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We study some aspects of low-energy effective actionsdrsdperconformal gauge theories on the Cou-
lomb branch. We describe superconformal invariants constructed in terms/8HReAbelian vector multiplet
which play the role of building blocks for th&=2, 4 low-energy effective actions. We compute the one-loop
effective actions in a constaf=2 field strength background i=4 SYM theory and inN=2 SU2) SYM
theory with four hypermultiplets in the fundamental representation. Using a classification of superconformal
invariants, we then find the manifesty=2 superconformal form of these effective actions. While our explicit
computations are done in the one-loop approximation, our conclusions about the structure of the effective
actions inN'=2 superconformal theories are general. We comment on some relations to supergravity-gauge
theory duality in the description of D-brane interactions.

PACS numbd(s): 11.30.Pb, 11.25.Mj

I. INTRODUCTION integrating out massive SYM fieldsee, e.g.[3—6] and ref-
erences therejn This conjecture seems likely to be true at
The study of the structure of low-energy effective actionsthe first subleading order, i.e., for ti®€/X® term. Indeed, it
in d=4 superconformal theories is an important subject fromis easy to show that this term is not present inAfie4 SYM
several points of view, in particular, in connection with the analogud7] of the one-loop Schwinger effective action, and
interactions of D-branes in string theory. Systems of D3-+the result of[8] for the dimensionally reduced+dl gauge
branes have complementary descriptions in terms of gaug@eory suggests that thiE® term should appear in the two-
theory and supergravity. As one of the consequences, thgop effective action with precisely the right coefficient to
leading-order interaction potential between separated brangsaich the supergravity expression.
admits two equivalent representations: as a classical super- 1p;g conjecture seems, however, to run into a problem at

gravﬁty potent'ial between a probe and a Source, and aS fe next order of the=8/X2 term. According to the super-
leading term in the quantum gauge theory effective action

: ravity expressiorfl.1), it should appear in the SYM action
The agreement between the supergravity and the gauggenly at the three-loop order, but the 1-loop SYM effective

theory expressions for the potential is possible because of the : ; 3
existence of certain nonrenormalization theorems on thgctmn already contains t@(F®) term. One may hope that

gauge theory sidésee[1,2] and references therdin the F& term does not receive corrections beyond the three-

One may conjecture that not only thé/X* term but all loop order, so that the three-loop cprrection dominqtes over
higher terms thg one-loop. anq two-loop terms in the supergravity I_|m|t
(g°N>1). Still, this may not be enough for agreement since

% F2n+2 the F® invariants in the one-loop SYM effective action and
E c(g2N)"~1 (1. in the Born-Infeld D3-brane action happen to have different
n=1 x4n Lorentz index structure.

In order to shed more light on this problem of the

in the Born-Infeld(BI) action for a D3-brane probe moving Supergravity-SYM correspondence one may study the con-
near the core of a multiple D3-brane sour@s in AdS;  Straints imposed by the superconformal invariatwhkich is

x S° spacé may be reproduced by the leading low-energy,@ n?tural_symmetry of the supergravity “D3-brane in AdS
largeN, part of the quantumv=4 SU(N) super Yang-Mills ~ XS action [9-11)) on the structure of the SYM effective
(SYM) effective action. The latter is obtained by keeping theaction: A possible strategy is to start with the one-loop ex-

U(1) N=4 vector multiplet as an external background andPression fqr the_low-energy effective action on the _Coul_omb
branch written in a manifestly superconformally invariant
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State Pedagogical University, Tomsk 634041, Russia. 1some implications of special conformal transformations\in 4
TAlso at Lebedev Physics Institute, Moscow and Imperial College SYM theory in the context of the AdS conformal field thedGFT)
London. correspondence were considered 12].
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form and try to draw some general lessons about the form ofuper Yang-Mills theory, that there are Aotype quantum
the effective action which may go beyond the one-loop or-correctiongsecond term in Eq1.4)] in the one-loop effec-
der. tive action (in particular, the absence of the induc&d

In this paper we shall consider two superconformal theoterm), is not shared by generit/=2 superconformal theo-
ries in four dimensions—th&/=4 SU(2) SYM model and ries. This unique property of th&/=4 theory should be a
the /=2 SU(2) SYM model with four hypermultiplets in consequence of a hidde¥i=4 superconformal symmetry.
the fundamental representation of @), with the gauge Section V contains the concluding remarks. Some useful
group spontaneously broken to its U(1) subgroup. We willfacts about\=1, 2 superconformal transformations are col-
be mainly interested in the part of their low-energy effectivelected in the Appendix.
actions of /=2, 4 superconformal theories which involves
the physical bosonic fields of/=2 vector multiplet(vector Il. SUPERCONFORMAL INVARIANTS OF THE AN=2
field strength and scalarsWe will compute the one-loop VECTOR MULTIPLET

effective actions in a constant field background: i ) ) )
In this section we present superconformal invariants of an

W g—o=X=const, D'W|,_o=¢' =const, Abelian N'=2 vector multiplet described by a chiral super-
field W(z) and its conjugaté)(z) which are subject to the
Di(aDB) W y—o=8 F 44=const, D2(DIW],_y=0, standard off-shell constrainf48]
(1.2

D,iWw=D,W=0, i=12,
which is a special supersymmetric solution of the equations
of motion of the AbelianV=2 vector multiplet §V is the DiWw=Dii)y Di=p«ipl) pii=p'pH a_
N=2 gauge superfield strengthiThe fact that the theories ' «’ « 2.1
under consideration are superconformal will allow us to use '
the classification of superconformal invariants constructed inrhe A’=2 superconformal transformation law b¥ reads
terms of the Abelian\/=2 vector multiplet(Sec. I). As a
result, we will be able to restore not only the kno®ftype SW=—EW—-20 . (2.2
guantum corrections
Here é=¢°D,, is a superconformal Killing vector, and the
" — — — chiral scalaro is defined by Eq(A8), see the Appendix for
J dZHOW W), HOVW)=InWInW, (1.3 more details. It follows then that the classical vector multip-
let action
computed previously(for N=4 SYM) using supergraph

techniqued 13,14 (see alsd15-17), but also all terms in R )
the effective action Sm=7 dxd’¢ W 2.9

is, of course, superconformal invariant.

Let us assume thaty possesses a nonvanishing expecta-
tion value, as is the case iN=2, 4 superconformal models
+C-C-+j dlzzY(V—V—z D4INW,W2D4InW) with the gauge group sponta}neously broken to its maxim_al

' ' compact subgroup. Then, using the results of the Appendix,
(1.4 one can check that th@ntichiral combinations

r=cfdlzz|nW|nv_v+J dZInWA(OW 2D*In W)

which generate quantum corrections of the fofinl) in V- 1 D4InV—v D4— (DL)2(D2)2
components £ andY are specific functions of their argu- 1602 u' = (D37 (D97,
mentg. While our explicit computations will be done in the
one-loop approximation, our conclusions about the general 1 W
structure of the effective action in superconformal theories P2= D*ln—, D*=(D;)2(D,)?
have a universal, loop-independent, character. 1612 2 = =
The paper is organized as follows. In Sec. Il we describe (2.9

superconformal invariants of th&=2 Abelian vector mul- )
tiplet, which appear as building blocks for the effective ac-transform as scalars with respect to ikfe=2 superconformal
tions of N'=2, 4 superconformal theories. group.

In Sec. Il we start with the one-loop effective action of —, —, ) 5
N=4 SYM theory computed for the constant field back- OWo=—¢gWs, SW'=—¢&W (2.9
ground (1.2), and then restore its generAl=2 superfield
form using superconformal invariance considerations.

In Sec. IV the analysis of Sec. Ill is extended to the case ?Here . is a formal scale which is introduced to make the argu-
of /=2 SU(2) SYM effective action with four fundamental ment of the logarithm dimensionless. It drops out from all super-
hypermultiplets. We find that a specific feature of the=4  conformal structures listed below.
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Using the fact that\V=2 superconformal transformations =()y2)y)-1 Dij Wf(W2,Ww?) has the superconformal

preserve the\V'=2 superspace measur&z=d*x d*6 d*e, transformation law(2.12. As a consequence, the following
combinations

(—1)"Da =0, (2.6)
one can 3construct three types of=2 superconformal WD %Dij (Wf(\pz’@z)) ,
invariants: w
S_L=J’ dlzzlny—vlny—_v (2.7 eIy 1 2 G2
o ) ! WD WD” (Wf(q’ ¥ )) (2.14)
szzf d'2z A (W2) |nV_V+C,C” are superconformal scalars. One more possibility to generate
K superconformal scalars is to take SU(2) invariant products

(2.9 of several superfields of the form

= | d%z2Y(W?,w?), 2.9 1 _
Ss f ( ) 2.9 DI (WHW2,W2)) (2.19

WW

whereA andY are arbitrary holomorphic and real analytic

functions, respectivel{ These functionals are the main data and their conjugates which transform similar ¥¥. Then
describing quantum corrections of the fotfin1) (along with  one can repeat the construction of superconformal invariants

special contributions with derivatives of the fields requiredyiscussed above by replacing the arguments{ 92, W2) by
by supersymmetyywhich appear in the low-energy effective iher superconformal scalars, etc. '

actions of V=2, 4 superconformal theories. In this paper, we are mainly interested in the part of the
There_ exist additional superconformal invariants CONjow-energy effective action ok/=2, 4 superconformal theo-
structed in terms of ries which involves the physical bosonic fields of the=2
vector multiplet i.e., the U(1) field strength and its scalar
b :i_Dij W= L_Bij w, (2.10 _superpartners, without higher derivatives. The crucial point
WW WW is that all relevant component structures are then generated
N by the superconformal invariants of the three types given in
where the primary field" )V transforms as follows: Egs. (2.7), (2.9, (2.9). It should be noted that while many
. - N - component structures of interest can be also obtained from
sDW=—¢DIW-2i Al DVYW—2(0+0) DIW. the superconformal invariants generated by Et&14),

(21D (2.15 and their descendants, the difference between the two
descriptions is only in terms which involve higher deriva-
tives of the fields.

Let us representV in terms of its\/=1 superfield parts:

However, 3" involves the free equation of motion of the
N=2 vector multiplet. As is well known, contributions to the
effective action, which contain the classical equations of mo-
tion factor, are ambiguou@n particular, gauge dependent
For that reason we will ignor&-dependent quantum correc-
tions in what follows. .
A large number of nontrivial superconformal invariants where.we used the notatidi =U(2)[,~ 2o, for any\'=2
can be obtained by noting that for a primary superfigjd ~ superfieldU. Then
=I'j; with the transformation law

W=d, DIZW=2iW,, (2.16

L e WWe L o) s L peped
5Fij=—§Fij+20'rij+2iA(iij)k, (212 |_4q_)2 q)Z E = 16(1_)2 6
(2.17

its descendand'! T';; is also primary:

o o — From the =1 superconformal transformations
(SDIIF”:_fDIJ F|J+2(U_U)D|J F” (213) P
) ) ) — i 6=—EDP—-209,
Given an arbitrary functionf(¥? Ww?), the superfield

WE(W2,W?) transforms like W, and therefore I'; SW,=—EW,+ @, f Ws—30 W
(2.1

SChiral-like superconformal invariantid®x d*g W2H(Ww?)+c.c. It follows that the(antichiral combinations
are equivalent tcs,.

‘Y (W2,Ww?) is defined modulo Kaler-like shifts Y (W2 Ww?)
SY (W2, W2) + 5 (W) + E(W2). S0Our A’=1 conventions correspond f&9].
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2

2 _
T D2<W), ye- o2 W

A=D3D,+W*D,— W, D—|®|2. (3.3
42 | P2 492 | P2

The integration in Eq(3.2) is carried out over complexn-

constrained V’=1 superfieldsV,V. The algebra ofA'=1

transform asscalarswith respect to the\V’=1 superconfor- ) e >
gauge-covariant derivatives is

mal group.
Ill. M'=4 SUPER YANG-MILLS THEORY {Pe Do = = 21Daas - [Da Dol=1Fap,
In this section we analyze the low-energy effective action [D,, ,Dgl=—2ie,sW,, [Dau,Dpl=—2ie,53W,,
of the N=4 SU(2) super Yang-Mills theory with the gauge (3.9
group broken to (1). A generalization to the case of an
arbitrary semisimple gauge group spontaneously broken
its maximal Abelian subgroup is straightforward and can be
done as in Refg[15-17 where the leading superfield cor-
rection to the low-energy action was computed. = —isaﬁﬁ(aV_Vp)—iSa‘ﬁD(aWﬁ)- (3.5
Our aim will be to find the manifestly superconformal
invariant generalization of the well-known Schwinger-type For a simple superfield background
expression for the bosonic part of the one-loop effective ac-
tion of N=4 SYM theory in the purely bosoni¢,, D,W;=DWg=const, ®=const, (3.6
=const background. The use of the superconformal invari-
ance requirement may allow us, in principle, to go beyon
the constant field approximation.
For example, in the SU(2)/=4 theory with the classical
scalar field value producing the mass paramates |d |2,

t}{yhere

Foipp= (0 a0 gp Fab

he effective action can be exactly computed using the super-
field proper-time techniquésee[19] for a review, and the
result is[23]

o M _
the action in the backgrouny,= Fm%ag,/z, with F,, hav- = ! f dng dt W2W2 exp( — t|®|?)tr (e 1)
ing eigenvalued,; andf,, is given by® [7,20] 642 ot? M
—tM _ M_ —tM _ 1/2
_ av, xﬂ o2 -flt .fzt y e 1”” e‘_l e = 1 de( .tF )
(4m)% )0 3 sinhft sinhf,t M M M sin(tF)
X (coshf t— coshf ,t)2. (3.1

1 =gt —
=—2f d8zf = WAW2exp(—t|®[?)
Expanding in powers of ,~F one finds that there is no 16m ot
F®/X8 term, while theF®/X'? term has a structurdifferent M1 M1 tE\12
from the one that appears in the expansion of the Abelian Bl xde( M )de de( T ) ,
action (with the scale set up b¥): sin(tF)

(3.7)

L= X[ V(1 + F2XD) (1 + F2IX%) —1]. where

The F8 terms in the Bl and SYM actions are thus different M.f=D W=2iF,*, M,=-D,W’= _Z'Faﬁ@ 8
combinations of thd=8-type superinvarinats. '
Below we shall find how to “supersymmetrize” the The effective action is ultraviolet and infrared finite.
bosonic expressiof8.1). Using the background field formu- To bring Eq.(3.7) to a more useful form, we first note
lation [21] for general /=2 super Yang-Mills theories in
N=2 harmonic superspa¢@?2], it was shown13] that un- dM_1\ /g tM_q 4
( W )( M ”=§[1—cosht8)], (3.9

der some restrictions on the backgroude-2 vector multip- tr
let W={W,,®}, the one-loop effective action ¢f=4 SYM

theory admits a simple functional representation in terms O{Nhere
N=1 superfields:

1 1
_ _ 2_ 1 2y T 22
exp(ir)=f DVDVexp{ifdgz VAV], 3.2 BT=Z 1M =5 DWW~ (310

. . In terms of the two invariants of the electromagnetic field,
where the operatoh is defined by g

1 ab 1 * —ab
.7~'=ZF Fab, gzz FPF.p, (3.1)
®Here we consider the action in Minkowski space and hence the
sign of I' is opposite to that if7,20). we find that for the background under consideration one has
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B2=2(F+iG) (3.12

and

1 ey oy 1 B
16D°D? (WAW?) = 7= D*W? D*W?=B*B*=4(F*+G?).

(3.13
Then[24]
d( tF )1’2_ 2it%g
®\ sin(tF) ~ cosht\2(F+iG)—coshtV2(F—i G)
1 t¥B%2-B?)
Zz —_—, (314)

cosh(tB)—coshtB)

PHYSICAL REVIEW D62 045001

Then the effective action can be rewritten in the form

1
= f d®z
1672

2
+—f d®z f dttet w(t\If tw).

W2W2
O2Pp2

(3.19

Now we come to the key point. Until now we have used
the constant field approximatiofB3.6). However, in Eq.
(3.19 we may no longer assume such an approximation. The
effective action ofV=4 SYM theory should be superconfor-

mal invariant, but? and ¥ are basically the only supercon-
formal scalars constructed from bow, and ® (modulo

and therefore the component form of the effective action isontributions involving the free equations of motion terms

[which is equivalent to the one in E3.1)]

_ L (e (A
= 77_Zfdxfot3 exp( —t|®|%)
X[coshty2(F+iG)—1][coshty2(F—iG)—1]

2it%G

X . 3.1
cosht2(F+iG)—coshty2(F—iG) 313
The superfield effective action is
1 o _
rz—f dSZf dt tW?W? exp( —t|®|?)
812 0
coshtB)—1 coshtB)—1 t2(B2—B?)
t2B2 t2B2 coshtB)—coshtB)
(3.16

D*W, and D?® and higher derivative invariants; see Sec.
II). Thus the effective actioi3.19 is manifestly invariant
underN'=1 superconformal transformations.

Of course, the effective action should not only be mani-
festly N=1 superconformal, bufV=2 superconformal as
well. One can restore alv=2 superconformal form of’
simply by noting that¥ is a part(2.17 of the leading\V/
=1 component ofl.

As follows from Egs.(3.18 and(3.19, I' contains con-
tributions of the two types

After a simple rescaling of the proper-time integral, we can

rewrite the action as follows:

1 B W2W2
F=—f dszf dite ! ——
872 0 O2P?

Xcosr(tqf)—l cosht¥) — t2(W2—p2)
22 122 cosh{t¥) —cosktw) '
(3.17
with ¥ and ¥ defined in Eq(2.19.
Let us introduce the following function:
coshx—1 coshy—1
o(X,y)=o(y,x)= > 5
X y
x2—y? 1
X coshx—coshy 2
w(0,y)=w(x,0)=0. (3.18

2\N2
sim [ P, (3.20
m")—f d®z m,n#0.
(3.21
Using the identities
1D4I —1D2 WWe +
1_6 nW|_Z (I)z Ty
1 1 2m(2m+1) WeWwW,
(D2 = 2 ALALT
4 W2m (I)Zm (DZ
(3.22

where ellipses denote terms involving derivativesdgfwe
observe that theV=2 extensions of5; andS; are

31:J dlzzlny—vlny—v (3.23
7 )
%m,n): 1 f dlZZ \I,Zm EZn
2m(2m+1)2n(2n+1) '
(3.29

Let Q(x,y)=Q(y,x) be the analytic function related to
w(X,y) as follows: if
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(x,y>=m;:l Conn X2y 2", (3.29

then

[’

1
axy)== >

4 mn=1

Cm.n 2m

m2m+Ln(2n+1) « 7

2n

(3.26

Then the manifesti=2 superconformal form ofF is

1 [, W W
I'= d“zln—In—
1672 J

1 ao _
+—J dlzzf dtte! Q(tW¥,tWw). (3.27)
872 0

Here the first term was computed [ih3,14 (see alsd15—
17)).
As is seen from Eq(3.27), the one-loop effective action

PHYSICAL REVIEW D62 045001

“F® term which was absent in the one-loop’=4 SYM
effective action is present in the Bl acti¢8.29 and has the
form

1

~c f Bz WWA(D2W2+D2W?).  (3.30

IV. N'=2 SUPERCONFORMAL MODELS

In this section we shall consider a spec\ak2 supercon-
formal theory—theN'=2 SU(N) super Yang-Mills model
with 2N hypermultiplets in the fundamental representation;
the effective action of generié/=2 superconformal models
[26] can be analyzed in a similar fashion. For simplicity,
only the case ofA'=2 will be discussed, with the gauge
group SU(2) spontaneously broken to its U(1) subgroup.

Both /=2 SYM and hypermultiplet models are supercon-
formal invariant at the classical level. Their quantum effec-
tive actions include the scale-independent nonholomorphic
terms besides standard divergent and holomorphic scale-

of N'=4 SYM theory does not contain terms described by thedependent contributions. For special combinations of these

“second” superconformal invariari®.8). In particular, there
are noFS-type corrections generated by

1w 2%
f d*?z—In—D*In—. (3.28
M M

W2

Such terms are expected to appear at the two-loop order.
The absence of thisF®” correction at the one-loop order

is a unique feature of the maximally supersymmefyie-4

super Yang-Mills theory(which, as discussed in the Intro-

duction, is crucial for supergravity-SYM correspondence at
the subleading orderAs we are going to demonstrate in the

next section, this property is no longer true in gengvie 2
superconformal models.

It may be instructive to compare the low-energy action

(3.19 with the N=1 supersymmetric Born-Infeld acti¢@5]
1 1 -
SB|:_J' dGZ W+—f dSZ W2
4 4

W2 W2

1
+—4fd82 s
X 1+3a+V1l+a+ ;b2

1 L
_ 2\\2 1 D202
a=5v(D*W?+D?W?),

(3.29

1 .
b=W(D2W2—D2W2),

where we used ¥ as a scale parameter. The nontrivial last

term here has a structure similar to thatlofin Eq. (3.19,

with X2 playing the role off®|2. While the two actions co-
incide at the leadingVW? order, they contain different
combinations of invariants at higher ordésge also the dis-
cussion in the Introduction In particular, the subleading

models divergent and holomorphic contributions cancel out
and the full quantum effective action is superconformal in-
variant.

For computing the one-loop low-energy effective action
of a hypermultiplet coupled to a background Abeli&f=2
vector multiplet it is sufficient to make use of the simplest
realization of the hypermultiplet in terms of twid=1 cova-
riantly chiral superfields¢,; and ¢, with opposite U(1)
chargese= *1, with the action

Szf daz($l¢l+$2¢2)+{ i f d°zd ¢, p,+c.Cf,

Diyh1 =0. (4.1)

In the constant field approximatidB.6), the effective action
is given by a functional determinant of the D’Alambertian
A=D3D,+W*D,—|®|?, 4.2

which acts on the space of covariantly chiral superfields. The
effective action i427,28,23

hm

fj?exp(—ﬂ(blz) fdﬁzvv?

16m2)«
coshtB)—1 B2—B?)t2
HtB) ( ) 43
t?B? cosh(tB)— coshtB)
wheree—0 is a UV cutoff.
The form ofI'},, is determined by the function
_coshx—1  x*—y? 01
(4.4
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It is useful to introduce a new functiof(x,y) related ton
by

A(X,Y)—1=—=y?{(X,y),

y?(coshx—1) — x?(coshy—1)

)= Lyx0= x2y?(coshx— coshy)

(4.9

Recalling the definitiorB2=:D2W?2, we can rewrite the ef-

fective action as follows:

1 «dt
1672Jo t

1 [(=dt
- = exy —tld|2 65 W2 _
16772L?texq t|®|?) fdez

hm

X exp(—t|®|?) fdﬁzv\FtZEZg“(tB,tﬁ), (4.6)

ie.,
1 ®
| - fdﬁz\/\/zln—Jrc.c.
"M 162 P
+ ! de fmdtt W (W 1)
Z e h— b 1
1672 0 d2p?
4.7

where we have absorbed the UV cutoff into the renormaliza:

tion scaleuw. Here the first termholomorphic contribution
may be derived also by other well-known methbdsee,
e.g.,[30)]).

In the A/=2 superconformal theories holomorphic contri-
butions cancel out. Let us recall how this happens for th
present model with four fundamental hypermultiplets. Each
hypermultiplet has two SU(2) components, so that alto-
gether we have eight Abelian hypermultiplets with charge
e=+1 with respect to the unbroken U(1) generated by
% o3. In addition, we have the adjoint ghost superfields o
two hypermultiplets with U(1) charges=*=1. The charges

may be accounted for by replaciig, and® in the effective
action by

wW,—eW,, d—ed. 4.9

Then the complete effective action is

r

PHYSICAL REVIEW D62 045001

[=8Xx ! fds focdtt o WW L2tV ,2tW) -2
= z e — , —
1672 0 d2p?
X ! fds fmdtt il (1P 1)
Z e — s
1672 0 D22

+ ! de tht‘tww2 t\Ift‘I_f+1
872 z 0 € 2¢2 o(t.17) 2

2

[ORL()
(4.9

with the functionw(X,y) defined in Eq(3.18. Here the last
term coincides with the effective actid8.19 of V=4 SYM

theory®
Note that since

coshx—1— 3x?

0)=——,
{(x.0) x2(coshx—1)

(4.10

the effective action now contains th€=2 superconformal
invariants of the type2.8) [and, in particular, the F5”
contributions(3.28 ] which were absent in th&d/=4 case.

V. CONCLUSIONS

Let us summarize the results obtained. We described the
superconformal invariants which are constructed in terms of
the /=2 Abelian vector multiplet and play the role of build-
ing blocks for the low-energy effective actions 4f=2 or
N=4 superconformal theories on the Coulomb branch. We
then computed the one-loop effective actions in constant
N=2 field strength background in thié=4 SYM theory and

én a particularN'=2 SU(2) gauge theory.

The fact that the theories under consideration sarger-
conformal allowed us to go beyond the constant field ap-

S'proximation and to restore, with the aid of the classification

of superconformal invariants, the one-loop effective actions
(1.4) (with A andY being special model-dependent func-
tions). These actions generate contributions which in compo-
nents have the forrfil.1) (with no coupling constant prefac-
tors since we consider the one-loop approximation

The crucial difference between tiié=4 SYM theory and
genericA/'=2 superconformal models is that the second term
in Eqg. (1.4) is absent at the one-loop level iK=4 SYM.
The first term in Eq(1.4), which generateE* corrections, is
known to be one-loop exa¢t]. It would be of interest to
study if there are possible nonrenormalization theorems for
the quantum corrections which are given by the second and

"In obtaining Eq.(4.7), we concentrated on the quantum correc- the third terms in Eq(1.4) for particular choices of the func-
tions involving the vector multiplet strength and did not take tion A andY.
into account the effective Kder potential K(®,d)=
—(1/1672) D In(®D/u2)=d F'(P)+d F'(P) generated by the
holomorphic Seiberg potentiaF(®) = — (1/327%) ®? In(d/x). A 8The A'=4 SYM theory is equivalent to th&/=2 SYM theory
derivation of K(®,®) in the framework of the superfield proper coupled to a single hypermultiplet in the adjoint representation; in
time technique, which we used in this paper, can be found irthis case, the hypermultiplet and the ghost contributions cancel each
[29,19. other, and the effective action is given by the last term in (Bd).
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APPENDIX: SUPERCONFORMAL TRANSFORMATIONS

In this Appendix we collect basic properties 4f=1, 2
superconformal transformationésee, for instance, Refs.
[19,31] for more details In A’=1,2 global superspade*“"

parametrized by*=(x2, 6" F-a), infinitesimal superconfor-
mal transformations

AP+ EA (A1)
are generated by superconformal Killing vectors
£=£=£"Dp=E(2)0a £ (2D}, +E, (2D (A2)
defined to satisfy
[£,D,]=D}. (A3)
From here one gets
[ _
&'=— gDt Dp&'=0, (A4)
while the vector parameters satisfy the equation
D{uép)s=Di(ésn =0, (A5)

implying, in turn, the conformal Killing equation

N 1
waﬂ(z):_ﬁ Dlafﬁ)i,

1 1 )
_ - _ i pa
—5.%) (A8)
and turn out to be chiral:
D, as=0, D, o=0. (A9)
The parameters ./,
A i _ 1 Di 5 1 5i Dk 5 ;uy
](Z)__3_2[ a? aj]_N J[ a? ak] g ’
AT=A, trA=0, (A10)

appear only in theN=2 case and correspond to “local”
SU(2) transformations. One can readily check the identities

) . 1 .
KX i_a:| <k k
DaAjI—ZI( 5J-DIQ—N5}DQ>O',

Dlwg,=2e,D) 0, (A11)

along with
(Al12)

D\,D} o=0.
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