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Nine-parameter electrovac metric involving rational functions
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An analytically extended nine-parameter family of the electrovac rational function solutions of the Einstein-
Maxwell equations generalizing the Chen-Guo-Ernst class of hyperextreme spacetimes is presented. The gen-
eral four-soliton asymptotically flat solution possessing the equatorial symmetry and involving five indepen-
dent real parameters is derived in a concise analytical form and its relevance to the equilibrium problem of two
extreme particles is discussed.

PACS number~s!: 04.20.Jb, 04.40.Nr, 97.60.Lf
th
he

ple
ga
ca
ot
b
-

a

a
o
la

n-
as
ev

ol

e
in
re
s

le
c-

ur
ar

e
tio

he

ir
ase,
s for

na-
on
he

e
II

or-
ric,
r-
ti-

he
t a
ors
t to

n-
d,
are

v-
of

ell
ub-
this

or-
I. INTRODUCTION

One of the reasons the rational function solutions of
Einstein-Maxwell equations, which include, e.g., all t
black hole solutions@1#, the Tomimatsu-Sato~TS! metrics
@2#, the Pleban´ski-Demiański solution@3#, have received ex-
tensive study in the literature is their comparatively sim
mathematical structure permitting a far-reaching investi
tion of the physical and geometrical properties. The appli
tion of generating techniques to constructing new asympt
cally flat rational function solutions had been started
Kinnersley and Chitre@4# who had generated a five
parameter vacuum field generalizing thed52 TS solution.
Later on, a large family of stationary vacuum spacetimes w
obtained by Hoenselaers, Kinnersley, and Xanthopoulos@5#;
two particular asymptotically flat two-parameter specializ
tions @6# of this family, similar to the Kerr metric, reduce t
the Schwarzschild solution in the limit of zero total angu
momentum.

It is important to note that whereas the solutio
generating techniques worked well in the pure vacuum c
their application to the electrovac case via the Alekse
Cosgrove@7# or Bäcklund transformations@8# could only
result in the hyperextreme solutions without the black h
limits ~see, e.g., Ref.@9# for a discussion of principal diffi-
culties of generating the subextreme electrovac spacetim!.
As a result, the electrovac rational function solutions obta
able from the nonrational ones through limiting procedu
were also restricted beyond the extreme case. The above
is true for instance in the case of the Chen-Guo-Ernst e
trovac solution@10# which is a nine-parameter rational fun
tion field resulting from the double-Cosgrove solution@11#
by means of the Kramer-Neugebauer-type limiting proced
@12#, and it involves oblate spheroidal coordinates which
characteristic of the hyperextreme spacetimes. It can be m
tioned that Chen, Guo, and Ernst presented their solu
only in terms of the Ernst complex potentials@13# and did
not calculate the corresponding metric coefficients; neit
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did they attempt to find the analytical continuation of the
result to get the physically more interesting subextreme c
apparently because of the absence of the general recipe
carrying out such a continuation.

The objective of our paper is the construction of the a
lytically extended nine-parameter rational function soluti
of the Einstein-Maxwell equations which would contain t
Chen-Guo-Ernst field as a special~hyperextreme! branch,
and to give the explicit formulas for the whole set of th
metric coefficients corresponding to that solution. Section
of the paper is devoted to the derivation of the general f
mulas defining the nine-parameter rational function met
and in Sec. III we shall consider the physically most inte
esting particular five-parameter metric which is asympto
cally flat and, in addition, is symmetric with respect to t
equatorial plane. For the latter metric we shall work ou
concise analytical representation in terms of only four fact
of spheroidal coordinates, the structure of which turns ou
be very similar to that of thed52 TS solution. As an inter-
esting application of this five-parameter metric we shall co
sider in Sec. IV the equilibrium problem of two charge
magnetized, rotating extreme particles. Conclusions
given in Sec. V.

II. THE NINE-PARAMETER SOLUTION AND
CORRESPONDING METRIC FUNCTIONS

For our purposes we shall use Sibgatullin’s method@14#
which is free from the difficulties inherent in the Aleksee
Cosgrove transformation, thus permitting the construction
the analytically extended solutions of the Einstein-Maxw
equations equally applicable to the treatment of either s
extreme or hyperextreme cases. Recall that according to
method, the gravitationalE and electromagneticF complex
potentials, to the determination of which reduces Ernst’s f
mulation of the axisymmetric electrovac problem@13#, can
be found from the integrals

E~z,r!5
1

pE21

1 e~j!m~s!ds

A12s2
,
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F~z,r!5
1

pE21

1 f ~j!m~s!ds

A12s2
~1!

which involve the unknown functionm(s) satisfying the sin-
gular integral equation

«
21

1 m~s!@e~j!1ẽ~h!12 f ~j! f̃ ~h!#ds

~s2t!A12s2
50 ~2!

and the normalizing condition

E
21

1 m~s!ds

A12s2
5p. ~3!

The functionse(j) and f (j) are the locally holomorphic
continuations of the axis datae(z)ªE(z,r50), f (z)
ªF(z,r50) into the complex planez1 ir, r and z being
the Weyl-Papapetrou cylindrical coordinates which en
Eqs. ~1!–~3! as parameters;j5z1 irs, h5z1 irt, s,tP

@21,1#; ẽ(h)ªe(h̄), f̃ (h)ª f (h̄), an overbar denoting the
complex conjugation.

Our choice ofe(z) and f (z) is that of the usual four-
soliton case, i.e.,

e~z!511
e1

z2b1
1

e2

z2b2
, f ~z!5

f 1

z2b1
1

f 2

z2b2
,

~4!

whereel , b l , and f l , l 51,2, are arbitrary complex param
eters. However, since we are looking for a solution expre
ible in rational functions of spheroidal coordinates, the al
braic equation

e~z!1ē~z!12 f ~z! f̄ ~z!50 ~5!

which plays an important role in Sibgatullin’s metho
should have only a pair of distinct roots of multiplicity 2, an
this means that not all of the complex parameters in Eq.~4!
are independent. The transition to the set of independen
rameters can be carried out via the relation

21(
l 51

2 S el

z2b l
1

ēl

z2b̄ l
D 12S (

l 51

2
f l

z2b l
D S (

l 51

2
f̄ l

z2b̄ l
D

5
2~z22a2!2

) l 51
2 ~z2b l !~z2b̄ l !

, ~6!

where6a are two roots of Eq.~5!, and it follows from Eq.
~6! that the set of independent parameters consists ofa, b l
and f l , l 51,2, sincee1 ande2 are representable as comb
nations of these parameters, namely,

el5
2~b l

22a2!2

~b l2b̄ l !~b l2bk!~b l2b̄k!
22 f lS f̄ 1

b l2b̄1

1
f̄ 2

b l2b̄2
D ,

kÞ l ; l ,k51,2. ~7!
04404
r

s-
-

a-

Therefore, the number of real parameters involved in
solution we are going to construct is 9, taking into accou
that a can only assume real or pure imaginary values.

The unknown functionm(s), according to Sibgatullin’s
method, should be searched for in the form

m~s!5A01
A1

j1a
1

A2

j2a
1

A3

~j1a!2
1

A4

~j2a!2
, ~8!

whereA0 , . . . ,A4 are constant coefficients~with respect to
s) which have to be found from Eqs.~2! and~3!. Substitut-
ing now Eq. ~8! into the latter equations, integrating an
equating to zero the coefficients at the independent power
h, one arrives at the linear algebraic system of five equati
for the determination ofA0–A4:

A01 (
n51

2 FAn

r n
1

~z2an!An12

r n
3 G51,

A01 (
n51

2 F An

b l2an
1

An12

~b l2an!2G50,

(
n51

2
1

~an2b̄ l !r n

@hl~an!An1gl~an!An12#50, l 51,2,

hl~an!ªēl12 f̄ l f ~an!, f ~an!ª(
l 51

2
f l

an2b l
,

gl~an!ªhl~an!S z2an

r n
2

2
1

an2b̄ l
D 22 f̄ l (

k51

2
f k

~an2bk!
2

5
]

]an
F hl~an!

~an2b̄ l !r n
G ~an2b̄ l !r n , ~9!

with a1ª2a, a2ªa, r nªAr21(z2an)2.
On the other hand, from Eqs.~1!, taking into account Eq.

~9!, we can find the dependence ofE and F on the coeffi-
cientsA0 , . . . ,A4, yielding

E52A021, F5 (
n51

2

@ f ~an!An1f~an!An12#/r n ,

f~an!ª
~z2an! f ~an!

r n
2

2(
l 51

2
f l

~an2b l !
2

5
]

]an
F f ~an!

r n
G r n .

~10!

Solving the system~9! and substituting the resulting ex
pressions forA0–A4 into Eq. ~10!, we obtain the final for-
mulas forE andF in terms of determinants

E5E1 /E2 , F5F/E2 ,
8-2
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E65U 1 1 1 p1 p2

61

61 C

0

0

U ,

F5U 0 f ~a1! f ~a2! f~a1!r 1 f~a2!r 2

21

21 C

0

0

U ,

~11!

wherepnª(z2an)/r n andC is the following 434 matrix

C51
r 1

a12b1

r 2

a22b1
2

r 1
2

~a12b1!2
2

r 2
2

~a22b1!2

r 1

a12b2

r 2

a22b2
2

r 1
2

~a12b2!2
2

r 2
2

~a22b2!2

h1~a1!

a12b̄1

h1~a2!

a22b̄1

g1~a1!r 1

a12b̄1

g1~a2!r 2

a22b̄1

h2~a1!

a12b̄2

h2~a2!

a22b̄2

g2~a1!r 1

a12b̄2

g2~a2!r 2

a22b̄2

2 .

~12!

The corresponding metric functionsf, g, and v which
enter the axisymmetric line element

ds25 f 21@e2g~dr21dz2!1r2dw2#2 f ~dt2vdw!2

~13!

can be shown to be defined by the following expressions~see
Refs.@15,16# for details of Sibgatullin’s method!

f 5
E1Ē21Ē1E212FF̄

2E2Ē2

, e2g5
E1Ē21Ē1E212FF̄

2K0K̄0r 1
4r 2

4
,

~14!

v5
2Im$E1H̄2Ē1G2FĪ %

E1Ē21Ē1E212FF̄
,

G5U 0 r 11a12z r21a22z r2/r 1 r2/r 2

21

21 C

0

0

U ,
04404
H5U z 1 1 p1 p2

2b1

2b2 C

ē1

ē2

U ,

I 5U f 11 f 2 0 f ~a1! f ~a2! f~a1!r 1 f~a2!r 2

z 1 1 1 p1 p2

2b1 21

2b2 21 C

ē1 0

ē2 0

U ,

K0

5U 1

a12b1

1

a22b1
2

1

~a12b1!2
2

1

~a22b1!2

1

a12b2

1

a22b2
2

1

~a12b2!2
2

1

~a22b2!2

h1~a1!

a12b̄1

h1~a2!

a22b̄1

]

]a1
F h1~a1!

a12b̄1
G ]

]a2
F h1~a2!

a22b̄1
G

h2~a1!

a12b̄2

h2~a2!

a22b̄2

]

]a1
F h2~a1!

a12b̄2
G ]

]a2
F h2~a2!

a22b̄2
G
U .

Formulas~9!–~14! fully define the analytically extended
nine-parameter electrovac metric which generalizes
Chen-Guo-Ernst hyperextreme spacetime, the latter co
sponding to the pure imaginary values of the parametera.

It should be underlined that not all of the parameters
volved in our solution are physical, and for any concre
application, the rotational monopole and magnetic monop
momentsn andm0, respectively, determined by the expre
sions

n5Im$e11e2%, m05Im$ f 11 f 2%, ~15!

should be excluded@we remind thate1 ande2 are given by
Eq. ~7!#. The remaining seven arbitrary parameters can
associated for instance with the mass monopole and qua
pole moments, angular momentum dipole and octupole m
ments, electric charge, and electric and magnetic dipole
ments ~the parametrization of the four-soliton solutions
terms of the relativistic multipole moments can be found
Ref. @17#!.

The cylindrical coordinatesr and z enter the metric ob-
tained via the functionsr 1 andr 2 which means that the gen
eralized spheroidal coordinatesx andy can be introduced by
the formulas

x5
1

2a
~r 11r 2!, y5

1

2a
~r 12r 2!, ~16!
8-3
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and the metric becomes rational in terms of these new c
dinates.

To conclude this section, let us point out that the m
justification for the construction of the nine-parameter rat
nal function metric in the form chosen, and not in any oth
form, say, corresponding to one simple root of Eq.~5! and
the other of multiplicity 3, is that our case contains solutio
symmetric with respect to the equatorial plane.

III. MAGNETIZED KERR-NEWMAN METRIC
POSSESSING AN ARBITRARY MASS-QUADRUPOLE

MOMENT

The physically most interesting particular case aris
from the electrovac metric described in the previous sec
is the five-parameterasymptotically flatsolution representing
exterior field of a charged, magnetized, spinning deform
mass and possessing the additional reflection symmetry
respect to the equatorial plane. This general equatori
symmetric four-soliton rational function solution can be a
envisaged as the asymptotically flat magnetized genera
tion of the Kerr-Newman spacetime endowed with an ar
trary mass-quadrupole moment. Formulas~9!–~14! permit us
to work out an elegant representation of that solution, m
ing the latter very suitable for concrete applications.

In this particular case it is convenient to reparametrize
axis data in the form

e~z!5
~z2m2 ia!~z1 ib!1d2d2ab

~z1m2 ia!~z1 ib!1d2d2ab
,

f ~z!5
qz1 im

~z1m2 ia!~z1 ib!1d2d2ab
,

dª
m22m2b2

m22~a2b!22q2
, dª

1

4
@m22~a2b!22q2#.

~17!

The advantage of this parametrization is that the real par
etersm, a, andq coincide with the total mass, total angul
momentum per unit mass, and total charge, respectiv
while the remaining real parametersb and m represent the
arbitrary mass-quadrupole momentQ and magnetic dipole
momentM of the source via the formulas

Q52m~d2d2ab1a2!, M5m1q~a2b!. ~18!

Then it is easy to see that Eq.~5! will have a pair of roots

z656k, kªAd1d ~19!
04404
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of the multiplicity two which, depending on the interrelatio
of the parameters, can assumereal or pure imaginaryvalues.
The simple fraction decomposition of the data~17! gives

el5
2m~b l1 ib!

bk2b l
, f l5

qb l1 im

b l2bk
, l ,k51,2;kÞ l ,

b11b252m1 i~a2b!, b1b25d2d1 imb, ~20!

and these values forel , b l , andf l should be substituted into
Eqs.~11! and ~12! to obtain the form of the complex poten
tials E andF. A laborious computer analytical evaluation o
the determinants finally yields the following concise expre
sions:

E5
A22mB

A12mB
, F5

2C

A12mB
,

A54@~k2x22dy2!22d22 ik3xy~a2b!~x221!#2~12y2!

3@~a2b!~d2d!2m2b1qm#

3@~a2b!~y211!14ikxy#,

B5kx$2k2~x221!1@b~a2b!12d#~12y2!%

1 iy$2k2b~x221!2@k2~a2b!2m2b1qm22ad#

3~12y2!%,

C52k2~x221!~kqx1 imy!1~12y2!$kx@2qd1m~a2b!#

2 iy@q~a2b!~d2d!2q~m2b2qm!22md#%, ~21!

which are written in the generalized spheroidal coordinat

x5
1

2k
~r 11r 2!, y5

1

2k
~r 12r 2!,

r 6ªAr21~z6k!2. ~22!

In a similar way we can calculate the corresponding m
ric functionsf, g andv using formulas~14!. Apparently, the
calculation of the functionv is most difficult—first, because
of four different determinants involved in the calculatio
and, secondly, because it is practically impossible to redu
complicated intermediate expression forv without a solid
strategy for establishing the factor structure of the wh
metric. After very tedious work we have finally been able
find elegant expressions for all three metric coefficien
namely,
f 5E/D, e2g5E/16k8~x22y2!4, v52~12y2!F/E, ~23!

E5$4@k2~x221!1d~12y2!#21~a2b!@~a2b!~d2d!2m2b1qm#~12y2!2%2

216k2~x221!~12y2!$~a2b!@k2~x22y2!12dy2#1~m2b2qm!y2%2,
8-4
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D5$4~k2x22dy2!212kmx@2k2~x221!1~2d1ab2b2!~12y2!#1~a2b!

3@~a2b!~d2d!2m2b1qm#~y421!24d2%214y2$2k2~x221!@kx~a2b!2mb#

22mbd~12y2!1@~a2b!~d2d!2m2b1qm#~2kx1m!~12y2!%2,

F58k2~x221!$~a2b!@k2~x22y2!12dy2#1y2~m2b2qm!%$kmx@~2kx1m!2

22y2~2d1ab2b2!2a21b22q2#22k2q2x222y2~4dd2m2b2!%

1$4@k2~x221!1d~12y2!#21~a2b!@~a2b!~d2d!2m2b1qm#~12y2!2%

3„4~2kmbx12m2b2qm!@k2~x221!1d~12y2!#1~12y2!

3$~a2b!~m2b224dd!2~4kmx12m22q2!@~a2b!~d2d!2m2b1qm#%….
f
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We mention that our search for the above expressions
f, g, andv was facilitated by Refs.@18,19# and by the re-
markable similarity of the factor structure of the formul
~23! with that of thed52 TS solution which made it pos
sible to apply Perje´s’ results@19# to our particular electrovac
metric. It turns out that the functionsE, D, andF from Eq.
~23! can be rewritten in terms of only four factorsP, R, S, T
~these are analogues of Perje´s’ polynomialsp,r,s,t, respec-
tively!; the explicit expressions are

E5R21l1l2S2, D5E1RP1l2ST, F5RT2l1SP,

Pª2$kmx@~2kx1m!222y2~2d1ab2b2!

2a21b22q2#22k2q2x222y2~4dd2m2b2!%,

Rª4@k2~x221!1d~12y2!#21~a2b!@~a2b!~d2d!

2m2b1qm#~12y2!2,

Sª24$~a2b!@k2~x22y2!12dy2#1y2~m2b2qm!%,

Tª4~2kmbx12m2b2qm!@k2~x221!1d~12y2!#

1~12y2!$~a2b!~m2b224dd!

2~4kmx12m22q2!@~a2b!~d2d!2m2b1qm#%,

~24!

where the coefficientsl1 andl2, given in Perje´s’ notations,
have the form

l15k2~x221!, l25y221. ~25!

A striking similarity of the above Eqs.~24!, ~25! with
Perjés’ formulas~2!, ~3! of Ref. @19# suggests that the facto
structure of the TS solutions is shared by a wide class of
vacuum and electrovac rational function metrics, and we
pect that this similarity will be better studied in the futur
Let us consider now the limits of the solution~21! among
which there are several very well-known ones, together w
other solutions only recently discussed in the literature.
04404
or

e
x-

h

A. Classical limits

~1! By first setting in Eq.~21! m5bq and then putting
b25a21q22m2, we arrive at the Kerr-Newman solutio
withoutany restriction on the parametersm, a andq since in
this case the complex continuationb→ ib is possible. Further
reductionsq50, or a50, or q5a50 lead us, respectively
to the Kerr, Reissner-Nordstro¨m, or Schwarzschild solutions
@1# in their analytically extended form. Therefore,all the
black hole solutions are contained in our five-parameter m
ric.

~2! In the pure vacuum limit, i.e., whenq5m50, one
arrives at the general reflection symmetric solution from
Kinnersley-Chitre class@4#. By further settingb50, one
comes to thed52 TS solution@2#.

~3! The magnetostatic limit (a5b5q50) leads to Bon-
nor’s version of the massive magnetic dipole@20#.

~4! The Kramer-Neugebauer solution for a charged m
sive magnetic dipole@21# follows from Eq. ~21! when the
parameters are chosen in the form

m52M ~11b2!/~12b2!, a5b52bc/~11b2!,

q54Mb/~12b2!, m52Mc~11b2!/~12b2!. ~26!

Note that in this case the angular momentum is proportio
to the charge parameterb and to the magnetic dipole param
eter c, and it vanishes when either of the latter two para
eters is equal to zero.

~5! In the caseb5m50 one arrives at the charged ge
eralization of thed52 TS solution obtained by Ernst@22#.

~6! The hyperextreme part of our solution correspond
to the pure imaginary values ofk belongs to the Chen-Guo
Ernst family of hyperextreme spacetimes@10#, being prob-
ably appropriate for the description of relativistic disks@23#.

B. Other limits

Let us now point out some other limits of our solutio
which have been considered recently in the literature.

~1! The three-parameter Manko-Ruiz solution@24# repre-
senting the stationary generalization of Bonnor’s mass
magnetic dipole is obtainable from Eq.~21! by setting b
5q50. Since in the paper@24# a concise representation o
8-5
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the whole metric was not given, below we shall write out
the prolate spheroidal coordinates the physically most int
esting subextreme part of this solution which elegantly u
fies Bonnor’s magnetic dipole@20# and d52 TS @2# fields.
Then, after introducing the real constantsp, q andl via the
relations
he
d-

(

a
io

b

04404
-
i-

m52k/p, a52kq/p, d5k2l2/p2,

p21q22l251, ~27!

where k is an arbitraryreal parameter, we obtain~in the
prolate spheroidal coordinates! from Eqs.~21! and ~23!:
E5
A2B

A1B
, F5

C

A1B
, f 5

E

D
, e2g5

E

p8~x22y2!4
, v52

2kq~12y2!F

pE
,

A5~p2x22l2y2!22~p22l2!22q~p222l2!~12y2!@q~y211!12ipxy#22ip3qxy~x221!,

B52px@p2~x221!1l2~12y2!#22iqy~p222l2!~12y2!,

C52ilA12q2@p2y~x221!1~12y2!~l2y2 ipqx!#,

E5$@p2~x221!1l2~12y2!#21q2~p222l2!~12y2!2%2

24p2q2~x221!~12y2!@p2~x22y2!12l2y2#2,

D5$~p2x22l2y2!212px@p2~x221!1l2~12y2!#1q2~p222l2!~y421!2~p22l2!2%2

14q2y2@p3x~x221!1~p222l2!~px11!~12y2!#2,

F54p2~x221!@p2~x22y2!12l2y2#$px@~px11!22q22l2y2#2l2y2~p22l2!%

2~12y2!@2~p222l2!~px11!1l2~p22l2!#

3$@p2~x221!1l2~12y2!#21q2~p222l2!~12y2!2%. ~28!
ld

the
en-
in-
By putting in the above formulasq50 ~magnetostatic limit!,
one arrives at the Bonnor magnetic dipole solution@20#, and
by settingl50 ~stationary pure vacuum limit!, one comes to
the d52 TS metric@2#.

~2! Whenb50, our five-parameter solution reduces to t
charged, magnetizedd52 TS electrovac spacetime consi
ered in Ref.@25#.

~3! By setting to zero the electric charge parameterq
50), one comes to the solution@26# recently proposed for
the description of the exterior field of a rotating neutron st

~4! The last particular case which we are going to ment
here is the two-parameter solution recently considered
Clément@27#; it is obtainable from Eq.~21! if the parameters
are constrained by the relations@28#
r.
n
y

q50, m52mb, k2~a2b!5m2b ~29!

with the subsequent definitions

pª2k/m, qª~a2b!/m, p21q251. ~30!

It is worthwhile pointing out that the electromagnetic fie
in our solution is described by the electricA4 and magnetic
A3 components of the electromagnetic four-potential,
former component being the real part of the complex pot
tial F, and the latter component being the real part of K
nersley’s potentialF2 @29# which in our case has the form
F25
K

A12mB
2 iq,

K52k2~x221!„2kx@m~12y2!1q~a2b!#1m~3m2bq!~12y2!22mbq1 iy$2q@k2~x221!1kmx12d#

1~12y2!@m~a2b!12qd#%…1~12y2!„~2kx1m!$qd~a2b!~11y2!1m~2m21q2!23m2bq1~12y2!

3@d~2m1aq2bq!1q~m2b2qm!#%1m$~a2b!@bq~a2b!22am#1~m2bq!~4d2q2!22qd~a1b!

1b@m~a2b!12qd#~12y2!%22iy$2kmbmx1q~d2d!~a2b!21m~a2b!~q222d!1m2b~m2aq!%…. ~31!
8-6
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With the above expression forF2, the electromagnetic pro
cesses in our electrovac field can be fully described.

IV. THE EQUILIBRIUM OF TWO CHARGED,
MAGNETIZED, SPINNING, EXTREME PARTICLES

The five-parameter solution considered in the previo
section is thesimplestasymptotically flat solution of the
Einstein-Maxwell equations able to describe the exte
field of a charged, magnetized, deformed, spinning mass,
its relevance for example to the astrophysics of neutron s
~in the absence of the electric charge parameter! has already
been discussed in Ref.@26#. Another interesting application
of our metric to the consideration of which we are turni
now is the analysis of the equilibrium states in a binary s
tem of extreme identical spinning particles endowed w
electric charges and magnetic dipole moments.

The interpretation of the metric~23! as describing two
balancing extreme particles situated at the points6k of the
symmetry axis is possible if the five parameters involved
the metric preserve the reality ofk and, in addition, cause th
metric functionsg andv to vanish on the part of the sym
metry axis separating the particles, i.e.,

g~x51!50, v~x51!50 ~32!

~note that, by construction,g and v vanish on the parts o
the symmetry axis exterior to the two particles!. The above
two conditions, the first of which, following Hoenselae
@30#, can be called the balance condition, and the second
the axis condition, in the case of the metric~23! have the
form

4d21~a2b!@~a2b!~d2d!2m2b1qm#64k450
~33!

~the balance condition!, and

4d~2kmb12m2b2qm!1~a2b!~m2b224dd!

2~4km12m22q2!@~a2b!~d2d!2m2b1qm#50

~34!

~the axis condition!.
We shall separately discuss the equilibrium problem

the following types of binary systems consisting of identic
extreme particles:~a! a pure vacuum binary system (q5m
50), ~b! an electrovac binary system of charged partic
(m50), ~c! an electrovac system of magnetized parrtic
(q50), and~d! the general five-parameter case of charg
magnetized particles. For each equilibrium state we shall

TABLE I. Particular equilibrium states of charged particles.

m a b q k LRS(r,z50)

4 4 14.24327 64.19018 1.96538 3.58199
4 6 16.97784 64.68997 2.19735 4.01295
8 2 19.87867 66.60935 3.10759 5.63851
2 4 9.82089 62.57108 1.20354 2.20154
04404
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~in the cylindrical coordinatesr and z) the stationary limit
surface, the location of singularities arising as solutions
the equation

A12mB50, ~35!

and the magnetic lines of force.

FIG. 1. Stationary limit surfaces corresponding to the equil
rium states from Table I.

FIG. 2. Magnetic lines of force corresponding to the equilibriu
states from Table I.
8-7
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~a! The pure vacuum case.We have been unable to fin
any numerical solution of the system~33!–~34! in the ab-
sence of the electromagnetic field for positive total ma
whence we tentatively conclude that the equilibrium of tw
extreme particles with positive masses due to the spin-
repulsion effect@31# is impossible. In this respect it would b
worthwhile noting that the equilibrium states of two extrem
particles reported by Tomimatsu@32# are unphysical not be
cause of the presence of a ring singularity pointed out
Hoenselaers@30#, but because this ring singularity accomp
nies a constituent with negative mass, the fact that can
easily seen from the formulas~3.2! of Ref. @30# since the
massesM1 andM2 there have opposite signs for the range
the parameterl involved in the analysis.

~b! The stationary electrovac case withm50. The system
~33!–~34! admits numerical roots with nonzero charge p
rameter, and particular equilibrium positions are given
Table I. All four equilibrium states from Table I are accom
panied by a ring singularity which lies at the equatorial pla
z50, or y50 @see the last column of Table I for the corr
sponding value ofr defining the location of ring singularitie
~LRS!#. The respective stationary limit surfaces~Fig. 1! rep-
resent two disconnected regions which can be associ
with the stationary limit surfaces of individual particles l
cated at the points6k of the symmetry axis. From the shap

TABLE II. Particular equilibrium states of magnetized particle

m a b m k LRS(r,z50)

4 4 14.24259 28.95362 2.20180 3.68253
20 6 233.26463 260.45332 6.54463 11.09293
6 10 26.67472 86.34478 3.80993 6.34455
2 24 29.75382 10.76928 1.34653 2.23819

FIG. 3. Stationary limit surfaces corresponding to the equi
rium states from Table II.
04404
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of the magnetic lines of force~Fig. 2! it is clear that ring
singularities are originated by the magnetic field.

~c! The equilibrium of magnetized particles(q50). In the
absence of electric charge (q50), the binary system of ex
treme particles possesses equilibrium states due to st
magnetic fields. Table II provides one with four particul
sets of parameters at which the equilibrium occurs. As in
previous case of charged particles, the ring singularities o
the equilibrium states from Table II are due to the magne
field, which can be seen by comparying Figs. 3 and 4.

~d! The equilibrium of charged, magnetized particles: t
general case.Clearly, since in the particular casesm50 and
q50 the equilibrium between two extreme constituents
ists, it should also exist in the general five-parametric ca
In Table III four different numerical solutions of the syste
~33!,~34! are given which determine the balance of charg
magnetized constituents. Here again, the equilibrium st
are characterized by a ring singularity at the equatorial pla
and we have been unable to find any equilibrium posit
without it. It is intriguing, however, that in all the cases th
ring singularity can be associated with a source of the m
netic field, say, a loop of steady current. The shapes of

TABLE III. Particular equilibrium states of charged, magnetiz
particles.

m a b q m k LRS(r,z50)

6 22 5.99726 4 26.76232 1.47443 2.18024
6 2 28.45806 22 28.68518 1.81894 2.92675
6 4 14.85488 4 69.43584 2.73185 4.07605
2 4 10.06336 22 2.88325 1.26539 2.28076-

FIG. 4. Magnetic lines of force corresponding to the equilibriu
states from Table II.
8-8
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corresponding stationary limit surfaces and of the magn
lines of force are plotted in Fig. 5 and Fig. 6, respectivel

V. CONCLUSIONS

The present paper illustrates well that Sibgatullin
method of the construction of exact solutions of the Einste
Maxwell equations from the axis expressions of the Er
complex potentials is a powerful instrument for obtaini
new electrovac rational function fields which to some ext
can be considered as limiting cases of the general so
metric @16#.

Furthermore, it is most important that the known bla
hole solutions can now be incorporated with the aid of S
gatullin’s method into the stationary electrovac spacetime
a more general nature, thus making the newly construc
solutions astrophysically more significant. The fiv
parameter metric from Sec. III which is the simplest asym
totically flat rational function field describing the exterio
geometry of a charged, magnetized, spinning, deform

FIG. 5. Stationary limit surfaces corresponding to the equi
rium states from Table III.
or

.
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source is of apparent astrophysical interest, and we ex
that its relation for instance to the models of neutron st
already discussed in Ref.@26# ~the caseq50) will be sub-
jected to a more detailed analysis in the future. In the pres
paper the metric~23! has been used for the study of th
balance problem of two extreme charged, magnetized, s
ning particles, and we have found particular equilibriu
states which, to our knowledge, throw some new light on
equilibrium two-body problem in general relativity.

Lastly, the results presented in our paper clearly dem
strate that the words of Chen, Guo, and Ernst@10# about the
potential physical importance of the electrovac rational fu
tion solutions obtainable with the aid of the superpositi
techniques are true.
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