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Geodesic propagators and black hole holography
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One of the most challenging technical aspects of the dualities between string theory on anti–de Sitter spaces
and conformal field theories is understanding how location in the interior of spacetime is represented in the
field theory. It has recently been argued that the interior of the spacetime can be directly probed by using
intrinsically non-local quantities in the field theory. In addition, Balasubramanian and Ross@Phys. Rev. D61,
044009~2000!# argued that when the spacetime described the formation of an AdS3 black hole, the propagator
in the field theory probed the whole spacetime, including the region behind the horizon. We use the same
approach to study the propagator for the BTZ black hole and a black hole solution with a single exterior region,
and show that it reproduces the propagator associated with the natural vacuum states on these spacetimes. We
compare our result with a toy model of the CFT for the single-exterior black hole, finding remarkable agree-
ment. The spacetimes studied in this work are analytic, which makes them quite special. We also discuss the
interpretation of this propagator in more general spacetimes, shedding light on certain issues involving cau-
sality, black hole horizons, and products of local operators on the boundary.

PACS number~s!: 04.65.1e, 04.62.1v, 04.70.2s
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I. INTRODUCTION

The proposed duality between string theory on anti–
Sitter space and lower-dimensional conformal field the
~CFT! @1# provides a non-perturbative definition of strin
theory, and could thus, subject to the restriction on
asymptotic boundary conditions, cast a bright light on ma
dark corners of quantum gravity. In particular, the fie
theory description encompasses arbitrary fluctuations of
metric and other fields in the interior, and should provide
fully quantum description of the formation and evaporati
of a black hole. One of the major barriers to studying co
ceptual questions in quantum gravity using this theory is
poor understanding of how an approximately local class
~or semi-classical! spacetime description of the physic
emerges from the fundamental gauge theory description,
the consequent absence of any intuition about how this
proximate locality breaks down under extreme conditio
~A related problem is that in the regime where a class
spacetime description is a good approximation, we do
have any other quantitative description; see@2# for a recent
attempt to construct calculationally useful approximations!

The connection between asymptotic behavior of
spacetime fields and the field theory was one of the fi
subjects of study@3,4#, and it was subsequently shown th
the map between states in the field theory and states in sp
time identifies the asymptotic behavior of the fields with t
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expectation values of local operators in the field theory@5#.
This was used to show a ‘‘scale-radius duality’’ for a varie
of bulk sources, and for wave packets of supergrav
fields—the radial position of a bulk probe is encoded in t
scale size of the dual expectation values. Dynamical sou
for supergravity fields were studied in@6#, where the radial
position of a source particle following a bulk geodesic w
reflected in the size and shape of an expectation-value bu
in the CFT. The expectation values of the operators produ
by spacetime sources were further studied in@7–13#.

However, the simple scale-radius relationship seen
these studies is a consequence of an isometry in pure
space which is dual to a scale transformation in the con
mal field theory, under which the vacuum remains invaria
For situations describing black holes, which break the sy
metries, the relationship between bulk position and bound
observables will be more complicated@6,14#. The same phe-
nomenon is apparent in the collision of two massless p
ticles to form a black hole in@13#; after the particles collide,
their radial position is fixed, but the scales in the bound
expectation values continue to evolve.

Furthermore, the asymptotic values of the fields are
sufficient to reproduce the whole spacetime. Sin
asymptotic values of fields in AdS space are dual to
expectation values of local operators in the CFT, it follow
that such expectation values describe only a small piec
the physical information. A number of authors have stud
spacetime sources which do not change the asymptotic
ues of the fields, such as particles in AdS3 and spherical
shells, and found that the location of the shell or particles
encoded in non-local operator expectation values in the fi
theory, such as the two-point function and Wilson loo
©2000 The American Physical Society41-1
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JORMA LOUKO, DONALD MAROLF, AND SIMON F. ROSS PHYSICAL REVIEW D62 044041
@15–18#. Similar work is described in@19#. Thus, non-local
operators must be included in any understanding of the b
boundary connection. A particularly striking case is asym
totically AdS3 spaces, where we can describe a wide rang
dynamics without relying on perturbations around so
background@20,21#, and the asymptotic metric only encod
the total mass and angular momentum of the system.

In @15#, Balasubramanian and Ross used a station
phase approximation to obtain predictions for the propag
in the gauge theory from the geodesics of supergravity s
tions in which a black hole was formed. This propaga
appeared to be sensitive to events in the interior of the b
hole. Now, while the CFT may well encode informatio
about the black hole interior, the particular CFT propaga
studied in@15# is in fact the restriction to the boundary o
AdS space of a propagator associated with the bulk quan
field theory. This raises certain issues about causality1 which
we wish to clarify in the work below. Some general arg
ments are presented in Sec. II. In short, we argue that
propagator studied in@15# is in fact a causal object, but tha
the stationary phase approximation is valid only in approp
ately analytic spacetimes and not in the actual space
considered in@15#. However, even without the stationary
phase approximation, the path-integral definition of t
propagator used in@15# should generally lead to a resu
which depends on the region inside the black hole; we ar
that this should be interpreted as an object which is defi
by a mixture of past and future boundary conditions.

We then proceed to explore the propagator in two anal
spacetimes in order to see more precisely what sort of ob
it represents. The spacetimes that we consider contain b
holes, but are static outside the Killing horizon. In tho
cases, the stationary phase approximation is expected t
valid, and a computation of the propagator reduces to a s
of various geodesics in the bulk spacetime. We show tha
such cases, the propagator of@15# is in fact the boundary
limit of a time-ordered expectation value of a product
local bulk fields. Our spacetimes are the spinless Bana
Teitelboim-Zanelli~BTZ! black hole@22# and the associate
RP2 geon@23#. We find that the propagator in each case
associated with a natural vacuum state for linearized qu
tum fields on the spacetime, and that geodesics passing
hind the black hole horizon play an important role in det
mining the structure of this state. The states are analogue
the Hartle-Hawking state, and are defined by boundary c
ditions at past and future infinity. The propagators in the
cases are known to be Green’s functions of a~causal! wave
equation, and sensitivity to ‘‘events’’ behind the event ho
zon would once again seem to contradict this causality
this case, the resolution is that the analyticity of these spa
times implies that much of the information about the reg
inside the event horizon is in fact ‘‘stored outside.’’ No
however that knowledge of the region outside the Killi
horizon is not enough to determine what happens inside

1These issues were brought to our attention by Lenny Suss
through his comments at the Val Morin workshop on Black Hol
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~future! event horizon; we also need access to the ‘‘wh
hole’’ region, inside the past event horizon.

The next section is devoted to a short commentary on
AdS-CFT correspondence and to general arguments conc
ing the nature of the calculations in@15#. Section III then
reviews the BTZ and geon spacetimes and determines
propagators on these spacetimes given by the path integr
@15#. In Sec. IV, these calculations are compared to
propagator in the dual CFT. We discuss the extension of
propagator calculation to the rotating BTZ black hole spa
time in the Appendix.

II. THE SETTING AND THE APPROXIMATIONS

We use this section to set the stage for our later calc
tions. The most relevant elements of the AdS-CFT cor
spondence are briefly reviewed in Sec. II A. This allows
to discuss the particular regime in which we use the co
spondence and to comment on certain subtleties. We
address the stationary phase approximation and the issu
causality in Sec. II B. Section II C includes a few furth
comments on the interpretation of the propagator.

A. The correspondence in the bulk classical limit

While the AdS-CFT correspondence is conjectured to
late the full quantum theories associated with bulk str
theory and the CFT, it is fair to say that this corresponde
is best understood in the neighborhood of the vacuum. In
region, a useful way to describe the correspondence i
terms of the partition functionsZCFT and Zbulk , which in
both cases are functions of external sources that may
coupled to the CFT and to the boundary of the AdS spa
Recall that the CFT lives on a spacetime which may be id
tified with the boundary of AdS3. The partition functions are
equal and, by differentiating them, we may arrive at relatio
between propagators and correlators in the two theories.
example, differentiating twice yields the relation@7#

^O]~b!,O]~b8!&]5 lim
e→0

e22D^OB~be!OB~be8!&B ~1!

between the propagators in the boundary and bulk, where
bulk operatorsOB are at pointsbe ,be8 in the bulk that ap-
proach the pointsb,b8 in a certain way ase→0 ~also see
@3,4#!. This is a relation between the Euclidean propagat
or, via analytic continuation, between the Feynman propa
tors in the respective vacuum states. Since we are in
vacuum state, operators on the right-hand side may
viewed as fields on AdS space.

In the work below, we again wish to consider a propag
tor or correlator. However, we wish to work in a regime th
is rather far from the vacuum state. We consider a state
which the bulk string theory is nearly classical and contai
or is in the process of forming, a large black hole. Since
bulk string theory is nearly classical, quantum fluctuatio
are infinitesimal and are well approximated by linear field
In terms of the CFT, this is the limit of large ’t Hooft cou
pling. While this is not the classical limit of the CFT, it is
limit in which we again expect certain kinds of classic
behavior~such as factorization of correlation functions wi
infinitesimal corrections!.
d
.
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GEODESIC PROPAGATORS AND BLACK HOLE HOLOGRAPHY PHYSICAL REVIEW D62 044041
Now, by acting on the vacuum with a sufficient set
local operators, we should be able to reach any state in
Hilbert space. Thus, the relation between the partition fu
tions implies that any stateuF&] in the CFT will be associ-
ated with some stateuF&B in the bulk. Unfortunately, it is
difficult to describe this relationship in detail. Nonethele
given any bulk state and an associated state in the CF
follows that correlation functions in the CFT state are giv
much as above by the limit of correlation functions in t
bulk as the points are moved to the boundary of the spa
time.

As stated above, the regime of interest here is the limi
which the bulk spacetime is nearly classical and in which
quantum fluctuations are effectively linear. This is just t
usual setting of~free! quantum field theory in curved spac
time. As a result, it is clear that a given classical geome
does not determine a unique quantum state, but rather d
mines an entire space of states for the linearized fluctuati
For globally static spacetimes, one can identify a prefer
vacuum state, though this is not generally possible. For
ample, in the familiar asymptotically flat black hole spac
times, the ‘‘natural’’ choices of state for the linear quantu
fields include the Hartle-Hawking vacuum as well as the U
ruh vacuum, and more complicated choices of state are
sible as well. The particular choice of quantum state may
associated with initial and/or final conditions satisfied by
linearized fluctuations.

Now @15# used the relation~1! to link a CFT object to a
bulk propagator. As a result, some particular choice of st
or perhaps several states or a class of states, for the linea
bulk quantum fields must have been made implicitly. W
note that in@15# it was explicitly assumed that the ‘‘propa
gator’’ for a scalar fieldf in the bulk was given by the pat
integral expression

^f~x!f~x8!&FPI5E dPeiDL(P), ~2!

whereL(P) denotes the length of the pathP. The measure
dP was not specified in detail as the intention of@15# was to
use the expression~2! only in the semiclassical approxima
tion. The subscript FPI reminds us that this is the obj
defined by a Feynman path integral, to distinguish it fro
other two-point functions that we may wish to discuss. T
conventions are set here so that spacelike paths have po
imaginary length, while timelike paths have real length. T
question we wish to explore is whether this is in fact t
2-point function of any bulk quantum state and, if so, ju
which state it represents.

Now, the two-point function alone does not uniquely d
termine the quantum state. However, for linear fields ther
the notion of a quasi-free state~see, e.g.,@24#!, also known as
a Gaussian state, in which the higher connected n-point fu
tions vanish, and all of the structure is in fact determined
the two-point function. It is therefore natural to attempt
associate the calculations of@15# with a quasi-free state o
the linearized bulk fields. We will show below that, on th
BTZ black hole spacetime, the expression~2! does in fact
yield the 2-point function of the Hartle-Hawking vacuu
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state. Similarly, on theRP2 geon spacetime, it yields th
2-point function of the so called geon-vacuum, the analog
of the state discussed in@25# for asymptotically flat geons
These states are in fact quasi-free. In Sec. II C below,
will discuss to what extent we can draw the same conclus
in more general spacetimes.

B. Causality and the stationary phase approximation

After calculating the propagator~2! using a stationary
phase method, it was found in@15# that this propagator was
sensitive to events happening behind a black hole’s ev
horizon. This raises certain issues about causality. St
most simply, we have noted@see Eq.~1!# that the correlation
functions in the CFT are~up to a rescaling! the boundary
limits of correlation functions in the bulk. However, in th
current context of bulk correlators for linear quantum fie
theory in curved spacetime, it is well known that the evo
tion is causal. An operator at any point in the spacetime
be expressed purely in terms of operators in its past li
cone. How, therefore, are we to interpret the results of@15#
which suggest that correlation functions of such operat
near the boundary are sensitive to the interior of the bl
hole?

In order to address this question, we first provide a f
words on the general interpretation of the propagator~2!. Let
us first note that there are at least two natural ways that
might try and interpret this object. The first is as a~time-
ordered! correlation function in some quantum state. F
definiteness, let us use the word ‘‘state’’ in the sense
algebraic quantum field theory. This means that a ‘‘state’r
may be either a pure state or a mixed state and that we w
try to interpret Eq.~2! as Tr„rT@f(x)f(y)#… for somer.
The second natural choice is to try to interpret the propag
as the time-ordered version of a transition amplitud
^auT@f(x)f(y)#ub&. In either case, however, the propagat
would be a Green’s function for the wave operator and th
a causal object.

Thus, we need to know whether the propagator~2! does in
fact yield a Green’s function for the wave operator¹2. That
this is the case may be argued as follows. Let us consider
spacetime as the configuration space of a ‘‘non-relativis
particle’’ and takeH5¹2 to be its Hamiltonian.2 As usual,
we may write

2 i

H
5E

0

`

e2 iN(H2 i e)dN, ~3!

so that the object on the right hand side defines a Gre
function for the wave operator. By the usual path integ
skeletonization arguments, one can write this as

K xU 2 i

H UyL 5E
0

`

dNE DxDp

3expS i E
0

1

@ ẋp2N~p21m2!#dl D , ~4!

2Which, in this case, is unbounded from below due to the Lore
zian signature of the spacetime.
1-3
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JORMA LOUKO, DONALD MAROLF, AND SIMON F. ROSS PHYSICAL REVIEW D62 044041
where the overdot5d/dl. We will see in a moment that Eq
~4! is just the path integral~2! in another form. Alternatively,
Eq. ~4! could be taken as the definition of the path integ
~2! @26–28#.

The path integral above contains the action for a free r
tivistic particle. Note, however, that while such particles a
typically associated with a time reparametrization invarian
there is no such explicit invariance above. We may thus c
sider Eq.~4! to be a gauge-fixed path integral, using in pa
ticular the gaugeṄ50:

K xU 2 i

H UyL 5E
0

`

DNE DxDpd~Ṅ!

3expS i E
0

1

@ ẋp2N~p21m2!#dl D . ~5!

The argument below will be more transparent if we chan
the gauge fixing scheme to use a gauge condition that
pends only on the pathx(l) through position space.3 Thus,
we write

K xU 2 i

H UyL 5E
0

`

DNE DxDpD~x!

3expS i E
0

1

@ ẋp2N~p21m2!#dl D , ~6!

whereD(x) contains both the gauge fixing condition and t
associated Faddeev-Popov determinant. Note thatD(x) will
depend only onx(l).

Now, to lowest order in the WKB approximation, pe
forming an integral over some variable is equivalent to so
ing the associated classical equation of motion and inser
the result back into the action. Thus, we can do the integ
over N andp and write the result as follows:

K xU 2 i

H UyL 5E DxD8~x!exp@ iL „x~l!…#, ~7!

whereL„x(l)… is the length of the pathx(l) with exactly the
same conventions as in Eq.~2!.

The factorD8(x) denotesD(x) together with the various
path-dependent measure factors arising from the correct
to the WKB approximation in integrating overN andp. Iden-
tifying dP5D8(x)Dx, we find that our Green’s function i
just the propagator~2!. Note that solving the equation o
motion for N involves taking a square root. For the timelik
segments of path the restrictionN.0 was used to choose th
appropriate branch. For the spacelike segments, the appr
ate branch is determined by the details of the measur
discussed in@28#. Note that the action is an analytic functio
of both N andp so that we expect no problems with the u
of stationary phase methods here. Thus, the propagator~2! is

3A complete such gauge fixing cannot be a smooth function of
pathx(l), but this need not concern us here.
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indeed a Green’s function for a wave operator. That Eq.~2!
satisfies Dirichlet boundary conditions on the smooth par
the boundary at infinity can be seen from the arguments
@29#.

At this point, we can now reduce our physical questi
about causality in the setting of@15# to a mathematical ques
tion about solutions of the wave equation. In@15# further
stationary phase methods were used to argue that, to lea
order, the propagator was in fact determined by the shor
geodesic connecting the pointsx andy. The authors consid-
ered a spacetime that was pure AdS before a certain sp
like hypersurfaceS on which two massless point particle
entered through the boundary at infinity. From this it is cle
that two points sufficiently far in the past ofS can only be
connected by geodesics that lie in the pure AdS part of
spacetime. Thus, the geodesic approximation leads to
conclusion that, to the past of some hypersurfaceS8, the
propagator is just as it would be in pure AdS space.4

Nonetheless, at sufficiently late times, it was shown
@15# that there are points outside the black hole such that
shortest geodesic connecting them runs through the inte
of the black hole. It was therefore concluded that the pro
gator ~2! outside the black hole was sensitive to events
curring inside the black hole.

In order to eliminate certain technical worries, let us co
sider a family of generalizations of the spacetime construc
in @15#. Imagine replacing the singular null particles with
distribution of null fluid of compact support. Since there
no local gravitational dynamics in 211 dimensions, the re-
sulting spacetime is easily made identical to that of@15#
outside of the region occupied by the null fluid. Until th
formation of the black hole singularity, the resulting spac
time is then smooth.5 If the fieldf for which we compute the
propagator does not couple to the null fluid, then the defi
tion of the propagator on this spacetime remains just Eq.~2!.
Thus, we have a complete specification of the propagator
to issues associated with the black hole singularity.6

Suppose now that we arrange things such that the two
of null fluid actually collide inside the black hole. That i
suppose that at some event the supports of the two distr
tions of fluid overlap. Note that, depending on the sort of n
fluid used, various outcomes are possible. Some sorts of
would interpenetrate readily while other sorts would boun
solidly off of each other. The outcome should affect some
the geodesics mentioned above that connect two points
infinity by passing through the interior of the black hole.

e

4In that case, as we will discuss below, it is known to be the ti
ordered 2-point function in the AdS vacuum.

5It is not, however, asymptotically AdS where the null fluid ente
the spacetime. We shall assume that this does not cause any fu
complications.

6Such issues certainly exist. For example, if we take Eq.~4! as the
definition of Eq.~2!, the black hole singularity will imply thatH is
not essentially self-adjoint and that some particular self-adjoint
tension should be chosen. Here, we simply assume that some
choice has been made.
1-4
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GEODESIC PROPAGATORS AND BLACK HOLE HOLOGRAPHY PHYSICAL REVIEW D62 044041
Now we see that we have a real contradiction at hand.
the one hand, we have the statement that the propagat
early times is the AdS vacuum correlator—independent
what goes on in the black hole interior. Also, we know th
the propagator satisfies the wave equation and so evolve
a causal fashion. Thus, the propagator at points outside
black hole can be expressed in terms of initial data on
early hypersurface in a manner that is independent of w
goes on in the black hole interior. Thus, the propagator o
side the black hole cannot in fact depend on events inside
black hole. This is in direct contradiction to the conclusion
the previous paragraph.

The resolution seems to be that the geodesic ‘‘approxi
tion’’ is not in fact a valid approximation.7 In retrospect, it
seems quite likely that this approximation fails for such
spacetime. Note that to arrive at the geodesic approxima
one would use a stationary phase argument to solve the
sical equations of motion corresponding to the act

m*A2 ẋ2. While the stationary point~the spacelike geode
sic! does indeed lie on the original contour of integrati
~real values ofx), this contour is not a steepest descent c
tour through the stationary point. In particular, in a Loren
ian signature spacetime, a spacelike geodesic is not a pa
minimal length. As a result, if one wishes to argue that
stationary point dominates, one must first analytically co
tinue the action to complex values of the coordinates
attempt to deform the original contour to the contour
steepest descent.

Now, the action involves the metricgab(x). To avoid the
issue of the singularities, let us consider the smoothed sp
times with null fluid sources. Since the fluid density vanish
in an open region, but not in the entire spacetime, it is cl
that such spacetimes are not analytic and that continuatio
problematic. Thus, it is not at all clear that steepest des
methods should succeed in this case, and we are happ
associate their failure with nonanalyticities of the spacetim

While this seems to settle the issue nicely, we sho
mention for completeness that, if one excises the region
non-zero fluid density from the spacetime, the result
spacetime does have a real analytic atlas and can be co
ued. Presumably, excising the region occupied by the fl
prevents one from deforming the contours as one would l

C. Interpreting the propagator

Having ruled out the use of the geodesic approximation
general, what are we to conclude about the full propaga
~2!? In principle, picking any two pointsx andy in the space-
time, the path integral includes contributions from paths c
necting them that explore arbitrarily far into the future. As
result, even in the spacetime studied in@15#, it is far from
clear that the propagator at early times is independen
events in the interior of the black hole. It seems likely th
the propagator does not correspond to a fixed initial con

7It is also a logical possibility that the approximation is valid, b
simply unstable in a manner that causes higher order effects at
times to evolve into lower order effects at late times.
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tion, but instead to some mixture of initial and final cond
tions. In this case, the propagator between points near
boundary at late times may depend on events inside the b
hole as well. That is, it may be possible to choose a stat
states in such a way that the two-point function reprodu
the important qualitative features found in the calculation
@15#. Such a state~or states! will involve a mixture of initial
and final conditions, reflecting the fact that the form of t
two-point function in@15# depends on the formation of th
black hole in the future.

Let us return to the two natural interpretations of t
propagator mentioned above: as a time ordered expecta
value in some quasi-free state, and as a time ordered tra
tion amplitude between two states. We note that eithe
compatible with the above observations. In the case of
expectation value, it may simply be the case that the qu
tum state itself is one that is naturally defined by a combi
tion of retarded and advanced boundary conditions, and s
free to depend on events in the interior of the black hole.
note that the Hartle-Hawking state for an asymptotically fl
black hole is an example of such a state that is natur
associated with boundary conditions in both past and futu
while the Unruh state is associated only with boundary c
ditions in the past. In the case of the transition amplitu
both states may involve such ‘‘mixed’’ boundary condition
or perhaps one is defined by retarded boundary condit
and one by advanced boundary conditions.

In spacetimes that are asymptotically flat at both timel
and spacelike infinity, the propagator~2! can be shown to
define a transition amplitude@30#. On the other hand, the
work of Wald @31# effectively shows that Eq.~2! defines an
expectation value for globally static spacetimes~without ho-
rizons!. It is also known to give the expectation value
time-ordered fields in the Hartle-Hawking state on t
Kruskal spacetime, though the status of this question o
general black hole spacetime is not yet understood@24#. We
will see that an expectation value is once again obtained
the spinless BTZ spacetime and the associatedRP2 geon.

III. THE GEODESICS IN AdS 3 AND QUOTIENT
SPACETIMES

We have argued in Sec. II that stationary phase meth
do not in general yield a valid approximation to the F
propagator~2!. Nevertheless, one may ask if there are ca
in which it does provide a valid approximation and, if s
whether geodesics passing behind the horizon play any
portant role. We shall see in this section and the next that
answer to both of these questions is in the affirmative.

In the present section, we consider the lengths of spa
like geodesics in the AdS3, spinless BTZ, andRP2 geon
spacetimes. As these spacetimes are real Lorentzian sec
of holomorphic complex manifolds, one may expect the g
desic approximation to succeed in these cases. Indeed,
known @15# to succeed in yielding the vacuum correlator
AdS3. In the following section, we consider the propagato
obtained through this approximation, and compare to w
we know about the field theory. This will allow us to explic
itly check the agreement with certain CFT calculations a
rly
1-5
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to trace the role of geodesics passing through the interio
the black hole. The final agreement provides additional c
firmation of the accuracy of the geodesic approximation
these cases.

In fact, these calculations are not truly independent. Si
the spinless BTZ andRP2 geon spacetimes are quotients
AdS3, a method of images argument together with analy
continuations and the uniqueness of the Euclidean Gre
functions shows that the success of the geodesic approx
tion to Eq.~2! in reproducing the vacuum correlator on AdS3
implies that it must also approximate the Hartle-Hawki
correlation function for the spinless BTZ hole and the rela
geon correlation function~see@25#! on theRP2 geon. Thus,
in these cases the FPI propagator gives the expectation v
of a time-ordered product of fields in a quasi-free state.

A. Geodesics of AdS3

The AdS3 spacetime can be constructed as the hyper
loid

~T1!21~T2!22~X1!22~X2!251 ~8!

in a flat embedding space with metric

ds252~dT1!22~dT2!21~dX1!21~dX2!2. ~9!

Here, we are choosing units so that the AdS length scal
~related to the cosmological constant! is one. A set of intrin-
sic coordinates on AdS3 is given in terms of these embed
ding coordinates by

T15coshx cost, T25coshx sint,

X15sinhx sinw, X25sinhx cosw, ~10!

wherew has period 2p, and 0<x<`. For the hyperboloid,
t is also periodic with period 2p, but we pass to the cover
ing space, and taket to run between6`. In terms of these
coordinates, the metric is

ds25dx21sinh2 xdw22cosh2 xdt2

5S 2

12r2D 2

~dr21r2dw2!2S 11r2

12r2D 2

dt2. ~11!

In the second equality, we have defined a new radial coo
nate r5tanh(x/2), so 0<r<1. Fixed t surfaces have the
Poincare´ disk geometry, and the dual CFT is defined on
cylinder isomorphic to ther51 boundary.

We will need the length of the unique geodesic travel
between (t,xm,6wm). Now, since the metric at fixedt is
that of the Poincare´ disk, equal-time geodesics of Eq.~11!
are circle segments obeying the equation

tanhx cos~w2a!5cos~b!, ~12!

where the geodesic reaches thex5` boundary atw5a
6b. Settinga50, the unique geodesic between the boun
ary points (t,6b) intersectsx5xm at wm

6 which are fixed
by
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tanhxm coswm
65cos~6b!, ~13!

which implies that

2wm
25wm

1[wm . ~14!

Integrating Eq.~11! yields the length of the geodesic con
necting (t,xm,6wm):

L~wm,2wm!52 ln@sinhxm sinwm

1~sinh2 xm sin2 wm11!1/2#. ~15!

B. Spacelike geodesics on the spinless BTZ hole

The spinless BTZ hole is obtained by taking the quotie
of the regionT1.uX1u of AdS3 by the isometry exp(2pr1j),
wherej is the Killing vector

j5X1
]

]T1
1T1

]

]X1
. ~16!

To express this geometry in the Schwarzschild-like coor
nates of the original papers@22#, we introduce on the region
X2.uT2u, T1.0 of AdS3 the coordinates (t,r ,f) by

T15
r

r 1
cosh~r 1f!,

X15
r

r 1
sinh~r 1f!,

T25S r 2

r 1
2 21D 1/2

sinh~r 1t !,

X25S r 2

r 1
2 21D 1/2

cosh~r 1t !. ~17!

t andf take all real values,r .r 1 , and the metric takes the
form

ds252N2dt21r 2df21
1

N2 dr2; N25r 228GM,

~18!

where M5r 1
2 /(8G). The identification by exp(2pr1j)

amounts to (t,r ,f);(t,r ,f12p), and with this identifica-
tion the coordinates (t,r ,f) cover one exterior region of the
BTZ hole.

We are interested in geodesics between two points,x1 and
x2, in the exterior region of the hole. We take the value or
at both points to be the same. To parametrize the location
the points, lety1 andy2 be two points in AdS3, respectively
at (t1 ,r ,f1) and (t2 ,r ,f2), and letx1 ~respectivelyx2) be
the equivalence class ofy1 (y2). We writeDf5f22f1 and
Dt5t22t1, and we assume thatuDf12pnu.uDtu for all
integersn. For fixed t1 , t2 , f1, andf2, it is then straight-
1-6
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GEODESIC PROPAGATORS AND BLACK HOLE HOLOGRAPHY PHYSICAL REVIEW D62 044041
forward to show that for sufficiently larger there are count-
ably many spacelike geodesics connectingx1 and x2 in the
BTZ hole.

To calculate the lengths of these geodesics, we exploit
symmetries to argue that the geodesic distance betweey1
andy2 in AdS3 is a function only of the chordal distanceD
in the embedding space,

D52~DT1!22~DT2!21~DX1!21~DX2!2

5
4r 2

r 1
2 sinh2S r 1Df

2 D24S r 2

r 1
2 21D sinh2S r 1Dt

2 D .

~19!

By considering a simple example of a spacelike geodesic
can show that the relation between chordal distance
proper lengthL is

sinh2~L/2!5
D

4
. ~20!

It then follows from the quotient construction that th
lengths,Ln(x1 ,x2), of the geodesics connectingx1 andx2 in
the BTZ hole have the larger expansion

exp@Ln~x1 ,x2!#5
2r 2

r 1
2 $cosh@r 1~Df12pn!#

2 cosh~r 1Dt !%1O~1!, ~21!

wherenPZ.

C. Spacelike geodesics on theRP2 geon

Recall @23# that theRP2 geon is obtained by taking th
quotient of the regionT1.uX1u of AdS3 by the isometry that
is the composition ofJ1 :exp(pr1j) and the involution
J2 :(T1,T2,X1,X2)°(T1,T2,X1,2X2). The resulting space
time is not orientable, but one can construct a related ori
able spacetime from the product of the BTZ spacetime w
T4. If the moduli of theT4 are chosen so that there is a
orientation-reversing involutionJ4 of the torus, then one ob
tains an orientable spacetime by taking the quotient w
respect toJ1+J2+J4.

Now, let y1 and y2 be points on AdS3 as above, respec
tively at (t1 ,r ,f1) and (t2 ,r ,f2), and suppose thatuDf
12pnu.uDtu for all integersn. Let x1 andx2 be two points
in the exterior region of the geon, such thatx1 ~respectively
x2) is the equivalence class ofy1 (y2). For sufficiently large
r, one class of spacelike geodesics connectingx1 and x2 is
then obtained precisely as for the BTZ hole, with the res
~21! for their lengths. The second class of geodesics ar
from the AdS3 geodesics connectingy1 to the pointsỹ2;n ,
located at

T15~r /r 1!cosh@r 1~f21p12pn!#,

X15~r /r 1!sinh@r 1~f21p12pn!#,

T25A~r /r 1!221 sinh~r 1t2!,
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X252A~r /r 1!221 cosh~r 1t2!, ~22!

wherenPZ. As

D~y1 ,ỹ2;n!52~r /r 1!2$cosh@r 1~f22f11p12pn!#21%

12@~r /r 1!221#$cosh@r 1~ t21t1!#11%,

~23!

the lengthsL̃n(x1 ,x2) of these geodesics have the larger
expansion

exp@ L̃n~x1 ,x2!#5
2r 2

r 1
2 $cosh@r 1~f22f11p12pn!#

1 cosh@r 1~ t21t1!#%1O~1!. ~24!

It is precisely this class of geodesics that pass through
black hole interior. We note that all such geodesics
longer than the shortest geodesic connectingx1 and x2
through the exterior region. Thus, at first sight one mig
think that geodesics passing through the interior cannot
relevant to leading order. Nonetheless, we shall see in S
IV C that they do provide the leading contribution to th
two-particle correlations in the geon vacuum, and that
~24! reproduces expectations based on the dual CFT.

IV. MATCHING TO THE CFT

It turns out that, due to difficulties in performing the var
ous mode sums, there are few exact results for the bulk
relators in the spinless BTZ Hartle-Hawking state and in
geon vacuum. We will therefore proceed by comparing
limiting behaviors of Eqs.~30! and ~24! with expectations
based on toy models of the dual CFT. We shall see that
agreement is surprisingly good. This supports both the ac
racy of the bulk geodesic approximation in these cases
the ability of the toy models to capture much of the phys
of the CFT. We first review the calculation showing that t
geodesic approximation in AdS3 reproduces the vacuum
propagator, and then show that the asymptotic behavio
Eq. ~24! reproduces the expected two-particle correlations
BTZ and the geon.

A. The propagator in AdS3

We will now review the calculation of the equal tim
correlation functions in the dual field theory for the AdS3
geometry using the~bulk! WKB approximation. A scalar
field of massm in a spacetime which is asymptotically AdS3
is dual to an operatorO of conformal dimensionD51
1A11m2. The fiducial metric for the CFT on the cylinder i
related to the induced metric obtained from Eq.~11! by a
diverging Weyl factor. To relate operators to expectation v
ues, we need to regulate this behavior by cutting off
spacetime at a boundary defined by

rm~t,w!512e~t,w!, e~t,w!5e~t,2w!, ~25!
1-7
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where e is some smooth function of the boundary coor
nates. The symmetry ofe underw→2w is chosen for sim-
plicity. For the calculations relating to the BTZ black ho
and geon, we will take the cutoff surface to be at constar
in the BTZ coordinates. According to@7#, the Feynman
propagator forO in the dual CFT is obtained from the spac
time propagator between the corresponding points on
cutoff boundary atrm ~also see@3,4#!,

G]„~t,w!,~t8,w8!…5e22DGB~B,B8!, ~26!

whereB5„t,w,rm(t,w)…. We will only need the propagato
whent5t8. For B,B8 causally unrelated, the Green’s fun
tion GB(B,B8) in the leading order semi-classical approx
mation is given by a sum over geodesics:

G~B,B8!5(
g

e2DLg(B,B8). ~27!

HereLg is the ~real! geodesic length between the bounda
points and only spacelike geodesics contribute sincet5t8.

By rotational invariance, it is sufficient to perform th
calculation forw52w8. For the particular case 12e(t,w)
5tanh(xm/2)5const, the length of the geodesic connectin
B and B8 is given by Eq. ~15!. In fact, the symmetry
ry
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ic
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a

04404
e

e(t,w)5e(t,2w) guarantees that a corresponding res
holds for any such symmetric choice ofe. So, to leading
order ine, the geodesic length between the pointsB,B8 is

L~B,B8!52 lnS 2 sinw

e D . ~28!

The bulk propagator is thus

G~B,B8!5S 2 sinw

e D 22D

~29!

in the e→0 limit, where the boundary metric isds2

5„1/e(t,w)2
…(2dt21dw2). This correctly reproduces th

CFT two-point correlator of@3# for Dt50 and Dw52w,
since the CFT is defined on the Weyl rescaled cylinder w
metric ds252dt21dw2.

B. The propagator in BTZ

We now apply the bulk geodesic approximation meth
of @15# to the Green’s function on the boundary of the sp
less BTZ hole, using the geodesic length~21!. The geodesic
approximation to the path integral~2! reads
^f~x1!f~x2!&FPI5E dPeiDL(P)'(
n

exp@2DLn~x1 ,x2!#

5S r 1
2

2r 2D D

(
n52`

`
1

$cosh@r 1~Df12pn!#2cosh~r 1Dt !%D
1OF S r 1

2

r 2 D D11G . ~30!
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This is the bulk propagator; to relate it to the bounda
propagator, we observe that at larger, the boundary metric in
the BTZ spacetime isds25r 2(2dt21df2). Since we want
the CFT to live on the same cylinder as above, the bound
propagator is given byG]5r 2DGB in this case. The rescalin
thus precisely cancels ther 22D in the prefactor.

We note that this Green’s function is manifestly period
in the global timet in the imaginary direction, and the perio
2p/r 1 is the inverse of the spinless BTZ temperature. It
thus plausibly identified with the propagator in the analog
of the Hartle-Hawking state for this black hole. We also no
that the geodesics used in this calculation lie entirely outs
the black hole. This calculation successfully reproduces
result given in@8# for the spinless BTZ black hole. A simila
agreement is obtained for the rotating BTZ black hole in
Appendix.

C. The propagator in the single-exterior black hole

We now proceed to address the dual CFT propagator
sociated with the bulk FPI propagator^x1x2&geonon theRP2

geon. Now, the corresponding path integral can be written
a sum of two contributions:
ry

s
e
e
e
e

e

s-

s

^x1x2&geon5^x1x2&BTZ1^x1J~x2!&BTZ ~31!

where^x1x2&BTZ represents the bulk FPI propagator on t
spinless BTZ hole. Here, we takex1 andx2 to lie outside the
geon horizon so that we may naturally associate them w
two points in an asymptotic region of the BTZ black hol
The first term (̂x1x2&BTZ) was calculated in the geodes
approximation in Sec. III B while the second ter
„^x1J(x2)&BTZ… is given in the geodesic approximation b
Eq. ~24!. The geodesics that contribute to this second te
are longer than the shortest geodesic contributing
^x1x2&BTZ , so that one might at first think that^x1J(x2)&BTZ
can be neglected. However, let us now Fourier transform
result in order to compute the two-particle correlations in
geon state. Since the energies of the two particles cannot
to zero, the time translation invariance of the BTZ hole
enough to guarantee that the contributions from the first te
~with both points in the same asymptotic region! vanish.
However, the contribution of the second term need not v
ish, corresponding to the fact that the geon does not it
have a time translation invariance. Thus, we see that
two-particle correlations in the geon state can be directly t
1-8
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to the second term above, which results only from geode
that pass through the interior of the BTZ black hole. In ter
of the geon spacetime, the result is again that only geode
passing behind the horizon can account for the two-part
correlations.

Thus, we might try to match these correlations to tho
computed in@23# for a toy model of the CFT stateu geon&
dual to theRP2 geon, presumably with linearized quantu
fluctuations in the geon vacuum state. The toy model
placed the CFT by a free scalar field and found, in the cas
a nontwisted field, the correlations

^geonudn,edn8,e8ugeon&5
~21!ndn,n8de,2e8

2 sinh~pn/r 1!
, ~32!

where dn,e is the annihilation operator for the mode wi
frequency quantum numbern, n51,2, . . . , and theindex e
takes the value 1 for right-movers and21 for left-movers
@see Eq.~33! below#. Here and below we ignore issues i
volving the zero mode (n50). As a consequence of rota
tional invariance, the correlations are between a right-mo
and a left-mover with the same frequency. We note that
nontwisted free scalar field has conformal weightD50.

We now show that this result can be obtained from
geodesic approximation~24! to the bulk Green’s function. It
is clear, however, that due to the simplified nature of the
model, one should not expect to be able to Fourier transf
the asymptotic values of the propagator and obtain Eq.~32!
directly. In particular, the bulk propagator will not be bu
from only the discrete mode spectrum of Eq.~32!. In the full
04404
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interacting CFT, the correlator will similarly not be period
in time, and so will not be a simple combination of the
discrete modes. However, we may attempt to extract in
mation analogous to Eq.~32! by modifying the Fourier trans-
form of Eq. ~24! to take into account the fact that the bu
propagator is not periodic in time. We shall see that
agreement is impressive.

In the toy~free! CFT, the oscillator modes that correspon
to the annihilation operatorsdn,e in Eq. ~32! are @23#

un,e5
1

A4pn
e2 in(t2ef) ~33!

where n51,2, . . . and e561. If the Green’s function
G(t1 ,f1 ;t2 ,f2) had the periodicity of the oscillator mode
we would thus have

^dn,edn8,e8&5
Ann8

4p3 E0

2p

dt1E
0

2p

dt2E
0

2p

df1E
0

2p

df2

3exp@ i ~nt11n8t22nef1

2n8e8f2!#G~ t1 ,f1 ;t2 ,f2!. ~34!

We shall modify Eq.~34! to take into account the lack o
periodicity shortly.

As discussed above, the part ofG(t1 ,f1 ;t2 ,f2) coming
from the geodesics that do not pass through the geon d
not contribute tô dn,edn8,e8&. The part ofG(t1 ,f1 ;t2 ,f2)
coming from the geodesics that do pass through the geo
from Eq. ~24!,8
he

boundary
S r 1
2

2 D D

(
k52`

`
1

$cosh@r 1~f22f11p12pk!#1 cosh@r 1~ t21t1!#%D
. ~35!

As Eq. ~35! depends onf1 andf2 only through the combinationf22f1, integrating overf21f1 in Eq. ~34! is immediate.
Next, we observe that each term in Eq.~35! depends onf22f1 and k only through the combinationf22f112pk.
Integratingf22f1 from zero to 2p and summing overk is thus equivalent to integrating any one term in Eq.~35! in f2
2f1 from negative infinity to positive infinity. Writing the integration in terms of the variableyªe(f22f11p), we obtain

^dn,edn8,e8&5
Ann8

2p2
dne,2n8e8~21!nS r 1

2

2 D DE
0

2p

dt1E
0

2p

dt2E
2`

`

dy
exp@ i ~nt11n8t21ny!#

$cosh~r 1y!1 cosh@r 1~ t21t1!#%D
. ~36!

We must now face the fact that the integrand in Eq.~36! is not periodic int1 andt2. We reinterpret Eq.~36! by hand so that
t21t1ªa is integrated overR but t22t1 over 4p. The integral overt22t1, combined with the Jacobian that arises from t
change of variables, yields then 2pdn,n8 . The factordne,2n8e8 can thus be replaced byde,2e8 , and we find

^dn,edn8,e8&5
n

p
dn,n8de,2e8~21!nS r 1

2

2 D DE
2`

`

daE
2`

`

dy
exp@ in~a1y!#

@cosh~r 1a!1 cosh~r 1y!#D
. ~37!

Changing variables tou5a2y, v5a1y, gives finally@32#

8The asymptotic metric in the geon spacetime is the same as in the BTZ spacetime, so the rescaling relating the bulk and
propagators is the same as in the previous subsection.
1-9
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^dn,edn8,e8&5
n

2p
dn,n8de,2e8~21!nS r 1

2 D 2DE
2`

` du

@cosh~r 1u/2!#DE2`

` dv exp~ inv !

@cosh~r 1v/2!#D

5
n

2p
dn,n8de,2e8~21!n~r 1!2(D21)S G~D/2!

G~D! D 2

GS D

2
1

in

r 1
DGS D

2
2

in

r 1
D . ~38!
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In the limit D→01 , Eq. ~38! reduces to

^dn,edn8,e8&5
2n

p
dn,n8de,2e8~21!n~r 1!22GS in

r 1
DGS 2

in

r 1
D

5
4

r 1
3

~21!ndn,n8de,2e8
2 sinh~pn/r 1!

, ~39!

which agrees with Eq.~32! up to the factor 4/r 1 . This factor
may be a consequence of our having neglected any
exponential factors in the bulk Green’s function, or from o
by-hand reinterpretation of thedt1dt2 integrals in Eq.~34!.

This result verifies the importance of geodesics pass
behind the horizon in obtaining the proper 2-particle cor
lations, and shows that the toy free CFT does indeed m
well with the bulk spacetime results. As discussed earlie
is only in special spacetimes which are appropriately anal
then we can expect the geodesic approximation to hold. A
result, the fact that our calculation relies on geodesics p
ing behind the horizon of the black hole is consistent w
the causal nature of the FPI propagator and with the idea
@13# that one must look beyond simple products of loc
operators in the CFT to encode useful information about
interior of a black hole.
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APPENDIX: THE PROPAGATOR FOR THE ROTATING
BTZ HOLE

In this appendix we generalize the treatment of Se
III B, IV B to show that the bulk geodesic approximatio
method of@15# reproduces the Green’s function in the Po
carévacuum~see@8# and the references therein! on a single
boundary component of the rotating nonextremal BTZ ho

The generalization of Eqs.~17! to the rotating case is th
rotating exterior BTZ coordinate transformation@22#
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T15Aa cosh~r 1f2r 2t !,

X15Aa sinh~r 1f2r 2t !,

T25Aa21 sinh~r 1t2r 2f!,

X25Aa21 cosh~r 1t2r 2f!, ~A1!

with

a5
r 22r 2

2

r 1
2 2r 2

2
, ~A2!

wherer .r 1 , 2`,t,`, and2`,f,`, and the param-
etersr 6 satisfy 0<r 2,r 1 . For r 250, this transformation
reduces to the spinless transformation~17!.

Introducing the pointsy1 andy2 in AdS3 as in Sec. III B,
respectively at (t1 ,r ,f1) and (t2 ,r ,f2), we find

D~y1 ,y2!52a@cosh~r 1Df2r 2Dt !21#22~a21!

3@cosh~r 1Dt2r 2Df!21#. ~A3!

When t1 , t2 , f1, and f2 are fixed, and such thatuDfu
.uDtu, Eq. ~A3! shows thatD(y1 ,y2).0 for sufficiently
larger. y1 andy2 can then be joined by a spacelike geodes
and the lengthL(y1 ,y2) of this geodesic has the larger
expansion

exp@L~y1 ,y2!#5
2r 2

r 1
2 @cosh~r 1Df2r 2Dt !

2 cosh~r 1Dt2r 2Df!#1O~1!.

~A4!

Now, in the region of AdS3 covered by the exterior BTZ
coordinates, the rotating BTZ quotient construction amou
to the identification (t,r ,f);(t,r ,f12p). Let againx1 ~re-
spectivelyx2) be the equivalence class of the pointy1 (y2).
AssuminguDf12pnu.uDtu for all integersn, and proceed-
ing as in Sec. IV B, we find that the geodesic approximat
to the path integral~2! reads
1-10
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^f~x1!f~x2!&FPI5E dPeiDL(P)'(
n

exp@2DLn~x1 ,x2!#

5S r 1
2

2r 2D D

(
n52`

`
1

$cosh@r 1~Df12pn!2r 2Dt#2cosh@r 1Dt2r 2~Df12pn!#%D
1OF S r 1

2

r 2 D D11G .

~A5!

The boundary-dependent factor in the leading term in Eq.~A5! at r→` can be rewritten as

(
n52`

`
1

H sinhF1

2
~r 12r 2!~Df1Dt12pn!GsinhF1

2
~r 11r 2!~Df2Dt12pn!G J D , ~A6!

which is recognized as the dominant factor in the Green’s function in the Poincare´ vacuum on the boundary of the rotatin
BTZ hole ~see@8# and the references therein!.
. B

ed

J.

c,

l.

J.

nd
@1# J. Maldacena, Adv. Theor. Math. Phys.2, 231 ~1998!.
@2# D. Kabat and G. Lifschytz, Nucl. Phys.B571, 419 ~2000!.
@3# E. Witten, Adv. Theor. Math. Phys.2, 253 ~1998!.
@4# S.S. Gubser, I.R. Klebanov, and A.M. Polyakov, Phys. Lett

428, 105 ~1998!.
@5# V. Balasubramanian, P. Kraus, A. Lawrence, and S.P. Triv

Phys. Rev. D59, 104021~1999!.
@6# U.H. Danielsson, E. Keski-Vakkuri, and M. Kruczenski,

High Energy Phys.01, 002 ~1999!.
@7# T. Banks, M.R. Douglas, G.T. Horowitz, and E. Martine

‘‘AdS dynamics from conformal field theory,’’
hep-th/9808016.

@8# E. Keski-Vakkuri, Phys. Rev. D59, 104001~1999!.
@9# A.W. Peet and J. Polchinski, Phys. Rev. D59, 065011~1999!.

@10# G.T. Horowitz and N. Itzhaki, J. High Energy Phys.02, 010
~1999!

@11# D. Bak and S. Rey, Nucl. Phys.B572, 150 ~2000!.
@12# S.R. Das, J. High Energy Phys.02, 012 ~1999!; 06, 029

~1999!.
@13# J. Polchinski, L. Susskind, and N. Toumbas, Phys. Rev. D60,

084006~1999!.
@14# N. R. Constable and R. C. Myers, J. High Energy Phys.10,

037 ~1999!.
@15# V. Balasubramanian and S. F. Ross, Phys. Rev. D61, 044007

~2000!.
@16# S.B. Giddings and S.F. Ross, Phys. Rev. D61, 024036~2000!.
04404
i,

@17# U. H. Danielsson, E. Keski-Vakkuri, and M. Kruczenski, Nuc
Phys.B563, 279 ~1999!.

@18# I. Chepelev and R. Roiban, Phys. Lett. B462, 74 ~1999!.
@19# L. Susskind and N. Toumbas, Phys. Rev. D61, 044001~2000!.
@20# H.-J. Matschull, Class. Quantum Grav.16, 1069~1999!.
@21# S. Holst and H.-J. Matschull, Class. Quantum Grav.16, 3095

~1999!.
@22# M. Banados, C. Teitelboim, and J. Zanelli, Phys. Rev. Lett.69,

1849~1992!; M. Banados, M. Henneaux, C. Teitelboim, and
Zanelli, Phys. Rev. D48, 1506~1993!.

@23# J. Louko and D. Marolf, Phys. Rev. D59, 066002~1999!.
@24# R.M. Wald,Quantum Field Theory in Curved Space-Time a

Black Hole Thermodynamics~The University of Chicago
Press, Chicago, 1994!.

@25# J. Louko and D. Marolf, Phys. Rev. D58, 024007~1998!.
@26# C. Teitelboim, Phys. Rev. D25, 3159~1982!.
@27# M. Henneaux and C. Teitelboim, Ann. Phys.~N.Y.! 143, 127

~1982!.
@28# D. Marolf, Phys. Rev. D53, 6979~1996!.
@29# William Feller, An Introduction to Probability Theory and Its

Applications~Wiley, New York, 1957!, Vol. I.
@30# B.S. DeWitt,Dynamical Theory of Groups and Fields~Gordon

and Breach, New York, 1965!.
@31# R.M. Wald, Commun. Math. Phys.70, 221 ~1979!.
@32# I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series

and Products, 4th ed.~Academic, New York, 1980!, formula
3.985.1.
1-11


