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Within the numerical relativity community, much effort has been devoted to simulate the coalescence of
black hole binaries. A key problem in attempting such a simulation is the handling of the singularity present in
each hole. A very promising approach to address this issue is the excision of the singularities from the
computational domain. However, to date there have been only a few restricted examples in the literature
showing that this approach yields long-term stable simulations-ih fdrmulations. It has been argued that the
form of the Einstein field equations normally used, namely, the Arnowitt-Deser-Migxi2M) equations,
when applied to black hole excision, could be the cause of instabilities. By means of perturbative and numeri-
cal studies in spherical symmetfpne-dimensional1D)], we show that successful numerical solutions of
excised, single black hole spacetimes can be constructed with the ADM formulation of Einstein equations if the
appropriate choice of gauge or coordinate conditions is made. Preliminary 3D results are consistent with the 1D
studies.

PACS numbdis): 04.25~g, 04.30-w

I. INTRODUCTION The choice of ADM-like formulation3hat is, what is the
impact of the choice of a formulation of Einstein equations
Since the mid 1970s, variations of the so called Arnowitt-on the stability properties of its numerical implementation?
Deser-Misner(ADM) formulation[1] of the Einstein field For example, would formulations or modifications where the
equations have been the favored system of equations by ti§@nstraints are enforced improve the situation? Would a
numerical relativity community for studies of both cosmo- flux-conservative form aid in the solution of problems with

logical and compact-object spacetimes. In the following, wePlack hole excisions? Would a well posed system be capable
use “ADM” as a generic term referring to the class of 3 of “removing” instabilities; would the fact that the solutions
formulations of Einstein equations that have as fundamentdP Well posed systems cannot grow arbitrarily fast simplify

variables tensors related algebraically to the ADM quantltle§he_|_?]tta":lmem ?f a stable ngglergﬁnigtlonhofttheﬂ?yst;m;[
gij and 7). Given a foliation of the spacetime;; denotes € choice of gauge conditionshat 1S, what IS the efiec

the intrinsic metric of the spacelike hypersurfaces that definc(a)f the choice of gauge or coordinate conditions on the onset

L T ; . . Of instabilities? Are some choices of gauge conditions more
the foliation, with7"! the momentum density associated with gaug

M f lati . dofl th o convenient in handling black hole excision? Is there indica-
gij - Many formulations use, instead of’, the extrinsic Cur- o that successful prescriptions of gauge conditions would

vaturgKij of the hypersurface;. _In these yariables, Einstei_r’be global, or, could a set of gauge conditions, with each
equations become first order in time equations for the metrig.qngition applied in different sectors of the computational
and the extrinsic curvature. For this reason, these systems ghmain, have a better chance of preventing the presence of
equations are called-K formulations. Throughout this pa- instabilities?
per, spatial indices are denoted with latin letters, and units In response to the first class of questions, in recent years a
are such that=G=1. number of new formulations have been introduced as candi-
With the ADM approach, researchers have been able tdates to model the Einstein equations. These formulations
study a variety of problems, and interesting physics has beewere obtained with different goals in mind, namely, explicit
obtained from simulations produced with its numericalhyperbolicity [2—6], flux conservation[7], separation of
implementation. However, at present, we face the most demodes[6,8—10, etc. Each of these formulations has at least
manding task to date: to simulate a binary black hole mergeone of these nice features and is therefore enticing. Unfortu-
and obtain the gravitational radiation wave forms producedately, a common drawback is that they involve more, and in
in such a system. Black hole collision simulations must besome cases many more, variables than in the standard ADM
done in a fully three-dimension&BD) setting because of the formulation, thus imposing further demands on computer en-
absence of symmetries; as a consequence, the computationaonments. Furthermore, preliminary implementation of sin-
task is formidable in terms of accessible resources. Evegularity excision in some of these formulations have shown
situations with special symmetries that are intrinsically 1D,similar problems to those seen in the traditional ADM for-
such as the case of a single black hole, have proven to be anulation[11,17.
incredibly challenging task, requiring much more effort than  On the other hand, at first sight the standard ADM formu-
had been anticipated. Instabilities observed in 3D simulalation would seem to suffer from some disadvantages since it
tions have raised two distinct types of still open questions. is neither explicitly hyperbolic nor are the equations ex-
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pressed in a flux conservative form. Yet, years of experience rr T
with this system, which has the minimum set of variables for
a 3+ 1 formulation, puts at least at present the ADM form of
Einstein equations on an equal footing with the others. Fur-
thermore, one should keep in mind that much of the progress
obtained by other formalisms has been built on techniques
first developed for the ADM system, and hence research in
this direction is important for its own merits and for its con-
sequences on newer approaches.

Here, using the standard ADM formulation, we present a
detailed study closely related to the class of questions in
connection with the choice of gauge. For simplicity, we con- CA
sider only the spherically symmetric case, both from the ana- 0 100 200 300
lytic and numerical points of view. This 1D study has been time (M)

motivated by the difficulties, i.e., “instabilitiesin our ap- ) )
FIG. 1. The percentage error in the area of the apparent horizon

plication of the ADM formulation to the evolution of single is shown for a 3D run with the outer boundary at 3.33 M. This run

black .h0|e spacetimes in a 3D setting. Single t?'aC" hole, 3[jwas stable with the apparent horizon oscillating radially before set-
evolutions are used as a benchmark problem in the develo;i)nng down to about 3% error
ment of numerical codes to simulate black hole collisions.

The observed instabilities in those 3D simulations could be We focus our attention on unconstrained evolutions and to

of numerical origin, for instance, unstable discretizationsituations where horizon-locking coordinates are imple-
schemes, or they could also be already present at the COfyanteq such that the algorithms mimic the 3D codes that we
tinuum level. In addition, boundary conditions and gauge,se The basic task at hand is to solve a set of coupled non-
conditions could play a fundamental role in the stability jinear time-dependent partial differential equations. In addi-
properties of the smulatlpln_. The possible numerical an_d.confIon we have to pick boundary conditions at the outer bound-
tinuum sources of instabilities are often coupled and difficult ry of the computational domain, and construct “stable”
to separate. By considering the problem in 1D, the task Ofie gifference discretization that respects the causal struc-
identifying the sources of instabilities becomes more traCy e of the spacetime in the vicinity of the excised region. In
table. Of course, in order to obtain better insight applicable,yition, since after all we are solving Einstein equations, we
to 3D situations, one must try to mimic in the 1D s.et.up_whatsti” have four gauge degrees of freedom to specify through
takes places in the full 3D problem. Even then, it is likely y,q lapse and shift vector at every time slice. A “bad”
that some of the numerical sources of instabilities are dimenzp,qice of lapse function and shift vector or a failure to main-
sional dependent and thus will be missed by the presenb;, «gage conditions” can lead to coordinate pathologies.
study. In spherical symmetry there have been a number Qigyy - the Einstein equations in the ADM or+3 form
papers in the literature that discuss and use excision tecliynarate into a set of four constraint equations and twelve
niques in black hole evolutions. Seidel and SU&8| pro- gt order in time evolution equations. In our 3D, and here in
posed a causal differencing algorithm in a paper that demor, . 15 codes, after the initial time we solve only the evolu-
strated black hole excision using a horizon lockedisn equations and hence have anconstrained evolution

coordinate. Marsa and Choptufi4] use a partially con-  aq 5 result, constraint violating modes might be present that
strained evolution in addition to a gauge choice that imposeg ;|4 |ead to a failure of a numerical simulation.

horizo_n—locking aIso,_Scheelt al._[15] use causal diﬁerenc— In the 3D results thus far, we have found a peculiar de-
ing with a hyperbolic formulation of the 81 equations  nenqgence on the placement of outer boundaries on the stabil-
which requires the addition of constraints to the evolutlonity of analytically stationary single-black-hole evolutions.
equations, and lastly Gundlach and Walke8] demonstrate  p|50ing outer boundaries betweeM3to 4M, with M the

the use of causal differencing for the Bona-Masso formulas,ass of the black hole, can yield stable evolutions in 3D, yet
tion of th? Einstein equat.|ons. . moving the boundaries outwards from\vi4 leads to un-

In particular, causal dlfferencmg takes advanta_ge c.)f th%ounded growth which has a characteristic time that depends
fact that the caugal doma'n of dependence of pqlnts 'n.s'dgensitively on the location of the outer boundary. Figure 1
the apparent horizon are tilted away from the singularity.gh,\vs the percentage error in the area of the apparent hori-
Hence, by deforming the numerical integration stencil, the, ,, ¢, 5 stable 3D run with boundaries placed at 3.33M. In

evolgtiqn equations can be _integrated WithOUt.the need his run the apparent horizon oscillates radially before set-
specifying boundary data at inner boundary points. The apﬂing. Figure 2 shows thd,, norm of the residual of the

parent horizon is that topological two sphere whose OUthinSi’lormalized Hamiltonian constraint as a function of time for
null rays have; zero divergence, and, if it exists, it lies inSide\/arious runs in 3D. Note the dependence of stability and
the event horizof17]. maximum runtime on the location of the outer boundatg-
noted byRy). In these evolutions, we utilize gauge condi-
tions (lapse and shiftthat are obtained from an exact solu-
We explain below our heuristic use of the term “instability.”  tion. Hence one of the possible effects is that the gauge

% Error in AH Area
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ORS T T T 1 ' modes that could harm the numerical evolution of the full

‘ system. We can see that the results of this analysis are con-
sistent with those from the numerical study in that we show
how a simple gauge choice eliminates the unstable coupled
constraint violating gauge modes. We conclude with a brief
discussion on the implications of this work on 3D simula-
tions using not only the ADM approach but also other for-
mulations. Applications of these ideas to the much more dif-
ficult 3D case are underway. Preliminary 3D results are
consistent with the 1D findings presented in this work.

?

' Il. THE ADM SYSTEM

Our study is based on the “standard” ADM formulation

FIG. 2. Thel., norm of the normalized Hamiltonian constraint is ©f the Einstein equationisl]. This g-K system of equations

shown for a series of runs in which the 3D grid spacing was kepf€ads
fixed and the location of the outer boundd&tywas moved progres-

sively outwards. Note that for increasify the maximum runtime (9= Lp)gij = —2aKjj 2.7
decreases. ThRy,=3.33M run is stable. This sort of behavior is m
qualitatively similar to what is seen in spherical symmetry. (0= LpKij=—=ViVja+ a(Rj+ KKj; = 2KyK7), 2.2

behavior may not have the anticipated analytical effect, bewjth £ ; the Lie derivative with respect to the shift vecygs
cause of differences arising from numerics during the coursg, the |apse functiony; and R;;, respectively, the covariant
of the evolution. Also, for boundary conditions in these 3D gerjvative, and the Ricci tensor associated with the spatial
evolutions, we use Dirichlet boundary conditions to specifymetric gij (with inverseg'!), and K=g”Kij . Additionally,

the known solution on the outer boundaries. These may alsfhe following equations represent constraints on the field

lead to reflections that perturb the system and add complicaariaples, known, respectively, as the Hamiltonian and mo-
tions to treatment of such questions as to whether the systefientum constraints:

is well posed.

In preliminary numerical evolutions of single black holes R+K?— Kijj Kii=0, (2.3
in spherical symmetry, we found similarly stable or unstable
evolutions based on the location of the outer boundary. In V(K'-g'K)=0. (2.9

addition we found that improvement of resolution seemed to
improve the maximum runtimes of the unstable runs. Thisis This set of 16 equations, Eq&.1)—(2.4), naturally de-
consistent with results due to Gundlach and Walk& who  fines an initial value problem. Initial data satisfying the con-
evolved a Schwarzschild black hole using the same choice aftraints(2.3) and(2.4) are given at some hypersurface. Then
lapse and shift as ugngoing-Eddington-Finkelstein coordi- the field variables are evolved to the future by means of the
nates but with a different formulation and differencing of evolution equation$2.1) and(2.2). Notice that, in principle,
the 3+1 equations. there is no need to enforce the constraints during the evolu-
In a fully 3D evolution, often the task of separating out tion as theyshouldbe preservefll] in a consistent numerical
the source of unbounded growths can be difficult, and justmplementation; however, one might freely add them to the
carrying out a process of elimination may be time consumingvolution equations in order to preserve stability or to nu-
due to the resource requirements of 3D simulations. Thisnerically preserve satisfying the constraints. Our basic evo-
prompted us to carry out a 1D study which we report herdution schemes ardree evolutions which do not enforce
that hopefully will help to understand the observed behaviothese constraints.
in 3D simulations. We address first some of the questions Several studies exist in the literature about stability of
raised from a numerical point of view and then from anlinear waves, not only for the ADM system but also for
analytical point of view. We use, as closely as possible, theewer system$9,18,19. Unfortunately, results obtained in
same numerical techniques, boundary conditions, gauge, dithese studies are not readily applicable in cases which are not
cretizations, and initial data used in the 3D case. We focuspproximately Minkowskian. Here we are specifically inter-
on qualitative similarities between the 3D and 1D time evo-ested in analyzing the behavior of the ADM system when
lutions of Schwarzschild black holes and investigate methodsodeling a black hole spacetime in the spherically symmet-
allowing long-term evolutions. ric 1D case, and we study a single black hole expressed in
Section Il briefly reviews the ADM formalism we use and terms of ingoing Eddington-Finkelstein coordinates. This
introduces the spacetime under consideration, namely that ehoice is motivated by the fact that, in these coordinates,
a single black hole. Sec. Ill presents a numerical study of theurfaces of constant coordinate time “penetrate” the event
1D situation as compared to that in 3D. Section IV containshorizon. The essence of black hole excision is the removal of
a perturbative study of the 1D problem which shows howthe singularity while preserving the integrity of the space-
gauge and constraint violating modes can be generatetime accessible to observers outside the black hole. As origi-
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nally suggested by UnrufR0]), this is possible only if the inner boundary data are needed; the excising boundary be-
excised region is fully contained within the event horizon,comes the analog of an outflow boundary for supersonic flu-
thus the need to have access to the interior of the black holéds. Outer boundarydata are provided bplending[23] the
The line element of the spacetime of a single black holenumerical solution to the analytic solution on a region of size
expressed in ingoing Eddington Finkelstein, spherical coorM. For the linear evolutions, this corresponds to blending to
dinates reads vanishing perturbations. In all cases, the simulations corre-
spond to evolutions of a black hole of malkk the inner
dr2+r2d02 boundary is placed at=IM and the outer boundary is
' placed atr =nM (with I,ne N). We studied the stability of
(2.5 the evolution and its dependence loand n.
o o N ) ) Throughout the present work we adopt a pragmatic defi-
where dQ?=d¢?+siréd¢”. Given that in this case the pition of stability. In rigor, a numerical implementation is

dsz=—(1—¥

2M

4M
dt?+ Tdtdr+

spacetime ADM metric is of the form called stable if the solution at time T satisfies24]
—a?+g, BB 9B O 0 lu(t=T)|<e?"u(t=0)|, (3.1)
e B 9r O 0 : .
9.,= , for some constard=0 independent of the data. However, in
0 0 9o 0 numerical simulations of black hole spacetimes, it is ex-
0 0 0  gygSirte pected that the system at late times will approach a stationary

(2.6)  spacetime, and in an appropriate gauge, the solution is not
expected to have an exponential form. In the following we
Eq. (2.9 implies that will heuristically call a solutiorstableif it does not display
—1 an exponential growth to at least500M (independent of
) resolution. This length of time is expected to be enough for
’ accurate simulation of astrophysically relevant systems con-
taining black holes.

A. Linear spherical code results

-2 Several tests were performed with the the linear code. The

tests consisted of giving high frequency initial data with am-

plitude of orderAr? for the &g, as

2_ 9s¢
Sha’a

Joo=Tr

4 r4
(1——) Ar2, (3.2

r
5grr:ﬂ5in(wr)( 1-5-
Ry,

Ra

Ky=— @(H M) a, if re[R,,Rp] and 8g,, =0 otherwise(with x a free param-
r eter andw=1/Ar).
Our results can be summarized as follows
Ko Test |: Free evolution Notably, stable evolutions were
KWZZM“:E’ obtained forl=1n<6 (with discretizations as coarse as
Ar=M/8). However, forl=1,n>6, the evolution appar-
where the extrinsic curvature components are obtained frorantly proceeds stably for about 4@0but then an instability
theg Eq. (2.2). develops at the inner boundary that crashes the evolution
even with discretizations of ordexr=M/384. To analyze
whether these instabilities arise from the numerical or ana-
lytical level we run the code using six different resolutions
Our numerical analysis of the onset of instabilities wasAr=M/(2°3) (s=2---7) and evolved ta=520M for n
carried using two second order accurate spherically symmet=9. We then analyzed the convergencdb& d,69,, / 59,
ric codes. One of them solves the full nonlinear set of Ein-at the final time and also obtained from each evolution the
stein equations. The other code solves the linearized versicgxponentu of the growth from plotting In(g,||) vs InAr. In
of these equations. Both 1D codes closely resemble the fulboth cases we observed convergence to an exponential
nonlinear 3D code written by the Binary Black Hole Grand growth of the forme*e! (unstable in our usageln particular,
Challenge Alliance[21] and its revision, theAGAVE code  we observed that,—0.00958. These tests clearly suggest
[22]. Hence, the results obtained with these 1D codes cathatthese modes arise from the continuum areflae coef-
hopefully be applied to the 3D model. As with the 3D code,ficient of the exponential is also found to vary with the do-
the singularity is excised from the computational domain,main, suggesting that is a boundary driven mode.
and causal differencinfR1] is used to discretize the equa-  Test II: Area locked evolution. We analytically set the
tions. Note that, due to the causal properties of the spacegerturbation ofy,, to zero. In light of the results obtained in
time, if the inner boundary is placed inside the horizon, noSec. IV below, by controlling this variable, the secular

Ill. NUMERICAL ANALYSIS
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log(jiHil)

-100

-20 FIG. 3. Linear case: Comparison of runs with
and without the locking technique for the linear
a0 . . ! . _150 w . . w case(with Ar=M/8 andSa= 6B"=0). The left
o 10 200 300 400 500 o 10 200 300 400 500 column illustrates th¢logarithm of the L, norm
o . . . . . . of the Hamiltonian(H) and momentuntM) con-

straints for the case without locking. The right
column corresponds to the case where locking
was used. Stable evolutions were obtained in the
latter case.

log(/iMli,)

=100

I I 150 I I I I
300 400 500 0 100 200 300 400 500

) ]

I
0 100 200

modes should be removed from the evolution. In this casdf t<t; andre[R,,Ry] (and O otherwise We choset;

test | was repeated under this condition and stable evolutions 20M and the cases studied in test Il were repeated check-

were obtained regardless of the valuenofith discretiza- ing that still the evolution proceeded stably.

tions of sizeAr =M/8 and finer. Test IV: Annulus problemWe chosel=10n=15 and
Test Ill: Area locked evolution liSince the area locking fixed the values at the inner and outer boundaries Again, it

technique that will be implemented in the full code involvesWas found that simulations still required area locking in or-

redefining8" numerically(see Sec. Il B, it is expected that der to obtain stable evolutiorias the linear analysis of Sec.

its value will have aAr2 error. To check that indeed stability 1V indicates.

is still achieved despite this error, we introduced a perturba- Figures 3 and 4 illustrate what happens with and without
tion of 88" of the form the locking technique. The plots compare thegarithm of

the) L, norm of &g,,, K, , the Hamiltonian and the mo-

mentum constraints for the case withaig,, locking to the

case withsg,,=0. Clearly, unstable evolutions are obtained

when 8g,, is not under control but locking this variable
(3.3 leads to stable evolutions.

t 2 r 4 4
6,8r=v(l—tf) sin(wr)(l—Ra) (l_Rb) Ar?,

20 T T 0 T T T

-
o

S 0

3

= -10

E’ -100
-20 FIG. 4. Linear case: Comparison of runs with

‘ . ‘ . . ‘ . . and without the locking technique for the linear
2000 20 s 400 500 00 100 200 %00 400 500 case(with Ar=M/8 and Sa= 5B8"=0). The left
column illustrates thé€logarithm of the L, norm

50 — — — o —— —r—— of 8g,, and 6K,, for the case without locking.

The right column corresponds to the case where
0 / locking was used. Stable evolutions were ob-
50 | 1 tained in the latter case.

-100 1

log(lIK.II,)

-100 |- 4

~ ]

—~150 1 I 1 I —150 I 1 I I
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B L L B B R we do not have a “pure” gauge mode and that constraint

violating modes are indeed present in the data which can be

- 1 generated at the outer boundary and manifest themselves as
- long-wavelength modes in the time-evolution.

e Test II-Ill: Area locked evolution I-llIn light of the re-

sults obtained in Sec. Il A and those from Sec. IV below, it

is clear that controlling the behavior gf,, might improve

the overall evolution. Since we are dealing with the full non-

linear case, there is no clean distinction between the two

cases presented in Sec. Il A since, as we shall explain be-

low, there will always be an, at best, inherent second order

error in the definition of8" to achieve the locking o, .

We employ a version of the so-called “area locking” tech-

_||||I||\|I.|||I|.||I|.|. i i i i
5 o nigue in the following wayf25]. Analytically, one expects

time (M)

il

0=031949= B 9ps— 2K yg. (3.5
FIG. 5. Thel, norm of the normalized Hamiltonian constraint as
a function of time for a series of resolutionAr =M/(3x 25) Numerically, on the other hand, this equation will only be
where s=0,1,2,3,4,5 from left to right corresponding to the full approximately satisfied, which could then excite the modes

nonlinear case without area locking and domjdih, 11M]. discussed in Sec. IV. Thus, one can introduce a modified
gauge B"— B'+ 6B") that satisfies Eq(3.5); i.e., 68" is
B. Full nonlinear spherical code results such that
We studied two important and distinct casgs) the “in-
hole” case(wherel <2<n) and(B) the “annulus problem” 513r:M' (3.6)
(where 2<I<n). In case(A) inner boundary data are not e

given as they are not needed for the evolutibecause of the

causal properties inside the horiz@md only outer boundary In our numerical implementation, we proceed as follows.
data are provided. In ca$B) boundary data are needed both First, at leveln integrate the evolution equations as usual and
at the inner and outer boundary. The boundary data, wherebtain gj;* Then, evaluate Eq(3.6) and redefing’. Fi-
needed, were given bilending the numerically obtained nally, retake the step. This implementation, although twice as
solution to the analytical one. Tests performed with this codexpensive as the usual integration, manages to “lock” the
fully agree with those of the previous section, albeit insta-evolution of g,,. Its advantages are corroborated by the
bilities in this case are “more violent” than in the linear case Stable evolutions obtained for both the annulus and the *“in-
as modes couple and instabilities manifest themselves earliéole” problems with discretizations of sizer =M/8 or finer

than in the linear case. which cannot be obtained otherwise. As an illustration of this
Tests performed with this code can be summarized abehavior Figs. 6 and 7 show tliegarithm of the L, norm
follows, of g,, , K,,, the Hamiltonian and the momentum constraints

Test I: Free evolutionStable numerical evolutions were for the case where=1, n=9 with and without the locking
obtained whehm=1n<6 andAr<M/8. Unstable evolutions technique. As is clearly seen from the graphs, not controlling
are found for the case>6 as well as for the annulus prob- gy, leads to unstable evolutions and locking this variable
lem. Again, an instability develops at the inner boundaryprovides stable evolutions. It is also interesting to observe
which grows exponentially. In these cases, refining the gridhe behavior of the apparent horizon area. As it is shown in
produced “longer” evolutions(meaning the exponential Figs. 8 and 9(for the case without and with area locking
growth caused the code to crash at a la}dsut still unstable respectively, the value of the apparent horizon area in-
ones. To analyze the source of this exponential growth wereases exponentially whesg,, is not controlled(Fig. 8
ran a series of runs with=1 andn=9 with resolutionssr while its value monotonically increases at early times but
=M/(3%x2%) wheres=1,2,3,4,5,6. In order to ensure that approaches a constant asymptotic value when area locking is
we have a fixed strength perturbation for all resolutions weapplied(Fig. 9). Further, this value converges to the analytic

introduced the following transformation in value as theAr is refined. This “area locking” method ob-
- viously is only as accurate as the accuracy of the simulation
r—r(l1+Ae (Froa%) (3.4  (hereAr?, so this test correspond to test Ill of Sec. IIJ.A

Test IV: Annulus ProblemWe investigated the case
and recomputed the initial data. With this data and an ampliwhere | =10n=15. Unstable evolutions are found for the
tude of A=0.01, width of A=1 and pulse location of,  case where the “area locking” technique is not applied. An
=5M we carried out the series of runs. Figure 5 showd the instability always develops at the inner boundary which
norm of the normalized Hamiltonian constraint as a functiongrows exponentially. Again, refining the grid produces
of time. We find that the constraints converge but exhibit ari‘longer” evolutions (but the evolutions still crash at early
exponential growth with progressively longer runs with reso-times. On the other hand, using the “area locking” tech-
lution. The violation of the constraints is an indication thatnique enables stable evolutions.
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20.0 T T T 3.0 T T T T T T T
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—4.0 B
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& ol ] FIG. 6. Nonlinear case: Comparison of runs
50 1 T ] with and without the locking technique for the
100 ‘ ‘ . 0 ‘ , , . fully nonlinear spherical caggvith Ar=M/8 and
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150.0 : 85 : : : : (logarithm of the@ L, norm of the Hamiltonian
(H) and momentunm{M) constraints for the case
100.0 - 1 without locking. The right column corresponds to
) -4.0 . .
s the case where locking was used. Stable evolu-
g Sor ] tions were obtained in the latter case.
3 —45 - 4
00 4
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™M) M
IV. LINEAR PERTURBATION ANALYSIS That is, we are focusing on perturbations generated by gauge
. i . . . or “coordinate drift” perturbations of the form
The instabilities observed in the full 3D simulations could P
be of numerical origin or already present at the continuum
. r—r+or, (4.4
level. One possible approach to understand the presence of
unbound solutions is via a linear perturbation analysis. In
t—t+ ot (4.5

order to be useful, a linear perturbation analysis must mimic
as closely as possible the conditions present during the nu- ) )
merical simulation. That is, the allowed perturbations in the@"d, on top of these disturbances, we are also allowing for
analysis have to be within the familg.g., gauge or physi- the possibility of a _phy_s,lcal perturbation on the mass of the
cal) of perturbations that are triggered by the truncation erPlack hole by considering

rors intrinsic to numerical calculations. Specifically, for the

spherically symmetric system under consideration, this M—M+ M. (4.9
means that we consider first-order perturbations to the metric
(2.5), or, equivalently, Eq(2.6), of the form The perturbationsr, 6t, and 6M are assumed to be func-
tions of onlyr andt. We consideM because during the 3D
9ur =90 69, (4.1)  evolutions of single static black holes, we have evidence that
spherical instabilities yield a change in the area of the event
where horizon, which analytically should ba=167M?2. One in-

fers then that the madé was shifting during the simulation,

7090 = %0680 900 E" F Gandu €+ OMInG,., see Fig. 1. A similar behavior can be observed in the 1D

4.2 ) 4 . . .
(4.2 simulation without g, locking, see Fig. 8. In fact, the
with simulations have no direct method to fix the total mass.
Given the perturbation$4.4)—(4.6), the perturbation to
&%= (6t,0r,0,0). (4.3 the spacetime metri(2.6) takes the form
300.0 — ——————
0.70 - i
2 2000 - .
S 0.60 - ~
8 1o 1 om0 . FIG. 7. Nonlinear case: Comparison of runs
with and without the locking technique for the
%0 200 40.0 500 200 0 1000 2000 3000 4000 5000 fully nonlinear case(with 4r=M/8 and o«
=6B"=0). The left column illustrates théoga-
3000 ' ' ' ' ' ' rithm of the L, norm of theg,, andK,, for the
1 e2or 2 case without locking. The right column corre-
D 2000 |- . sponds to the case where locking was used.
Q Raul i Stable evolutions were obtained in the latter case.
\8—" 100.0 b _0.60 i
0.0 1 ] -0.80 1 1 1 1
0.0 20.0 40.0 60.0 80.0 0.0 100.0 200.0 300.0 400.0 500.0
qM] ]
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120.0 . . . 100.0 . .
S e —M/10 90.0 | ,,/ - Ax=M/10 7
100.0 - —— - Ax=M/20 1 / ——- Ax=M/20
—— Ax=M/40 ; —— Ax=M/40
80.0 | / .
A go00 A
70.0 |
60.0
60.0 |
40.0 : ! ! 50.0 p ;
0.0 50.0 100.0 150.0 200.0 0.0 500.0 1000.0 1500.0
tM] tM]

FIG. 8. The area of the apparent horizon for the full nonlinear ~ FIG. 9. The area of the apparent horizon for the full nonlinear
spherical case without the locking techniques for three differencase withdg,, locked, for three different resolutior(40, 20, and
resolutions(10, 20, and 40 points pév). The values obtained are 40 points peM). After some initial transient behavior the value for
inaccurate and the evolutions eventually crasfaditiough they last the area attains a constant value which converges to the expected

longer as the discretization is refined result as the mesh is refined. Note that these values converge as
O(h) because the method used to find the apparent horizon is only
59 first order accurate.
nv
S(—a’+g.B'B) dguB) O 0 tion theory we seta= 58" =0. Imposing vanishing pertur-
5(gy B 59, 0 0 bations of the lapse function and shift vector translates into a

gauge choice. We focus then on finding out whether this
0 0 Yoo 0 gauge choice admits instabilities at the continuum level
0 0 0  8gy,Sirte when coupled with physical perturbation of the black hole
mass. Sincex and 8" in ingoing Eddington-Finkelstein co-

(4.7 ordinates are only functions ofl/r, the conditionsda
where =6B"=0 yield (M/r)=0, which in turn becomes
2M M or
_ .2 rafy— — | 2" 7 oM or
5( a +grr:8 IB) r ( M + r 20t5r> V:T (412
2M
+2{ 1= ——]adt, (4.8 Thus, Eq.(4.12 not only specifies the coupling between
gauge and physical perturbations, but it can also be used to
oM SM or eliminate SM from Eqs.(4.8)—(4.10. For instance, substitu-
59, B = T( v T—&ﬁr—&@‘t) tion of Eq.(4.12 into Eq.(4.10 yields
2M 2M 2
1= )ddt=| 1+ ——|adr, 89, =——; (9, 6r + o, 6t). (4.13
o
(4.9
2M oM 6r Similarly, Eqs.(4.8) and (4.9 yield
="~ T 7 29t
do6t=0, 4.1
oM 0 (4.14
=2\ 1+ —|¢4,6r, (4.10
r
d,0r=a’, 8t, (4.15
8Qgp=—2r6r. (4.11

where d,=(d;— B"d,) with 8" the shift vector andx the
In the 3D numerical simulations of a single black hole inlapse function in the metri€2.6). Since the operatod, is
ingoing Eddington-Finkelstein coordinat¢®6]|, for which  proportional to the derivative along the normals to the con-
we are interested in investigating the onset of instabilitiesstantt hypersurfaces, Eq4.14) states that the perturbation
the evolution is performed using the analyfice., exact 6t is constant along those normals. Syst@ni5), (4.14) can
form of the lapse and shift. Thus, for the spherical perturbain fact be re-expressed as

044037-8
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9,5t=0, 4.16
AR, 41
(9U r_E 1_a2) aU ’ ( . D

whereu=t—p andv=t+p. The radial coordinate is ob-
tained fromdp=dr/B", namely,

)

Notice that because of the form efr), characteristic ve-
locities associated with andv go to zero ag —. A gen-
eral solution to the system of Eqg&l.16 and(4.17) is

11
"2

p=r (4.18

St=F(v), (4.19
Br=G(v)~MaF(v)| w4+ — ¢+ |,
r=G)=MAFE) 4 Tt 3

(4.20

with F(v) andG(v) arbitrary functions ob and, in general,

PHYSICAL REVIEW 2 044037

Thus the solution to Eg4.23 can be expressed, not very
informatively, in terms of Whitakker function7] as

3 2My17
5r=C1r3M(—6\/1_7,§,f\/—)e3M”
3 2My17
+C2I‘SW(—6\/1—7,§, r\/—>e3“"”, (4.26

whereM andW denote the Whittaker functions a@} ,C,
are to be determined from boundary conditions. More infor-
matively, is that the sign 0#?U/U in Eq. (4.25 is positive
on (Og), and in particular on our computational domain
[IM,nM]. Thus the graph olJ is concave away from the
r-axis, and sinceSr in the computational solution is held to
zero at the outer boundary, does not cross the axis within
our computational domain.

Our computational black hole approach excises the inner
boundary and sets data only at the outer boundary. Since Eq.

these solutions admit unbounded growing modes. Give4-29 iS @ second order equation, both andd, ér have to

these solutions, the metric perturbatiohdy,, , 59,4, are

obtained from Eqs4.13 and(4.11), respectively. Since this grE
the perturbationé"owever’ if or is set to zero at the outer boundary, the value

is not a pure gauge transformation,

be set there. Analytically, setting both to zero at the outer
boundary gives the desired solutiodr0 everywherg

{89, , 89,4} constructed in this way are consistent with the Of or at the excision region is very sensitive _to the value of
analytic lapse and shift, but are not in general solutions to thér o at the outer boundary. Small computational effects at
linearized Einstein equations. We proceed by analyticall)}h's boundary can drive large excursions from the desired

mimicking our computational approach: we demand nowdauge configuration, as we see in the computational solu-

that {8g,,, 69y} satisfy the evolution equations and we

continue to monitor the constraints.
From Egs.(A3), (A4), with equations(4.11), (4.13 for

tions; and the effect is greater for larger domains, consistent
with the computational observations. This analysis also
shows clearly why gauge fixingg ,,= — 2r ér =0 solves the

the metric perturbation, using the definition of the extrinsicinStability, since it prevents the large crash-causingex-
curvature in terms of the metric time derivative, and elimi- Cursions.

nating time derivatives using Eqgt.14), (4.15), the evolu-
tions equations become

0=(r+2M)2sr—r?(r+2M)a,ér +r34,6t, (4.22)
0=—2(r+2M)*8r +2r2(r + 2M)(r>—2M?) 9, 6r
—2r4r+2M)a, 8t—r4(r+2M)>24,, 6r + 2r°
X (r+2M)d,, ot. (4.22

By using Eq.(4.21) and its derivative, the-derivatives ofét
can be eliminated from Ed4.22 to obtain an equation for
or alone,

0=2(4M?—3rM —2r2) 5r +2r2(2r +3M) 4, 8r —r*g2sr.
(4.23

Notice that once Eq4.23 is solved forér, then st follows
from Eq. (4.21) by quadrature. Writing

Sr=r2e 3Mry, (4.24)
the equation folJ becomes

PU—r 42r2+12M+17M>)U=0.  (4.25

Even with the analysis so far, we have not yet enforced
solution of the constraint equation. The Einstein vacuum
field equationgincluding the constrainjsare of course sat-
isfied for pure gauge(coordinate transformations of a
vacuum solution. However, by allowing a variationkf) we
violate these equations and it is not a surprise that constraint-
violating modes can appear. In the context of a numerical
simulation, errors in the prescription of initial data can lead
to constraint violations.

From Eqgs.(A6) and (A7), we have, for the Hamiltonian
constraintH and the momentum constraikt':

Hoc(r+2M)38r —r2(r+2M)(r +4M) 4, dr + 2r3Ma, ét,
(4.27)

MT<2M2/r2(r +2M) 3, 6r + M, 8t, (4.28

Clearly, for arbitraryér and 6t the constraints will, in
general, be violated. By combining Eq4.27) and(4.28 the
requirements that the constraints be satisfidd-(M"=0) is
simply:
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Sr coordinates we find similar dependence of stability on the
9ol =, (4.29  outer boundary placement. The computational domain in that
scenario is a 3D rectangular grid in which the black hole
excision region is embedded. The inner boundary or bound-
ary of excision is left as a causal boundéag her¢ and we
place Dirichlet conditions at the outer faces or on a spherical
St SM or cubical blending shell. This work now focuses our atten-
e Vzconst. (4.30 tion on the application of gauge conditions for single black
holes in 3D to area locking similar to our 1D results, and
points the way to possible issues that we will face in the late
stages of binary black hole coalescence. Preliminary 3D
work shows improved performance when area locking is car-
e(ied out. These results are being validated and extended, and
will be communicated in the future.
The techniques of this paper can obviously be applied to
formulations other than ADM. In particular we have begun a
V. DISCUSSION 1D (spherical study of the “conformal ADM formulation”

The results presented in this work show how even small8:9), where the 3D black hole simulations suggest the exis-
inconsistencies in the choice of coordinate conditions, easil{ence of similar modes to the 1D and 3D results of the ADM

generated by a choice of initial data not in full agreemenformulation discussed here.

with the gauge under consideration, can lead to unstable evo-

lutions. This suggests, not surprisingly, that some sort of ACKNOWLEDGMENTS
“live conditions” (i.e., gauge conditions that respond to the
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tially growing solutiong 15].

with the obvious solutionr «r. Hence, the constraints are
satisfied only if

In other words, given our gauge forfapecificallya and 8'
analytically given as functions d¥l/r), only scale offsets in

r and corresponding offsets i are allowed. This assures
the constancy of the horizon area and the stability of th
simulation.

Itis th_us interesting to see how a rather simple con.dition, APPENDIX: LINEARIZED EXPRESSIONS
at least in the spherically symmetric case, can consistently
eliminate such growing modes. The success of such a condi- To first order on the perturbations

tion highlights the need for deeper studies in the formulatiod 69, , 8944, oK, , 6Ky}, the Einstein evolution equations
of coordinate(and gauge enforcementonditions for the ge- (2.1) and(2.2) with Sa= §B"=0 take the form
neric case. There exists in the literature a few proposals for
such generic conditior|25,29,30. Researchers have started 5 sg,, = —2a 6K, +259,, 4, 8", (A1)
testing those conditions though it is yet unclear whether they
hold the key to the general problem. The result demonstrated
by the linear continuum analysis, thét and its derivative at
the outer boundary sensitively determine the stability behav-
ior of the solutions, demonstrates that boundary effects, 9,6K, =2K, d,8"+ 6}, d,a
gauge modes, and constraint modes can interact strongly in
the behavior of the solution. One could imagine a boundary +a( R + KK + KoK, —4g" K, 6K
algorithm which did control the behavior afr, and had o2 SaIr

. : _ 2K7. 89™), (A3)
correct convergence properties. Clearly, locking the coordi-
nates so thatr=0 throughout the domain as we do is the
more robust solution. 30K gg= ST pydra+ a( SR gyt KK yo+ KK 44

The results presented in this paper have a strong bearing

on our fully 3D nonlinear evolutions of single black holes. In
the 3D evolutions using exact lapse and shift of single
Schwarzschild black holes in ingoing Eddington-Finkelsteinwhere

300999= — 206Ky, (A2)

— 499K 46K go— 2K2,89%7), (A4)
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ory. = ! i o M o
oM | 2709 T g 9 )

r2 1
m@]rr— §9r5gae :
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Lo~ riam

1
OR, :r_zarr 6999~
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0,60, +2
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e %960
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3r 0940,

r3
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SRyy=— .59y ——————
Y am)2 0 S am)

_rA(r+4m)
(r+2Mm)3

r
grr+ 2(r+2M) 0rr5g€0'
(A5)
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1 | (8M3+8M?r+6Mr2+r3) (4|\/|2+r2)(s
2M+r r2(2M+r)? s Goo
r 5 (M++r) 5 1 5
+ SM L1 I 9rr+r2(2Tr)(9r gﬁf)_Farr Joo
4M /1 2M5K
Tlamr) VAT
+ aMm* -w1+2M5K =0 (AB)
r3(2M+1) P
M 2(M+r)5 25
T2 | (2M 42 o 3o
K, SKyy 9,5Kyp
+ ————0,60gy| + -
r22M+r) Joo| " om+r T s r2
=0, (A7)

respectively. The only component of the momentum con-

Similarly, the Hamiltonian and momentum constraints, Eqsstraint that is shown is thedirection since the angular com-
(2.3) and(2.4) respectively, to first order on the perturbations ponents are automatically satisfied to first order in the per-

yield:

turbations.
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