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Low-energy effective actions inNÄ2, 4 superconformal theories in four dimensions
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We study some aspects of low-energy effective actions in 4d superconformal gauge theories on the Cou-
lomb branch. We describe superconformal invariants constructed in terms of theN52 Abelian vector multiplet
which play the role of building blocks for theN52, 4 low-energy effective actions. We compute the one-loop
effective actions in a constantN52 field strength background inN54 SYM theory and inN52 SU~2! SYM
theory with four hypermultiplets in the fundamental representation. Using a classification of superconformal
invariants, we then find the manifestlyN52 superconformal form of these effective actions. While our explicit
computations are done in the one-loop approximation, our conclusions about the structure of the effective
actions inN52 superconformal theories are general. We comment on some relations to supergravity-gauge
theory duality in the description of D-brane interactions.

PACS number~s!: 11.30.Pb, 11.25.Mj
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I. INTRODUCTION

The study of the structure of low-energy effective actio
in d54 superconformal theories is an important subject fr
several points of view, in particular, in connection with t
interactions of D-branes in string theory. Systems of D
branes have complementary descriptions in terms of ga
theory and supergravity. As one of the consequences,
leading-order interaction potential between separated br
admits two equivalent representations: as a classical su
gravity potential between a probe and a source, and a
leading term in the quantum gauge theory effective acti
The agreement between the supergravity and the ga
theory expressions for the potential is possible because o
existence of certain nonrenormalization theorems on
gauge theory side~see@1,2# and references therein!.

One may conjecture that not only theF4/X4 term but all
higher terms

(
n51

`

cn~g2N!n21
F2n12

X4n
~1.1!

in the Born-Infeld~BI! action for a D3-brane probe movin
near the core of a multiple D3-brane source~or in AdS5
3S5 space! may be reproduced by the leading low-energ
largeN, part of the quantumN54 SU(N) super Yang-Mills
~SYM! effective action. The latter is obtained by keeping t
U(1) N54 vector multiplet as an external background a
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integrating out massive SYM fields~see, e.g.,@3–6# and ref-
erences therein!. This conjecture seems likely to be true
the first subleading order, i.e., for theF6/X8 term. Indeed, it
is easy to show that this term is not present in theN54 SYM
analogue@7# of the one-loop Schwinger effective action, an
the result of@8# for the dimensionally reduced 011 gauge
theory suggests that thisF6 term should appear in the two
loop effective action with precisely the right coefficient
match the supergravity expression.

This conjecture seems, however, to run into a problem
the next order of theF8/X12 term. According to the super
gravity expression~1.1!, it should appear in the SYM action
only at the three-loop order, but the 1-loop SYM effecti
action already contains theO(F8) term. One may hope tha
the F8 term does not receive corrections beyond the thr
loop order, so that the three-loop correction dominates o
the one-loop and two-loop terms in the supergravity lim
(g2N@1). Still, this may not be enough for agreement sin
the F8 invariants in the one-loop SYM effective action an
in the Born-Infeld D3-brane action happen to have differe
Lorentz index structure.

In order to shed more light on this problem of th
supergravity-SYM correspondence one may study the c
straints imposed by the superconformal invariance~which is
a natural symmetry of the supergravity ‘‘D3-brane in AdS5
3S5’’ action @9–11#! on the structure of the SYM effective
action.1 A possible strategy is to start with the one-loop e
pression for the low-energy effective action on the Coulo
branch written in a manifestly superconformally invaria

sk

,

1Some implications of special conformal transformations inN54
SYM theory in the context of the AdS conformal field theory~CFT!
correspondence were considered in@12#.
©2000 The American Physical Society01-1
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form and try to draw some general lessons about the form
the effective action which may go beyond the one-loop
der.

In this paper we shall consider two superconformal th
ries in four dimensions—theN54 SU(2) SYM model and
the N52 SU(2) SYM model with four hypermultiplets in
the fundamental representation of SU(2), with the gauge
group spontaneously broken to its U(1) subgroup. We w
be mainly interested in the part of their low-energy effect
actions ofN52, 4 superconformal theories which involve
the physical bosonic fields ofN52 vector multiplet~vector
field strength and scalars!. We will compute the one-loop
effective actions in a constant field background:

Wuu505X5const, Da
i Wuu505ca

i 5const,

D (a
i Db) iWuu5058 Fab5const, Da( iDa

j )Wuu5050,
~1.2!

which is a special supersymmetric solution of the equati
of motion of the AbelianN52 vector multiplet (W is the
N52 gauge superfield strength!. The fact that the theorie
under consideration are superconformal will allow us to u
the classification of superconformal invariants constructe
terms of the AbelianN52 vector multiplet~Sec. II!. As a
result, we will be able to restore not only the knownF4-type
quantum corrections

E d12zH~W,W̄!, H~W,W̄!} ln W ln W̄, ~1.3!

computed previously~for N54 SYM! using supergraph
techniques@13,14# ~see also@15–17#!, but also all terms in
the effective action

G5c E d12z ln W ln W̄1E d12z ln WL~W̄22 D4 ln W!

1c.c.1E d12z Y~W̄22 D4 ln W,W 22 D̄4 ln W̄!,

~1.4!

which generate quantum corrections of the form~1.1! in
components (L and Y are specific functions of their argu
ments!. While our explicit computations will be done in th
one-loop approximation, our conclusions about the gen
structure of the effective action in superconformal theor
have a universal, loop-independent, character.

The paper is organized as follows. In Sec. II we descr
superconformal invariants of theN52 Abelian vector mul-
tiplet, which appear as building blocks for the effective a
tions of N52, 4 superconformal theories.

In Sec. III we start with the one-loop effective action
N54 SYM theory computed for the constant field bac
ground ~1.2!, and then restore its generalN52 superfield
form using superconformal invariance considerations.

In Sec. IV the analysis of Sec. III is extended to the ca
of N52 SU(2) SYM effective action with four fundamenta
hypermultiplets. We find that a specific feature of theN54
04500
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super Yang-Mills theory, that there are noL-type quantum
corrections@second term in Eq.~1.4!# in the one-loop effec-
tive action ~in particular, the absence of the inducedF6

term!, is not shared by genericN52 superconformal theo
ries. This unique property of theN54 theory should be a
consequence of a hiddenN54 superconformal symmetry.

Section V contains the concluding remarks. Some use
facts aboutN51, 2 superconformal transformations are co
lected in the Appendix.

II. SUPERCONFORMAL INVARIANTS OF THE NÄ2
VECTOR MULTIPLET

In this section we present superconformal invariants of
Abelian N52 vector multiplet described by a chiral supe
field W(z) and its conjugateW̄(z) which are subject to the
standard off-shell constraints@18#

D̄ ȧ iW5Da
i W̄50, i 51,2,

Di j W5D̄ i j W̄, Di j [Da( iDa
j ) , D̄ i j [D̄ ȧ

( i
D̄ j ) ȧ.

~2.1!

The N52 superconformal transformation law ofW reads

d W52j W22s W. ~2.2!

Here j5jADA is a superconformal Killing vector, and th
chiral scalars is defined by Eq.~A8!, see the Appendix for
more details. It follows then that the classical vector mult
let action

Svm5
1

4E d4x d4u W 2 ~2.3!

is, of course, superconformal invariant.
Let us assume thatW possesses a nonvanishing expec

tion value, as is the case inN52, 4 superconformal model
with the gauge group spontaneously broken to its maxim
compact subgroup. Then, using the results of the Appen
one can check that the~anti!chiral combinations2

C̄25
1

16W̄2
D4 ln

W
m

, D45~D1!2 ~D2!2,

C25
1

16W 2
D̄4 ln

W̄
m

, D̄45~D̄1!2 ~D̄2!2,

~2.4!

transform as scalars with respect to theN52 superconformal
group:

d C̄252j C̄2, d C252j C2. ~2.5!

2Herem is a formal scale which is introduced to make the arg
ment of the logarithm dimensionless. It drops out from all sup
conformal structures listed below.
1-2
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Using the fact thatN52 superconformal transformation
preserve theN52 superspace measure d12z5d4x d4u d4ū,

~21!A DA jA50, ~2.6!

one can construct three types ofN52 superconformal
invariants:3

S15E d12z ln
W
m

ln
W̄
m

, ~2.7!

S25E d12z L~C̄2! ln
W
m

1c.c.,

~2.8!

S35E d12z Y~C2,C̄2!, ~2.9!

whereL andY are arbitrary holomorphic and real analyt
functions, respectively.4 These functionals are the main da
describing quantum corrections of the form~1.1! ~along with
special contributions with derivatives of the fields requir
by supersymmetry! which appear in the low-energy effectiv
actions ofN52, 4 superconformal theories.

There exist additional superconformal invariants co
structed in terms of

Si j 5
1

W W̄ Di j W5
1

W W̄ D̄ i j W̄, ~2.10!

where the primary fieldDi j W transforms as follows:

d Di j W52j Di j W22i L̂k
( i D j )kW22~s1s̄ ! Di j W.

~2.11!

However, Si j involves the free equation of motion of th
N52 vector multiplet. As is well known, contributions to th
effective action, which contain the classical equations of m
tion factor, are ambiguous~in particular, gauge dependent!.
For that reason we will ignoreS-dependent quantum correc
tions in what follows.

A large number of nontrivial superconformal invarian
can be obtained by noting that for a primary superfieldG i j
5G j i with the transformation law

d G i j 52j G i j 12s G i j 12i L̂ ( i
k G j ) k , ~2.12!

its descendantDi j G i j is also primary:

d Di j G i j 52j Di j G i j 12~s2s̄ !Di j G i j . ~2.13!

Given an arbitrary function f (C2,C̄2), the superfield
W f (C2,C̄2) transforms like W, and therefore G i j

3Chiral-like superconformal invariants*d4x d4u W 2H(C2)1c.c.
are equivalent toS2.

4Y(C2,C̄2) is defined modulo Ka¨hler-like shifts Y(C2,C̄2)

→Y(C2,C̄2)1J(C2)1J̄(C̄2).
04500
-

-

[(W 2W̄)21 Di j „W f (C2,C̄2)… has the superconforma
transformation law~2.12!. As a consequence, the followin
combinations

W Di j H 1

W 2W̄ 2
Di j „W f ~C2,C̄2!…J ,

W̄ D̄ i j H 1

W 2W̄ 2
Di j „W f ~C2,C̄2!…J ~2.14!

are superconformal scalars. One more possibility to gene
superconformal scalars is to take SU(2) invariant produ
of several superfields of the form

1

WW̄ Di j
„W f ~C2,C̄2!… ~2.15!

and their conjugates which transform similar toSi j . Then
one can repeat the construction of superconformal invaria
discussed above by replacing the arguments off (C2,C̄2) by
other superconformal scalars, etc.

In this paper, we are mainly interested in the part of t
low-energy effective action ofN52, 4 superconformal theo
ries which involves the physical bosonic fields of theN52
vector multiplet, i.e., the U(1) field strength and its scal
superpartners, without higher derivatives. The crucial po
is that all relevant component structures are then gener
by the superconformal invariants of the three types given
Eqs. ~2.7!, ~2.8!, ~2.9!. It should be noted that while man
component structures of interest can be also obtained f
the superconformal invariants generated by Eqs.~2.14!,
~2.15! and their descendants, the difference between the
descriptions is only in terms which involve higher deriv
tives of the fields.

Let us representW in terms of itsN51 superfield parts:5

Wu5F, Da
2 Wu52i Wa , ~2.16!

where we used the notationUu5U(z)uu25 ū250, for anyN52
superfieldU. Then

C̄2u5
1

4F̄2
D2S WaWa

F2
1

1

4F
D̄2F̄ D [C̄21

1

16F̄2
D2D̄2

F̄

F
.

~2.17!

From theN51 superconformal transformations

d 52j F22s F,

d Wa52j Wa1v̂a
b Wb23s Wa ,

~2.18!

it follows that the~anti!chiral combinations

5Our N51 conventions correspond to@19#.
1-3
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C̄25
1

4F̄2
D2S W2

F2D , C25
1

4F2
D̄2S W̄2

F̄2D ~2.19!

transform asscalarswith respect to theN51 superconfor-
mal group.

III. NÄ SUPER YANG-MILLS THEORY

In this section we analyze the low-energy effective act
of the N54 SU(2) super Yang-Mills theory with the gaug
group broken to U(1). A generalization to the case of a
arbitrary semisimple gauge group spontaneously broke
its maximal Abelian subgroup is straightforward and can
done as in Refs.@15–17# where the leading superfield co
rection to the low-energy action was computed.

Our aim will be to find the manifestly superconform
invariant generalization of the well-known Schwinger-ty
expression for the bosonic part of the one-loop effective
tion of N54 SYM theory in the purely bosonicFmn
5const background. The use of the superconformal inv
ance requirement may allow us, in principle, to go beyo
the constant field approximation.

For example, in the SU(2)N54 theory with the classica
scalar field value producing the mass parameterX25uFu2,
the action in the backgroundFmn5Fmns3/2, with Fmn hav-
ing eigenvaluesf 1 and f 2, is given by6 @7,20#

G5
4V4

~4p!2E
0

`dt

t3
e2tX2 f 1t

sinhf 1t

f 2t

sinhf 2t

3~coshf 1t2coshf 2t !2. ~3.1!

Expanding in powers off n;F one finds that there is no
F6/X8 term, while theF8/X12 term has a structuredifferent
from the one that appears in the expansion of the Abelian
action ~with the scale set up byX):

LBI5X4@A~11 f 1
2/X4!~11 f 2

2/X4!21#.

The F8 terms in the BI and SYM actions are thus differe
combinations of theF8-type superinvarinats.

Below we shall find how to ‘‘supersymmetrize’’ th
bosonic expression~3.1!. Using the background field formu
lation @21# for generalN52 super Yang-Mills theories in
N52 harmonic superspace@22#, it was shown@13# that un-
der some restrictions on the backgroundN52 vector multip-
let W5$Wa ,F%, the one-loop effective action ofN54 SYM
theory admits a simple functional representation in terms
N51 superfields:

exp~ i G!5E DV̄ DV expH i E d8z V̄DVJ , ~3.2!

where the operatorD is defined by

6Here we consider the action in Minkowski space and hence
sign of G is opposite to that in@7,20#.
04500
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D5D aDa1Wa Da2W̄ȧ D̄ȧ2uFu2. ~3.3!

The integration in Eq.~3.2! is carried out over complexun-

constrainedN51 superfieldsV,V̄. The algebra ofN51
gauge-covariant derivatives is

$Da ,D̄ȧ%522i Daȧ , @Da ,Db#5 i Fab ,

@Daȧ ,Db#522i «ab W̄ȧ , @Daȧ ,D̄ḃ#522i «ȧḃ Wa ,
~3.4!

where

Faȧ,bḃ5~sa!aȧ~sb!bḃ Fab

52 i«abD̄ (ȧW̄ḃ)2 i«ȧḃD (aWb) . ~3.5!

For a simple superfield background

DaWb5D (åWb)5const, F5const, ~3.6!

the effective action can be exactly computed using the su
field proper-time technique~see@19# for a review!, and the
result is@23#

G5
1

64p2E d8zE
0

`dt

t3
W2W̄2 exp~2tuFu2!trF S etM21

M D
3S e2tM21

M D G trF S etM̄21

M̄
D S e2tM̄21

M̄
D GdetS tF

sin~ tF ! D
1/2

5
1

16p2E d8zE
0

`dt

t3
W2W̄2 exp~2tuFu2!

3detS etM21

M DdetS etM̄21

M̄
D detS tF

sin~ tF ! D
1/2

, ~3.7!

where

Ma
b5DaWb52iFa

b, M̄ ȧ
ḃ52D̄ ȧW̄ḃ522iF̄ ȧ

ḃ.
~3.8!

The effective action is ultraviolet and infrared finite.
To bring Eq.~3.7! to a more useful form, we first note

trF S etM21

M D S e2tM21

M D G5
4

B2
@12cosh~ tB!#, ~3.9!

where

B2[
1

2
tr~M2!5

1

4
D2W2. ~3.10!

In terms of the two invariants of the electromagnetic field

F5
1

4
Fab Fab , G5

1

4
* Fab Fab , ~3.11!

we find that for the background under consideration one
e

1-4
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B252~F1 i G! ~3.12!

and

1

16
D2D̄2 ~W2W̄2!5

1

16
D2W2 D̄2W̄25B2B̄254~F 21G 2!.

~3.13!

Then @24#

detS tF

sin~ tF ! D
1/2

5
2i t2G

coshtA2~F1 i G!2coshtA2~F2 i G!

5
1

2

t2~B22B̄2!

cosh~ tB!2cosh~ tB̄!
, ~3.14!

and therefore the component form of the effective action
@which is equivalent to the one in Eq.~3.1!#

G5
1

4p2E d4xE
0

`dt

t3
exp~2tuFu2!

3@coshtA2~F1 i G!21#@coshtA2~F2 i G!21#

3
2i t2G

coshtA2~F1 i G!2coshtA2~F2 i G!
. ~3.15!

The superfield effective action is

G5
1

8p2E d8zE
0

`

dt tW2W̄2 exp~2tuFu2!

3
cosh~ tB!21

t2B2

cosh~ tB̄!21

t2B̄2

t2~B22B̄2!

cosh~ tB!2cosh~ tB̄!
.

~3.16!

After a simple rescaling of the proper-time integral, we c
rewrite the action as follows:

G5
1

8p2E d8zE
0

`

dt te2t
W2W̄2

F2F̄2

3
cosh~ tC!21

t2C2

cosh~ tC̄!21

t2C̄2

t2~C22C̄2!

cosh~ tC!2cosh~ tC̄!
,

~3.17!

with C andC̄ defined in Eq.~2.19!.
Let us introduce the following function:

v~x,y!5v~y,x!5
coshx21

x2

coshy21

y2

3
x22y2

coshx2coshy
2

1

2
,

v~0,y!5v~x,0!50. ~3.18!
04500
s

n

Then the effective action can be rewritten in the form

G5
1

16p2E d8z
W2W̄2

F2F̄2

1
1

8p2E d8zE
0

`

dt te2t
W2W̄2

F2F̄2
v~ tC,tC̄!.

~3.19!

Now we come to the key point. Until now we have us
the constant field approximation~3.6!. However, in Eq.
~3.19! we may no longer assume such an approximation. T
effective action ofN54 SYM theory should be superconfo
mal invariant, butC andC̄ are basically the only supercon
formal scalars constructed from bothWa and F ~modulo
contributions involving the free equations of motion term
DaWa and D2F and higher derivative invariants; see Se
II !. Thus the effective action~3.19! is manifestly invariant
underN51 superconformal transformations.

Of course, the effective action should not only be ma
festly N51 superconformal, butN52 superconformal as
well. One can restore anN52 superconformal form ofG
simply by noting thatC is a part~2.17! of the leadingN
51 component ofC.

As follows from Eqs.~3.18! and ~3.19!, G contains con-
tributions of the two types

S15E d8z
W2W̄2

F2F̄2
, ~3.20!

S3
(m,n)5E d8z

W2W̄2

F2F̄2
C2m C̄2n, m,nÞ0.

~3.21!

Using the identities

1

16
D4 ln Wu5

1

4
D2S WaWa

F2 D 1•••,

1

4
~D2!2

1

W 2mU52
2m~2m11!

F2m

WaWa

F2
1•••,

~3.22!

where ellipses denote terms involving derivatives ofF, we
observe that theN52 extensions ofS1 andS3 are

S15E d12z ln
W
m

ln
W̄
m

, ~3.23!

S3
(m,n)5

1

2m~2m11!2n~2n11!
E d12z C2m C̄2n.

~3.24!

Let V(x,y)5V(y,x) be the analytic function related t
v(x,y) as follows: if
1-5
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~x,y!5 (
m,n51

`

cm,n x2m y2n, ~3.25!

then

V~x,y!5
1

4 (
m,n51

`
cm,n

m~2m11!n~2n11!
x2m y2n.

~3.26!

Then the manifestlyN52 superconformal form ofG is

G5
1

16p2E d12z ln
W
m

ln
W̄
m

1
1

8p2E d12zE
0

`

dt te2t V~ tC , tC̄!. ~3.27!

Here the first term was computed in@13,14# ~see also@15–
17#!.

As is seen from Eq.~3.27!, the one-loop effective action
of N54 SYM theory does not contain terms described by
‘‘second’’ superconformal invariant~2.8!. In particular, there
are noF6-type corrections generated by

E d12z
1

W̄2
ln

W
m

D4 ln
W
m

. ~3.28!

Such terms are expected to appear at the two-loop orde
The absence of this ‘‘F6’’ correction at the one-loop orde

is a unique feature of the maximally supersymmetricN54
super Yang-Mills theory~which, as discussed in the Intro
duction, is crucial for supergravity-SYM correspondence
the subleading order!. As we are going to demonstrate in th
next section, this property is no longer true in genericN52
superconformal models.

It may be instructive to compare the low-energy acti
~3.19! with theN51 supersymmetric Born-Infeld action@25#

SBI5
1

4
E d6z W21

1

4
E d6z̄ W̄2

1
1

X4 E d8z
W2 W̄2

11 1
2 a 1A11a1 1

4 b2
, ~3.29!

a5
1

2X4 ~D2 W21D̄2 W̄2!,

b5
1

2X4 ~D2 W22D̄2 W̄2!,

where we used 1/X as a scale parameter. The nontrivial la
term here has a structure similar to that ofG in Eq. ~3.19!,
with X2 playing the role ofuFu2. While the two actions co-
incide at the leadingW2W̄2 order, they contain differen
combinations of invariants at higher orders~see also the dis
cussion in the Introduction!. In particular, the subleading
04500
e

t

t

‘‘ F6’’ term which was absent in the one-loopN54 SYM
effective action is present in the BI action~3.29! and has the
form

2
1

8X8 E d8z W2 W̄2~D2 W21D̄2 W̄2!. ~3.30!

IV. NÄ2 SUPERCONFORMAL MODELS

In this section we shall consider a specialN52 supercon-
formal theory—theN52 SU(N) super Yang-Mills model
with 2N hypermultiplets in the fundamental representatio
the effective action of genericN52 superconformal models
@26# can be analyzed in a similar fashion. For simplicit
only the case ofN52 will be discussed, with the gaug
group SU(2) spontaneously broken to its U(1) subgroup

BothN52 SYM and hypermultiplet models are superco
formal invariant at the classical level. Their quantum effe
tive actions include the scale-independent nonholomorp
terms besides standard divergent and holomorphic sc
dependent contributions. For special combinations of th
models divergent and holomorphic contributions cancel
and the full quantum effective action is superconformal
variant.

For computing the one-loop low-energy effective acti
of a hypermultiplet coupled to a background AbelianN52
vector multiplet it is sufficient to make use of the simple
realization of the hypermultiplet in terms of twoN51 cova-
riantly chiral superfieldsf1 and f1 with opposite U(1)
chargese561, with the action

S5E d8z ~f̄1f11f̄2f2!1 H i E d6z F f1 f21c.c.J ,

D̄ȧf1,250. ~4.1!

In the constant field approximation~3.6!, the effective action
is given by a functional determinant of the D’Alambertian

Dc5D aDa1WaDa2uFu2, ~4.2!

which acts on the space of covariantly chiral superfields. T
effective action is@27,28,23#

Ghm5
1

16p2Ee2

`dt

t
exp~2tuFu2! E d6z W2

3
cosh~ tB!21

t2B2

~B22B̄2!t2

cosh~ tB!2cosh~ tB̄!
, ~4.3!

wheree→0 is a UV cutoff.
The form ofGhm is determined by the function

l~x,y!5
coshx21

x2

x22y2

coshx2coshy
, l~x,0!51.

~4.4!
1-6
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It is useful to introduce a new functionz(x,y) related tol
by

l~x,y!2152y2z~x,y!,

z~x,y!5z~y,x!5
y2~coshx21!2x2~coshy21!

x2y2~coshx2coshy!
.

~4.5!

Recalling the definitionB̄25 1
4 D̄2W̄2, we can rewrite the ef-

fective action as follows:

Ghm5
1

16p2Ee2

`dt

t
exp~2tuFu2! E d6z W22

1

16p2E0

`dt

t

3exp~2tuFu2! E d6z W2 t2 B̄2z~ tB,tB̄!, ~4.6!

i.e.,

Ghm52
1

16p2E d6z W2 ln
F

m
1c.c.

1
1

16p2E d8z E
0

`

dt te2t
W2W̄2

F2F̄2
z~ tC̄,tC!,

~4.7!

where we have absorbed the UV cutoff into the renormali
tion scalem. Here the first term~holomorphic contribution!
may be derived also by other well-known methods7 ~see,
e.g.,@30#!.

In the N52 superconformal theories holomorphic cont
butions cancel out. Let us recall how this happens for
present model with four fundamental hypermultiplets. Ea
hypermultiplet has two SU(2) components, so that a
gether we have eight Abelian hypermultiplets with charg
e56 1

2 with respect to the unbroken U(1) generated
1
2 s3. In addition, we have the adjoint ghost superfields
two hypermultiplets with U(1) chargese561. The charges
may be accounted for by replacingWa andF in the effective
action by

Wa→eWa , F→eF. ~4.8!

Then the complete effective action is

7In obtaining Eq.~4.7!, we concentrated on the quantum corre
tions involving the vector multiplet strength and did not ta

into account the effective Ka¨hler potential K(F,F̄)5

2(1/16p2)F̄F ln(F̄F/m2)5F̄ F8(F)1F F̄8(F̄) generated by the
holomorphic Seiberg potentialF(F)52(1/32p2)F2 ln(F/m). A

derivation of K(F,F̄) in the framework of the superfield prope
time technique, which we used in this paper, can be found
@29,19#.
04500
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-
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G583
1

16p2E d8z E
0

`

dt te2t
W2W̄2

F2F̄2
z~2tC,2tC̄!22

3
1

16p2E d8z E
0

`

dt te2t
W2W̄2

F2F̄2
z~ tC,tC̄!

1
1

8p2E d8z E
0

`

dt te2t
W2W̄2

F2F̄2 H v~ tC,tC̄!1
1

2J ,

~4.9!

with the functionv(x,y) defined in Eq.~3.18!. Here the last
term coincides with the effective action~3.19! of N54 SYM
theory.8

Note that since

z~x,0!5
coshx212 1

2 x2

x2~coshx21!
, ~4.10!

the effective action now contains theN52 superconformal
invariants of the type~2.8! @and, in particular, the ‘‘F6’’
contributions~3.28!# which were absent in theN54 case.

V. CONCLUSIONS

Let us summarize the results obtained. We described
superconformal invariants which are constructed in terms
theN52 Abelian vector multiplet and play the role of build
ing blocks for the low-energy effective actions ofN52 or
N54 superconformal theories on the Coulomb branch.
then computed the one-loop effective actions in const
N52 field strength background in theN54 SYM theory and
in a particularN52 SU(2) gauge theory.

The fact that the theories under consideration aresuper-
conformal allowed us to go beyond the constant field a
proximation and to restore, with the aid of the classificati
of superconformal invariants, the one-loop effective actio
~1.4! ~with L and Y being special model-dependent fun
tions!. These actions generate contributions which in com
nents have the form~1.1! ~with no coupling constant prefac
tors since we consider the one-loop approximation!.

The crucial difference between theN54 SYM theory and
genericN52 superconformal models is that the second te
in Eq. ~1.4! is absent at the one-loop level inN54 SYM.
The first term in Eq.~1.4!, which generatesF4 corrections, is
known to be one-loop exact@1#. It would be of interest to
study if there are possible nonrenormalization theorems
the quantum corrections which are given by the second
the third terms in Eq.~1.4! for particular choices of the func
tion L andY.

n

8The N54 SYM theory is equivalent to theN52 SYM theory
coupled to a single hypermultiplet in the adjoint representation
this case, the hypermultiplet and the ghost contributions cancel e
other, and the effective action is given by the last term in Eq.~4.9!.
1-7
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APPENDIX: SUPERCONFORMAL TRANSFORMATIONS

In this Appendix we collect basic properties ofN51, 2
superconformal transformations~see, for instance, Refs
@19,31# for more details!. In N51,2 global superspaceR4u4N

parametrized byzA5(xa,u i
a ,ū ȧ

i ), infinitesimal superconfor-
mal transformations

zA→zA1jA ~A1!

are generated by superconformal Killing vectors

j5 j̄5jA DA5ja~z!]a1j i
a~z!Da

i 1 j̄ ȧ
i
~z!D̄ i

ȧ ~A2!

defined to satisfy

@j,Da
i #}Db

j . ~A3!

From here one gets

j i
a52

i

8
D̄ ḃ ij

ḃa, D̄ ḃ jj i
a50, ~A4!

while the vector parameters satisfy the equation

D (a
i jb)ḃ5D̄ i (ȧjbḃ)50, ~A5!

implying, in turn, the conformal Killing equation
p-

g

04500
f

o
-
.
-
.
,
r-

’’
/

]ajb1]bja5
1

2
hab ]cj

c. ~A6!

From Eqs.~A4! and ~A5! one gets

@j,Da
i #52~Da

i j j
b!Db

j

5v̂a
bDb

i 2
1

N
@~N22!s12s̄#Da

i 2 iL̂ j
i Da

j . ~A7!

Here the parameters of ‘‘local’’ Lorentzv̂ and scale-chirals
transformations are

v̂ab~z!52
1

N
D (a

i jb) i ,

s~z!5
1

N~N24! S 1

2
~N22!Da

i j i
a

2D̄ i
ȧj̄ ȧ

i D ~A8!

and turn out to be chiral:

D̄ ȧ i v̂ab50, D̄ ȧ i s50. ~A9!

The parametersL̂ j
i ,

L̂ j
i~z!52

1

32S @Da
i ,D̄ ȧ j #2

1

N
d j

i@Da
k ,D̄ ȧk# D jȧa,

L̂†5L̂, tr L̂50, ~A10!

appear only in theN52 case and correspond to ‘‘local’
SU(2) transformations. One can readily check the identi

Da
k L̂ j

i52iS d j
kDa

i 2
1

N
d j

i Da
k Ds,

Da
i v̂bg52«a(b Dg)

i s, ~A11!

along with

Da
i Db

j s50. ~A12!
s.

an
@1# M. Dine and N. Seiberg, Phys. Lett. B409, 239 ~1997!.
@2# M. Dine and J. Gray, ‘‘Non-renormalization theorems for o

erators with arbitrary numbers of derivatives in N5 4 Yang-
Mills theory,’’ hep-th/9909020.

@3# W.I. Taylor, ‘‘Lectures on D-branes, gauge theory and M~atri-
ces!,’’ hep-th/9801182.

@4# I. Chepelev and A.A. Tseytlin, Nucl. Phys.B515, 73 ~1998!.
@5# J.M. Maldacena, Nucl. Phys. B~Proc. Suppl.! 68, 17 ~1998!.
@6# A.A. Tseytlin, ‘‘Born-Infeld action, supersymmetry and strin

theory,’’ hep-th/9908105.
@7# E.S. Fradkin and A.A. Tseytlin, Nucl. Phys.B227, 252~1983!;

Phys. Lett.123B, 231 ~1983!.
@8# K. Becker, M. Becker, J. Polchinski, and A. Tseytlin, Phy
Rev. D56, 3174~1997!.

@9# J. Maldacena, Adv. Theor. Math. Phys.2, 231 ~1998!.
@10# P. Claus, R. Kallosh, J. Kumar, P. Townsend, and A. V

Proeyen, J. High Energy Phys.06, 004 ~1998!.
@11# R.R. Metsaev and A.A. Tseytlin, Phys. Lett. B436, 281

~1998!.
@12# A. Jevicki, Y. Kazama, and T. Yoneya, Phys. Rev. Lett.81,

5072 ~1998!.
@13# I.L. Buchbinder and S.M. Kuzenko, Mod. Phys. Lett. A13,

1623 ~1998!.
@14# F. Gonzalez-Rey and M. Rocˇek, Phys. Lett. B434, 303~1998!.
1-8



s

-

.

.

ys.

o,

,

LOW-ENERGY EFFECTIVE ACTIONS INN52, 4 . . . PHYSICAL REVIEW D62 045001
@15# F. Gonzalez-Rey, B. Kulik, I.Y. Park, and M. Rocˇek, Nucl.
Phys.B544, 218 ~1999!.

@16# E.I. Buchbinder, I.L. Buchbinder, and S.M. Kuzenko, Phy
Lett. B 446, 216 ~1999!.

@17# D.A. Lowe and R. von Unge, J. High Energy Phys.11, 014
~1998!.

@18# R. Grimm, M. Sohnius, and J. Wess, Nucl. Phys.B133, 275
~1978!.

@19# I.L. Buchbinder and S.M. Kuzenko,Ideas and Methods of Su
persymmetry and Supergravity~IOP, Bristol, 1998!.

@20# I. Chepelev and A.A. Tseytlin, Nucl. Phys.B511, 629 ~1998!.
@21# I.L. Buchbinder, E.I. Buchbinder, S.M. Kuzenko, and B.A

Ovrut, Phys. Lett. B417, 61 ~1998!.
@22# A. Galperin, E. Ivanov, S. Kalitzin, V. Ogievetsky, and E

Sokatchev, Class. Quantum Grav.1, 469 ~1984!.
@23# T. Ohrndorf, Phys. Lett. B176, 421 ~1986!; N.G. Pletnev and

A.T. Banin, Phys. Rev. D60, 105017~1999!.
04500
.

@24# J.S. Schwinger, Phys. Rev.82, 664 ~1951!.
@25# S. Cecotti and S. Ferrara, Phys. Lett. B187, 335 ~1987!; J.

Bagger and A. Galperin, Phys. Rev. D55, 1091 ~1997!; M.
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