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Nine-parameter electrovac metric involving rational functions
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An analytically extended nine-parameter family of the electrovac rational function solutions of the Einstein-
Maxwell equations generalizing the Chen-Guo-Ernst class of hyperextreme spacetimes is presented. The gen-
eral four-soliton asymptotically flat solution possessing the equatorial symmetry and involving five indepen-
dent real parameters is derived in a concise analytical form and its relevance to the equilibrium problem of two
extreme particles is discussed.

PACS numbg(s): 04.20.Jb, 04.40.Nr, 97.60.Lf

[. INTRODUCTION did they attempt to find the analytical continuation of their

. . . result to get the physically more interesting subextreme case,
One of the reasons the rational function solutions of the g pny Y 9

. i . o apparently because of the absence of the general recipes for
Emsteln-MaxweI_I equations, wh_lch include, e.g., a_II thecarrying out such a continuation.
black hole solutiong1], the Tomimatsu-Sat¢TS) metrics

P S : | The objective of our paper is the construction of the ana-
[2], the Plebaski-Demiarski solution[3], have received ex- ytically extended nine-parameter rational function solution

tensive study in the literature is their comparatively simpleqf the Einstein-Maxwell equations which would contain the
mathematical structure permitting a far-reaching investigachen-Guo-Ernst field as a specidlyperextremg branch,

tion of the physical and geometrical properties. The applicaand to give the explicit formulas for the whole set of the
tion of generating techniques to constructing new asymptotimetric coefficients corresponding to that solution. Section |l
cally flat rational function solutions had been started byof the paper is devoted to the derivation of the general for-
Kinnersley and Chitre[4] who had generated a five- mulas defining the nine-parameter rational function metric,
parameter vacuum field generalizing the=2 TS solution. and in Sec. lll we shall consider the physically most inter-
Later on, a large family of stationary vacuum spacetimes wasesting particular five-parameter metric which is asymptoti-
obtained by Hoenselaers, Kinnersley, and Xanthopoiigs cally flat and, in addition, is symmetric with respect to the
two particular asymptotically flat two-parameter specializa-equatorial plane. For the latter metric we shall work out a
tions[6] of this family, similar to the Kerr metric, reduce to concise analytical representation in terms of only four factors
the Schwarzschild solution in the limit of zero total angular©f spheroidal coordinates, the structure of which turns out to
momentum. be very similar to that of th&=2 TS solution. As an inter-

It is important to note that whereas the solution-€sting application of this five-parameter metric we shall con-
generating techniques worked well in the pure vacuum caséjder in Sec. IV the equilibrium problem of two charged,
their application to the electrovac case via the Alekseevimagnetized, rotating extreme particles. Conclusions are
Cosgrove[7] or Backlund transformationg8] could only — given in Sec. V.
result in the hyperextreme solutions without the black hole
limits (see, e.g., Refl9] for a discussion of principal diffi-
culties of generating the subextreme electrovac spacetimes Il. THE NINE-PARAMETER SOLUTION AND
As a result, the electrovac rational function solutions obtain- CORRESPONDING METRIC FUNCTIONS
able from the nonrational ones through limiting procedures : -
were also restricted beyond the extreme case. The above S%For our purposes we shall use Sibgatullin's methibd]

is true for instance in the case of the Chen-Guo-Ernst elec’ ich is free from the difficulties inherent in the Alekseev-
. L i ; Cosgrove transformation, thus permitting the construction of
trovac solution/ 10] which is a nine-parameter rational func-

tion field resulting from the double-Cosgrove solutif] the analytically extended solutions of the Einstein-Maxwell

by means of the Kramer-Neuaebauer-tvpe limitin rocedurequations equally applicable to the treatment of either sub-
y . gebauer-type i g pro @xtreme or hyperextreme cases. Recall that according to this
[12], and it involves oblate spheroidal coordinates which are . ;
I . method, the gravitational and electromagneti® complex
characteristic of the hyperextreme spacetimes. It can be men-

tioned that Chen, Guo, and Emst presented their solutioROtentials’ to the determination of which reduces Ernst'’s for-
only in terms of the Ernst complex potentidl3] and did mulation of the axisymmetric electrovac problé¢a8], can

not calculate the corresponding metric coefficients; neithePe found from the integrals

1
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®(z,p)=

1f o)do
—f (§M() o

which involve the unknown functiop (o) satisfying the sin-
gular integral equation

fl p(o)[e(é)+e(n)+2f(§F(n)]do _
-1 (a'—q')\/l—cr2

and the normalizing condition

)

fl u(o)do
~1\1-02

The functionse(£) and f(£) are the locally holomorphic
continuations of the axis dat&(z):=&(z,p=0), f(2)

=1. (3
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Therefore, the number of real parameters involved in the
solution we are going to construct is 9, taking into account
that @ can only assume real or pure imaginary values.

The unknown functioru (o), according to Sibgatullin’s
method, should be searched for in the form

()A+A1+A2+A3+A4 (8
0- = 1
PO e () (6 a)?
whereA,, ... A, are constant coefficien{svith respect to

o) which have to be found from Eq&) and(3). Substitut-

ing now Eq.(8) into the latter equations, integrating and
equating to zero the coefficients at the independent powers of
7, one arrives at the linear algebraic system of five equations
for the determination oAy—A,:

2
:=®(z,p=0) into the complex plang+ip, p andz being A+ S Aﬂ+(z_ an)Ani, 1
the Weyl-Papapetrou cylindrical coordinates which enter &, rﬁ '
Egs. (1)—(3) as parametersé=z+ipo, p=z+ipr, o,7€
[—1,1]; e(7)=e(7), T(n):=f(5), an overbar denoting the A
complex conjugation. Ao+ E n+2 -|=0,
Our choice ofe(z) and f(z) is that of the usual four- “n (B1—ap)
soliton case, i.e.,
2
_ 1 € fa f2 > ————[(a)A+gi(an)An.,]=0, 1=12,
e(z)=1+ 2—51+Z—,32' f(z )— ,31+Z—,32’ =1 (a,— 3|)rn
4
2 f
whereeg|, B,, andf,, |=1,2, are arbitrary complex param- h(ap): e,+2f flan), flap) ::2 ! }
eters. However, since we are looking for a solution express- =1 an=p

ible in rational functions of spheroidal coordinates, the alge-

braic equation

e(z)+e(z)+2f(2)f(2)=0 (5)

which plays an important role in Sibgatullin’s method,
should have only a pair of distinct roots of multiplicity 2, and

this means that not all of the complex parameters in(Ep.

are independent. The transition to the set of independent p

rameters can be carried out via the relation

2+|221(zflﬁl+z—_/3)+2 ﬁ 5)('§12f_|ﬁ|)
(6)

B 2(22_a2)2
M2 (z—B)(z—B)’

where + o are two roots of Eq(5), and it follows from Eq.
(6) that the set of independent parameters consists, g8,

andf,, I=1,2, sincee; ande, are representable as combi-

nations of these parameters, namely,

2(82— a?)? ( f, 2 )
e = — — _2f| — + — |,
(B1=B)(BI— B (BiI— B Bi—B1 BI—B2

k#1;1,k=1,2. (7)

z—a, 1 < i
—h _ — | —2f 5
Gi(an) '(an)< ra an—ﬂl) I"Zl(“”_'g")z
_7 M]( ~Br ©
_c?an (an—E)fn @ Pt

Fith api=—a, ay=a, I=\p?+(z—ay)?

On the other hand, from Eqgél), taking into account Eq.
(9), we can find the dependence &fand ® on the coeffi-
cientsAg, ... A, yielding

E=2Ay—1, ®= 21 [f(an)Ant d(an)Ans o]y,

f(apn)
Mn

(z— ap)f(ap) i f, 9

(b(aﬂ):_ rn _BI)ZZ&an

n-

(10

Solving the systent9) and substituting the resulting ex-
pressions forAg—A, into Eq. (10), we obtain the final for-
mulas for€ and® in terms of determinants

E=EL.IE_, ®=F/E_,
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1 1 1 p1 p2
E.=|=* G ,

0

0
0 flay) flaz) ola)ry @layr,
-1

F=| -1 C ,

0
0

11

wherep,:=(z— a,)/r, andC is the following 4x4 matrix

ry ry ra rs

ay=B1 ax= B (a1—B1)? _(az_ﬂl)z

ry ) ri rg

ay= B2 ar—f (a;— ;)2 _(az_ﬂz)z

(@]
I

hl(a'i) hl(ai) g1(ay)ry g1(az)r,

ay=f1 ar— B a1~ B a— B
ho(ag)  hy(ay) go(ay)ry go(ap)r,
a1— By ar,— P a1— B ar,— B

(12

The corresponding metric functiorfs y, and w which
enter the axisymmetric line element

ds2=f Y e?"(dp?+dZ) + p2dp?]— f(dt— wdp)?
(13

can be shown to be defined by the following expressisas
Refs.[15,16 for details of Sibgatullin’s method

o E.E_+E,E_+2FF _E.E_+E.E_+2FF

— e —
2E_E_ 2K oKorirs
(14)
_2IM{E,H-E,G—FI}
“" EE +E,E_+2FF '
0 rita;—z rtyta,—z p2lry péir,
-1
G=|-1 G ,
0
0
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z 1 1 P1 P2
—pB1
H=| B2 G ,
e
e

fi+f, 0 flay) flap) o(ap)ri é(ay)r;

z 1 1 1 P1 P2
B -1
=l -g -1 C !
e 0
e, 0
Ko
1 1 1 1
a =P =P (a1—PB1)? - (= B1)?
1 1 1 1

ar1= B2 = o (a1=B)° (= B2)*
hi(ay) hy(ap) {m(al)] K2 {m(az)]

ar— B a,— B Ula;—py| 9%2|a,— By
holag)  hy(ay) S hy(aq) 9 ho(ay)
a1— By =By 9%[a;—B,] %[ a,—p,

Formulas(9)—(14) fully define the analytically extended
nine-parameter electrovac metric which generalizes the
Chen-Guo-Ernst hyperextreme spacetime, the latter corre-
sponding to the pure imaginary values of the parameter

It should be underlined that not all of the parameters in-
volved in our solution are physical, and for any concrete
application, the rotational monopole and magnetic monopole
momentsy and wq, respectively, determined by the expres-
sions

Vzlm{el“l‘ez}, ,uo=|m{f1+f2}, (15)

should be excludefve remind thate, ande, are given by

Eqg. (7)]. The remaining seven arbitrary parameters can be
associated for instance with the mass monopole and quadru-
pole moments, angular momentum dipole and octupole mo-
ments, electric charge, and electric and magnetic dipole mo-
ments (the parametrization of the four-soliton solutions in
terms of the relativistic multipole moments can be found in
Ref.[17]).

The cylindrical coordinatep andz enter the metric ob-
tained via the functions; andr, which means that the gen-
eralized spheroidal coordinateandy can be introduced by
the formulas

1 1
X=z(r1+r2), y:Z(rl_rZ)- (16)

044048-3



MANKO, SANABRIA-GéMEZ, AND MANKO PHYSICAL REVIEW D 62 044048

and the metric becomes rational in terms of these new cooef the multiplicity two which, depending on the interrelation
dinates. of the parameters, can assureal or pure imaginaryalues.

To conclude this section, let us point out that the mainThe simple fraction decomposition of the d&i&) gives
justification for the construction of the nine-parameter ratio-

nal function metric in the form chosen, and not in any other _2m(B,+ib) _aBitiu | k=12 k|
form, say, corresponding to one simple root of Es). and &= BB " BB =1.2k=l,
the other of multiplicity 3, is that our case contains solutions
symmetric with respect to the equatorial plane. B1t+B=—m+i(a—b), B1B,=d—5+imb, (20)
IIl. MAGNETIZED KERR-NEWMAN METRIC and these values fa;, B,, andf, should be substituted into
POSSESSING AN ARBITRARY MASS-QUADRUPOLE Egs.(11) and(12) to obtain the form of the complex poten-
MOMENT tials £ and®. A laborious computer analytical evaluation of

) ) ) ) ~ the determinants finally yields the following concise expres-
The physically most interesting particular case arisinggjgns:

from the electrovac metric described in the previous section

is the five-parameteasymptotically flasolution representing A—2mB 2C

exterior field of a charged, magnetized, spinning deformed’= A+2mB’ ¢ = A+2mB’

mass and possessing the additional reflection symmetry with

respect to the equatorial plane. This general equatorially _ 202 o,2\2_ 42 .3 _ 2 ANT_ (12
symmetric four-soliton rational function solution can be alsox A= oy = d = lexy(@=b) (-~ D] = (1)
envisaged as the asymptotically flat magnetized generaliza- X[(a—b)(d—&)—m?b+qu]

tion of the Kerr-Newman spacetime endowed with an arbi-

trary mass-quadrupole moment. Formul@s-(14) permit us X[(a—b)(y*+1)+4ixxy],
to work out an elegant representation of that solution, mak- 2 o )
ing the latter very suitable for concrete applications. B=rx{2«*(x*~1)+[b(a—b)+25](1-y*)}

In this particular case it is convenient to reparametrize the | i\ r2,2p(x2—1)—[x2(a—b)—m?b+ qu— 2as
axis data in the form Y2 )L ) an :

X (1-y?)},
3 (z—m—ia)(z+ib)+d—6—ab (1=}
&(2)= (z+m—ia)(z+ib)+d—5—ab’ C=2k*(x*—1)(kqx+ipy)+(1—y*){xx[295+ u(a—b)]
) qztip —iy[q(a—b)(d— &) —q(m’b—qu)—2us]}, (21
2)= . . ,
(z+m—ia)(z+ib)+d—J-ab which are written in the generalized spheroidal coordinates
2 2|12
p—mb 1 1 1
5= , d=—[m?—(a—b)?—qg?]. . = (r.—
m—(a-byi—gq O Talm el XM fr-h Y=g remr),
(17)
P (202, @2

The advantage of this parametrization is that the real param-
etersm, a, andq coincide with the total mass, total angular |, 4 similar way we can calculate the corresponding met-

momenium per gnit mass, and total charge, respectively;. functionsf, y andw using formulag14). Apparently, the
while the remaining real parametelsand w represent the calculation of the functiomw is most difficult—first, because

arbitrary mass-quadrupole mome@tand magnetic dipole ¢ o different determinants involved in the calculations
momentM of the source via the formulas and, secondly, because it is practically impossible to reduce a
= —m(d—&—ab+a?), M=u+qgla—b). (18 complicated mterm_ed!ate expression forwithout a solid
Q ( ) pra ). (18 strategy for establishing the factor structure of the whole

Then it is easy to see that E@) will have a pair of roots  Metric. After very tedious work we have finally been able to
find elegant expressions for all three metric coefficients;

Z.=*k, k=yd+48 (19  namely,
|
f=E/D, €7=E/16x3(x°—y?)* w=-(1-y?F/E, (23

E={4[ x*(x*~ 1)+ 8(1—y*)]*+(a—b)[(a—b)(d— 8) —m’b+qu](1—-y?)?}?
—16k2(x2—1)(1—y?){(a—b)[ k2(x2—y?)+28y?]+ (m?b—qu)y?}?,
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D ={4(k?x?— 6y?)?+2kmx 2k?(x*— 1) + (25+ab—Db?)(1-y?)]+(a—b)
X[(a=—b)(d—8)—m?b+qu](y*—1)—4d%2+4y?{2k?(x?—1)[ kx(a—b) —mb]
—2mbs(1—y?)+[(a—b)(d— 8)—m?b+qu](2kx+m)(1—y?)}?,

F=8k?(x2—1){(a—b)[ k?(x2—y?)+ 28y?]+ y2(m?b—qu)}{kmx (2kx+ m)?
—2y?(26+ab—b?) —a%+b2—q?]— 2k%q*x?— 2y?(45d— m?pb?)}
+H{A[K2(X*= 1)+ 8(1-y?)]?+(a—b)[(a—b)(d— &) —m?b+qu](1-y?*)?}

X (4(2kmbx+2m?b—qu)[ k?(x?>— 1)+ 8(1—y?)]+(1—y?)
x{(a—b)(m?b?—46d)— (4xmx+2m?—q?)[(a—b)(d— 8)—m’b+qu]}).

We mention that our search for the above expressions for A. Classical limits

f, v, andw was facilitated by Refd.18,19 and by the re- (1) By first setting in Eq.(21) w=bq and then putting
markable similarity of the factor structure of the formulas b2=a?+q?—m>, we arrive at the Kerr-Newman solution
(23) with that of the5=2 TS solution which made it pos- ithoutany restriction on the parameters a andg since in
sible to apply Perj results[19] to our particular electrovac s case the complex continuatibr-ib is possible. Further
metric. It turns out that the functioris, D, andF from Eq. reductionsg=0, ora=0, orq=a=0 lead us, respectively
(23) can be rewritten in tgrms of onlyl four factoPs R, S T to the Kerr, Reissner-Nordstmg or Schwarzschild solutions
(these are analogues of Petjpolynomialsm,p,a,7, reSPEC- 1] i their analytically extended form. Thereforall the

tively); the explicit expressions are black hole solutions are contained in our five-parameter met-
ric.

(2) In the pure vacuum limit, i.e., wheg=u=0, one
arrives at the general reflection symmetric solution from the
P:=2{kmx (2kx+m)2—2y?(25+ab—b?) Kinnersley-Chitre clasg§4]. By further settingb=0, one

2 p2 21 o 2202 o2 o comes to the=2 TS solution[2].
a+ b= Q7] - 2k7q°x"— 2y*(46d—m°b)}, (3) The magnetostatic limitd=b=q=0) leads to Bon-
nor's version of the massive magnetic dip028].
R:=4[ k3 (x*— 1)+ 8(1—y?)]*+ (a—b)[(a—b)(d— &) (4) The Kramer-Neugebauer solution for a charged mas-
5 a2 sive magnetic dipol¢21] follows from Eg.(21) when the
m°b+qul(1-y9% parameters are chosen in the form

E=R%?+\;\,S?, D=E+RP+\,ST, F=RT-\;SP,

i=—4{(a—b)[K2(x2—y?) +28y?]+yA(m*b—qpu)}, m=2M(1+B%)/(1-B%), a=b=2Bc/(1+p?),
— _ n2 — 2 _np2
T::4(2Kmbx+2m2b—q,u)[;<2(xz—1)+5(1—y2)] q=4MpBI(1-p%), p=2Mc(1+p%)/(1-p%). (26)
+(1-y?){(a—b)(m?b?—45d) Note that in this case the angular momentum is proportional
y ) to the charge parametg@rand to the magnetic dipole param-
—(4kmx+2m°—qg9)[(a—b)(d— &) —mb+qul}, eterc, and it vanishes when either of the latter two param-

(24) eters is equal to zero.

(5) In the caseb= =0 one arrives at the charged gen-
where the coefficients; and),, given in Pefie’ notations, €ralization of the5=2 TS solution obtained by Ernge2].
have the form (6) The hyperextreme part of our solution corresponding

to the pure imaginary values &f belongs to the Chen-Guo-
_ 2,02 2 Ernst family of hyperextreme spacetimgk0], being prob-
M=E=T), A=y L (25 ably appropriate for the description of relativistic digRs].

A striking similarity of the above Eqs(24), (25) with .
Perjes’ formulas(2), (3) of Ref.[19] suggests that the factor B. Other limits
structure of the TS solutions is shared by a wide class of the Let us now point out some other limits of our solution
vacuum and electrovac rational function metrics, and we exwhich have been considered recently in the literature.
pect that this similarity will be better studied in the future. (1) The three-parameter Manko-Ruiz solutid@¥] repre-
Let us consider now the limits of the solutig@dl) among senting the stationary generalization of Bonnor's massive
which there are several very well-known ones, together withmagnetic dipole is obtainable from E{1) by settingb
other solutions only recently discussed in the literature.  =qg=0. Since in the pap€gr4] a concise representation of
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the whole metric was not given, below we shall write out inm=2«/p, a=2«xql/p, &=«>\?/p?

the prolate spheroidal coordinates the physically most inter-

esting subextreme part of this solution which elegantly uni- p2+qg?—A2=1, (27)
fies Bonnor's magnetic dipolg20] and 6=2 TS[2] fields.

Then, after introducing the real constaptsy and\ via the  where « is an arbitraryreal parameter, we obtaifin the

relations prolate spheroidal coordinajeom Eqgs.(21) and(23):
A-B C E E 2kq(1—Yy?)F
E=——x, b=——, f=—, ehzm, w:_M,
A+B A+B D p (X -y ) pE

A=(p>*—N\?y?)? = (p?—N\%)2—q(p*—2\*)(1—y?)[a(y*+ 1)+ 2ipxy] — 2ip*qxy(x*— 1),
B=2px[p*(x*— 1)+ \*(1-y?)]-2iqy(p’—2)\*)(1-y?),
C=2i\1-a7p?y(xX*~ 1)+ (1-y*)(\’y—ipgx)],
E={[p*0~1) +\H(1-y) P+ Q% (p?~22%) (1~ y))%)?
—4p*g?(x* = 1)(1—-y?)[p?(x*—y?) + 2\ %Y%),
D={(p*x*=\?y?)?+2px p?(x* = 1) +A*(1-y?) ]+ 0% (p?—20%)(y* = 1) = (p?—A?)?)?
+40%y7[p*x(x*— 1)+ (p*—2\?) (px+1)(1-y*) 1%,
F=4p?(x®=1)[p*(x*—y?)+ 2\ 2y {px{ (px+1)? = 4° = N?y?] - A2y (p?—\?)}
—(1-y?)[2(p*=2\?)(px+1)+A\*(p*—\?)]
X{[P?(x*= 1) +N*(1—y*)]*+q*(p*—2\?)(1-y?)?}. (28)

By putting in the above formulag=0 (magnetostatic limjt q=0, w=-mb, «%*a—b)=m?%b (29)
one arrives at the Bonnor magnetic dipole solufi2@], and
by setting\ =0 (stationary pure vacuum limitone comes to

the =2 TS metric[2]. with the subsequent definitions
(2) Whenb=0, our five-parameter solution reduces to the
charged, magnetized=2 TS electrovac spacetime consid- pi=2«/m, q:=(a—b)/m, p>+q?=1. (30)

ered in Ref[25].
(3) By setting to zero the electric charge paramefgr (
=0), one comes to the solutid26] recently proposed for It is worthwhile pointing out that the electromagnetic field
the description of the exterior field of a rotating neutron starin our solution is described by the electdg and magnetic
(4) The last particular case which we are going to mentionA; components of the electromagnetic four-potential, the
here is the two-parameter solution recently considered bformer component being the real part of the complex poten-
Clement[27]; it is obtainable from Eq(21) if the parameters tial ®, and the latter component being the real part of Kin-

are constrained by the relatiof8] nersley’s potentiafb, [29] which in our case has the form
d e
2= A+2mB '

K=2k2(x>*—1)2xx[ w(1—y?)+q(a—b)]+m(3u—bq)(1—y?) — 2mba+iy{2q[ k2(x?— 1) + kmx+2d]
+(1-y?)[u(a—b)+2q81H)+(1-y?) (2ex+m){gd(a—b)(1+y?) + u(2m?+g*) —3m*bq-+ (1-y?)
X[8(2u+ag—bg)+q(m*b—qu)]}+m{(a—b)[bg(a—b)—2au]+(u—bqg)(46—g*)—2qs(a+h)
+b[u(a—b)+2q8](1-y?)}—2iy{2kmbux+q(d— )(a—b)?+ u(a—b)(g?—248) + m?b(u—aq)}). (31
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TABLE I. Particular equilibrium states of charged particles. i ii
10 10
m a b q K LRS(p,z=0)
5| 5
4 4 14.24327 £4.19018 1.96538 3.58199 Q Q
4 6 16.97784 *£4.68997 2.19735 4.01295 . o . .
8 2 19.87867 *£6.60935 3.10759 5.63851
2 4 9.82089 *+2.57108 1.20354 2.20154 . -
With the above expression fdb,, the electromagnetic pro- =% 3 I 3 % 3 z :

cesses in our electrovac field can be fully described.
iii iv

10

IV. THE EQUILIBRIUM OF TWO CHARGED,
MAGNETIZED, SPINNING, EXTREME PARTICLES

The five-parameter solution considered in the previous
section is thesimplestasymptotically flat solution of the 0

®
Einstein-Maxwell equations able to describe the exterior b

N

field of a charged, magnetized, deformed, spinning mass, ani _
its relevance for example to the astrophysics of neutron star:
(in the absence of the electric charge paramétas already
been discussed in Rgi26]. Another interesting application 0 z 1 s
of our metric to the Cons'dera,t_'or! of which b wning g g, Stationary limit surfaces corresponding to the equilib-
now is the analysis of the equilibrium states in a binary syssj,m states from Table |.

tem of extreme identical spinning particles endowed with

electric charges and magnetic dipole moments. : P : . -
) . . - (in the cylindrical coordinatep andz) the stationary limit
The_ Interpretation Of the me”'m) as des<_:r|b|ng two surface, the location of singularities arising as solutions of
balancing extreme particles situated at the points of the the equation

symmetry axis is possible if the five parameters involved in
the metric preserve the reality @fand, in addition, cause the
metric functionsy and w to vanish on the part of the sym- A+2mB=0, (35
metry axis separating the particles, i.e.,

o]

2 4 6

and the magnetic lines of force.
v(x=1)=0, w(x=1)=0 (32

ii

(note that, by constructiony and w vanish on the parts of |,

1
10
the symmetry axis exterior to the two partidle$he above
two conditions, the first of which, following Hoenselaers X
[30], can be called the balance condition, and the second one
the axis condition, in the case of the met(R3) have the
form ° °
48°+(a—b)[(a—b)(d— 8)—m?b+qu]*x4x*=0 -5 -
(33
-10 -10

(the balance conditionand ST 0 5 1 ST G 5 70
45(2kmb+2m?b—qu) +(a—b)(m?b?—45d) . iii iv
—(4km+2m?—qg?)[(a—b)(d— 8)—m?b+qu]=0
349
(the axis condition 0

We shall separately discuss the equilibrium problem for
the following types of binary systems consisting of identical -s
extreme particles(a) a pure vacuum binary systeng u
=0), (b) an electrovac binary system of charged particles_,,
(r=0), (c) an electrovac system of magnetized parrticles ™ —° ° ~°® om0 s e
(g=0), and(d) the general five-parameter case of charged, FIG. 2. Magnetic lines of force corresponding to the equilibrium
magnetized particles. For each equilibrium state we shall plogtates from Table I.
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TABLE Il. Particular equilibrium states of magnetized particles. i ii
10 20

m a b s K LRS(p,z=0)

10

4 4 14.24259 28.95362  2.20180 3.68253
20 6  —33.26463 260.45332 6.54463 11.09293
6 10 26.67472 86.34478  3.80993 6.34455

2 -4  —9.75382 10.76928  1.34653 2.23819 .
-5 -1
(&) The pure vacuum cas&/e have been unable to find -10—— n . e 5 5 =
any numerical solution of the syste83)—(34) in the ab-
sence of the electromagnetic field for positive total mass, iii iv
whence we tentatively conclude that the equilibrium of two *° 10

extreme particles with positive masses due to the spin-spir
repulsion effec{31] is impossible. In this respect it would be s
worthwhile noting that the equilibrium states of two extreme
particles reported by Tomimat$@2] are unphysical not be-
cause of the presence of a ring singularity pointed out by
Hoenselaer§30], but because this ring singularity accompa-
nies a constituent with negative mass, the fact that can be
easily seen from the formula@8.2) of Ref. [30] since the .
masseM ; andM, there have opposite signs for the range of "-ic -5 0 5 o -l s 9 5 10
the parametel involved in the analysis.

(b) The stationary electrovac case with=0. The system
(33)—(34) admits numerical roots with nonzero charge pa-
rameter, and particular equilibrium positions are given in o ] o )
Table I. All four equilibrium states from Table | are accom- Of the magnetic lines of forc€Fig. 2) it is clear that ring
panied by a ring singularity which lies at the equatorial planesingularities are originated by the magnetic field.
z=0, ory=0 [see the last column of Table | for the corre- () The equilibrium of magnetized particlég=0). In the
sponding value op defining the location of ring singularities absence of electric charge€0), the binary system of ex-
(LRS)]. The respective stationary limit surfacgdg. 1) rep-  treme particles possesses equilibrium states due to strong
resent two disconnected regions which can be associatedagnetic fields. Table Il provides one with four particular
with the stationary limit surfaces of individual particles lo- sets of parameters at which the equilibrium occurs. As in the
cated at the points « of the symmetry axis. From the shape previous case of charged particles, the ring singularities of all

the equilibrium states from Table Il are due to the magnetic
i ii field, which can be seen by comparying Figs. 3 and 4.

2 2 (d) The equilibrium of charged, magnetized particles: the
general caseClearly, since in the particular casgs=0 and
g=0 the equilibrium between two extreme constituents ex-
O ists, it should also exist in the general five-parametric case.
°®° 0 d In Table 1l four different numerical solutions of the system

(33),(34) are given which determine the balance of charged,
-10 -10 magnetized constituents. Here again, the equilibrium states
are characterized by a ring singularity at the equatorial plane,
] NSRS S S A, L) S—_— . and we have been unable to find any equilibrium position
without it. It is intriguing, however, that in all the cases the

iii iv ring singularity can be associated with a source of the mag-

20 2 netic field, say, a loop of steady current. The shapes of the

-5 -5

FIG. 4. Magnetic lines of force corresponding to the equilibrium
states from Table II.

o
N
o
o)

10

TABLE Ill. Particular equilibrium states of charged, magnetized
particles.

o

C
(D

-20 -20
2.5 5 7.5 10 12.5 15 17.5 0 2,5 5 7.5 10 12.5 15 17.5

a b q yn K LRS(p,z=0)

-10

—2 5.99726 4  26.76232 1.47443 2.18024
2 —8.45806 —2 28.68518 1.81894 2.92675
4 14.85488 4 69.43584 2.73185 4.07605
4 10.06336 —2 2.88325 1.26539 2.28076

N OO o |3

FIG. 3. Stationary limit surfaces corresponding to the equilib-
rium states from Table 1.
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FIG. 6. Magnetic lines of force corresponding to the equilibrium
FIG. 5. Stationary limit surfaces corresponding to the equilib-states from Table .

rium states from Table III. ) o
source is of apparent astrophysical interest, and we expect

corresponding stationary limit surfaces and of the magnetighat its relation for instance to the mod_els of neutron stars
lines of force are plotted in Fig. 5 and Fig. 6, respectively. alréady discussed in Reff26] (the caseq=0) will be sub-
jected to a more detailed analysis in the future. In the present

paper the metriq23) has been used for the study of the
V. CONCLUSIONS balance problem of two extreme charged, magnetized, spin-
The present paper illustrates well that Sibgatullin’sning parti_cles, and we have found particular e_quilibrium
method of the construction of exact solutions of the EinsteinStates which, to our knowledge, throw some new light on the
Maxwell equations from the axis expressions of the Ernsfauilibrium two-body problem in general relativity.
complex potentials is a powerful instrument for obtaining -@Stly, the results presented in our paper clearly demon-

new electrovac rational function fields which to some extenStrate that the words of Chen, Guo, and Efi€l about the
can be considered as limiting cases of the general SO"toﬁotentlal phy3|cal importance of the e_zlectrovac rational f_u_nc-
metric [16]. tion s_olut|ons obtainable with the aid of the superposition
Furthermore, it is most important that the known black€chniques are true.
hole §o,lut|ons can now be m_corporated with the aid pf Sib- ACKNOWLEDGMENTS
gatullin’s method into the stationary electrovac spacetimes of
a more general nature, thus making the newly constructed We would like to thank Jerzy Plebski for continuing
solutions astrophysically more significant. The five-interest in our work and stimulating discussions. This work
parameter metric from Sec. Il which is the simplest asymp-has been partially supported by Project 34222-E from
totically flat rational function field describing the exterior CONACyt of Mexico. J.D.S-G. acknowledges financial sup-
geometry of a charged, magnetized, spinning, deformeg@ort from Colciencias of Colombia.
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