles described
in terms of KR fieldgwhich coincide with Maxwell fields in
d=3 dimensions The construction of 't Hooft tensors in
(4.2 higher dimensions then follows naturally.

i = _ i o
B =—tyI("A)]= " B®+ —tr y5TdT 1],
(o C3
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We first repeat the construction in three dimensions, using his reproduces the resy#t.7) of Sec. IV A in three dimen-
the notation developed above and pointing out the main stepsons.
as a guideline for the five dimensional case presented subse- In the Dirac gauge, the surface integral is carried out over
quently. This construction can be systematically extended tthe sphere with a hole around the negative or positeith

all odd dimensions. or north Dirac string singularity, and the Higgs field is a
In three dimensionsthe asymptotic CS fornt3.12 can  constant. As a consequence of the constancy of the Higgs
be written as field, the term frddd/\d®] in Eq. (4.37) vanishes so that

1 1 — the only contribution to the surface integral comes from the
Q@ =_t[®dF]=—tr{d(dA+AANA)]. (4.34  residue of the singularity in the first term. This is tlutosed
Cs Cs S') line integral of

The plan now is to add an asymptotically vanishing, gauge @) —
inviriant, expression which cancels the sec@righest order B |(tq>,t/?)= x
in A’s) term in Eq.(4.34), such that the result consists of an

exact form plus a term depending on the Higgs fields onlyin the notation of Eq(4.21). Here “B® are the KR poten-

i _
C—tr[ vz Al="B®), (4.41
3

To be concrete, one can check the identity tials of the KR field strengttH(®)=d*B® on S2 . This re-
o - - produces the results of Sec. IV B.
0=t ®DD/\DD] =t O(dDAdD+4ANA) — 4dDAA] In five dimensionsthe asymptotic CS forn3.13 can be
(4.35 written as
_— _ 1 —
which is asymptotically zero by virtue @®=0. Multiply- QB =—tr(dF/\F)
ing the identity (4.359 by the normalization factor )
—(4c3) "1, and adding this to the asymptotic CS form 1 -
(4.34), we have the desired definition of the usual 't Hooft = C—tr[CD(dA/\dA+ dANANA
tensor (5)
L +ANAANDA+ANANANA)].  (4.42
3).200®) -~ 4[dPDD/\DD
H =0 4c,4 [ PDPADP] (4.36 As in the three dimensional case, the plan now is to add an
asymptotically vanishing, gauge invariant, expression which
) 1 _— = cancels the fourtiihighest order inA’s) term in Eq.(4.42),
=dB™— 4_03'“[de‘b/\dq)] (4.37) such that the result consists of an exact form plus a term
depending on the Higgs fields only. Unlike in the three di-
with me_nsignal case where there is only one such candidate, cf.
tr[ ®DD/A\DD] in Eq. (4.35, now there are two, namely
BG)— 1 ([ DA] (4.38 tr[ ®GDO/A\DD/\DP/ADP] and tf ®F/A\DD/ADD]. It only
C3 ' ' remains to find the relative numerical coefficients of these

two terms, such that they result in the elimination of the said
In the definition equatior{4.37), we have used the symbol term. To be concrete, one can check the identity
H®) for the 't Hooft tensor, which is also the symbol for the L
KR field strength introduced in Appendix A. This is because 0=tr[ ®(Dd/\Dd®—8F) A\DD/\DPD]
QO on the left hand side of Eq4.34) describes both these - -
quantities, and the 't Hooft tensor can be identified with the ~ =tr[PdPAdDAdD/N\dD]—16 tf PANANANA]
KR field strength. The CP charge now equals the surface 1
integral of this KR field strengthl®), which by virue of Eq. _8dt’[q> dPAdD+ dbAAD + —KE/\KQ_))/\K}
(A9), defines magnetic KR charge, 3
o — 8t ®(dAANANA+ANDANA+ANANDA)]
q®= | 0P f H®:=Qp,. (4.39 -
S S +8 t{ dO(dANA+ANDA+ANANA)]. (4.43

In the regular gauge, where the surface integral is overyitiplying the identity (4.43 by the normalization factor

the entire(closed S?, the term @) in Eq. (4.37) does not (16c3) "1, and adding this to the asymptotic CS foti42),
contribute. It follows that the only contribution comes from \ye have the definition of the 't Hooft tensor in five dimen-

the second term sions,

1 —— = _ 1 - = = _—
q®= J H®=— — f tr{ dddAdP]= W[ D], H®):=008) + ——tr[ &(DOA\DD— 8F)DdD/\Dd]
& 4c3)s? 16cs
(4.40 (4.44
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1 - - =
=dB®) + ——tr[ PdD\dD/A\dDNAdD]
16¢cs
(4.45
with

B(®) =

: tr[q AR+ AAGA L AARAR
(5)

1— —— ) - —— —
—3A/\fI>A<D/\A) +ddNA(Ddd+ PAD)NA
(4.46

Again, we have used the symbif®) in the definition equa-

tion (4.37) which is also the symbol for the KR field strength

PHYSICAL REVIEW D 62 045002

sors, and restricting to the result corresponding to E487)
and(4.45. It is

HeM+1) = gM+1) 4

tr[® dBA ... AdP], (4.50
| —

M

2M+1

whereW, . 1=(—4)Mc,op -1 is the normalization constant
appearing in Eq(2.17). In the Dirac gauge, the expression
corresponding to Eqg4.41) and(4.49 is

B(2M+l)|(:$ ==

] w(M)[th ]:iB(2M+1)

(4.51

introduced in Appendix A, defining the KR field strength \hich yields the KR potential.24) on S2M for the KR field
describing the monopoles of the GGG models as the 't HoofgtrengthB(zMﬂ) which we generally define as the 't Hooft

tensor(4.45. The CP charge then is the surface integral ofiansor of an odd dimensional GGG model.

the KR field strengttH®) over S* in analogy to Eq(4.39),

QF §<5>:f H®)=Q,,. 4.4
q Js“ o Qm (4.47)

In the regular gauge, where the surface integral is over

the entire(closed S*, the term & in Eq. (4.45 does not

V. SUMMARY AND DISCUSSION

We have studied the topological properties of the solitons
of the generalized Georgi-Glasho&GG) models, which
we have described along with the corresponding reduced
Chern-Pontryagin(CP) densities and Chern-Simon€s)

contribute. It follows that the only contribution comes from ¢5ms in theregular and the theDirac gauges, in all dimen-

the second term

G= | yo
q LA
_ 1 j DAD/ AP dDA G
=16, 84”[ ]
=W ]. (4.48

This reproduces the result.7) of Sec. IV A in five dimen-
sions.

sions. In common with the familiar three dimensional case,
the topology of these monopoles can be described exclu-
sively by theSQ(d) isovector Higgs fields in theegular
gauge, identifying the CP charge with the Higgs field wind-
ing number. All this was carried out in all, even and odd,
dimensions.

Just as the magnetic Maxwell field, which is the reduced
CS form pertaining to the monopole of the three dimensional
GG model, can be identified as the Dirac monopole field
strength, we have identified the reduced CS forms, de-
scended from higher order CP densities, as Kalb-Ramond

In the Dirac gauge, the surface integral is carried out over(KR) monopole fields in all odd dimensions. The role analo-

the sphere with a hole around the negative or positeeith

gous to that of the 't Hooft-Polyakov monopole is played by

or north Dirac string singularity, and the Higgs field is a the solitons of the GGG models, which we have called GGG
constant. As a consequence of the constancy of the Higgmonopoles. This construction is not possible in even dimen-

field, the term rddd/\dDAdDAAD] in Eq. (4.45 van-

i'shes so that the only contribution to the surface integral
comes from the residue of the singularity in the first term.

This is the(closedS?) integral of

BO)|2qepy==—tr

i e
— yS(*F/\*A—*A/\*A/\*A”
Cs 3

==B® (4.49
in the notation of Eq(4.23. *B®) are the KR potentials of
the KR field strengttH®®=d*B(® on S . This reproduces
the result of Sec. IV B.

sions.

Just as in the three dimensional case, the study of the
GGG monopoles and the corresponding CS forms, both in
the regular and Dirac gauges, led us to define the 't Hooft
tensors in all odd dimensions. These are identified with the
relevant KR field strengths of the GGG monopoles. All our
concrete constructions were carried out using the hedgehog
(spherically symmetricGGG monopoles in three and five
dimensions, but the results hold generally.

We now discuss briefly, connections of our results with
physically relevant problems.

The first is concerned with the construction of dilute gases
of GGG monopoles. KR theory is linear in the sense that the

It is now clear that the prescription for the construction ofsum of two solutions is again a solution to the KR equations
the 't Hooft tensor in three and five dimensions can be systA2) and(A8). This allows the construction ofdilute gasof
tematically extended to any odd dimension. The result can bER monopoles in analogy to the Coulomb gas in usual Max-
stated formally, omitting the expression corresponding towell theory. This Coulomb gas was used in Polyakov’s work

Egs.(4.36 and(4.44) in the definitions of the 't Hooft ten-

[22] to construct a dilute gas of 't Hooft-Polyakov mono-
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poles of the usual GG model in three dimensions, yielding a ACKNOWLEDGMENTS
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One can thus expect that Polyakov's construction can b'ﬂons. F.Z. acknowledges the Higher Education Authority
adopted to the GGG models in odd dimensions, but unfortu(HEA) Ireland, for financial support.

nately not in even dimensions — and particularly not in the
physically interesting casd=4, where the significance of

the GGG model£?>* has recently been pointed o[81]. APPENDIX A: KALB-RAMOND THEORY
Indeed, the construction of a dilute gas from KR monopoles AND MAGNETIC MONOPOLES
in arbitrary dimensions was carried out long ago in the con-

In this appendix, we summarize the theory of static Kalb-

text of lattice field theor;_[lS—_lﬂ. . Ramond(KR) fields and KR monopolel5-18, following
Perhaps of most topical interest is the relevance of oufy,, explicit continuum constructions of Nepomecfie].
results to the modern concept of branes. In usual Maxwel

theory, the elementary electrically charged objects are point-

like (zero dimensionaJ and their time evolution is described 1. Free KR theory

by aworldline. The Maxwell potential describing a magnetic  Kalb-RamondKR) theorieg 9] generalize Maxwell elec-
field, on the other hand, is a 1-form which can be integratedromagnetism as they deal with higher-rank antisymmetric
along the worldline of the electric charge. This line integral,tensor field strength instead of the rank two Maxwell field
multiplied by the electric charge coupling constanyields  strength tensor. In mathematical terminology, KR field
the interaction energyor, in Minkowskian spacetime, ac- strengths are real valuedforms in d+1 Minkowskian
tion) between the electric charge and the Maxwell magnetigpacetime dimensions. Static KR theory involvingorms
field. Generalizing this construction to higher dimensions,on d dimensional spac&¢ then generalizes Maxwell mag-
the electrically charged objects which couplede 2 form  netostatics.

KR potentials must have d—2 dimensional world volume Here, we consider the special cased—1 in d spatial
such that the interaction between the electrically charged oldimensions and simply refer to this special case of magnetic
ject and the KR field is described as the integral of the KRKR theories as the “KR theory id dimensions” since it is
potential over this world volume. This means that the electhis type of magnetic KR theory which we consider in the
trically charged object itself is @—3 brane. Nepomechie main part of this work. It is defined in terms of the magnetic
[18] has shown that the existence of a KR monopoles withKR field strength ¢ — 1)-form

magnetic charg®),, leads to a quantization condition for the

electric charge of the branes which couple to the KR mono- 1 L

pole field in the way described above. Therefore the GGG M= (@o iy k- wsg (XN - AdKAI=H, (dx?),
monopoles in M+ 1 dimensions which we have discussed (A1)
yield the quantization of the elementary electric charge of H _ i

2M —2 branes in analogy to the 't Hooft-Polyakov mono- py-copgog T Evmgpgog Y

pole which forces the quantization of elementary electric
point chargegwhich are 0-brangsKR fields, on the other which is closed orR?,
hand, arise naturally in the context of string theorj8$
which are the background of all modern brane physics, so dH=0<¢, ,d,H, ., zoﬁaﬂﬂﬂ:o, (A2)
that we expect strings and D-branes to be the correct context trofe i Ferfd
n VI‘:'.h'Ch our coqstrucnons may pe O.f some significance. Poincarés lemma then allows us to introduce the KR poten-

inally, we discuss a generalization of the GGG mono-; | (d—2)-form
poles used in this work. The dynamics of the systems studieHa ( )-fo
was described by the so-called GGG models, and in particu-
lar the solitons they support in odd spatial dimensions are the B= 1 B dXHIA . Adxkd-2
GGG monopoles alluded to above. These GGG monopoles (d=2)!"#1- K2
are the classical solutions to the Euler-Lagrange equations in
the temporal gauge & 0. When the odd spatial dimensions
are restricted tal=4M — 1, the GGG monopoles are in fact
solutions to the relevant first order Bogomol'nyi or self- (A3)
duality equations. These were discussed in R&] and the 1 -
analytic proof of existence given in Rdf33]. These self- BMl...Md,zzzfﬂl...Md,zplyszlyz
dual GGG monopoles, which are generalizations of the
Bogomol'nyi-Prasad-SommerfielPS monopoles in three

. ; i : o such that

(M=1) dimensions, are entirely suited for generalization to
the corresponding “dyons” following the prescription used - -
by Julia and Zed34] in the M=1 case. This task can be ~ H=dBeH, . =duB,, . 1oH.=d.B,,.

= 5B, (A1 dx2),

K1k

performed systematically and will be reported elsewhere. (A4)
The question here is, can such “dyons” be described as KR
fields? B is well defined up to an exact(2)-form dA,
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1
A= mAﬂl"'/‘d—stMl/\ .. ./A\dxHd-3
13 * (dx1/\dxH2/\ dx“3
T 31 rakams (dx X xk2),
1 ~
Al”‘l"'l““d—!?': asﬂl"'ﬂd—EVlVZVSAVlVZVS (A5)

which means thad is invariant under KR transformations

B—>B+dA=B,

—B

Hd-2 2+O7[/L1A

I Ry Mo o]

<B

B

Kk

gy +d,A Visqiia (AB)

PHYSICAL REVIEW D 62 045002

(A10)

[
gd—2

In analogy to the corresponding construction for the Dirac
monopole, Eq(A10) can be called the Wu-Yang construc-
tion for magnetic KR charge. The crucial point in the con-
struction is thatJ is not exact on the equat&f~2 although
it is closed.

An actual solutionHy of the KR equationgA2) and

and a KR energy functional is supposed to preserve this in(A8) on S~ * with nonvanishing fluxA9) is called a(mag-

variance.
Free KR theory is given by the energy functional

2

E(")[H]:E WA H=—— [ n
KR 2 ) e 2(d=1)! Jpa #1--Fd-1

12
| Fe.

Varying E& with respect tdB yields the magnetic KR equa-
tion

1

2

(A7)

*d*H=0=0,H,, . ,=0=d, M, =0. (A8)

g ol =

Equations(A2) and (A8) are thed-dimensional generaliza-
tion of the magnetic Maxwell equations th=3 space di-
mensions.

2. KR monopoles ind dimensions

netioc KR monopole One can show 18,35 that the only
such solution is given by

Xu
rdfl

Qm

"

(*dxH) (A11)

with H(p)=diB(p) on Si_l, respectively. The explicit ex-
pressions foriB(p), which do not concern us here, are
given in Ref.[18]. Interpreting this asd— 1)-form onRY in
distributional sensé.e., including the singularity at the ori-
gin) and using

aﬂ( r:—fl> =kKg_18(X) (A12)

yields

dH(p)=Qmd(X)(*1),

i.e., Eq.(A2) is modified by a point charge acting as source
for the KR field strength.

(A13)

Assuming the existence of “magnetic” charges changes

the mathematical structure of KR theory. From the analog of

Maxwell magnetostatics, the flux of the magnetic KR field
strength form through the sphe®8~! equals a magnetic KR
chargeQ,,

Qm= J'S(HH. (A9)

SinceS" 1 is not simply connected,Hi=0 does not enforce

the existence of a global KR potential form. However, on the
spheres

simply connected upper and lower half
sit,s!7tcs? 2, KR potential forms existH|-1=d*B.
In order to yield a well-defined field strength forkh, the
potential forms* B and ~B on the overlap of their definition
ranges, i.e., the equatsfl 1N sS4~ 1=59-2 differ by atran-
sition form U= "B|gi-2— ~B|g-2 which has to be closed,
dU=0. The magnetic KR charge is determined by

APPENDIX B: MINIMAL GENERALIZED GEORGI-
GLASHOW MODELS IN d=2,3,4,5 DIMENSIONS

In this appendix we give the explicit expression for the
energy densities, CP densities and CS densities or forms of
the minimal GGG models id=2,3,4,5 dimensions.

Using S= — (®2+1), the energy densities are

1 1 1 1
(1,2 — i = 2, ~2
£ —C(lyz)tr[ a 2(DMCD) +25 (B1)
1 1
_ 2

ELI= (13)tr[—ZFW—§(DM<b)2} (B2)
1

5(2’4)20 t[{F 1 F ooyt 2+4{F ., D, @} - 18({S,F,,}

(24

+[D,®,D,®])?~54S,D,P}*+545'] (B3)
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(2,5) 1 2 2 (2,4) 108 2 1 2
oA =C(25)tr[{FM[VFW]} F{F(uv Dy ®}°—24({S,F,,} QY :_C(24)6"”thr Vs FMVAp—gA#A,,AP—E(Z]H(D )
+[D,®,D,®])2—48(S,D,d}?]. B4 1
Os D™= l (B4 X ®{F,,,D,0}+ §d>DM<I>DVd>Dp<D” (B12)
C(p.a)>0 are normalization constants to be discussed below.
The corresponding residual CP densitie¥ < g® 9 o
2,5)_ ; 2
are found to be 029= C(2'5)|ewypatr[(3l+<b )DF,,F,,
o12= 2Ca 2)i €,,, 11 ¥3(SF,,+D,®D,®)] (B5) —20D,PD,®F,,]. (B13)
Y Note that in thed=2 formulas(B1), (B5) and(B10), the
(13)_ _ gauge field A=—iA, y; is Abelian, and the Higgs field
e 4C 14 €puvp U1 F,,D, P (BE)  then has only two components as seen from @ql), or
' alternatively can be parametrized by a single complex field
2.4) 18 5 in Eq. (3.5). It is then obvious that EqB1) pertains to the
= 4 €uvpo tr[ 75(8 F/U/Fprr_zs{F,uV!qu)}Drrq) usual Abelian nggs model.
4 Finally, we give the explicit expressions for the CS forms
+2(SF,,+D,®D,®)(SF,,+D,®D,®))] (B7) QP9 of the four minimal GGG model§B1)—(B4) in the
language of differential forms used in this work. They are
24 defined as Hodge duals of the CS density 1-forms with com-
(25) = _
€ Cagy crreorM3SFuFpo D0 ponents (P9 given by Eqs.(B10)—(B18),
+2F,,D,®D,PD,®]. (B8) QPA=QPD(xdxh), (B14)

The volume integra(3.7) of the CP densities yields the CP thus
chargeq™?. It is usual to choose the normalization con-

stantsC,, ) such that the hedgehd8.12 has unit topologi- Q2= _ i tr[ 73<A— Echq)” (B15
cal charge. (1,2) 2
The CP charges can be written as total divergences of the
iti (p.d)
CS densitied),™™, Q3= _ tr ®F] (B16)
13
ePI=5 QP (B9) 3

216 1 1
The corresponding explicit expressions for the CS densitie€>=— @t{ y5( FAA— §A/\A/\A— E(ZJH d?)
are ’

1
) 1 ><<I>{F,D<I>}+—(I)D<I>/\D<I>/\D(I)” (B17)
Q2= - Can Exptr yg(AM— ECIDDM(D) (B10) 6
0@5= ® i tr[ (31+ ®2)DFAF—dDD/A\DD/\F].
Q= — exun L PF,, ] (B11) Crs)
4C(13) (B18)
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