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One of the most challenging technical aspects of the dualities between string theory on anti—de Sitter spaces
and conformal field theories is understanding how location in the interior of spacetime is represented in the
field theory. It has recently been argued that the interior of the spacetime can be directly probed by using
intrinsically non-local quantities in the field theory. In addition, Balasubramanian and[Rbgs. Rev. D61,
044009(2000] argued that when the spacetime described the formation of ap Bld&k hole, the propagator
in the field theory probed the whole spacetime, including the region behind the horizon. We use the same
approach to study the propagator for the BTZ black hole and a black hole solution with a single exterior region,
and show that it reproduces the propagator associated with the natural vacuum states on these spacetimes. We
compare our result with a toy model of the CFT for the single-exterior black hole, finding remarkable agree-
ment. The spacetimes studied in this work are analytic, which makes them quite special. We also discuss the
interpretation of this propagator in more general spacetimes, shedding light on certain issues involving cau-
sality, black hole horizons, and products of local operators on the boundary.

PACS numbd(s): 04.65+¢€, 04.62+v, 04.70—s

[. INTRODUCTION expectation values of local operators in the field the@ry
This was used to show a “scale-radius duality” for a variety
The proposed duality between string theory on anti—deof bulk sources, and for wave packets of supergravity
Sitter space and lower-dimensional conformal field theoryfields—the radial position of a bulk probe is encoded in the
(CFT) [1] provides a non-perturbative definition of string scale size of the dual expectation values. Dynamical sources
theory, and could thus, subject to the restriction on thdor supergravity fields were studied [B], where the radial
asymptotic boundary conditions, cast a bright light on manyposition of a source particle following a bulk geodesic was
dark corners of quantum gravity. In particular, the field reflected in the size and shape of an expectation-value bubble
theory description encompasses arbitrary fluctuations of than the CFT. The expectation values of the operators produced
metric and other fields in the interior, and should provide aby spacetime sources were further studied7/ir13).
fully quantum description of the formation and evaporation However, the simple scale-radius relationship seen in
of a black hole. One of the major barriers to studying con-these studies is a consequence of an isometry in pure AdS
ceptual questions in quantum gravity using this theory is ouspace which is dual to a scale transformation in the confor-
poor understanding of how an approximately local classicamal field theory, under which the vacuum remains invariant.
(or semi-classical spacetime description of the physics For situations describing black holes, which break the sym-
emerges from the fundamental gauge theory description, antetries, the relationship between bulk position and boundary
the consequent absence of any intuition about how this ambservables will be more complicatggl14]. The same phe-
proximate locality breaks down under extreme conditionsnomenon is apparent in the collision of two massless par-
(A related problem is that in the regime where a classicaticles to form a black hole ifl3]; after the particles collide,
spacetime description is a good approximation, we don’their radial position is fixed, but the scales in the boundary
have any other quantitative description; $8¢for a recent expectation values continue to evolve.
attempt to construct calculationally useful approximatipns. Furthermore, the asymptotic values of the fields are not
The connection between asymptotic behavior of thesufficient to reproduce the whole spacetime. Since

spacetime fields and the field theory was one of the firsasymptotic values of fields in AdS space are dual to the
subjects of study3,4], and it was subsequently shown that expectation values of local operators in the CFT, it follows
the map between states in the field theory and states in spadfat such expectation values describe only a small piece of
time identifies the asymptotic behavior of the fields with thethe physical information. A number of authors have studied

spacetime sources which do not change the asymptotic val-

ues of the fields, such as particles in Ad&nd spherical

*E-mail address: Jorma.Louko@nottingham.ac.uk shells, and found that the location of the shell or particles is
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[15-18. Similar work is described ifi19]. Thus, non-local (future) event horizon; we also need access to the “white
operators must be included in any understanding of the bulkhole” region, inside the past event horizon.
boundary connection. A particularly striking case is asymp- The next section is devoted to a short commentary on the
totically AdS; spaces, where we can describe a wide range Of\dS-CFT correspondence and_ to general arguments concern-
dynamics without relying on perturbations around somend the Qﬁt”rg_r%f th% calculations t[|15]. Se((:jtlcc)jntlll then "
background20,21], and the asymptotic metric only encodes reviews the and geon spacetimes and determines the
propagators on these spacetimes given by the path integral of
the total mass and angular momentum of the system.

) ) 15]. In Sec. IV, these calculations are compared to the
In [15], Balasubramanian and Ross used a stationarf,,nagator in the dual CFT. We discuss the extension of the

phase approximation to obtain predictions for the propagatopropagator calculation to the rotating BTZ black hole space-
in the gauge theory from the geodesics of supergravity solutime in the Appendix.

tions in which a black hole was formed. This propagator
appeared to be sensitive to events in the interior of the black  Il. THE SETTING AND THE APPROXIMATIONS

hole. Now, while the CFT may well encode information v e this section to set the stage for our later calcula-
about the black hole interior, the particular CFT propagatokions. The most relevant elements of the AdS-CET corre-
studied in[15] is in fact the restriction to the boundary of spondence are briefly reviewed in Sec. Il A. This allows us
AdS space of a propagator associated with the bulk quantum discuss the particular regime in which we use the corre-
field theory. This raises certain issues about caudalibich  spondence and to comment on certain subtleties. We then
we wish to clarify in the work below. Some general argu-address the stationary phase approximation and the issue of
ments are presented in Sec. II. In short, we argue that theausality in Sec. Il B. Section II C includes a few further
propagator studied ifiL5] is in fact a causal object, but that comments on the interpretation of the propagator.
the stationary phase approximation is valid only in appropri-
ately analytic spacetimes and not in the actual spacetime
considered in15]. However, even without the stationary-  While the AdS-CFT correspondence is conjectured to re-
phase approximation, the path-integral definition of thelate the full quantum theories associated with bulk string
propagator used ifl5] should generally lead to a result theory and the CFT, it is fair to say that this correspondence
which depends on the region inside the black hole; we arguis best understood in the neighborhood of the vacuum. In that
that this should be interpreted as an object which is definedegion, a useful way to describe the correspondence is in
by a mixture of past and future boundary conditions. terms of the partition function&cgt and Zy, which in

We then proceed to explore the propagator in two analytiboth cases are functions of external sources that may be
spacetimes in order to see more precisely what sort of objecoupled to the CFT and to the boundary of the AdS space.
it represents. The spacetimes that we consider contain bladkecall that the CFT lives on a spacetime which may be iden-
holes, but are static outside the Killing horizon. In thosetified with the boundary of Ad$ The partition functions are
cases, the stationary phase approximation is expected to legual and, by differentiating them, we may arrive at relations
valid, and a computation of the propagator reduces to a studyetween propagators and correlators in the two theories. For
of various geodesics in the bulk spacetime. We show that, iexample, differentiating twice yields the relatipn|
such cases, the propagator [d65] is in fact the boundary
limit of a time-ordered expectation value of a product of (O4(),0,(b")) ;= lim e 2X(Og(b,)Og(b))g (1)
local bulk fields. Our spacetimes are the spinless Banados- €0
Tei;[elboim-ZaneIIi(B_'l'Z) black hole[22] and the associated petween the propagators in the boundary and bulk, where the
P geon[23]. We find that the propagator in each case ispk operators®g are at pointsb, ,b’. in the bulk that ap-
assoqated with a naturql vacuum state for Ilqearlzed Quaroach the pointd,b’ in a certain way ag—0 (also see
tum fields on the spacetime, and that geodesics passing bez 21y Thjs is a relation between the Euclidean propagators

hind the black hole horizon play an important role in deter-q, ;i analytic continuation, between the Feynman propaga-
mining the structure of this state. The states are analogues Q. i the respective vacuum states. Since we are in the

the Hartle-Hawking state, and are defined by boundary con;,.,um state, operators on the right-hand side may be
ditions at past and future infinity. The propagators in thesga\ved as fields on AdS space.
cases are known to be Green's functions d¢tausal wave In the work below, we again wish to consider a propaga-

equation, and sensitivity to “events” behind the event hori-y, o correlator. However, we wish to work in a regime that
zon would once again seem to contradict this causality. Ifs rather far from the vacuum state. We consider a state in
this case, the resolution is that the analyticity of these spacgynich the bulk string theory is nearly classical and contains,
times implies that much of the information about the regiony, js i the process of forming, a large black hole. Since the
inside the event horizon is in fact “stored outside.” Note 1 syring theory is nearly classical, quantum fluctuations
however that knowledge of the region outside the Killing ;¢ jnfinitesimal and are well approximated by linear fields.
horizon is not enough to determine what happens inside thg, (arms of the CFT, this is the limit of large 't Hooft cou-

pling. While this is not the classical limit of the CFT, itis a

limit in which we again expect certain kinds of classical

These issues were brought to our attention by Lenny Susskintbehavior(such as factorization of correlation functions with

through his comments at the Val Morin workshop on Black Holes.infinitesimal corrections

A. The correspondence in the bulk classical limit
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Now, by acting on the vacuum with a sufficient set of state. Similarly, on theRI> geon spacetime, it yields the
local operators, we should be able to reach any state in thg-point function of the so called geon-vacuum, the analogue
Hilbert space. Thus, the relation between the partition funcef the state discussed [25] for asymptotically flat geons.
tions implies that any stat@), in the CFT will be associ- These states are in fact quasi-free. In Sec. Il C below, we
ated with some statgb)g in the bulk. Unfortunately, it is  will discuss to what extent we can draw the same conclusion
difficult to describe this relationship in detail. Nonetheless,in more general spacetimes.
given any bulk state and an associated state in the CFT, it _ ) o
follows that correlation functions in the CFT state are given  B. Causality and the stationary phase approximation
much as above by the limit of correlation functions in the  After calculating the propagatof2) using a stationary
bulk as the points are moved to the boundary of the spaceshase method, it was found ji5] that this propagator was
time. sensitive to events happening behind a black hole’s event

As stated above, the regime of interest here is the limit irhorizon. This raises certain issues about causality. Stated
which the bulk spacetime is nearly classical and in which thenost simply, we have notddee Eq(1)] that the correlation
quantum fluctuations are effectively linear. This is just thefunctions in the CFT argup to a rescalingthe boundary
usual setting offree guantum field theory in curved space- limits of correlation functions in the bUlk However, in the
time. As a resu't, it is clear that a given classical geometry.:urrent. context of bulk _COI’I’e_|a_tOI’S for linear quantum field
does not determine a unique quantum state, but rather detéfl€ory in curved spacetime, it is well known that the evolu-
mines an entire space of states for the linearized fluctuationf).On is causal. An operator at any point in the spacetime can
For globally static spacetimes, one can identify a preferred®® €xPressed purely in terms of operators in its past light

vacuum state, though this is not generally possible. For exgone. How, therefore, are we to interpret the result516]

ample, in the familiar asymptotically flat black hole space-Wh'Ch suggest that correlation functions of such operators

times, the “natural’ choices of state for the linear quantumnear the boundary are sensitive to the interior of the black

?
fields include the Hartle-Hawking vacuum as well as the Un-h0|e'

associated with initial and/or final conditions satisfied by themight try and interpret this object. The first is agtime-
linearized fluctuations. . _ ordered correlation function in some quantum state. For
Now [15] used the relatiorfl) to link a CFT object to a  definiteness, let us use the word “state” in the sense of
bulk propagator. As a result, some particular choice of statesigebraic quantum field theory. This means that a “staie”
or perhaps several states or a class of states, for the linearizatay be either a pure state or a mixed state and that we would
bulk quantum fields must have been made implicitly. Wetry to interpret Eq.(2) as TpT[ #(X) #(y)]) for somep.
note that in[15] it was explicitly assumed that the “propa- The second natural choice is to try to interpret the propagator
gator” for a scalar fields in the bulk was given by the path as the time-ordered version of a transition amplitude:
integral expression (a| T[p(X) (y) 1| B)- In either case, however, the propagator
would be a Green'’s function for the wave operator and thus
, ; a causal object.
(B(X)D(X'))ppr= f dpe'2t), 2 Thus, we need to know whether the propagé&2pdoes in
fact yield a Green’s function for the wave opera¥. That
whereL(P) denotes the length of the pafh The measure this is the case may be argued as follows. Let us consider the
dP was not specified in detail as the intention[d6] was to ~ Spacetime as the configuration space of a “non-relativistic
use the expressiof2) only in the semiclassical approxima- Particle” and takeH =V? to be its Hamiltoniarf. As usual,
tion. The subscript FPI reminds us that this is the objectve may write
defined by a Feynman path integral, to distinguish it from . .
other two-point functions that we may wish to discuss. The __':f e IN(H-i9gN (3)
conventions are set here so that spacelike paths have positive H 0 ’

—i
H

imaginary length, while timelike paths have real length. The . . . . ,
guestion we wish to explore is whether this is in fact theSO th.at the object on the right hand side defines a.Green S
2-point function of any bulk quantum state and, if so, justfunCtlon 'for.the wave operator. By thg usu_al path integral
which state it represents. skeletonization arguments, one can write this as

Now, the two-point function alone does not uniquely de- o
termine the quantum state. However, for linear fields there is <x y> = J dNJ DxDp
the notion of a quasi-free stafsee, e.q.,24]), also known as 0
a Gaussian state, in which the higher connected n-point func- 1
tions vanish, and all of the structure is in fact determined by Xexp{ iJ [Xp—N(p2+m?)]d\ |, (4)
the two-point function. It is therefore natural to attempt to 0
associate the calculations pI5] with a quasi-free state of
the linearized bulk fields. We will show below that, on the
BTZ black hole spacetime, the expressi@ does in fact 2Which, in this case, is unbounded from below due to the Lorent-
yield the 2-point function of the Hartle-Hawking vacuum zian signature of the spacetime.
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where the overdet d/d\. We will see in a moment that Eq. indeed a Green'’s function for a wave operator. That ).

(4) is just the path integrdP) in another form. Alternatively, satisfies Dirichlet boundary conditions on the smooth part of
Eq. (4) could be taken as the definition of the path integralthe boundary at infinity can be seen from the arguments of
(2) [26-28. [29].

The path integral above contains the action for a free rela- At this point, we can now reduce our physical question
tivistic partide. Note, however, that while such partiCIes areghout Causa“ty in the Setting @15] to a mathematical ques-
typica]ly associated vyit_h.atim.e reparametrization invarianceion about solutions of the wave equation. [It5] further
there is no such explicit invariance above. We may thus congiationary phase methods were used to argue that, to leading
sider Eq.(4) to be a gauge-fixed path integral, using in par-,rger the propagator was in fact determined by the shortest
ticular the gaugeN=0: geodesic connecting the pointsandy. The authors consid-

) ered a spacetime that was pure AdS before a certain space-
<x ! y> _ waNj DxDps(N) like hypersurface®, on which two. ma;sless poinlt pgrticles
H 0 entered through the boundary at infinity. From this it is clear

N that two points sufficiently far in the past &f can only be
Xexp( if [xp—N(p?+ mz)]d)\). (5) connected by geodesics that lie in the pure AdS part of the
0 spacetime. Thus, the geodesic approximation leads to the

) _ conclusion that, to the past of some hypersurface the
The argument below will be more transparent if we chang ropagator is just as it would be in pure AdS sphce.

the gauge fixing scheme to use a gauge condition that de- Nonetheless, at sufficiently late times, it was shown in

pends_ only on the path(x) through position spackThus, [15] that there are points outside the black hole such that the
we write shortest geodesic connecting them runs through the interior
i - of the black hole. It was therefore concluded that the propa-

<x — y> =f DNJ' DxDpA(x) gator (2) outside the black hole was sensitive to events oc-

H 0 curring inside the black hole.

1 In order to eliminate certain technical worries, let us con-
X ex;{ i J' [xp—N(p?+ m2)]d)\) , (6)  sider a family of generalizations of the spacetime constructed

0 in [15]. Imagine replacing the singular null particles with a

_ o N distribution of null fluid of compact support. Since there is
whereA(x) contains both the gauge fixing condition and theg |ocal gravitational dynamics in421 dimensions, the re-
associated Faddeev-Popov determinant. NoteAlta} will sulting spacetime is easily made identical to that[ 1]
depend only orx(X). . o outside of the region occupied by the null fluid. Until the

Now, to lowest order in the WKB approximation, per- formation of the black hole singularity, the resulting space-
forming an integral over some variable is equivalent to Solvyime is then smooth.f the field ¢ for which we compute the
ing the associated classical equation of motion and insertinﬁropagator does not couple to the null fluid, then the defini-
the result back into the action. Thus, we can do the integral§gn of the propagator on this spacetime remains just(Ex.

overN andp and write the result as follows: Thus, we have a complete specification of the propagator, up
. to issues associated with the black hole singul&rity.
— I . .
_ , ; Suppose now that we arrange things such that the two bits
— = | DxA L 7
<X H y> f XATCOeXIL O (D i fuid actually collide inside the black hole. That is,

suppose that at some event the supports of the two distribu-

whereL (x(\)) is the length of the patk(\) with exactly the  tions of fluid overlap. Note that, depending on the sort of null
same conventions as in E@). fluid used, various outcomes are possible. Some sorts of fluid

The factorA’(x) denotesA(x) together with the various would interpenetrate readily while other sorts would bounce
path-dependent measure factors arising from the correctionslidly off of each other. The outcome should affect some of
to the WKB approximation in integrating ovérandp. Iden-  the geodesics mentioned above that connect two points near
tifying dP=A"(x)Dx, we find that our Green’s function is infinity by passing through the interior of the black hole.
just the propagatof2). Note that solving the equation of
motion for N involves taking a square root. For the timelike
segmen_ts of path the restrlctlbl"bo_was used to choose the “In that case, as we will discuss below, it is known to be the time
appropriate pranch. F(_)r the spacelike segments, the appPropPL:iared 2-point function in the AdS vacuum.
a,te branch_ is determined by the, de_talls of the_measu_re Ayt js not, however, asymptotically AdS where the null fluid enters
discussed ii28]. Note that the action is an analytlp function the spacetime. We shall assume that this does not cause any further
of both N andp so that we expect no problems with the use

. ) complications.
of stationary phase methods here. Thus, the propagaita Such issues certainly exist. For example, if we take(Bgas the

definition of Eq.(2), the black hole singularity will imply thaltl is
not essentially self-adjoint and that some particular self-adjoint ex-
3A complete such gauge fixing cannot be a smooth function of théension should be chosen. Here, we simply assume that some such
pathx(\), but this need not concern us here. choice has been made.
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Now we see that we have a real contradiction at hand. Otion, but instead to some mixture of initial and final condi-
the one hand, we have the statement that the propagator théns. In this case, the propagator between points near the
early times is the AdS vacuum correlator—independent oboundary at late times may depend on events inside the black
what goes on in the black hole interior. Also, we know thathole as well. That is, it may be possible to choose a state or
the propagator satisfies the wave equation and so evolves #§iates in such a way that the two-point function reproduces
a causal fashion. Thus, the propagator at points outside thfe important qualitative features found in the calculation in
black hole can be expressed in terms of initial data on anjs). Such a stat¢or states will involve a mixture of initial

early hypersurface in a manner that is independent of wha{,q final conditions, reflecting the fact that the form of the

goes on in the black hole interior. Thus, the propagator OUtfwo-point function in[15] depends on the formation of the
side the black hole cannot in fact depend on events inside “ﬁack hole in the future.

?rizCerS:g{J-srhlzrlzI?adlrzed contradiction to the conclusion of Let us return to the two natural interpretations of the
P paragrapn. propagator mentioned above: as a time ordered expectation

The resolution seems to be that the geodesic “approxima\—/alue in some quasi-free state, and as a time ordered transi-
tion” is not in fact a valid approximatiofi.In retrospect, it d ’

seems quite likely that this approximation fails for such ation amplitude between two states. We note that either is

spacetime. Note that to arrive at the geodesic approximatioﬁ:,ompatlble with the above observations. In the case of the

one would use a stationary phase argument to solve the clagxpectation value, it may simply be the case that the quan-

sical equations of motion corresponding to the actionlum state itself is one that is naturally defined by a combina-

\/—.2 ) i i _ tion of retarded and advanced boundary conditions, and so is
m/ V—x°. While the stationary poinfthe spacelike geode- free 1o depend on events in the interior of the black hole. We
sic) does indeed lie on the original contour of integration note that the Hartle-Hawking state for an asymptotically flat
(real values o), this contour is not a steepest descent conyjack hole is an example of such a state that is naturally
tour through the stationary point. In particular, in a Lorentz-sgociated with boundary conditions in both past and future,
lan signature spacetime, a spacelike geodesic is not a path ghjje the Unruh state is associated only with boundary con-
minimal length. As a result, if one wishes to argue that thegitions in the past. In the case of the transition amplitude,
stationary point dominates, one must first analytically conysth states may involve such “mixed” boundary conditions,
tinue the action to complex values of the coordinates ang perhaps one is defined by retarded boundary conditions
attempt to deform the original contour to the contour of 304 one by advanced boundary conditions.
steepest descent. _ . In spacetimes that are asymptotically flat at both timelike
~ Now, the action involves the metr@,(x). To avoid the  ang spacelike infinity, the propagatt®) can be shown to
issue of the singularities, let us consider the smoothed spacgafine a transition amplitudgs0]. On the other hand, the
times with null fluid sources. Since the fluid density vanishesyork of Wald [31] effectively shows that Eq2) defines an
in an open regio_n, but not in the en_tire spacetime, .it is (F'ea_éxpectation value for globally static spacetintesthout ho-
that such spacetimes are not analytic and that continuation [zons. It is also known to give the expectation value of
problematic. Thus, it is not at all clear that steepest desceRfne-ordered fields in the Hartle-Hawking state on the
methods should succeed in this case, and we are happy {@uskal spacetime, though the status of this question on a
associate their failure with nonanalyticities of the spacetimegeneral black hole spacetime is not yet unders{@d We
While this seems to settle the issue nicely, we shoulqyj see that an expectation value is once again obtained on

mention for completeness that, if one excises the region of,e spinless BTZ spacetime and the associ&&# geon.
non-zero fluid density from the spacetime, the resulting

spacetime does have a real analytic atlas and can be contin-
ued. Presumably, excising the region occupied by the fluid
prevents one from deforming the contours as one would like.

Ill. THE GEODESICS IN AdS 3 AND QUOTIENT
SPACETIMES

We have argued in Sec. Il that stationary phase methods
C. Interpreting the propagator do not in general yield a valid approximation to the FPI

) . .. . propagator(2). Nevertheless, one may ask if there are cases
Having ruled out the use of the geodesic approximation if, which it does provide a valid approximation and, if so,

general, what are we to conclude about the full propagatolyhether geodesics passing behind the horizon play any im-
(2)? In principle, picking any two pointsandy in the space- portant role. We shall see in this section and the next that the
time, the path integral includes contributions from paths conzswer to both of these questions is in the affirmative.
necting them that explore arbitrarily far into the future. Asa | the present section, we consider the lengths of space-
result, even in the spacetime studied[i®], it is far from ;o geodesics in the AdS spinless BTZ, andi®> geon
clear that the propagator at early times is independent ofy,cetimes. As these spacetimes are real Lorentzian sections
events in the interior of the black hole. It seems likely thaty holomorphic complex manifolds, one may expect the geo-
the propagator does not correspond to a fixed initial condiyesjc approximation to succeed in these cases. Indeed, it is
known[15] to succeed in yielding the vacuum correlator on
AdS;. In the following section, we consider the propagators
"It is also a logical possibility that the approximation is valid, but obtained through this approximation, and compare to what
simply unstable in a manner that causes higher order effects at eaye know about the field theory. This will allow us to explic-
times to evolve into lower order effects at late times. itly check the agreement with certain CFT calculations and
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to trace the role of geodesics passing through the interior of tanhy, cose ., =cog + B), (13
the black hole. The final agreement provides additional con-
firmation of the accuracy of the geodesic approximation inyhich implies that
these cases.

In fact, these calculations are not truly independent. Since
the spinless BTZ and’?> geon spacetimes are quotients of

AdS;, a method of images argument together with analytic |ntegrating Eq(11) yields the length of the geodesic con-

— = Pm=Pm- (14)

continuations and the uniqueness of the Euclidean Greenigecting (r, v, * @)

functions shows that the success of the geodesic approxima-

tion to Eq.(2) in reproducing the vacuum correlator on AdS L(@m,— @m) =2 IN[sinhy,sine,

implies that it must also approximate the Hartle-Hawking

correlation function for the spinless BTZ hole and the related +(sintf xpsir? o+ 1)Y?. (15

geon correlation functiosee[25]) on theRPP? geon. Thus,
in these cases the FPI propagator gives the expectation value

i A J - B. Spacelike geodesics on the spinless BTZ hole
of a time-ordered product of fields in a quasi-free state.

The spinless BTZ hole is obtained by taking the quotient
of the regionT!>|X?| of AdS; by the isometry exp(@r . &),

whereé is the Killing vector
The AdS; spacetime can be constructed as the hyperbo-

A. Geodesics of Adg

loid d d
=X —+T —. (16)
(TH2+(T2)2— (X1)2— (X?)2=1 (8) JT axX
in a flat embedding space with metric To express this geometry in the Schwarzschild-like coordi-

nates of the original papef&2], we introduce on the region
ds?=—(dTH?—(dT?)?+ (dXH?+ (dX?)% (9)  X?>|T?|, T'>0 of AdS; the coordinatest(r,¢) by

Here, we are choosing units so that the AdS length skcale r

(related to the cosmological constaigt one. A set of intrin- Tl=r—COSW+¢),
sic coordinates on AdSis given in terms of these embed- -

ding coordinates by

r
. X1: P
T!=coshy cos7, T?=coshysinr, i sinh(r , ¢),

X!=sinhysing, X?=sinhy cose, (10) r2 12
T?=|—5—1| sinh(r.t),
where ¢ has period 2r, and 0< y<. For the hyperboloid, s
7 is also periodic with period 2, but we pass to the cover-

ing space, and take to run betweent . In terms of these X2= r_2_1 llzcosm t) (17)
coordinates, the metric is rs o
— 2 ; 2
ds?=dy?+sinff yde®— cosif xd7* t and ¢ take all real values,>r . , and the metric takes the
2 \2 1+p2)\2 form
_ _ _ - ds?=—N2dt?+r2d¢?+ —dr?; N?=r?—8GM,
In the second equality, we have defined a new radial coordi- N
nate p=tanh(/2), so O<p<1. Fixed r surfaces have the (18
Poincaredisk geometry, and the dual CFT is defined on a ) ) S
cylinder isomorphic to the@=1 boundary. where M=r%/(8G). The identification by exp(@r¢)

We will need the length of the unique geodesic travelingdmounts to {r,$)~(t,r,¢+2m), and with this identifica-
between €, xm,* @m). Now, since the metric at fixed is  tion the coordinatest(r, ¢) cover one exterior region of the
that of the Poincarelisk, equal-time geodesics of E¢l)  BTZ hole.

are circle segments obeying the equation We are interested in geodesics between two poxtand
Xo, in the exterior region of the hole. We take the valueg of
tanhy cog ¢ — a)=cog ), (12 at both points to be the same. To parametrize the locations of

the points, lety; andy, be two points in Ad§, respectively
where the geodesic reaches the=» boundary atp=a  at (t;,r,¢;) and ¢,,r,¢,), and letx; (respectivelyx,) be
+ B. Settinga=0, the unique geodesic between the bound-the equivalence class gf (y,). We write A p= ¢p,— ¢»; and
ary points (r, = 8) intersectsy= xn, at ¢,, which are fixed At=t,—t;, and we assume that ¢+ 2m7n|>|At| for all
by integersn. For fixedty, t,, ¢4, and ¢,, it is then straight-
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forward to show that for sufficiently largethere are count- X2=—/(r/r;)?—1 coshr . t,), (22)
ably many spacelike geodesics connectiagand x, in the
BTZ hole.

) .. whereneZ. As
To calculate the lengths of these geodesics, we exploit the

symmetries to argue that the geodesic distance between ~ "
andy, in AdS; is a function only of the chordal distan& D(Y1.Yz;n) =2(r/r ) {COSNI ;. ($2— py + 7+ 27n) ] -1}

in the embedding space, +2[(r/r )2 1]{cosHr , (ty+t;)]+1},

D=—(ATH2—(AT?2+(AXY)%+(AX?)? (23

2 2
:gsinﬁ(uA(b) _4(r_2_1 sinrﬁ(r+At)_ the lengthsL,(x;,X,) of these geodesics have the lange
s 2 s 2 expansion
(19
~ 2r2
By considering a simple example of a spacelike geodesic, we exg L,(X;,X,)] :Lz{cosr[r (Pr—p1+m+2mn)]
can show that the relation between chordal distance and ry
proper lengtiL is +coshir, (t,+t)}+0(1).  (24)
) D
sintf(L/2)= 7 (200 It is precisely this class of geodesics that pass through the

black hole interior. We note that all such geodesics are

It then follows from the quotient construction that the longer than the shortest geodesic connecting and x,
lengths,L (X1 ,X,), of the geodesics connectimg andx, in  through the exterior region. Thus, at first sight one might

the BTZ hole have the largeexpansion think that geodesics passing through the interior cannot be
relevant to leading order. Nonetheless, we shall see in Sec.
2r2 IV C that they do provide the leading contribution to the
exr[Ln(xl,XZ)]=r—2{cosr[r+(A¢>+ 2mn)] two-particle correlations in the geon vacuum, and that Eq.
+

(24) reproduces expectations based on the dual CFT.
— coshr At)}+0(1), (21
IV. MATCHING TO THE CFT
whereneZ.
It turns out that, due to difficulties in performing the vari-

C. Spacelike geodesics on th&l’? geon ous mode sums, there are few exact results for the bulk cor-
relators in the spinless BTZ Hartle-Hawking state and in the
geon vacuum. We will therefore proceed by comparing the
limiting behaviors of Eqs(30) and (24) with expectations

Recall[23] that theRPP? geon is obtained by taking the
quotient of the regio*>|X!| of AdS; by the isometry that

is the composition ofJ;:exp(mr.¢) and the involution  haseqon toy models of the dual CFT. We shall see that the
3o (T7,T%, X5, X%)—>(T7,T%, X%, — X7). The resulting space-  5qreement is surprisingly good. This supports both the accu-
time is not orientable, but one can construct a related O”emr'acy of the bulk geodesic approximation in these cases and
a?le spacetime from the ﬁ’rOdUCt of the BTZ spacetime withg apility of the toy models to capture much of the physics
T". If the moduli of theT" are chosen so that there is an 4t the CET. We first review the calculation showing that the
orientation-reversing involutiod, of the torus, then one ob- geodesic approximation in AdSreproduces the vacuum
tains an orientable spacetime by taking the quotient Wiﬂbropagator, and then show that the asymptotic behavior of

respect tal;°Jz0dy. _ Eq. (24) reproduces the expected two-particle correlations in
Now, lety, andy, be points on Ad§ as above, respec- BTz and the geon.

tively at (t;,r,¢,) and ,,r,¢,), and suppose thgt ¢
+2an|>|At| for all integersn. Let x, andx, be two points
in the exterior region of the geon, such that(respectively
X5) is the equivalence class gf (y»). For sufficiently large We will now review the calculation of the equal time
r, one class of spacelike geodesics connectin@ndx, is  correlation functions in the dual field theory for the AdS
then obtained precisely as for the BTZ hole, with the resuligeometry using th&bulk) WKB approximation. A scalar
(21) for their lengths. The second class of geodesics arisefield of massmin a spacetime which is asymptotically AgS

A. The propagator in AdS;

from the AdS geodesics connecting, to the pOintshflz;n. is dual to an operato® of conformal dimensionA=1
located at + 1+ m?. The fiducial metric for the CFT on the cylinder is
L related to the induced metric obtained from Efjl) by a
T =(r/r)coshr (P +m+2mn)], diverging Weyl factor. To relate operators to expectation val-
1 ) ues, we need to regulate this behavior by cutting off the
X2=(rlr)sinfr (¢t m+27n) ], spacetime at a boundary defined by
T2: V(r/r+)2_15inhr+t2)! pm(T!(P):]-_E(Tv(P)! E(T,(P):E(T,_QD), (25)
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where € is some smooth function of the boundary coordi- e(7,¢) =€(7,— ¢) guarantees that a corresponding result
nates. The symmetry of undere— — ¢ is chosen for sim- holds for any such symmetric choice ef So, to leading
plicity. For the calculations relating to the BTZ black hole order ine, the geodesic length between the poiBi8’ is

and geon, we will take the cutoff surface to be at constant

in the BTZ coordinates. According tf7], the Feynman , 2 sing
propagator foiD in the dual CFT is obtained from the space- L(B,B")=21In e | (28)
time propagator between the corresponding points on the
cutoff boundary ap,, (also sed3,4]), The bulk propagator is thus

Gd(( Ta(P)v(Tlrcpr)): G_ZAGB(BaB/)1 (26) 2 S'n(P —2A
whereB=(7,¢,pm(7,¢)). We will only need the propagator G(B.B ):( ) (29)

when7=7". For B,B’ causally unrelated, the Green’s func-
tion Gg(B,B’) in the leading order semi-classical approxi- in the e—0 limit, where the boundary metric isls?

mation is given by a sum over geodesics: =(1e(r,0)?)(—dr*+de?). This correctly reproduces the
CFT two-point correlator of3] for A7=0 andA¢=2¢,
G(B,B’)zE e ALg(BB"). 27) since the CFT is defined on the Weyl rescaled cylinder with
9 metricds’= —d 7+ d¢?.

Herelq is the (rea) geodesic length between the boundary
points and only spacelike geodesics contribute siree’.

By rotational invariance, it is sufficient to perform the  We now apply the bulk geodesic approximation method
calculation foro=—¢'. For the particular case-1e(r,¢) of [15] to the Green'’s function on the boundary of the spin-
=tanh(y/2)=const the length of the geodesic connecting less BTZ hole, using the geodesic leng®1). The geodesic
B and B’ is given by Eq.(15). In fact, the symmetry approximation to the path integré2) reads

B. The propagator in BTZ

<¢(X1)¢(X2)>FP|IJ dPe‘AL“”~2 exd —ALn(Xq1,X2)]

n

r2+ A 1 i A+1
:<?) n——w{cosr[r+<A¢+2wn>]—cosm+m>}ﬁ+O{(r_2) 1 (0

This is the bulk propagator; to relate it to the bogn(_jary (X1X2) geor= (X1X2) BTz + (X1J(X2) B TZ (31)

propagator, we observe that at largéhe boundary metric in

the BTZ spacetime igls’=r?(—dt?*+d¢?). Since we want

the CFT to live on the same cylinder as above, the boundary/N€€ (X1X2)sr2 represents the bulk FPI propagator on the

propagator is given b, =r22Gg in this case. The rescaling Spinless I_3TZ hole. Here, we talkkg andx, to lie (_)utS|de the _

thus precisely cancels the 2% in the prefactor. geon horizon so that we may naturally associate them with
We note that this Green's function is manifestly periodic WO POINts in an asymptotic region of the BTZ black hole.

in the global timet in the imaginary direction, and the period 1he first term (xix;)grz) was calculated in the geodesic
27/t is the inverse of the spinless BTZ temperature. It js@PProximation in Sec. 1llB while the second term
thus plausibly identified with the propagator in the analogud{X1J(*2))etz) is given in the geodesic approximation by
of the Hartle-Hawking state for this black hole. We also noteEd- (24)- The geodesics that contribute to this second term
that the geodesics used in this calculation lie entirely outsid@® onger than the shortest geodesic contributing to
the black hole. This calculation successfully reproduces th&X1X2)srz, SO that one might at first think tha,J(xz))erz
result given in8] for the spinless BTZ black hole. A similar €N be neglected. However, let us now Fourier transform this

agreement is obtained for the rotating BTZ black hole in thg/€Sult in order to compute the two-particle correlations in the
Appendix. geon state. Since the energies of the two particles cannot add

to zero, the time translation invariance of the BTZ hole is
enough to guarantee that the contributions from the first term
(with both points in the same asymptotic regioranish.
We now proceed to address the dual CFT propagator asdowever, the contribution of the second term need not van-
sociated with the bulk FPI propagatf;X;) geon ON theRP? ish, corresponding to the fact that the geon does not itself
geon. Now, the corresponding path integral can be written akave a time translation invariance. Thus, we see that the
a sum of two contributions: two-particle correlations in the geon state can be directly tied

C. The propagator in the single-exterior black hole
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to the second term above, which results only from geodesicimteracting CFT, the correlator will similarly not be periodic
that pass through the interior of the BTZ black hole. In termsn time, and so will not be a simple combination of these
of the geon spacetime, the result is again that only geodesiciscrete modes. However, we may attempt to extract infor-
passing behind the horizon can account for the two-particlénation analogous to E¢32) by modifying the Fourier trans-
correlations. form of Eq. (24) to take into account the fact that the bulk
Thus, we might try to match these correlations to those?ropagator is not periodic in time. We shall see that the
computed in[23] for a toy model of the CFT stategeor) agreement Is Impressive. .
dual to theRI’2 geon, presumably with linearized quantum  Inthe tqy(frge) CFT, the oscillator modes that correspond
fluctuations in the geon vacuum state. The toy model reto the annihilation operator, . in Eq. (32) are[23]
placed the CFT by a free scalar field and found, in the case of
a nontwisted field, the correlations U. = 1 e-in(t—eg) (33)
n,e
(=180 a
> sinr(qyrn/r;) .+ (32 wheren=1,2,... ande==1. If the Green’s function
G(t1,01:t5,¢,) had the periodicity of the oscillator modes,
whered, . is the annihilation operator for the mode with we would thus have
frequency quantum number n=1,2, ..., and thendex e

<geoﬂdn,5dn’,e'|geor) =

takes the value 1 for right-movers anrdl for left-movers (d, dpr r>:EJZﬂdtlfzwdtZJZWd¢1f27d¢2
[see Eq.(33) below]. Here and below we ignore issues in- meTne 473 Jo 0 0 0

volving the zero moder(=0). As a consequence of rota- ) .

tional invariance, the correlations are between a right-mover xexgi(nt+n't;—ned,

and a left-mover with the same frequency. We note that this —n'€ )Gty b1ty o). (34)

nontwisted free scalar field has conformal weight 0.

We now show that this result can be obtained from theWe shall modify Eq.(34) to take into account the lack of
geodesic approximatiof24) to the bulk Green'’s function. It periodicity shortly.
is clear, however, that due to the simplified nature of the toy As discussed above, the partG{t;,¢;t,,¢,) coming
model, one should not expect to be able to Fourier transfornfrom the geodesics that do not pass through the geon does
the asymptotic values of the propagator and obtain(B.  not contribute to(d,, ., .-). The part ofG(t;,¢1;t5,¢))
directly. In particular, the bulk propagator will not be built coming from the geodesics that do pass through the geon is,
from only the discrete mode spectrum of E8Q). In the full ~ from Eq. (24),2

r2\4 2 1
(?> k;oc {coshir, (p,— ¢+ m+27k) ]+ coshr, (t,+t)]}> (35

As Eq.(35) depends onp, and ¢, only through the combinatios,— ¢4, integrating overp,+ ¢4 in Eq. (34) is immediate.
Next, we observe that each term in E®5 depends ong,— ¢, and k only through the combinatiorb,— ¢+ 27k.
Integrating ¢,— ¢, from zero to 2r and summing ovek is thus equivalent to integrating any one term in E2p) in ¢,
— ¢4 from negative infinity to positive infinity. Writing the integration in terms of the variablee(¢,— ¢+ 7), we obtain

- 214 ' '

nn’ r 27 27 % exdi(nt;+n’t,+n
neln’ e’) = 5 One,—n'e'\ T 5 tl t2 y '

dy..d Sne- (D =] | dty | dty| d UL L /. (36)
.eln’, o2 One 2 0 0 —o " {cosHr.y)+ coshr . (t,+t1)]}

We must now face the fact that the integrand in &®) is not periodic int; andt,. We reinterpret Eq(36) by hand so that
t,+1t1:=« is integrated oveR butt,—t; over 4sr. The integral ovet,—t;, combined with the Jacobian that arises from the
change of variables, yields thenrd,, .. The factoré,. _,. can thus be replaced by, _ .., and we find

2\A .. . ,
%) J’imdaﬁxdy exdin(a+y)] -

[cosKr , a)+ coshr y)]*

n
<dn,edn',e’>:;5n,n’5e,75’(_ 1"

Changing variables ta=a—y, v=a+Yy, gives finally[32]

8The asymptotic metric in the geon spacetime is the same as in the BTZ spacetime, so the rescaling relating the bulk and boundary
propagators is the same as in the previous subsection.
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n NI du = dvexpinv)
<dn,edn’,e’>zﬂ5n,n’5e,fe’(_1) 7 f f

~=[coshr ,u/2)]* ) —=[coshr ,v/2)]*
n I'(A/2)\? [A in A in
-5, (—1)" 2(A-1) IR | o] e
2776I”|,n 56,*6( 1) (r+) ( I"(A) ) F 2+r+ F 2 r+ (38)
|
In the limit A—0,, Eq.(38) reduces to Tl=Jacoshr ¢—r_t),
2n _,[in in X'=\Ja sinhr ¢—r_t),
(dn,edn’,e’>=_5n,n’5e,75’(_ H(ry) 2F<_)F( - _) *
A ()"0 e e a9 T?2=\a—1sinhr t—r_g),
_HX 2sinf(an/r,) (39
X?=\a—1 coslir ,t—r_¢), (A1)
which agrees with Eq.32) up to the factor 4/, . This factor
may be a consequence of our having neglected any pre-.
exponential factors in the bulk Green’s function, or from ourWit
by-hand reinterpretation of thet,dt, integrals in Eq.(34).
This result verifies the importance of geodesics passing (22
behind the horizon in obtaining the proper 2-particle corre- a= —, (A2)
lations, and shows that the toy free CFT does indeed match ri—rz,

well with the bulk spacetime results. As discussed earlier, it

is only in special spacetimes which are appropriately analytic

then \)//ve capn expegt the geodesic approxiprﬁatirc))n to %old. A)\/s wherer>r, , —e<t<ew, and—w~<¢$<, and the param-
result, the fact that our calculation relies on geodesics pas&!€rsr = satisfy Osr_<r, . Forr_=0, this transformation
ing behind the horizon of the black hole is consistent with"®dUCeS to the spinless transformatia).

the causal nature of the FPI propagator and with the ideas of ntroducing the pointy, andy, in AdS; as in Sec. 11l B,
[13] that one must look beyond simple products of local'®SPectively atty,r,¢,) and (2,1, ¢,), we find

operators in the CFT to encode useful information about the

interior of a black hole. D(y1,Ys)=2a[cosHr . A¢—r_At)—1]—2(a—1)

X[cosHr  At—r_A¢)—1]. (A3)
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APPENDIX: THE PROPAGATOR FOR THE ROTATING (A4)
BTZ HOLE

In this appendix we generalize the treatment of Secs. Now, in the region of Ad§ covered by the exterior BTZ
11 B, IVB to show that the bulk geodesic approximation coordinates, the rotating BTZ quotient construction amounts
method of[15] reproduces the Green’s function in the Poin-to the identification {,r, ¢)~ (t,r,¢+2). Let againx, (re-
carevacuum(see[8] and the references thergion a single  spectivelyx,) be the equivalence class of the poyat(y,).
boundary component of the rotating nonextremal BTZ hole Assuming|A ¢+ 27n|>|At| for all integersn, and proceed-
The generalization of Eq$17) to the rotating case is the ing as in Sec. IV B, we find that the geodesic approximation
rotating exterior BTZ coordinate transformatip2@] to the path integral2) reads
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r2\% 2 1 r2
(P) n=-= {cosr[r+(Aq§+2wn)—r_At]—cosr[r+At—r_(A¢+27rn)]}A+O{(r_2

]

(A5)

The boundary-dependent factor in the leading term in(B§) atr — can be rewritten as

1

>

n=-—w

[Sim’{%(r.,_—r_)(A(ﬁ"‘At"‘ZWn)

sinr{%(r++r_)(A¢—At+27m)

(A6)

-

which is recognized as the dominant factor in the Green’s function in the Poivaateim on the boundary of the rotating

BTZ hole (see[8] and the references thergin
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