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Towards stable evolutions of excised black hole spacetimes via the ADM equations:
A spherically symmetric test
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Within the numerical relativity community, much effort has been devoted to simulate the coalescence of
black hole binaries. A key problem in attempting such a simulation is the handling of the singularity present in
each hole. A very promising approach to address this issue is the excision of the singularities from the
computational domain. However, to date there have been only a few restricted examples in the literature
showing that this approach yields long-term stable simulations in 311 formulations. It has been argued that the
form of the Einstein field equations normally used, namely, the Arnowitt-Deser-Misner~ADM ! equations,
when applied to black hole excision, could be the cause of instabilities. By means of perturbative and numeri-
cal studies in spherical symmetry@one-dimensional~1D!#, we show that successful numerical solutions of
excised, single black hole spacetimes can be constructed with the ADM formulation of Einstein equations if the
appropriate choice of gauge or coordinate conditions is made. Preliminary 3D results are consistent with the 1D
studies.

PACS number~s!: 04.25.2g, 04.30.2w
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I. INTRODUCTION

Since the mid 1970s, variations of the so called Arnow
Deser-Misner~ADM ! formulation @1# of the Einstein field
equations have been the favored system of equations by
numerical relativity community for studies of both cosm
logical and compact-object spacetimes. In the following,
use ‘‘ADM’’ as a generic term referring to the class of 311
formulations of Einstein equations that have as fundame
variables tensors related algebraically to the ADM quanti
gi j and p i j . Given a foliation of the spacetime,gi j denotes
the intrinsic metric of the spacelike hypersurfaces that de
the foliation, withp i j the momentum density associated w
gi j . Many formulations use, instead ofp i j , the extrinsic cur-
vatureKi j of the hypersurfaces. In these variables, Einst
equations become first order in time equations for the me
and the extrinsic curvature. For this reason, these system
equations are calledġ-K̇ formulations. Throughout this pa
per, spatial indices are denoted with latin letters, and u
are such thatc5G51.

With the ADM approach, researchers have been able
study a variety of problems, and interesting physics has b
obtained from simulations produced with its numeric
implementation. However, at present, we face the most
manding task to date: to simulate a binary black hole mer
and obtain the gravitational radiation wave forms produc
in such a system. Black hole collision simulations must
done in a fully three-dimensional~3D! setting because of th
absence of symmetries; as a consequence, the computa
task is formidable in terms of accessible resources. E
situations with special symmetries that are intrinsically 1
such as the case of a single black hole, have proven to b
incredibly challenging task, requiring much more effort th
had been anticipated. Instabilities observed in 3D simu
tions have raised two distinct types of still open question
0556-2821/2000/62~4!/044037~11!/$15.00 62 0440
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The choice of ADM-like formulations.That is, what is the
impact of the choice of a formulation of Einstein equatio
on the stability properties of its numerical implementatio
For example, would formulations or modifications where t
constraints are enforced improve the situation? Would
flux-conservative form aid in the solution of problems wi
black hole excisions? Would a well posed system be cap
of ‘‘removing’’ instabilities; would the fact that the solution
to well posed systems cannot grow arbitrarily fast simpl
the attainment of a stable implementation of the system?

The choice of gauge conditions.That is, what is the effect
of the choice of gauge or coordinate conditions on the on
of instabilities? Are some choices of gauge conditions m
convenient in handling black hole excision? Is there indi
tion that successful prescriptions of gauge conditions wo
be global, or, could a set of gauge conditions, with ea
condition applied in different sectors of the computation
domain, have a better chance of preventing the presenc
instabilities?

In response to the first class of questions, in recent yea
number of new formulations have been introduced as ca
dates to model the Einstein equations. These formulati
were obtained with different goals in mind, namely, expli
hyperbolicity @2–6#, flux conservation@7#, separation of
modes@6,8–10#, etc. Each of these formulations has at le
one of these nice features and is therefore enticing. Unfo
nately, a common drawback is that they involve more, and
some cases many more, variables than in the standard A
formulation, thus imposing further demands on computer
vironments. Furthermore, preliminary implementation of s
gularity excision in some of these formulations have sho
similar problems to those seen in the traditional ADM fo
mulation @11,12#.

On the other hand, at first sight the standard ADM form
lation would seem to suffer from some disadvantages sinc
is neither explicitly hyperbolic nor are the equations e
©2000 The American Physical Society37-1



nc
fo
o
u
e
ue
h
n-

t

n
n
en

e
3
lo
ns
b
on
co
g
ity
o
u
o

ac
bl
a
ly
e
e
r
ec

o
ed

se
-

ion

la

th
sid
ity
th

a
in
id

to
le-
we
on-
di-
nd-
e’’
ruc-
In
we
gh
’’
in-
s.

lve
in

lu-

hat

e-
abil-
s.

yet

nds
1

hori-
In
et-

or
nd

i-
u-
uge

izon
un
set-
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pressed in a flux conservative form. Yet, years of experie
with this system, which has the minimum set of variables
a 311 formulation, puts at least at present the ADM form
Einstein equations on an equal footing with the others. F
thermore, one should keep in mind that much of the progr
obtained by other formalisms has been built on techniq
first developed for the ADM system, and hence researc
this direction is important for its own merits and for its co
sequences on newer approaches.

Here, using the standard ADM formulation, we presen
detailed study closely related to the class of questions
connection with the choice of gauge. For simplicity, we co
sider only the spherically symmetric case, both from the a
lytic and numerical points of view. This 1D study has be
motivated by the difficulties, i.e., ‘‘instabilities,’’1 in our ap-
plication of the ADM formulation to the evolution of singl
black hole spacetimes in a 3D setting. Single black hole,
evolutions are used as a benchmark problem in the deve
ment of numerical codes to simulate black hole collisio
The observed instabilities in those 3D simulations could
of numerical origin, for instance, unstable discretizati
schemes, or they could also be already present at the
tinuum level. In addition, boundary conditions and gau
conditions could play a fundamental role in the stabil
properties of the simulation. The possible numerical and c
tinuum sources of instabilities are often coupled and diffic
to separate. By considering the problem in 1D, the task
identifying the sources of instabilities becomes more tr
table. Of course, in order to obtain better insight applica
to 3D situations, one must try to mimic in the 1D setup wh
takes places in the full 3D problem. Even then, it is like
that some of the numerical sources of instabilities are dim
sional dependent and thus will be missed by the pres
study. In spherical symmetry there have been a numbe
papers in the literature that discuss and use excision t
niques in black hole evolutions. Seidel and Suen@13# pro-
posed a causal differencing algorithm in a paper that dem
strated black hole excision using a horizon lock
coordinate. Marsa and Choptuik@14# use a partially con-
strained evolution in addition to a gauge choice that impo
horizon-locking also, Scheelet al. @15# use causal differenc
ing with a hyperbolic formulation of the 311 equations
which requires the addition of constraints to the evolut
equations, and lastly Gundlach and Walker@16# demonstrate
the use of causal differencing for the Bona-Masso formu
tion of the Einstein equations.

In particular, causal differencing takes advantage of
fact that the causal domain of dependence of points in
the apparent horizon are tilted away from the singular
Hence, by deforming the numerical integration stencil,
evolution equations can be integrated without the need
specifying boundary data at inner boundary points. The
parent horizon is that topological two sphere whose outgo
null rays have zero divergence, and, if it exists, it lies ins
the event horizon@17#.

1We explain below our heuristic use of the term ‘‘instability.’’
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We focus our attention on unconstrained evolutions and
situations where horizon-locking coordinates are imp
mented such that the algorithms mimic the 3D codes that
use. The basic task at hand is to solve a set of coupled n
linear time-dependent partial differential equations. In ad
tion we have to pick boundary conditions at the outer bou
ary of the computational domain, and construct ‘‘stabl
finite difference discretization that respects the causal st
ture of the spacetime in the vicinity of the excised region.
addition, since after all we are solving Einstein equations,
still have four gauge degrees of freedom to specify throu
the lapse and shift vector at every time slice. A ‘‘bad
choice of lapse function and shift vector or a failure to ma
tain ‘‘gauge conditions’’ can lead to coordinate pathologie
Lastly, the Einstein equations in the ADM or 311 form
separate into a set of four constraint equations and twe
first order in time evolution equations. In our 3D, and here
our 1D codes, after the initial time we solve only the evo
tion equations and hence have anunconstrained evolution.
As a result, constraint violating modes might be present t
could lead to a failure of a numerical simulation.

In the 3D results thus far, we have found a peculiar d
pendence on the placement of outer boundaries on the st
ity of analytically stationary single-black-hole evolution
Placing outer boundaries between 3M to 4M , with M the
mass of the black hole, can yield stable evolutions in 3D,
moving the boundaries outwards from 4M leads to un-
bounded growth which has a characteristic time that depe
sensitively on the location of the outer boundary. Figure
shows the percentage error in the area of the apparent
zon for a stable 3D run with boundaries placed at 3.33M.
this run the apparent horizon oscillates radially before s
tling. Figure 2 shows thel ` norm of the residual of the
normalized Hamiltonian constraint as a function of time f
various runs in 3D. Note the dependence of stability a
maximum runtime on the location of the outer boundary~de-
noted byR0). In these evolutions, we utilize gauge cond
tions ~lapse and shift! that are obtained from an exact sol
tion. Hence one of the possible effects is that the ga

FIG. 1. The percentage error in the area of the apparent hor
is shown for a 3D run with the outer boundary at 3.33 M. This r
was stable with the apparent horizon oscillating radially before
tling down to about 3% error.
7-2
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TOWARDS STABLE EVOLUTIONS OF EXCISED BLACK . . . PHYSICAL REVIEW D62 044037
behavior may not have the anticipated analytical effect,
cause of differences arising from numerics during the cou
of the evolution. Also, for boundary conditions in these 3
evolutions, we use Dirichlet boundary conditions to spec
the known solution on the outer boundaries. These may
lead to reflections that perturb the system and add comp
tions to treatment of such questions as to whether the sys
is well posed.

In preliminary numerical evolutions of single black hol
in spherical symmetry, we found similarly stable or unsta
evolutions based on the location of the outer boundary
addition we found that improvement of resolution seemed
improve the maximum runtimes of the unstable runs. Thi
consistent with results due to Gundlach and Walker@16# who
evolved a Schwarzschild black hole using the same choic
lapse and shift as us~ingoing-Eddington-Finkelstein coordi
nates! but with a different formulation and differencing o
the 311 equations.

In a fully 3D evolution, often the task of separating o
the source of unbounded growths can be difficult, and
carrying out a process of elimination may be time consum
due to the resource requirements of 3D simulations. T
prompted us to carry out a 1D study which we report h
that hopefully will help to understand the observed behav
in 3D simulations. We address first some of the questi
raised from a numerical point of view and then from
analytical point of view. We use, as closely as possible,
same numerical techniques, boundary conditions, gauge,
cretizations, and initial data used in the 3D case. We fo
on qualitative similarities between the 3D and 1D time ev
lutions of Schwarzschild black holes and investigate meth
allowing long-term evolutions.

Section II briefly reviews the ADM formalism we use an
introduces the spacetime under consideration, namely th
a single black hole. Sec. III presents a numerical study of
1D situation as compared to that in 3D. Section IV conta
a perturbative study of the 1D problem which shows h
gauge and constraint violating modes can be genera

FIG. 2. Thel ` norm of the normalized Hamiltonian constraint
shown for a series of runs in which the 3D grid spacing was k
fixed and the location of the outer boundaryR0 was moved progres
sively outwards. Note that for increasingR0 the maximum runtime
decreases. TheR053.33M run is stable. This sort of behavior i
qualitatively similar to what is seen in spherical symmetry.
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modes that could harm the numerical evolution of the f
system. We can see that the results of this analysis are
sistent with those from the numerical study in that we sh
how a simple gauge choice eliminates the unstable cou
constraint violating gauge modes. We conclude with a b
discussion on the implications of this work on 3D simul
tions using not only the ADM approach but also other fo
mulations. Applications of these ideas to the much more
ficult 3D case are underway. Preliminary 3D results a
consistent with the 1D findings presented in this work.

II. THE ADM SYSTEM

Our study is based on the ‘‘standard’’ ADM formulatio
of the Einstein equations@1#. This ġ-K̇ system of equations
reads

~] t2Lb!gi j 522aKi j , ~2.1!

~] t2Lb!Ki j 52¹ i¹ ja1a~Ri j 1KKi j 22KimK j
m!,

~2.2!

with Lb the Lie derivative with respect to the shift vectorb i ,
a the lapse function,¹ i andRi j , respectively, the covarian
derivative, and the Ricci tensor associated with the spa
metric gi j ~with inversegi j ), and K5gi j Ki j . Additionally,
the following equations represent constraints on the fi
variables, known, respectively, as the Hamiltonian and m
mentum constraints:

R1K22Ki j K
i j 50, ~2.3!

¹ j~Ki j 2gi j K !50. ~2.4!

This set of 16 equations, Eqs.~2.1!–~2.4!, naturally de-
fines an initial value problem. Initial data satisfying the co
straints~2.3! and~2.4! are given at some hypersurface. Th
the field variables are evolved to the future by means of
evolution equations~2.1! and~2.2!. Notice that, in principle,
there is no need to enforce the constraints during the ev
tion as theyshouldbe preserved@1# in a consistent numerica
implementation; however, one might freely add them to
evolution equations in order to preserve stability or to n
merically preserve satisfying the constraints. Our basic e
lution schemes arefree evolutions which do not enforce
these constraints.

Several studies exist in the literature about stability
linear waves, not only for the ADM system but also f
newer systems@9,18,19#. Unfortunately, results obtained i
these studies are not readily applicable in cases which are
approximately Minkowskian. Here we are specifically inte
ested in analyzing the behavior of the ADM system wh
modeling a black hole spacetime in the spherically symm
ric 1D case, and we study a single black hole expresse
terms of ingoing Eddington-Finkelstein coordinates. Th
choice is motivated by the fact that, in these coordina
surfaces of constant coordinate time ‘‘penetrate’’ the ev
horizon. The essence of black hole excision is the remova
the singularity while preserving the integrity of the spac
time accessible to observers outside the black hole. As o

t

7-3
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LUIS LEHNER et al. PHYSICAL REVIEW D 62 044037
nally suggested by Unruh@20#!, this is possible only if the
excised region is fully contained within the event horizo
thus the need to have access to the interior of the black h

The line element of the spacetime of a single black h
expressed in ingoing Eddington Finkelstein, spherical co
dinates reads

ds252S 12
2M

r Ddt21
4M

r
dtdr1S 11

2M

r Ddr21r 2dV2,

~2.5!

where dV25du21sin2udf2. Given that in this case the
spacetime ADM metric is of the form

gmn5S 2a21grr b
rb r grr b

r 0 0

grr b
r grr 0 0

0 0 guu 0

0 0 0 guusin2u

D ,

~2.6!

Eq. ~2.5! implies that

a5S 11
2M

r D 21/2

,

b r5S 2M

r Da2,

grr 5a22,

guu5r 25
gff

sin2u
,

Krr 52
2M

r 3
~r 1M !a,

Kuu52Ma5
Kff

sin2u
,

where the extrinsic curvature components are obtained f
the ġ Eq. ~2.1!.

III. NUMERICAL ANALYSIS

Our numerical analysis of the onset of instabilities w
carried using two second order accurate spherically symm
ric codes. One of them solves the full nonlinear set of E
stein equations. The other code solves the linearized ver
of these equations. Both 1D codes closely resemble the
nonlinear 3D code written by the Binary Black Hole Gra
Challenge Alliance@21# and its revision, theAGAVE code
@22#. Hence, the results obtained with these 1D codes
hopefully be applied to the 3D model. As with the 3D cod
the singularity is excised from the computational doma
and causal differencing@21# is used to discretize the equa
tions. Note that, due to the causal properties of the sp
time, if the inner boundary is placed inside the horizon,
04403
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inner boundary data are needed; the excising boundary
comes the analog of an outflow boundary for supersonic
ids. Outer boundarydata are provided byblending@23# the
numerical solution to the analytic solution on a region of s
M. For the linear evolutions, this corresponds to blending
vanishing perturbations. In all cases, the simulations co
spond to evolutions of a black hole of massM, the inner
boundary is placed atr 5 lM and the outer boundary i
placed atr 5nM ~with l ,nPN). We studied the stability of
the evolution and its dependence onl andn.

Throughout the present work we adopt a pragmatic d
nition of stability. In rigor, a numerical implementation
called stable if the solutionu at timeT satisfies@24#

uu~ t5T!u<eaTuu~ t50!u, ~3.1!

for some constanta>0 independent of the data. However,
numerical simulations of black hole spacetimes, it is e
pected that the system at late times will approach a station
spacetime, and in an appropriate gauge, the solution is
expected to have an exponential form. In the following w
will heuristically call a solutionstableif it does not display
an exponential growth to at leastt5500M ~independent of
resolution!. This length of time is expected to be enough f
accurate simulation of astrophysically relevant systems c
taining black holes.

A. Linear spherical code results

Several tests were performed with the the linear code.
tests consisted of giving high frequency initial data with a
plitude of orderDr 2 for the dgrr as

dgrr 5msin~vr !S 12
r

Ra
D 4S 12

r

Rb
D 4

Dr 2, ~3.2!

if r P@Ra ,Rb# anddgrr 50 otherwise~with m a free param-
eter andv5p/Dr ).

Our results can be summarized as follows
Test I: Free evolution. Notably, stable evolutions wer

obtained for l 51,n<6 ~with discretizations as coarse a
Dr 5M /8). However, for l 51,n.6, the evolution appar-
ently proceeds stably for about 400M but then an instability
develops at the inner boundary that crashes the evolu
even with discretizations of orderDr 5M /384. To analyze
whether these instabilities arise from the numerical or a
lytical level we run the code using six different resolutio
Dr 5M /(2s3) (s52•••7) and evolved tot5520M for n
59. We then analyzed the convergence ofP[] tdgrr /dgrr
at the final time and also obtained from each evolution
exponentm of the growth from plotting ln(uugrruu) vs lnDr. In
both cases we observed convergence to an expone
growth of the formemot ~unstable in our usage!. In particular,
we observed thatmo→0.00958. These tests clearly sugge
that these modes arise from the continuum arena. The coef-
ficient of the exponential is also found to vary with the d
main, suggesting that is a boundary driven mode.

Test II: Area locked evolution I. We analytically set the
perturbation ofguu to zero. In light of the results obtained i
Sec. IV below, by controlling this variable, the secul
7-4
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FIG. 3. Linear case: Comparison of runs wi
and without the locking technique for the linea
case~with Dr 5M /8 andda5db r50). The left
column illustrates the~logarithm of the! L2 norm
of the Hamiltonian~H! and momentum~M! con-
straints for the case without locking. The righ
column corresponds to the case where locki
was used. Stable evolutions were obtained in
latter case.
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modes should be removed from the evolution. In this ca
test I was repeated under this condition and stable evolut
were obtained regardless of the value ofn with discretiza-
tions of sizeDr 5M /8 and finer.

Test III: Area locked evolution II. Since the area locking
technique that will be implemented in the full code involv
redefiningb r numerically~see Sec. III B!, it is expected that
its value will have aDr 2 error. To check that indeed stabilit
is still achieved despite this error, we introduced a pertur
tion of db r of the form

db r5nS 12
t

t f
D 2

sin~vr !S 12
r

Ra
D 4S 12

r

Rb
D 4

Dr 2,

~3.3!
04403
e,
ns
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if t<t f and r P@Ra ,Rb# ~and 0 otherwise!. We choset f
520M and the cases studied in test II were repeated che
ing that still the evolution proceeded stably.

Test IV: Annulus problem. We chosel 510,n515 and
fixed the values at the inner and outer boundaries Again
was found that simulations still required area locking in o
der to obtain stable evolutions~as the linear analysis of Sec
IV indicates!.

Figures 3 and 4 illustrate what happens with and with
the locking technique. The plots compare the~logarithm of
the! L2 norm of dgrr , dKrr , the Hamiltonian and the mo
mentum constraints for the case withoutdguu locking to the
case withdguu50. Clearly, unstable evolutions are obtain
when dguu is not under control but locking this variabl
leads to stable evolutions.
th
r

re
b-
FIG. 4. Linear case: Comparison of runs wi
and without the locking technique for the linea
case~with Dr 5M /8 andda5db r50). The left
column illustrates the~logarithm of the! L2 norm
of dgrr and dKrr for the case without locking.
The right column corresponds to the case whe
locking was used. Stable evolutions were o
tained in the latter case.
7-5
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LUIS LEHNER et al. PHYSICAL REVIEW D 62 044037
B. Full nonlinear spherical code results

We studied two important and distinct cases.~A! the ‘‘in-
hole’’ case~wherel<2,n) and~B! the ‘‘annulus problem’’
~where 2, l ,n). In case~A! inner boundary data are no
given as they are not needed for the evolution~because of the
causal properties inside the horizon! and only outer boundary
data are provided. In case~B! boundary data are needed bo
at the inner and outer boundary. The boundary data, wh
needed, were given byblending the numerically obtained
solution to the analytical one. Tests performed with this co
fully agree with those of the previous section, albeit ins
bilities in this case are ‘‘more violent’’ than in the linear ca
as modes couple and instabilities manifest themselves ea
than in the linear case.

Tests performed with this code can be summarized
follows,

Test I: Free evolution. Stable numerical evolutions wer
obtained whenl 51,n<6 andDr<M /8. Unstable evolutions
are found for the casen.6 as well as for the annulus prob
lem. Again, an instability develops at the inner bounda
which grows exponentially. In these cases, refining the g
produced ‘‘longer’’ evolutions~meaning the exponentia
growth caused the code to crash at a latert) but still unstable
ones. To analyze the source of this exponential growth
ran a series of runs withl 51 andn59 with resolutionsdr
5M /(332s) where s51,2,3,4,5,6. In order to ensure th
we have a fixed strength perturbation for all resolutions
introduced the following transformation inr:

r→r ~11Ae2(r 2r 0)2/D2
!, ~3.4!

and recomputed the initial data. With this data and an am
tude of A50.01, width of D51 and pulse location ofr 0
55M we carried out the series of runs. Figure 5 shows thl 2
norm of the normalized Hamiltonian constraint as a funct
of time. We find that the constraints converge but exhibit
exponential growth with progressively longer runs with res
lution. The violation of the constraints is an indication th

FIG. 5. Thel 2 norm of the normalized Hamiltonian constraint
a function of time for a series of resolutions:Dr 5M /(332s)
where s50,1,2,3,4,5 from left to right corresponding to the fu
nonlinear case without area locking and domain@M ,11M #.
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we do not have a ‘‘pure’’ gauge mode and that constra
violating modes are indeed present in the data which can
generated at the outer boundary and manifest themselve
long-wavelength modes in the time-evolution.

Test II-III: Area locked evolution I-II. In light of the re-
sults obtained in Sec. III A and those from Sec. IV below
is clear that controlling the behavior ofguu might improve
the overall evolution. Since we are dealing with the full no
linear case, there is no clean distinction between the
cases presented in Sec. III A since, as we shall explain
low, there will always be an, at best, inherent second or
error in the definition ofb r to achieve the locking ofguu .
We employ a version of the so-called ‘‘area locking’’ tec
nique in the following way@25#. Analytically, one expects

05] tguu5b r] rguu22aKuu . ~3.5!

Numerically, on the other hand, this equation will only b
approximately satisfied, which could then excite the mod
discussed in Sec. IV. Thus, one can introduce a modi
gauge (b r→b r1db r) that satisfies Eq.~3.5!; i.e., db r is
such that

db r5
] tguu

] rguu
. ~3.6!

In our numerical implementation, we proceed as follow
First, at leveln integrate the evolution equations as usual a
obtain guu

n11 Then, evaluate Eq.~3.6! and redefineb r . Fi-
nally, retake the step. This implementation, although twice
expensive as the usual integration, manages to ‘‘lock’’
evolution of guu . Its advantages are corroborated by t
stable evolutions obtained for both the annulus and the ‘
hole’’ problems with discretizations of sizeDr 5M /8 or finer
which cannot be obtained otherwise. As an illustration of t
behavior Figs. 6 and 7 show the~logarithm of the! L2 norm
of grr , Krr , the Hamiltonian and the momentum constrain
for the case wherel 51, n59 with and without the locking
technique. As is clearly seen from the graphs, not controll
guu leads to unstable evolutions and locking this varia
provides stable evolutions. It is also interesting to obse
the behavior of the apparent horizon area. As it is shown
Figs. 8 and 9~for the case without and with area lockin
respectively!, the value of the apparent horizon area i
creases exponentially whendguu is not controlled~Fig. 8!
while its value monotonically increases at early times b
approaches a constant asymptotic value when area lockin
applied~Fig. 9!. Further, this value converges to the analy
value as theDr is refined. This ‘‘area locking’’ method ob
viously is only as accurate as the accuracy of the simula
~hereDr 2, so this test correspond to test III of Sec. III A!.

Test IV: Annulus Problem. We investigated the cas
where l 510,n515. Unstable evolutions are found for th
case where the ‘‘area locking’’ technique is not applied. A
instability always develops at the inner boundary whi
grows exponentially. Again, refining the grid produc
‘‘longer’’ evolutions ~but the evolutions still crash at earl
times!. On the other hand, using the ‘‘area locking’’ tec
nique enables stable evolutions.
7-6
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FIG. 6. Nonlinear case: Comparison of run
with and without the locking technique for th
fully nonlinear spherical case~with Dr 5M /8 and
da5db r50). The left column illustrates the
~logarithm of the! L2 norm of the Hamiltonian
~H! and momentum~M! constraints for the case
without locking. The right column corresponds t
the case where locking was used. Stable evo
tions were obtained in the latter case.
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IV. LINEAR PERTURBATION ANALYSIS

The instabilities observed in the full 3D simulations cou
be of numerical origin or already present at the continu
level. One possible approach to understand the presenc
unbound solutions is via a linear perturbation analysis.
order to be useful, a linear perturbation analysis must mi
as closely as possible the conditions present during the
merical simulation. That is, the allowed perturbations in
analysis have to be within the family~e.g., gauge or physi
cal! of perturbations that are triggered by the truncation
rors intrinsic to numerical calculations. Specifically, for t
spherically symmetric system under consideration, t
means that we consider first-order perturbations to the me
~2.5!, or, equivalently, Eq.~2.6!, of the form

gmn→gmn1dgmn ~4.1!

where

2dgmn5ja]agmn1gma]nja1gan]mja1dM]Mgmn
~4.2!

with

ja5~dt,dr ,0,0!. ~4.3!
04403
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That is, we are focusing on perturbations generated by ga
or ‘‘coordinate drift’’ perturbations of the form

r→r 1dr , ~4.4!

t→t1dt, ~4.5!

and, on top of these disturbances, we are also allowing
the possibility of a physical perturbation on the mass of
black hole by considering

M→M1dM . ~4.6!

The perturbationsdr , dt, anddM are assumed to be func
tions of onlyr andt. We considerdM because during the 3D
evolutions of single static black holes, we have evidence
spherical instabilities yield a change in the area of the ev
horizon, which analytically should beA516pM2. One in-
fers then that the massM was shifting during the simulation
see Fig. 1. A similar behavior can be observed in the
simulation withoutdguu locking, see Fig. 8. In fact, the
simulations have no direct method to fix the total mass.

Given the perturbations~4.4!–~4.6!, the perturbation to
the spacetime metric~2.6! takes the form
s
e

-
ed.
se.
FIG. 7. Nonlinear case: Comparison of run
with and without the locking technique for th
fully nonlinear case~with Dr 5M /8 and da
5db r50). The left column illustrates the~loga-
rithm of the! L2 norm of thegrr andKrr for the
case without locking. The right column corre
sponds to the case where locking was us
Stable evolutions were obtained in the latter ca
7-7
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dgmn

5S d~2a21grr b
rb r ! d~grr b

r ! 0 0

d~grr b
r ! dgrr 0 0

0 0 dguu 0

0 0 0 dguu sin2u

D
~4.7!

where

d~2a21grr b
rb r !5

2M

r S 2
dM

M
1

dr

r
22] tdr D

12S 12
2M

r D ] tdt, ~4.8!

d~grr b
r !5

2M

r S 2
dM

M
1

dr

r
2] rdr 2] tdt D

1S 12
2M

r D ] rdt2S 11
2M

r D ] tdr ,

~4.9!

dgrr 5
2M

r S 2
dM

M
1

dr

r
22] rdt D

22S 11
2M

r D ] rdr , ~4.10!

dguu522rdr . ~4.11!

In the 3D numerical simulations of a single black hole
ingoing Eddington-Finkelstein coordinates@26#, for which
we are interested in investigating the onset of instabiliti
the evolution is performed using the analytic~i.e., exact!
form of the lapse and shift. Thus, for the spherical pertur

FIG. 8. The area of the apparent horizon for the full nonline
spherical case without the locking techniques for three differ
resolutions~10, 20, and 40 points perM ). The values obtained ar
inaccurate and the evolutions eventually crashed~although they last
longer as the discretization is refined!.
04403
,

-

tion theory we setda5db r50. Imposing vanishing pertur
bations of the lapse function and shift vector translates in
gauge choice. We focus then on finding out whether t
gauge choice admits instabilities at the continuum le
when coupled with physical perturbation of the black ho
mass. Sincea and b r in ingoing Eddington-Finkelstein co
ordinates are only functions ofM /r , the conditionsda
5db r50 yield d(M /r )50, which in turn becomes

dM

M
5

dr

r
. ~4.12!

Thus, Eq. ~4.12! not only specifies the coupling betwee
gauge and physical perturbations, but it can also be use
eliminatedM from Eqs.~4.8!–~4.10!. For instance, substitu
tion of Eq. ~4.12! into Eq. ~4.10! yields

dgrr 52
2

a2
~] rdr 1b r] rdt !. ~4.13!

Similarly, Eqs.~4.8! and ~4.9! yield

]odt50, ~4.14!

]odr 5a4] rdt, ~4.15!

where ]o[(] t2b r] r) with b r the shift vector anda the
lapse function in the metric~2.6!. Since the operator]o is
proportional to the derivative along the normals to the co
stant t hypersurfaces, Eq.~4.14! states that the perturbatio
dt is constant along those normals. System~4.15!, ~4.14! can
in fact be re-expressed as

FIG. 9. The area of the apparent horizon for the full nonline
case withdguu locked, for three different resolutions~10, 20, and
40 points perM ). After some initial transient behavior the value fo
the area attains a constant value which converges to the expe
result as the mesh is refined. Note that these values converg
O(h) because the method used to find the apparent horizon is
first order accurate.
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]udt50, ~4.16!

]udr 5
1

2

a4

~12a2!
]vdt, ~4.17!

whereu5t2r andv5t1r. The radial coordinater is ob-
tained fromdr5dr/b r , namely,

r5r F11
1

2 S r

2M D G . ~4.18!

Notice that because of the form ofr(r ), characteristic ve-
locities associated withu andv go to zero asr→`. A gen-
eral solution to the system of Eqs.~4.16! and ~4.17! is

dt5F~v !, ~4.19!

dr 5G~v !2M]vF~v !F t

M
1

1

~12a2!
1

1

3~12a2!3G ;

~4.20!

with F(v) andG(v) arbitrary functions ofv and, in general,
these solutions admit unbounded growing modes. Gi
these solutions, the metric perturbations$dgrr , dguu% are
obtained from Eqs.~4.13! and~4.11!, respectively. Since this
is not a pure gauge transformation, the perturbati
$dgrr , dguu% constructed in this way are consistent with t
analytic lapse and shift, but are not in general solutions to
linearized Einstein equations. We proceed by analytica
mimicking our computational approach: we demand n
that $dgrr , dguu% satisfy the evolution equations and w
continue to monitor the constraints.

From Eqs.~A3!, ~A4!, with equations~4.11!, ~4.13! for
the metric perturbation, using the definition of the extrin
curvature in terms of the metric time derivative, and elim
nating time derivatives using Eqs.~4.14!, ~4.15!, the evolu-
tions equations become

05~r 12M !2dr 2r 2~r 12M !] rdr 1r 3] rdt, ~4.21!

0522~r 12M !4dr 12r 2~r 12M !~r 222M2!] rdr

22r 4~r 12M !] rdt2r 4~r 12M !2] rr dr 12r 5

3~r 12M !] rr dt. ~4.22!

By using Eq.~4.21! and its derivative, ther-derivatives ofdt
can be eliminated from Eq.~4.22! to obtain an equation fo
dr alone,

052~4M223rM 22r 2!dr 12r 2~2r 13M !] rdr 2r 4] r
2dr .
~4.23!

Notice that once Eq.~4.23! is solved fordr , thendt follows
from Eq. ~4.21! by quadrature. Writing

dr 5r 2e23M /rU, ~4.24!

the equation forU becomes

] r
2U2r 24~2r 2112rM 117M2!U50. ~4.25!
04403
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Thus the solution to Eq.~4.23! can be expressed, not ver
informatively, in terms of Whitakker functions@27# as

dr 5C1r 3M S 26A17,
3

2
,
2MA17

r D e23M /r

1C2r 3WS 26A17,
3

2
,
2MA17

r D e23M /r , ~4.26!

whereM andW denote the Whittaker functions andC1 ,C2

are to be determined from boundary conditions. More inf
matively, is that the sign of] r

2U/U in Eq. ~4.25! is positive
on (0,̀ ), and in particular on our computational doma
@ lM ,nM#. Thus the graph ofU is concave away from the
r-axis, and sincedr in the computational solution is held t
zero at the outer boundary,U does not cross the axis withi
our computational domain.

Our computational black hole approach excises the in
boundary and sets data only at the outer boundary. Since
~4.25! is a second order equation, bothdr and] rdr have to
be set there. Analytically, setting both to zero at the ou
boundary gives the desired solution (dr 50 everywhere!.
However, ifdr is set to zero at the outer boundary, the val
of dr at the excision region is very sensitive to the value
] rdr at the outer boundary. Small computational effects
this boundary can drive large excursions from the desi
gauge configuration, as we see in the computational s
tions; and the effect is greater for larger domains, consis
with the computational observations. This analysis a
shows clearly why gauge fixingdguu522rdr 50 solves the
instability, since it prevents the large crash-causingdr ex-
cursions.

Even with the analysis so far, we have not yet enforc
solution of the constraint equation. The Einstein vacu
field equations~including the constraints! are of course sat-
isfied for pure gauge~coordinate! transformations of a
vacuum solution. However, by allowing a variation inM, we
violate these equations and it is not a surprise that constra
violating modes can appear. In the context of a numer
simulation, errors in the prescription of initial data can le
to constraint violations.

From Eqs.~A6! and ~A7!, we have, for the Hamiltonian
constraintH and the momentum constraintMr :

H}~r 12M !3dr 2r 2~r 12M !~r 14M !] rdr 12r 3M] rdt,
~4.27!

Mr}2M2/r 2~r 12M !] rdr 1M] rdt, ~4.28!

Clearly, for arbitrarydr and dt the constraints will, in
general, be violated. By combining Eqs.~4.27! and~4.28! the
requirements that the constraints be satisfied (H5Mr50) is
simply:
7-9
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] rdr 5
dr

r
, ~4.29!

with the obvious solutiondr}r . Hence, the constraints ar
satisfied only if

dr

r
5

dM

M
5const. ~4.30!

In other words, given our gauge form~specificallya andb i

analytically given as functions ofM /r ), only scale offsets in
r and corresponding offsets inM are allowed. This assure
the constancy of the horizon area and the stability of
simulation.

V. DISCUSSION

The results presented in this work show how even sm
inconsistencies in the choice of coordinate conditions, ea
generated by a choice of initial data not in full agreem
with the gauge under consideration, can lead to unstable
lutions. This suggests, not surprisingly, that some sort
‘‘live conditions’’ ~i.e., gauge conditions that respond to t
dynamics of the field! are required for achieving long term
evolutions. The fact that these ‘‘gauge-constraint violat
modes’’ can have unbounded growth is not only harmful
systems such as the ADM one~which does not separate var
ables into gauge-independent quantities! but also for ‘‘gauge
separating’’ schemes. These schemes still evolve ga
dependent quantities and, although these quantities sh
not affect the gauge-independent ones, the numerical im
mentation has to either be capable of handling some ex
nentially growing variables or introduce some specialad hoc
handling of these terms@28#. Numerical implementations o
well posed systems in 1D have also shown the need of h
ing a special treatment of some terms to remove expon
tially growing solutions@15#.

It is thus interesting to see how a rather simple conditi
at least in the spherically symmetric case, can consiste
eliminate such growing modes. The success of such a co
tion highlights the need for deeper studies in the formulat
of coordinate~and gauge enforcement! conditions for the ge-
neric case. There exists in the literature a few proposals
such generic conditions@25,29,30#. Researchers have starte
testing those conditions though it is yet unclear whether t
hold the key to the general problem. The result demonstra
by the linear continuum analysis, thatdr and its derivative at
the outer boundary sensitively determine the stability beh
ior of the solutions, demonstrates that boundary effe
gauge modes, and constraint modes can interact strong
the behavior of the solution. One could imagine a bound
algorithm which did control the behavior ofdr , and had
correct convergence properties. Clearly, locking the coo
nates so thatdr 50 throughout the domain as we do is th
more robust solution.

The results presented in this paper have a strong bea
on our fully 3D nonlinear evolutions of single black holes.
the 3D evolutions using exact lapse and shift of sin
Schwarzschild black holes in ingoing Eddington-Finkelst
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coordinates we find similar dependence of stability on
outer boundary placement. The computational domain in
scenario is a 3D rectangular grid in which the black ho
excision region is embedded. The inner boundary or bou
ary of excision is left as a causal boundary~as here! and we
place Dirichlet conditions at the outer faces or on a spher
or cubical blending shell. This work now focuses our atte
tion on the application of gauge conditions for single bla
holes in 3D to area locking similar to our 1D results, a
points the way to possible issues that we will face in the l
stages of binary black hole coalescence. Preliminary
work shows improved performance when area locking is c
ried out. These results are being validated and extended,
will be communicated in the future.

The techniques of this paper can obviously be applied
formulations other than ADM. In particular we have begun
1D ~spherical! study of the ‘‘conformal ADM formulation’’
@8,9#, where the 3D black hole simulations suggest the ex
tence of similar modes to the 1D and 3D results of the AD
formulation discussed here.
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APPENDIX: LINEARIZED EXPRESSIONS

To first order on the perturbation
$dgrr , dguu , dKrr , dKuu%, the Einstein evolution equation
~2.1! and ~2.2! with da5db r50 take the form

]odgrr 522adKrr 12dgrr ] rb
r , ~A1!

]odguu522adKuu , ~A2!

]odKrr 52dKrr ] rb
r1dG rr

r ] ra

1a~dRrr 1dKKrr 1KdKrr 24grr Krr dKrr

22Krr
2 dgrr !, ~A3!

]odKuu5dGuu
r ] ra1a~dRuu1dKKuu1KdKuu

24guuKuudKuu22Kuu
2 dguu!, ~A4!

where
7-10
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dG rr
r 5

1

r 12M S r

2
] rdgrr 1

M

r 12M
dgrr D ,

dGuu
r 5

r

r 12M S r 2

r 12M
dgrr 2

1

2
] rdguuD ,

dRrr 5
1

r 2
] rr dguu2

2M

r ~r 12M !2
dgrr

2
1

r 12M
] rdgrr 12

r 213Mr 12M2

r 4~r 12M !2
dguu

2
2r 217Mr 16M2

r 3~r 12M !2
] rdguu ,

dRuu5
M

2~r 12M !2
] rdguu2

r 3

2~r 12M !2
] rdgrr

2
r 2~r 14M !

~r 12M !3
dgrr 1

r

2~r 12M !
] rr dguu .

~A5!

Similarly, the Hamiltonian and momentum constraints, E
~2.3! and~2.4! respectively, to first order on the perturbatio
yield:
th

,

m
al

,

ko

04403
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1

2M1r F ~8M318M2r 16Mr 21r 3!

r 2~2M1r !2
dgrr 2

~4M21r 2!

r 5
dguu

1S r

2M1r D ] rdgrr 1
~M1r !

r 2~2M1r !
] rdguu2

1

r
] rr dguu

1S 4M

2M1r DA11
2M

r
dKrr

1
4M2

r 3~2M1r !
A11

2M

r
dKuuG50, ~A6!

M

rAr ~r 12M !
F 2~M1r !

~2M1r !2
dgrr 2

2

r 3
dguu

1
M

r 2~2M1r !
] rdguuG1F dKrr

2M1r
1

dKuu

r 3
2

] rdKuu

r 2 G
50, ~A7!

respectively. The only component of the momentum co
straint that is shown is ther direction since the angular com
ponents are automatically satisfied to first order in the p
turbations.
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