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Wave propagation in linear electrodynamics
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The Fresnel equation governing the propagation of electromagnetic waves for the most general linear
constitutive law is derived. The wave normals are found to lie, in general, on a fourth order surface. When the
constitutive coefficients satisfy the so-called reciprocity or closure relation, one can define a duality operator on
the space of the two-forms. We prove that the closure relation is a sufficient condition for the reduction of the
fourth order surface to the familiar second order light cone structure. We finally study whether this condition
is also necessary.

PACS numbsd(s): 04.20.Cv, 04.30.Nk

[. INTRODUCTION from the constitutive coefficients. This result is of interest,
e.g., for various applications in crystaloptics and related do-
The electromagnetic wave represents perhaps the mosiains.
important classical device with the help of which one can Another motivation for the present work comes from the
carry out physical measurements and transmit informationstudy of a deep relationship between the duality operators
The intrinsic properties and motion of material media, asdefined on two-forms and the conformal classes of spacetime
well as the geometrical structure of spacetime, can affect th€trics in four dimensions. Within classical Maxwell elec-
propagation of electromagnetic waves. In the most generd[odynamics, Toupin, Scimberg, and otheris8] have noticed
setting[1,2], electromagnetic phenomena are described b)t,hat _the constitutive cqefflc!ents define a duall'ty operator,
the pair of two-formsH,F (called the electromagnetic exci- provided a certain reciprocity or closure condition is ful-

ation and th feld s, respecivebich sasy he 15 870 gaue It demonstaions of the exitence of he
Maxwell equationgdH=J,dF=0, togetherwith the consti- P g .

. ? . .. vations were rediscovered and developed in mathemd&ics
tutive lawH=H(F). The latter relation contains crucial in- P el

) ) . o di ity th 10]. R tly th let licit
formation about the underlying physical continudire., ma- and in gravity theory10]. Recently the complete explici

. X : ) ~ solution of the closure relation has been giéd], and it
terial medium and/or spacetime Mathematically, this ;55 conjectured that the reciprocity condition is a necessary
constitutive law arises either from a suitable phenomenologizng syfficient condition for the standard null-cone structure
cal theory of a medium or from the electromagnetic fieldsg; the light propagatiorisee also independent arguments in

Lagrangian. o ) _ Ref.[12]). Here we give a partial answer to this question.
In general, the constitutive law establishes a nonlifear

even nonlocal relation between the electromagnetic excita-

tion and the field strength. The functigor functiona) H(F) Il. ELECTRODYNAMICS WITH LINEAR CONSTITUTIVE
may depend on the polarization and magnetization properties LAW

of matter, and/or on the spacetime geometry, i.e., metric,
curvature, torsion, and nonmetricity. Previously, the propa-
gation of electromagnetic waves was analyzed for a variety
of constitutive laws: for nonlinear models in Minkowski and dH=0, dF=0, (2.1
Riemannian spacetime$3], for electrodynamics in a

Riemann-Cartan manifolth], and also for certain nonmini- e  we assume that the electric current three-fnanishes
mal and higher derivative gravity moddls]. Numerous au- i the spacetime region under consideration. Given the local

thors [6] discussed electromagnetic waves in Ei”Stei”'coordinatesxi, i=0,1,2,3, we can decompose the exterior
Maxwell theory. The main aim of this paper is to investigatefoyms as

wave propagation in Maxwell electrodynamics with the most
generallinear constitutive law. We derive the generalized 1 1
Fresnel equation which determines the wave normals directly H= EHijdXi/\de’ E= > Fijdxi/\dxj_ (2.2)

Let us consider the Maxwell equations in vacuum
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Here €, is the Levi-Civita symbol and¢’¥'(x) an even
tensor density of weight-1 (called the constitutive tensor
density which can be decomposed according to

XM =100 x T+ a(x)eld,  with ylKl=0. (2.4

Heref(x) is a dimensionful scalar function such thai*! is
dimensionless. The pseudo-scalar constitutive funaiifx)
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In terms of the(co)vector components, we have on the
characteristic hypersurfac

[D]=0, [¢D*]=d%, [Hal=0, [dHal=haa;,
(3.2

[B*]=0, [4B%]=b%qi, [Ea]=0, [4iEal=eaq;,
(3.2

can be identifiedon thekinematiclevel) as an Abelian axion where d? h,,b? e, describe discontinuities of the corre-

field, whereasf(x) can be interpreted as a dilaton scalar

sponding quantities acro$ and the wave covector normal

field. Note thaty X' has the same algebraic symmetries ando the front is given by

therefore the same number of 20 independent components
a Riemannian curvature tensor:

)°(ijkl _ _;(jikl _ _;(ijlk: ° inj’ ;([ijkl]zo_ (2.5

This follows from the existence and the structure of the La-

grangian for the linear electrodynamivg,=—3H/\F, see
Refs.[2,13]. It is convenient to adopt a more compdes-
sentially bivectop notation by defining the thre@o)vector
guantities

Has Hox
D2:=| Ha1|, Hy=| Hoz
Hiz Hos
and
Fas Fio
Ba:=| Fa1|, Eg=| Faol, (2.6)
Fi2 Fao

for the electric and magnetic excitations, and for the mag-
netic and electric field strengths, respectively. The Latin in-

dices label nowa,b,c, ...=1,2,3. The constitutive tensor is
then naturally parametrized by a triplet ox3 matrices,

YM=f43b B a1 so that the constitutive lay2.4) is
finally recast into

e =t
=f(x)
2.7

Da
Here the 3<3 matrices satisfyd3°= A3 B, =B,,, and
C,2=0, thereby providing the algebraic properti@ss).

c,
Aab

Bab
ca,

Bb

— Ea
Ba

+a(X)<

IIl. WAVE PROPAGATION: FRESNEL EQUATION

In the theory of partial differential equations, the propa-

gation of waves is described by Hadamard discontinuities o

solutions across a characteristwave frony hypersurfaces
[7]. One can locally defin& by the equationb (x') = const.
The Hadamard discontinuity of any functidf{x) across the
hypersurfaceS is determined as the differenceF](x)
=F(X,)— F(X_), wherex.:=lim_,_o(x*te) are points on
the opposite sides 06=x. An ordinary electromagnetic
wave is a solution of the Maxwell equatiof.1) for which
the derivatives oH andF have regular discontinuities across
the wave front hypersurfacg

as
gi:=0;®.

(3.3
Equations(3.1),(3.2) represent the Hadamard geometrical
compatibility conditions. Substituting Eq22.2) into Eqg.
(2.1), and using Egs(2.6) and(3.1),(3.2), we find

qod?— €2°%guh,=0, qob?+ €*°gue.=0, (3.4

(3.5

where €3¢ is the three-dimensional Levi-Civita symbol. In
this system only the six equatio(i3.4) are independent. As-
suming thatqy#0, one finds that Eqs(3.5 are trivially
satisfied if one substitutes E(B.4) into them.(Note that the
characteristics witljp=0 do not have intrinsic meaning for
the evolution equations, since they obviously depend on the
arbitrary choice of coordinates.

Differentiating Eq.(2.7) and using the compatibility con-
ditions (3.1),(3.2), we find additionally six algebraic equa-

el

Note that the constitutive coefficients and their first deriva-
tives are assumed to be continuous aci®ss

We can now substitutd® andh, from Eq. (3.6) into the
first equation(3.4), which gives

g,d®=0, qyzb?=0,

Cab Bab
Aab Cba

ha
da

bb

ea
) . (3.6

+ a(X)( ba

f(x)Go( — A?Pe,+C,,*0°) + a(x)gob?
= f(X) €°%q( — C Jeg+ Bogb?) — a(x) €°%gpe .
(3.7

The terms proportional to the axion fiede(x) drop out com-
pletely due to Eq(3.4), and then one can also remove the
common dilaton factoif(x) on both sides of the equation.
I;We assumd (x) # 0, since otherwise there is no hyperbolic
evolution systen].Finally we substituteb?® in terms ofe,
from the second equatio(8.4), and after some rearrange-
ments one finds

(A5A+ o0l C %o+ C e + et €% Beg)

0. (3.9

This homogeneous algebraic equation has a nontrivial solu-
tion when
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Wi=de{aBA ™+ Qo0 C e+ COpe® ] + oty 2515, = 0.
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(3.9

This is a Fresnel equation which is central in the wave propa-

gation analysis. It determines the geometry of the wave nor-

mals in terms of the constitutive coefficients3,C. A direct
calculation yields the general result

W=0d5(dgM +d50.M?+ q500pM >
+000albdcM *°+ G405 0cdaM ***)
=0, (3.10
where we have denoted
M:=detd, M?3:=2¢,.4A3°C. A (3.11)

Mab==BCd(AabACd_AaCAbd)_ACdCaCde

+4.A43%CP,cd.—2A43¢cc,cY., (3.12
Mabc?ZZECde[Bdf(AabCfe_Aafcbe)+caecbfcfd]
(3.13

Madetz Gcedegthh[%AabBeg_Caerg]. (314)

Note that only the completely symmetric paf?31 -2,
p=2,3,4, contribute to the Fresnel equation. Simge:0,
one can delete the first factor in E.10, and thus we
finally find that the wave covectar; lies, in general, on a
fourth order surface. This is different from the ligbone

(i.e., second ordgstructure which arises only in a particular
case. In the next section we demonstrate that the latter cor-
responds to the closure condition. Earlier, the relation be-
tween the fourth- and the second-order wave geometry was
studied by Tamnj16] for a special case of the linear consti-

tutive law.

IV. THE CLOSURE RELATION AS A SUFFICIENT
CONDITION

The linear constitutive law defines a duality operator
when the constitutive coefficients satisfy the “reciprocity”

or “closure” relation[8,11]:

1 ° mnpqS, rskl_ _ SKI

Zfijmnepqrs)( X ij o 4.1

or in terms of the X 3 matrices

ABBp+C2 L% =~ 53, C(aCA ble=0, CC(aBb)c: 0.
4.2

The general solution of the closure conditiga.l),(4.2)
reads[11]

1

ab__
A= detB

(k*B*P—k*P) — B, (4.3

C? =By k=

EadCBdbkc . (44)

detB

Here k® is an arbitrary three-vectorky:=B,pk?, k2
=B ,pk?k?, and B3P denotes the inverse matrix 18y,.
Starting from Eqs(4.3),(4.4), the direct calculation yields

e 1 L k2 2 4
=~ getB| 1~ detB) (49
o= g 1- 46
~ detB detB)’ “9

2

M= — L gabiogar - X ) g

detB detB ' '
Mabe— _ 43b(ae) (4.8
M(@bcd — _ (detB)B@bgRed), 4.9

Substituting all this into the general Fresnel equati®.40),
we find

2qo(0ak?)

- V|dets|

aG | . kz)
Jjdets)|~ detB

2

W=-— vqé{

— V|detB|(q,0,82")

(4.10

Here o=sgn(det3), and g' is the (inverse four-
dimensional metric which arises from the duality operator
and the closure relatiofil1,13

= — og3(0i9;9")2.

1/ k2

1_ )
Jldets|\ = detB

Oa_ _ k®
g (4.12

J|detB|’
V|detB| B3P,

This metricg;; (defined up to a conformal facfoalways has
the Lorentzian signature, although it is not necessarily inter-
pretable as a spacetime met(ihis is a so calledoptical
metric, in general; see, e.g., Rdfl4]). As shown in Ref.
[13], the constitutive tensor densit.4) can be rewritten in
terms of this metric as

g%=

(4.11

gab: _

(4.13

Y =f(x)V—g(g*g! —g*g") + a(x) €. (4.19
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Thus we indeed recover the null congy'=q;g;g" =0

PHYSICAL REVIEW D 62 044050

Consequently, M =det.A=s\%/detB and M3P=2)\*4B3b

structure for the propagation of electromagnetic waves fronand therefore one verifies that
our general analysis: provided the constitutive matrices sat-

isfy the closure relatio.1),(4.2), the quartic surfac€3.10
degenerates to the null cone for the induced mefsic
It is worthwhile to note that the Fresnel equati10
can be rewritten in an explicitly covariant form
G™gig0q=0, i,j,...=0,123, (415

where the fourth order totally symmetric tensor den&itif'

2~2

= detcl]”; (\%g3+50,0,32° detB)?.

w (5.7

We immediately see that fos=—1 the quadratic form
in Eg. (5.7 can have either the { ———) signature
or (+++—). Similarly, for s=1 the signature is either
(++++) or (++——). Therefore, the Fresnel equation

is constructed as the cubic polynomial of the components oflescribes a correct lighdone (hyperbolig structure only in

the constitutive tensor

.. 1 o .0 . o
GleI :=47anp(|XJ|qr|kXI)stu (4-16

€mnrs€pqtu-

the cases= —1. Finally, one can verify that the above solu-
tions satisfy

1 °

Zeijmnépqrsxmnpcb( rSkl=S7\25ikjl , (5.8)

(Here the total symmetrization is extended only over the four

indicesi,j,k,I with all the summation indices excludéed.
Tamm|[16] has introduced a similar “fourth-order metric”

for the particular case of the linear constitutive law.

V. THE CLOSURE RELATION AS A NECESSARY
CONDITION

It was conjectured11,13 that the closure relation is not

which fors= —1 reproduces the closure relatighl) after a
trivial rescaling of the constitutive tensor densignd sub-
sequently absorbing the factarinto the “dilaton” field f).

VI. CONCLUSIONS

In this paper we have derived, extending the earlier results

only sufficient, but also a necessary condition for the reducésee, e.g., Refd.6,14,16), the Fresnel equation governing

tion of the quartic geometry3.10 to the null cone. The

the propagation of electromagnetic waves for the most gen-

complete proof of this conjecture requires a rather lengthyeral linear constitutive law. The wave covector lies, in gen-
algebra and will be considered elsewhere. Here we demoreral, on afourth order surface Such generic fourth order
strate the validity of the necessary condition in a particulaistructure is not affected by the axionlike and dilatonlike parts

case when the matri€=0.
Putting C?,=0, we find from Eqgs.(3.11)—(3.14 that
M2=0 andM2°=0, whereas

Mab= 3, (A2bACd— gac4bd) (5.1)

M (@bcd = (detB) A (@PBCd)., (5.2)
Consequently, Eq3.10 reduces to

W=q3(detAqs+q3y+detBap), (5.3

where a:=A%°q,q,, B:=B3°q,q,, and y:=M?3°q,q,. As-

suming that the last equation describes a null cone, one co
cludes that the roots fays should coincide and thus neces-

sarily
y?=4 detA detBa . (5.4
Let us write (detddetB)=s|detAdets|, with s
=sgn(detd detB). Then Eq.(5.4) yields
1
2\[detAdetd] %=5)\, 2\[detAdets] §= =
(5.9

n-

of the constitutive tensor. Note, however, that the linear con-
stitutive lawH= a(x)F does not lead to hyperbolic evolu-
tion equations, and hence necessaf{ly) # 0.

We have proved that the closure relati@ghl) is a suffi-
cient condition for the reduction of the fourth order surface
to the familiar second order light cone structure. The corre-
sponding family of conformally related metrigscoincides
with that derived in Ref[11], see also Ref.13]. This result
may be considered as an alternatifes compared to Ur-
bantke’s schem§9,10]) derivation of the Lorentzian metric
g from a duality operator. In terms of the Lagrangian, the
closure relation is equivalent to the statement tNgj
— [ f(X)F/A*F+ a(x)F/\F], where the Hodge operator
is defined by the metrig.

For the special casé?,=0 we have proved that the re-
quirement of reduction of the fourth order Fresnel structure
to a second order one implies a relation between the consti-
tutive coefficients which is slightly weaker than the closure
relation (4.1), in that it allows for an arbitrary scalar factor.
The latter though can be removed by the redefinition of the
dilaton field f(x). Also the signature of the resulting qua-
dratic form is not fixed, so that one has to impose hyperbo-
licity as a separate condition.

It is worthwhile to note that the results obtained can be
directly applied to the refinement and generalization of the

where\ is an arbitrary scalar factor. Recalling the definitionsprevious analyses of the observational tests of the equiva-

of a,B,y, we then find

A3b=g)\2523b, (5.6)

lence principle. See, for instance, REE5] where some par-
ticular cases of the Fresnel equation have been studied in this
context.
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