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Wave propagation in linear electrodynamics
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The Fresnel equation governing the propagation of electromagnetic waves for the most general linear
constitutive law is derived. The wave normals are found to lie, in general, on a fourth order surface. When the
constitutive coefficients satisfy the so-called reciprocity or closure relation, one can define a duality operator on
the space of the two-forms. We prove that the closure relation is a sufficient condition for the reduction of the
fourth order surface to the familiar second order light cone structure. We finally study whether this condition
is also necessary.

PACS number~s!: 04.20.Cv, 04.30.Nk
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I. INTRODUCTION

The electromagnetic wave represents perhaps the m
important classical device with the help of which one c
carry out physical measurements and transmit informat
The intrinsic properties and motion of material media,
well as the geometrical structure of spacetime, can affect
propagation of electromagnetic waves. In the most gen
setting @1,2#, electromagnetic phenomena are described
the pair of two-formsH,F ~called the electromagnetic exc
tation and the field strength, respectively! which satisfy the
Maxwell equationsdH5J,dF50, togetherwith the consti-
tutive law H5H(F). The latter relation contains crucial in
formation about the underlying physical continuum~i.e., ma-
terial medium and/or spacetime!. Mathematically, this
constitutive law arises either from a suitable phenomenolo
cal theory of a medium or from the electromagnetic fie
Lagrangian.

In general, the constitutive law establishes a nonlinear~or
even nonlocal! relation between the electromagnetic exci
tion and the field strength. The function~or functional! H(F)
may depend on the polarization and magnetization prope
of matter, and/or on the spacetime geometry, i.e., me
curvature, torsion, and nonmetricity. Previously, the pro
gation of electromagnetic waves was analyzed for a var
of constitutive laws: for nonlinear models in Minkowski an
Riemannian spacetimes@3#, for electrodynamics in a
Riemann-Cartan manifold@4#, and also for certain nonmini
mal and higher derivative gravity models@5#. Numerous au-
thors @6# discussed electromagnetic waves in Einste
Maxwell theory. The main aim of this paper is to investiga
wave propagation in Maxwell electrodynamics with the m
generallinear constitutive law. We derive the generalize
Fresnel equation which determines the wave normals dire
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from the constitutive coefficients. This result is of intere
e.g., for various applications in crystaloptics and related
mains.

Another motivation for the present work comes from t
study of a deep relationship between the duality opera
defined on two-forms and the conformal classes of space
metrics in four dimensions. Within classical Maxwell ele
trodynamics, Toupin, Scho¨nberg, and others@8# have noticed
that the constitutive coefficients define a duality operat
provided a certain reciprocity or closure condition is fu
filled, and gave first demonstrations of the existence of
corresponding conformal metric structure. Later these ob
vations were rediscovered and developed in mathematics@9#
and in gravity theory@10#. Recently the complete explici
solution of the closure relation has been given@11#, and it
was conjectured that the reciprocity condition is a necess
and sufficient condition for the standard null-cone struct
for the light propagation~see also independent arguments
Ref. @12#!. Here we give a partial answer to this question

II. ELECTRODYNAMICS WITH LINEAR CONSTITUTIVE
LAW

Let us consider the Maxwell equations in vacuum

dH50, dF50, ~2.1!

i.e., we assume that the electric current three-formJ vanishes
in the spacetime region under consideration. Given the lo
coordinatesxi , i 50,1,2,3, we can decompose the exter
forms as

H5
1

2
Hi j dxi`dxj , F5

1

2
Fi j dxi`dxj . ~2.2!

Following Refs.@11,13#, we write the linear constitutive law
in terms of the electromagnetic excitation and field stren
tensors as

Hi j 5
1

4
e i jkl x

klmnFmn , i , j , . . .50,1,2,3. ~2.3!
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Here e i jkl is the Levi-Civita symbol andx i jkl (x) an even
tensor density of weight11 ~called the constitutive tenso
density! which can be decomposed according to

x i jkl 5 f ~x!x° i jkl 1a~x!e i jkl , with x° [ i jkl ][0. ~2.4!

Here f (x) is a dimensionful scalar function such thatx° i jkl is
dimensionless. The pseudo-scalar constitutive functiona(x)
can be identified~on thekinematiclevel! as an Abelian axion
field, whereasf (x) can be interpreted as a dilaton sca

field. Note thatx° i jkl has the same algebraic symmetries a
therefore the same number of 20 independent componen
a Riemannian curvature tensor:

x° i jkl 52x° j ikl 52x° i j lk 5x° kli j , x° [ i jkl ]50. ~2.5!

This follows from the existence and the structure of the L
grangian for the linear electrodynamicsVlin52 1

2 H`F, see
Refs. @2,13#. It is convenient to adopt a more compact~es-
sentially bivector! notation by defining the three-~co!vector
quantities

D a
ªS H23

H31

H12

D , HaªS H01

H02

H03

D
and

Ba
ªS F23

F31

F12

D , EaªS F10

F20

F30

D , ~2.6!

for the electric and magnetic excitations, and for the m
netic and electric field strengths, respectively. The Latin
dices label nowa,b,c, . . .51,2,3. The constitutive tensor i
then naturally parametrized by a triplet of 333 matrices,

x° i jkl 5$A ab,Bab ,C a
b%, so that the constitutive law~2.4! is

finally recast into

S Ha

D aD 5 f ~x!S C b
a Bab

A ab C a
b
D S 2Eb

Bb D 1a~x!S 2Ea

Ba D .

~2.7!

Here the 333 matrices satisfyA ab5A ba, Bab5Bba , and
C a

a50, thereby providing the algebraic properties~2.5!.

III. WAVE PROPAGATION: FRESNEL EQUATION

In the theory of partial differential equations, the prop
gation of waves is described by Hadamard discontinuities
solutions across a characteristic~wave front! hypersurfaceS
@7#. One can locally defineS by the equationF(xi)5const.
The Hadamard discontinuity of any functionF(x) across the
hypersurfaceS is determined as the difference@F#(x)
ªF(x1)2F(x2), wherex6ª lim«→0(x6«) are points on
the opposite sides ofS{x. An ordinary electromagnetic
wave is a solution of the Maxwell equations~2.1! for which
the derivatives ofH andF have regular discontinuities acros
the wave front hypersurfaceS.
04405
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In terms of the~co!vector components, we have on th
characteristic hypersurfaceS:

@D a#50, @] iD a#5daqi , @Ha#50, @] iHa#5haqi ,
~3.1!

@Ba#50, @] iB
a#5baqi , @Ea#50, @] iEa#5eaqi ,

~3.2!

where da,ha ,ba,ea describe discontinuities of the corre
sponding quantities acrossS, and the wave covector norma
to the front is given by

qiª] iF. ~3.3!

Equations ~3.1!,~3.2! represent the Hadamard geometric
compatibility conditions. Substituting Eq.~2.2! into Eq.
~2.1!, and using Eqs.~2.6! and ~3.1!,~3.2!, we find

q0da2eabcqbhc50, q0ba1eabcqbec50, ~3.4!

qada50, qaba50, ~3.5!

whereeabc is the three-dimensional Levi-Civita symbol. I
this system only the six equations~3.4! are independent. As
suming thatq0Þ0, one finds that Eqs.~3.5! are trivially
satisfied if one substitutes Eq.~3.4! into them.~Note that the
characteristics withq050 do not have intrinsic meaning fo
the evolution equations, since they obviously depend on
arbitrary choice of coordinates.!

Differentiating Eq.~2.7! and using the compatibility con
ditions ~3.1!,~3.2!, we find additionally six algebraic equa
tions

S ha

daD 5 f ~x!S C a
b Bab

A ab C b
aD S 2eb

bb D 1a~x!S 2ea

ba D . ~3.6!

Note that the constitutive coefficients and their first deriv
tives are assumed to be continuous acrossS.

We can now substituteda andha from Eq. ~3.6! into the
first equation~3.4!, which gives

f ~x!q0~2A abeb1C b
abb!1a~x!q0ba

5 f ~x!eabcqb~2C c
ded1B cdb

d!2a~x!eabcqbec .

~3.7!

The terms proportional to the axion fielda(x) drop out com-
pletely due to Eq.~3.4!, and then one can also remove th
common dilaton factorf (x) on both sides of the equation
@We assumef (x)Þ0, since otherwise there is no hyperbol
evolution system.# Finally we substituteba in terms of eb
from the second equation~3.4!, and after some rearrange
ments one finds

~q0
2A ab1q0qd@C a

ce
cdb1C b

ce
cda#1qeqfe

aeceb f dBcd!eb

50. ~3.8!

This homogeneous algebraic equation has a nontrivial s
tion when
0-2
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Wªdetuq0
2A ab1q0qd@C a

ce
cdb1C b

ce
cda#1qeqfe

aeceb f dBcdu50. ~3.9!
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This is a Fresnel equation which is central in the wave pro
gation analysis. It determines the geometry of the wave n
mals in terms of the constitutive coefficientsA,B,C. A direct
calculation yields the general result

W5q0
2~q0

4M1q0
3qaMa1q0

2qaqbMab

1q0qaqbqcM
abc1qaqbqcqdMabcd!

50, ~3.10!

where we have denoted

MªdetA, Ma
ª2ebcdA abC c

eA ed, ~3.11!

Mab
ªBcd~A abA cd2A acA bd!2A cdC a

cC b
d

14A acC b
dC d

c22A abC c
dC d

c , ~3.12!

Mabc
ª2ecde@Bd f~A abC f

e2A a fC b
e!1C a

eC b
fC f

d#
~3.13!

Mabcd
ªece fedghBf h@ 1

2 A abBeg2C a
eC b

g#. ~3.14!

Note that only the completely symmetric partsM (a1 . . . ap),
p52,3,4, contribute to the Fresnel equation. Sinceq0Þ0,
one can delete the first factor in Eq.~3.10!, and thus we
finally find that the wave covectorqi lies, in general, on a
fourth order surface. This is different from the lightcone
~i.e., second order! structure which arises only in a particula
case. In the next section we demonstrate that the latter
responds to the closure condition. Earlier, the relation
tween the fourth- and the second-order wave geometry
studied by Tamm@16# for a special case of the linear cons
tutive law.

IV. THE CLOSURE RELATION AS A SUFFICIENT
CONDITION

The linear constitutive law defines a duality opera
when the constitutive coefficients satisfy the ‘‘reciprocity
or ‘‘closure’’ relation @8,11#:

1

4
e i jmnepqrsx

° mnpqx° rskl52d i j
kl , ~4.1!

or in terms of the 333 matrices

A acBcb1C a
cC c

b52db
a , C (a

cA b)c50, C c
(aBb)c50.

~4.2!

The general solution of the closure condition~4.1!,~4.2!
reads@11#

A ab5
1

detB ~k2B ab2kakb!2B ab, ~4.3!
04405
-
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C a
b5B adedbck

c5
1

detB eadcBdbkc . ~4.4!

Here ka is an arbitrary three-vector,kbªB abk
a, k2

ªB abk
akb, andB ab denotes the inverse matrix toBab .

Starting from Eqs.~4.3!,~4.4!, the direct calculation yields

M52
1

detB S 12
k2

detBD 2

, ~4.5!

Ma5
1

detB4kaS 12
k2

detBD , ~4.6!

Mab52
1

detB4kakb12B abS 12
k2

detBD , ~4.7!

Mabc524B b(akc), ~4.8!

M (abcd)52~detB!B (abB cd). ~4.9!

Substituting all this into the general Fresnel equation~3.10!,
we find

W52sq0
2F q0

2

AudetBu
S 12

k2

detBD 2
2q0~qaka!

AudetBu

2AudetBu~qaqbB ab!G 2

52sq0
2~qiqjg

i j !2. ~4.10!

Here s5sgn(detB), and gi j is the ~inverse! four-
dimensional metric which arises from the duality opera
and the closure relation@11,13#

g005
1

AudetBu
S 12

k2

detBD , ~4.11!

g0a52
ka

AudetBu
, ~4.12!

gab52AudetBuB ab. ~4.13!

This metricgi j ~defined up to a conformal factor! always has
the Lorentzian signature, although it is not necessarily in
pretable as a spacetime metric~this is a so calledoptical
metric, in general; see, e.g., Ref.@14#!. As shown in Ref.
@13#, the constitutive tensor density~2.4! can be rewritten in
terms of this metric as

x i jkl 5 f ~x!A2g~gikgjl 2gjkgil !1a~x!e i jkl . ~4.14!
0-3
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Thus we indeed recover the null coneqiq
i5qiqjg

i j 50
structure for the propagation of electromagnetic waves fr
our general analysis: provided the constitutive matrices
isfy the closure relation~4.1!,~4.2!, the quartic surface~3.10!
degenerates to the null cone for the induced metricgi j .

It is worthwhile to note that the Fresnel equation~3.10!
can be rewritten in an explicitly covariant form

Gi jkl qiqjqkql50, i , j , . . .50,1,2,3, ~4.15!

where the fourth order totally symmetric tensor densityGi jkl

is constructed as the cubic polynomial of the component
the constitutive tensor

Gi jkl
ª

1

4!
x° mnp( ix° j uqrukx° l )stuemnrsepqtu . ~4.16!

~Here the total symmetrization is extended only over the f
indices i , j ,k,l with all the summation indices excluded!
Tamm @16# has introduced a similar ‘‘fourth-order metric
for the particular case of the linear constitutive law.

V. THE CLOSURE RELATION AS A NECESSARY
CONDITION

It was conjectured@11,13# that the closure relation is no
only sufficient, but also a necessary condition for the red
tion of the quartic geometry~3.10! to the null cone. The
complete proof of this conjecture requires a rather leng
algebra and will be considered elsewhere. Here we dem
strate the validity of the necessary condition in a particu
case when the matrixC50.

Putting C a
b50, we find from Eqs.~3.11!–~3.14! that

Ma50 andMabc50, whereas

Mab5Bcd~A abA cd2A acA bd!, ~5.1!

M (abcd)5~detB!A (abB cd). ~5.2!

Consequently, Eq.~3.10! reduces to

W5q0
2~detAq0

41q0
2g1detBab!, ~5.3!

where aªAabqaqb , bªBabqaqb , and gªMabqaqb . As-
suming that the last equation describes a null cone, one
cludes that the roots forq0

2 should coincide and thus nece
sarily

g254 detA detBab. ~5.4!

Let us write (detA detB)5sudetA detBu, with s
5sgn(detA detB). Then Eq.~5.4! yields

2AudetA detBu
a

g
5sl, 2AudetA detBu

b

g
5

1

l
,

~5.5!

wherel is an arbitrary scalar factor. Recalling the definitio
of a,b,g, we then find

A ab5sl2B ab. ~5.6!
04405
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Consequently, M5detA5sl6/detB and Mab52l4B ab,
and therefore one verifies that

W5
sl2q0

2

detB ~l2q0
21sqaqbB ab detB!2. ~5.7!

We immediately see that fors521 the quadratic form
in Eq. ~5.7! can have either the (1222) signature
or (1112). Similarly, for s51 the signature is either
(1111) or (1122). Therefore, the Fresnel equatio
describes a correct lightcone~hyperbolic! structure only in
the cases521. Finally, one can verify that the above sol
tions satisfy

1

4
e i jmnepqrsx

° mnpqx° rskl5sl2d i j
kl , ~5.8!

which for s521 reproduces the closure relation~4.1! after a
trivial rescaling of the constitutive tensor density~and sub-
sequently absorbing the factorl into the ‘‘dilaton’’ field f ).

VI. CONCLUSIONS

In this paper we have derived, extending the earlier res
~see, e.g., Refs.@6,14,16#!, the Fresnel equation governin
the propagation of electromagnetic waves for the most g
eral linear constitutive law. The wave covector lies, in ge
eral, on afourth order surface. Such generic fourth orde
structure is not affected by the axionlike and dilatonlike pa
of the constitutive tensor. Note, however, that the linear c
stitutive law H5a(x)F does not lead to hyperbolic evolu
tion equations, and hence necessarilyf (x)Þ0.

We have proved that the closure relation~4.1! is a suffi-
cient condition for the reduction of the fourth order surfa
to the familiar second order light cone structure. The cor
sponding family of conformally related metricsg coincides
with that derived in Ref.@11#, see also Ref.@13#. This result
may be considered as an alternative~as compared to Ur-
bantke’s scheme@9,10#! derivation of the Lorentzian metric
g from a duality operator. In terms of the Lagrangian, t
closure relation is equivalent to the statement thatVlin
52 1

2 @ f (x)F` * F1a(x)F`F#, where the Hodge operato
is defined by the metricg.

For the special caseC a
b50 we have proved that the re

quirement of reduction of the fourth order Fresnel struct
to a second order one implies a relation between the con
tutive coefficients which is slightly weaker than the closu
relation ~4.1!, in that it allows for an arbitrary scalar facto
The latter though can be removed by the redefinition of
dilaton field f (x). Also the signature of the resulting qua
dratic form is not fixed, so that one has to impose hyper
licity as a separate condition.

It is worthwhile to note that the results obtained can
directly applied to the refinement and generalization of
previous analyses of the observational tests of the equ
lence principle. See, for instance, Ref.@15# where some par-
ticular cases of the Fresnel equation have been studied in
context.
0-4
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Équations de l’Hydrodynamique~Hermann, Paris, 1903!; A.
Lichnerowicz, in Astrofisica e Cosmologia Gravitazion
Quanti e Relativita`, Centenario di Einstein~Giunti Barbera,
Firenze, 1979!.

@8# R. A. Toupin, in Non-Linear Continuum Theories, C.I.M.E
Conference, Bressanone, Italy, 1965~unpublished!, pp. 206-
342; M. Scho¨nberg, Riv. Bras. Fis.1, 91 ~1971!; A. Peres,
Ann. Phys.~N.Y.! 19, 279 ~1962!; A. Z. Jadczyk, Bull. Acad.
Pol. Sci., Ser. Sci., Phys. Astron.27, 91 ~1979!; C. Piron and
D. J. Moore, Turk. J. Phys.19, 202 ~1995!.

@9# H. Urbantke, Acta Phys. Austriaca, Suppl.XIX , 875 ~1978!;
G. Harnett, J. Math. Phys.32, 84 ~1991!.

@10# C. H. Brans, J. Math. Phys.12, 1616~1971!; R. Capovilla, T.
Jacobson, and J. Dell, Phys. Rev. Lett.63, 2325~1989!; G. ’t
Hooft, Nucl. Phys.B357, 211 ~1991!.

@11# Yu. N. Obukhov and F. W. Hehl, Phys. Lett. B458, 466
~1999!.

@12# C. Lämmerzahlet al., report, University of Konstanz, August
1999.

@13# F. W. Hehl, Yu. N. Obukhov, and G. F. Rubilar, inProceed-
ings of the International European Conference on Gravitati
‘‘Journées Relativistes 99,’’ Weimar, Germany, 1999@Ann.
Phys.~Leipzig! ~in press!#, gr-qc/9911096.

@14# H. F. Kremer, J. Math. Phys.8, 1197~1967!.
@15# M. P. Haugan and T. F. Kauffmann, Phys. Rev. D52, 3168

~1995!; V. I. Denisov and M. I. Denisov,ibid. 60, 047301
~1999!.

@16# I. E. Tamm, J. Russ. Phys. Chem. Soc.57, 209 ~1925!; re-
printed in I. E. Tamm,Collected Papers~Nauka, Moscow,
1975!, Vol. 1, pp. 33–61~in Russian!.
0-5


