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We study the stability of three-dimensional numerical evolutions of the Einstein equations, comparing the
standard ADM formulation to variations on a family of formulations that separate out the conformal and
traceless parts of the system. We develop an implementation of the conformal-traceless~CT! approach that has
improved stability properties in evolving weakand strong gravitational fields, and for both vacuumand
spacetimes with active coupling to matter sources. Cases studied include weak and strong gravitational wave
packets, black holes, boson stars and neutron stars. We show under what conditions the CT approach gives
better results in 3D numerical evolutions compared to the ADM formulation. In particular, we show that our
implementation of the CT approach gives more long term stable evolutions than ADM in all the cases studied,
but is less accurate in the short term for the range of resolutions used in our 3D simulations.

PACS number~s!: 04.25.Dm, 04.30.Db, 95.30.Sf, 97.60.Lf
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I. INTRODUCTION

Three dimensional~3D! numerical relativity is an impor-
tant technique for exploring the strong field dynamics in
alistic astrophysical phenomena involving black holes a
neutron stars. It is expected to play a role in analyzing gra
tational wave forms to be observed soon, one expects,
the new generation of gravitational wave detectors going
line worldwide in the next few years@1,2#. However,
progress in 3D numerical relativity, which has traditiona
been based on the Arnowitt-Deser-Misner~ADM ! @3# system
of evolution equations, has been slow. This is not only
cause of the immense computational difficulties that
simulations represent, but to a large extent it is due to se
instabilities often encountered during such simulations. P
ently there is no complete understanding of the cause
these instabilities in numerical evolutions of the ADM equ
tions. This has prompted much recent effort in develop
alternative formulations of the 311 Einstein equations.

In this and a companion paper@4# we focus on an alter-
native approach based on a conformal decomposition of
metric and the trace-free components of the extrinsic cu
ture. The conformal-tracefree~CT! approach was first de
vised by Nakamura in the 1980s in 3D calculations@5,6#, and
then modified and applied to work on gravitational wav
@7#, and on neutron stars@8,9#. This approach was not take
up by others in the community until a recent paper by Bau
garte and Shapiro@10#, where a similar formulation was
compared with the standard ADM approach and shown to
superior, in terms of both accuracy and stability, on te
involving weak gravitational waves, with geodesic and h
monic slicing. In a followup paper, Baumgarte, Hughes, a
Shapiro@11# applied the same formulation to systems w
given ~analytically prescribed! matter sources, and foun
0556-2821/2000/62~4!/044034~16!/$15.00 62 0440
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similar stability properties. More recently fully hydrody
namical simulations employing the CT approach have b
reported in @12–14# in the context of collapse of rapidly
rotating ~isolated! neutron stars and coalescence and mer
of binary neutron stars. As we were preparing this ma
script we have also become aware of work by Lehner, H
and Garrison@15# where a comparison between the AD
and CT formulation in spherical symmetry has been carr
out in the context of black hole excision.

In the companion paper@4# we perform an analytic inves
tigation of the stability properties of the ADM and the C
evolution equations. Using a linearized plane wave analy
we identify features of the equations that we believe are
sponsible for the difference in their stability properties.

In this paper we report the results of simulations of we
and strong gravitational wave packets, black holes, bo
stars and neutron stars in various slicing conditions, incl
ing maximal slicing and a family of algebraic slicings, an
compare the results obtained by the ADM and CT equati
in different implementations. We begin with a brief prese
tation of the relevant equations in Sec. II. We then disc
the results of our numerical simulations in Sec. III. We co
sider vacuum spacetimes in Sec. III A, and matter spaceti
in Sec. III B. In Sec. III A 1, we describe the various impl
mentations of the CT equations using gravitational wa
spacetimes as an example. We identify two particular imp
mentations, which we call AFA and AF2, that give the be
performance in long term evolutions. The essence of th
implementations, is to ‘‘actively force’’~AF, see below! the
trace of the conformally rescaled extrinsic curvature~AFA!,
and for maximal slicing also the trace of the extrinsic curv
ture ~AF2!, to zero in each step of the numerical evolutio
In the sections that follow, we focus on comparing the AF
and AF2 implementations to the results of the ADM equ
tions for evolutions of strong field systems including bla
©2000 The American Physical Society34-1
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holes, boson stars and neutron stars. We demonstrate th
this wide range of systems, these two implementations of
CT equations always lead to more stable long term evo
tions. However, we also find that for a given resolution, t
ADM results are often more accurate than the CT result
early times, before the instabilities become apparent.
conclude with Sec. IV. A study of the stability properties
the iterative Crank-Nicholson~ICN! scheme, used for the
spacetime evolution of the simulations presented in this
per, can be found in the Appendix.

II. FORMULATION

We start reviewing briefly the formulations used for t
comparisons.

The standard ADM equations are@16#

d

dt
g i j 522aKi j , ~1!

d

dt
Ki j 52DiD ja1a~Ri j 1KKi j 22KikKk

j2
(4)Ri j !,

~2!

with

d

dt
5] t2Lb ~3!

and whereLb is the Lie derivative with respect to the shi
vectorb i . HereRi j is the Ricci tensor andDi the covariant
derivative associated with the three-dimensional metricg i j .
The 4-dimensional Ricci tensor(4)Ri j is usually written in
terms of the energy densityr and stress tensorSi j of the
matter as seen by the normal~Eulerian! observers:

(4)Ri j 58pFSi j 2
1

2
~S2r!G . ~4!

The conformal, trace-free reformulations of these eq
tions make use of a conformal decomposition of the thr
metric, and the trace-free part of the extrinsic curvature. H
we follow closely the presentation of Ref.@10#. The confor-
mal three-metricg̃ i j is written as

g̃ i j 5e24fg i j , ~5!

with the conformal factor chosen to be

e4f5g1/3[det~g i j !
1/3. ~6!

In this way the determinant ofg̃ i j is unity. The trace-free
part of the extrinsic curvatureKi j , defined by

Ai j 5Ki j 2
1

3
g i j K, ~7!

where K5g i j Ki j is the trace of the extrinsic curvature,
also conformally decomposed:
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Ãi j 5e24fAi j . ~8!

So far, these are just definitions of new variables, with
clear motivation for their introduction. Evolution equation
for these new quantities are easy to find, and we summa
here the Baumgarte-Shapiro@10# discussion on these equa
tions, but with an emphasis on the possible numerical im
cations of various choices one can make.

The evolution equations for the conformal three-met
g̃ i j , and its related conformal factorf are trivially written as

d

dt
g̃ i j 522aÃi j , ~9!

d

dt
f52

1

6
aK. ~10!

The evolution equation for the trace of the extrinsic cu
vatureK can easily be found to be

d

dt
K52g i j DiD ja1aF Ãi j Ã

i j 1
1

3
K21

1

2
~r1S!G ,

~11!

where the Hamiltonian constraint was used to eliminate
Ricci scalar.

For the evolution equation of the trace-free extrinsic c
vatureÃi j there are many possibilities. A trivial manipulatio
of Eq. ~2! yields

d

dt
Ãi j 5e24f@2DiD ja1a~Ri j 2Si j !#

TF ~12!

1a~KÃi j 22Ãil Ã j
l !, ~13!

but as shown previously@7,10# there are many ways to write
several of the terms, especially those involving the Ri
tensor. For example, one could eliminate the Ricci scalaR
again through the use of the Hamiltonian constraint.

With the conformal decomposition of the three-metric, t
Ricci tensor now has two pieces, which we write as

Ri j 5R̃i j 1Ri j
f . ~14!

The ‘‘conformal-factor’’ part Ri j
f is given directly by

straightforward computation of derivatives off:

Ri j
f522D̃ i D̃ jf22g̃ i j D̃

l D̃ lf ~15!

14D̃ ifD̃ jf24g̃ i j D̃
lfD̃ lf, ~16!

while the ‘‘conformal’’ partR̃i j can be computed in the stan
dard way from the conformal three-metricg̃ i j . To simplify
notation, it is convenient to define what Ref.@10# calls the
‘‘conformal connection functions:’’

G̃ i
ªg̃ jkG̃ jk

i 52g̃ , j
i j , ~17!
4-2
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TOWARDS A STABLE NUMERICAL EVOLUTION OF . . . PHYSICAL REVIEW D 62 044034
where the last equality holds if the determinant of the c
formal three-metricg̃ is actually unity ~notice that this
should be true analytically, but may not be numerically!.

Using the conformal connection function, the Ricci tens
can be written:

R̃i j 52
1

2
g̃ lmg̃ i j ,lm1g̃k( i] j )G̃

k1G̃kG̃ ( i j )k

1g̃ lm~2G̃ l ( i
k G̃ j )km1G̃ im

k G̃kl j !. ~18!

Here again, one has choices in how the terms involv
the conformal connection functionsG̃ i are computed. A
straightforward computation based on the Christoffel sy
bols could be used~and usually is in standard ADM formu
lations!, but this approach leads to derivatives of the thr
metric in no particular elliptic form. One would like to see a
elliptic form as the principal part of this expression, as
brings theg̃ i j 2Ãi j system a step closer to being hyperbol
Thanks to the definition of theG̃ i ’s, an explicitly elliptic
operator is singled out. However, if the terms involving t
G̃ i are evaluated directly in terms of derivatives of the thr
metric, this elliptic operator serves no special purpose,
other second derivatives appear through derivatives of thG̃ i

which spoils the elliptic nature of the operator as a whole.
on the other hand, theG̃ i are promoted to independent var
ables, for which evolution equations can be derived, then
expression for the Ricci tensor retains its elliptic charac
The price to pay is that one must now evolve three additio
quantities in the evolution system. Whether this has any
merical advantage will depend on details of the implemen
tion, and will be discussed below.

Following this argument of promoting theG̃ i to indepen-
dent variables, it is straightforward to derive their evoluti
equation:

]

]t
G̃ i52

]

]xj S 2aÃi j 22g̃m( jb ,m
i ) 1

2

3
g̃ i j b ,l

l 1b l g̃ ,l
i j D .

~19!

However, again there is a choice one can make in writ
this evolution equation; as pointed out in Ref.@10# it turns
out that the above choice leads to an unstable system
choice which will be shown to be better can be obtained
eliminating the divergence ofÃi j with the help of the mo-
mentum constraint:

]

]t
G̃ i522Ãi j a , j12aS G̃ jk

i Ãk j2
2

3
g̃ i j K , j2g̃ i j Sj16Ãi j f , j D

2
]

]xj S b l g̃ ,l
i j 22g̃m( jb ,m

i ) 1
2

3
g̃ i j b ,l

l D . ~20!

With this reformulation, in addition to the evolution equ
tions for the conformal three-metricg̃ i j ~9! and the
conformal-traceless extrinsic curvature variablesÃi j ~13!,
there are evolution equations for the conformal factorf ~10!,
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and the trace of the extrinsic curvatureK ~11!. If the G̃ i are
promoted to the status of fundamental variables, as in R
@10#, they can be evolved with Eq.~20!. ~Note that the mixed
first and second order evolution system f

$f,K,g̃ i j ,Ãi j ,G̃ i% is not in any immediate sense hyperbo
@17#.! In the original formulation of Shibata and Nakamu
@7#, the auxiliary variablesFi52( j g̃ i j , j are used instead o
the G̃ i , and the final system of equations is somewhat m
complicated.

Reference@18# shows that the CT system can also
interpreted as a ‘‘conformal second-order’’ version of t
Bona-Masso´ system with 2Vi52(G̃ i18] if).

A. Gauge

Systems of the CT type have been investigated with v
ous slicing conditions in the past. The paper of Baumga
and Shapiro considered geodesic and harmonic slicing, w
earlier work by Shibata and Nakamura, and the more rec
paper by Baumgarte, Hughes, and Shapiro@11# have also
considered maximal slicing. Here we have studied maxim
slicing and a number of algebraic slicings, and used th
with different implementations of the CT equations, on n
merical evolutions of many different spacetimes.

Maximal slicing has the property thatK50, leading to an
elliptic equation for the lapse:

¹2a5a@Ki j K
i j 14p~r1S!#. ~21!

Notice that in maximal slicing the evolution equations f
f andK become simply

df/dt50, dK/dt50. ~22!

The algebraic slicings that we will consider here cor
spond to the family originally introduced by Bona and Mas´
@19#, building on earlier work of Bernstein@20#:

d

dt
a52 f ~a!a2K, ~23!

with f (a).0 but otherwise arbitrary. This family contain
many well known slicing conditions. For example, takingf
51 we recover the ‘‘harmonic’’ slicing condition, which
after a trivial integration becomes

a5F~xi !1g1/2, ~24!

with F an arbitrary function of space. The name ‘‘harmonic
slicing comes from the fact that it corresponds to the cho
of a harmonic time coordinate

ht50. ~25!

Another useful slicing condition is obtained by takingf
5N/a. This corresponds to the generalized ‘‘11log’’ slicing
condition @18# which after integration becomes

a5F~xi !1 loggN/2. ~26!
4-3
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MIGUEL ALCUBIERRE et al. PHYSICAL REVIEW D 62 044034
~There is in fact some inconsistency in terminology as
whether theN51 or theN52 case corresponds to the sta
dard ‘‘11log’’ slicing; different choices being made by dif
ferent authors.!

These type of algebraic slicings have an advantage o
maximal slicing in terms of computational efficiency: It
much faster to integrate an evolution equation for the la
than to solve an elliptic equation. On the other hand, s
algebraic slicings are prone to the development of gauge
thologies@21,22#. The possibility of the appearance of su
pathologies when using algebraic slicings should always
kept in mind, as a gauge pathology can easily be confu
with a numerical instability: one can lose a lot of sleep tryi
to cure an ‘‘instability’’ that is in fact a true solution of ou
system of differential equations.

To finish discussing our choice of gauge, we need to m
tion the fact that all the simulations described here have b
carried out with the shift vector set to zero.

B. Boundary conditions

In standard 311 numerical simulations, the computation
domain covers only a finite region of space. One must the
fore apply some sort of artificial boundary condition at t
edges of the numerical grid. Ideally, one would like to find
boundary condition that does not introduce numerical ins
bilities and allows gravitational waves to leave the g
cleanly, with no artificial reflections. This is in itself a ver
difficult problem, since in the first place, there is no loc
boundary condition that allows waves coming from any
bitrary direction to leave the grid with no reflections, a
second, there does not even exist a clear way to define w
a wave is in general relativity except at asymptotic infini
In practice, what one looks for is a condition that rema
stable and allows some ‘‘wave-like’’ solutions to leave t
grid without introducing large reflections at the boundari
The amount of artificial reflection that results typically d
pends on the specific form of the boundary condition, and
the direction of motion of the wave fronts as they hit t
boundary@23#.

Since in this paper we are interested in the question of
stability of the interior evolution, we will not worry too
much about the boundary conditions, and we will limit ou
selves to describing a few conditions that we have found
work well in practice. The conditions we have used are
following:

Static boundary condition: The evolved variables are s
ply not updated at the boundary, and remain with their ini
values there. This condition is very bad at handling wa
since it reflects everything back in, but it can be very use
when studying situations that are supposed to remain s
~as are some of the systems studied below!, and where all the
dynamics comes from numerical truncation errors.

Zero-order extrapolation or ‘‘flat’’ boundary condition
After evolving the interior, the value of a given variable
the boundary is simply copied from its value one grid po
in ~along the normal direction to the boundary!. This condi-
tion allows for some dynamics at the boundaries, and
somewhat better at absorbing waves than the static bo
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aries, but it still introduces a considerable amount of refl
tions.

Sommerfeld or ‘‘radiative’’ boundary condition: In thi
case we assume that the dynamical variables behave li
constant plus an outgoing radial wave at the boundaries,
is,

f ~xi ,t !5 f 01u~r 2t !/r , ~27!

wherer 5Ax21y21z2 and where the constantf 0 is taken to
be one for diagonal metric components and zero for eve
thing else. The radiative condition assumes that the bou
aries are in the wave zone, where the speed of light is es
tially one, and where the gravitational waves behave
spherical wavefronts. This boundary condition has been u
before by other authors@7,10#, and it has been found that i
practice it is very good at absorbing waves.

It is in fact easier to implement a differential form of th
radiative boundary condition than to use Eq.~27! directly.
Consider a boundary that corresponds to a coordinate p
xi5constant. Condition~27! then implies

xi

r
] t f 1] i f 1

xi

r 2
~ f 2 f 0!50. ~28!

One can now use simple finite differences to implement t
last condition. In our code we have implemented condit
~28! consistently to second order in both time and space

Robin boundary condition: This is a different type of ‘‘ex
trapolating’’ boundary condition, where one assumes that
large r a given field behaves as

f ~xi !5 f 01k/r , ~29!

with k constant. This condition is clearly related to the rad
tive condition described above, but it contains no inform
tion about the time evolution. Just as we did with the rad
tive condition, we in fact implement the Robin condition
differential form:

] i f 1
1

r
~ f 2 f 0!50. ~30!

The Robin boundary condition is usually better suited
solving elliptic problems than for use on dynamical va
ables.

Most of the simulations discussed below have been p
formed using the radiative boundary condition~28! for the
dynamical variables, and the Robin boundary condition~30!
both for constructing the initial data and for solving th
maximal slicing condition. Whenever a different bounda
condition is used, we say so explicitly.

III. APPLICATIONS

In this section we will apply the previous system of co
formal trace-free equations, exploring different implemen
tions, in a series of numerical experiments with differe
spacetimes. The various implementations we consider a
4-4
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TOWARDS A STABLE NUMERICAL EVOLUTION OF . . . PHYSICAL REVIEW D 62 044034
Promoting theG ’s to independent variables.
Use the momentum constraints on the evolution equa
for the G ’s.
Enforcing trÃ50.
For maximal slicing, enforcing trK50.

We will study the effects of these different implement
tions using strong gravitational waves spacetimes.

All the numerical simulations presented here are carr
out with the Cactus code for numerical relativity c
developed in our NCSA/Potsdam/Wash U collaboration a
elsewhere.

A. Vacuum spacetimes

We begin our discussion of the numerical simulatio
with vacuum spacetimes in this subsection, examining
evolution of both strong gravitational wave and black ho
spacetimes. In particular, we use the gravitational w
simulations to illustrate the effects of the various impleme
tations of the CT approach.

1. Pure gravitational waves

We first turn to pure gravitational wave spacetimes. T
low amplitude linear case has been studied, with a full
code, and published previously,~a! in both the standard
ADM formulation and the Bona-Masso´ hyperbolic formula-
tion by @24#, where no fundamental differences were seen
performance at that time, and~b! by Shibata and Nakamur
@7# and Baumgarte and Shapiro@10# in the CT approach as
described above. The Baumgarte and Shapiro@10# work par-
ticularly showed the strength of the CT formulation in t
linearized case. Here we extend the study of these system
include highly dynamic, strong field regimes. The study h
is limited to tests that show the strengths and weaknesse
the different formulations. A study of the physics of collap
ing waves in full 3D numerical relativity is presented els
where@25#.

We consider here a three-metric of the form origina
considered by Brill@26#:

ds25C4@e2q~dr21dz2!1r2df2#5C4d̂ŝ2, ~31!

whereq is a free function subject to certain regularity a
fall-off conditions. Different forms of the functionq have
been considered by different authors@27–30#, but most work
so far has concentrated only in constructing and analyz
the initial data.

As in Ref. @25#, we use a generalized form for the fun
tion q, giving it a full 3D dependence, following@31–34#:

q5ar2e2r 2 „11cr2 cos2~mu!…

~11r2!
, ~32!

wherea andc are constants,r 25r21z2 andm is an integer.
In this paper we focus on the axisymmetric case,c50, for
simplicity, although using a non-zero value ofc does not
affect the results we discuss below. All the runs discus
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here were performed using an iterative Crank-Nichols
~ICN! scheme with 3 iterations~see appendix!, and radiative
boundary conditions.

The first case presented is an initial configuration w
amplitude a54, corresponding to a strong wave, but n
quite strong enough to collapse to a black hole. In the e
lution of this data set the wave implodes through the orig
oscillates a few times, and finally disperses back to infin
leaving flat space behind, but in a non-trivial spatial coor
nate system@25#. The evolution of this spacetime is highl
non-linear, and the final configuration has metric comp
nents with a large dynamical range.

In Fig. 1~a! we show the evolution of the minimum valu
of the lapse over the grid for a simulation done with t
standard ADM formulation, using maximal slicing, no sh
and a radiative boundary condition. For this particular sim
lation we used a resolution ofDx50.08 and 673 grid points.
Also, we used the fact that our data is symmetric acr
coordinate planes to evolve only one octant. The simulat
crashes att.8 when the lapse collapses catastrophically
response to a blow up of the extrinsic curvature. Figure 1~b!
shows the evolution of the maximum value of the trace of
extrinsic curvatureK. Notice that even though we are usin
maximal slicing,K does not remain zero, and blows up t
wards the end of the simulation. The fact thatK does not
remain zero is not surprising, since the maximal slicing co
dition is solved numerically, and thus a residual time deriv
tive of K is to be expected. The catastrophic blow-up, ho
ever, is a different matter and points towards the existenc
an unstable solution of our system of equations.

Figure 2 shows the same simulation, but now using
so-called ‘‘K-driving’’ technique@35#. The idea here is to
add counter terms to the elliptic equation for the lapse
drive the numerically produced non-zeroK ~the trace of the
extrinsic curvature! back towards zero. With K-driving,K
remains much smaller until close to the point of crashing
t59, with a catastrophic blow-up of the lapse at the e
This shows that a better control of the time slicing is n
enough to cure the instability in the evolution: There ex
unstable modes that are not controlled by keeping the va
of K small. ~For an analysis of possible unstable modes
the ADM equations, see@4#.!

Next, we show the evolution of the same system us

FIG. 1. ~a! Evolution of the minimum value of the lapse for a
axisymmetric Brill wave data set witha54, using the standard
ADM formulation with maximal slicing. The simulation crashes
t58 with a catastrophic collapse of the lapse.~b! Evolution of the
maximum value of the trace of the extrinsic curvatureK.
4-5
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again maximal slicing, and different implementations of t
CT formulation. In Fig. 3 we show again the central value
the lapse for the same initial data. The different runs co
spond to the following cases:

use of use momentum force remov
G i constraints K50 tr Ã

Res no - no no
Gam yes no no no
Mom yes yes no no
AFK yes yes yes no
AFA yes yes no yes
AF2 yes yes yes yes

The first run uses the implementation denoted ‘‘Res’’~for
rescale!. It differs from the standard ADM equations only i
the conformal rescaling and the fact thatf and K ~which
enter into the evolution equation forÃi j ) are now evolved
separately. The second run, with the implementation den

FIG. 2. ~a! Evolution of the minimum value of the lapse for a
axisymmetric Brill wave data set witha54, using the standard
ADM formulation with maximal slicing and a K driver. The simu-
lation goes somewhat further, and now crashes att59 with a cata-
strophic blow-up of the lapse.~b! Evolution of the maximum value
of the trace of the extrinsic curvatureK. The trace now remains
much smaller during the simulation.

FIG. 3. Evolution of the minimum value of the lapse for a
axisymmetric Brill wave data set witha54, using the 6 different
variations of the CT system described in the text.
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‘‘Gam’’ ~for gamma!, introduces theG i , but does not use the
momentum constraints to rewrite their evolution equatio
The third run uses the implementation ‘‘Mom’’~for momen-
tum constraints! and represents a straightforward coding
the the full set of CT equations@7,10#, where the momentum
constraints are used to modify the evolution equations for
G i , but without adding anything else. In the fourth run, whi
uses the implementation ‘‘AFK’’~for ‘‘actively enforcing
K’’ !, we have forcedK to remain zero by simply not evolv
ing it, and we have also keptf time independent@see Eq.
~10!#. In the fifth run we use the implementation ‘‘AFA,’
where we allowK to evolve freely, but actively forceÃ ~the
trace ofÃi j ) to remain zero by subtracting it fromÃi j after
each time step:

Ãi j ←Ãi j 2
1

3
g̃ i j tr Ã. ~33!

And finally, in the sixth run we use the implementatio
‘‘AF2’’ that combines implementations AFK and AFA
above by actively enforcing bothK50 and Ã50. Notice
that bothK and Ã should be zero in principle in an exac
evolution using the CT equations with maximal slicing, b
they do not remain so in actual numerical evolutions unl
actively enforced.

As can be seen from the figure, runs Res, Gam, Mo
AFK and AFA eventually crash, but run AF2 with doub
active enforcement does not, at least for the time scale un
study. The lapse returns to unity, and the final static spa
time can be followed for a long time with no sign of a
instability ~we have in fact followed run AF2 pastt5100
and it still remains stable!. From the figure we also see tha
by enforcing onlyK50 or A50 separately, as is done i
runs AFK and AFA, one still obtains improved stability, wit
the simulations crashing at late times after the lapse has
ready returned to 1. This shows that by enforcing only one
the two constraints, and keeping the other options turned
we still get a rather robust system when compared to s
dard ADM. Moreover, enforcingÃ50 appears to be more
important than enforcingK50, as can be seen from the fa
that run AFA crashes much later than run AFK.

Finally, notice that run Gam crashes even sooner than
Res, which shows that it is in fact better not to use theG i

than to use them without modifying their evolution equatio
For understanding the need to use the momentum constr
in the CT approach, see the companion paper@4#.

We note that the results found above for the differe
implementation are generic for strong gravitational wa
spacetimes, quite independent of the precise param
choices. However, for weak gravitational waves in the line
regime, the straightforward coding of the CT equatio
~implementation ‘‘Mom’’! leads also to stable evolutions a
do the AFK, AFA and AF2 cases. In Fig. 4 we show aga
the minimum value of the lapse for the evolution of a wa
with an amplitude ofa50.01, using the ADM formulation
and also the Mom, AFK and AFA implementations of th
CT system@since the lapse remains very close to 1, we are
fact plotting (a21)3105#. We see that while the ADM run
4-6
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TOWARDS A STABLE NUMERICAL EVOLUTION OF . . . PHYSICAL REVIEW D 62 044034
crashes at an early time (t.15) with a catastrophic collaps
of the lapse, all three implementations of the CT equati
give stable evolutions and yield basically the same results
a weak wave. We have followed these three runs pat
5100 with no instabilities developing~the AF2 implemen-
tation is in fact just as stable, but we do not include it in t
figure!.

From these studies~and many others with different pa
rameters that we have done! we can conclude that, for maxi
mal slicing, the CT formulation has better stability propert
for the evolution of strong field systems, as long as

The G i are promoted to independent variables.

The momentum constraints are used to transform the e
lution equation for theG i . Evolving theG i without modi-
fying their evolution equation is worse than not usi
them at all.

The trace of the extrinsic curvatureK is actively forced to
be zero~the definition of maximal slicing!.
The trace of theÃi j is also actively forced to be zero.

So far we have focused on the issue of long term stabi
Now we want to compare accuracy of the CT and AD
formulations. We concentrate on the best implementation
the CT equations, the one we labeled AF2. In Fig. 5 we sh
the L2-norms of the Hamiltonian constraint for thea50.01
anda54 cases discussed above, using the ADM~solid line!
and the AF2 systems~dashed line!. In both cases we see tha
for the ADM system, the L2-norm of the Hamiltonian co
straint grows more or less linearly for some time~this is
more evident in thea50.01 case! until just before the crash
when it blows up catastrophically. In contrast, in the A
runs the L2-norm of the Hamiltonian constraint initial
grows faster, but it later settles on a constant value. The
that the ADM runs are more accurate than the AF2 runs
early times appears to be quite generic: we have found
sentially the same behavior for all the different paramet
that we have studied.

FIG. 4. Evolution of the minimum value of the lapse for a
axisymmetric Brill wave data set witha50.01 for the ADM system
and three variations of the CT system~Mom, AFK, AFA!. Notice
that since the lapse remains very close to 1, we are in fact plot
(a21)3105.
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We have also performed convergence tests by running
same initial data with different resolutions, and we ha
found that both the ADM and AF2 evolutions are seco
order accurate. As an example of this, Fig. 6 shows the
norms of the Hamiltonian constraint for both the ADM an
the AF2 systems for two different resolutions: The dash
lines show the L2 norm for a resolution ofdx50.16 (353

grid points!, while the solid lines show the L2 norm for
resolution ofdx50.08 (673 grid points! multiplied by a fac-
tor of four. For second order convergence the solid a
dashed lines should fall on top of each other. From the fig
we see that this is indeed true for most of the run in b
cases. For the ADM run, second order convergence star
fail shortly before the crash. On the other hand, for the A
run we obtain slightly degraded convergence~but still better
than first order! for times betweent55 andt515 when the
spacetime is very dynamic, indicating that we have not qu
reached the second order convergence regime for the re
tions considered here.

Though in this section we have concentrated in the cas
maximal slicing, we should mention that we have also p
formed many simulations using the generalized ‘‘11log’’
slicings. The results are in fact very similar to those repor
here, except for the fact that implementations AFK and A
can no longer be used~sinceK is non-zero for these slicing
conditions!. We find that for these algebraic slicings, impl
mentation AFA is by far the best performer.

In the following subsections, we show that the above
sults on the stability and accuracy of the ADM and CT sy

g

FIG. 5. L2 norms of the Hamiltonian constraint for thea
50.01 anda54 cases, using the ADM~solid line! and the AF2
systems~dashed line!.

FIG. 6. Convergence of the L2 norms of the Hamiltonian co
straint for thea54 case for both the ADM and the AF2 system
The dashed lines show the L2 norm for a resolution of 0.16, wh
the solid lines show the L2 norm for a resolution of 0.08 multipli
by a factor of four.
4-7
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tems are basically the same for systems ranging from b
holes to spacetimes coupled to dynamical source fields.

2. Black holes

Black holes have been the target of an intense rese
effort in recent years in numerical relativity, and have prov
particularly difficult to handle in 3D evolutions. In the ‘‘stan
dard’’ numerical evolution of black holes using the ADM
equations together with singularity avoiding slicings, 3
simulations generally develop instabilities and crash bef
t550M , whereM is the mass of the system@36–38#. This
falls far short of the time required to model the comple
inspiral of two black holes, or even the head-on collisio
Still, singularity avoiding slicings combined with the ADM
equations make it possible to evolve through a brief par
the merger phase of two black holes with momenta a
spins, and from this point of view give the most genera
applicable method available. Future cures for grid stretch
are expected to be based on black hole excision@39,40# or
characteristic slicings@41#.

In the following we carry out a preliminary study of th
CT formulation in black hole evolutions with grid stretchin
It is inevitable that the sharp peaks that develop in the me
function due to grid stretching will cause the code to crash
some point in the evolution. We consider the evolution of
Misner data as a concrete example. The 3D numerical e
lution of the Misner data in the standard ADM setting wi
singularity avoiding slicing has previously been studied
ing the so-called ‘‘G’’ code@37,31# and its derivatives@36#,
developed by the NCSA/WashU group. Comparable res
for a single black hole can be found in@18#.

In Fig. 7 and Fig. 8 we compare the results of evolutio
of Misner data with the separation parameterm52.2, corre-
sponding to two initially well separated black holes, on
grid of size 1303 with grid spacing 0.08. The only differenc
in the simulations is the system of equations used to c

FIG. 7. Evolution of the radial-radial metric component along
line on the equatorial plane at various times for Misner datam
52.2). Plots are every 3.5M in time. The ADM system crashe
after t514M , while the AF2 system remains stable.
04403
ck

ch
d

e

.

f
d

g

ic
t

e
o-

-

ts

s

ry

out the evolution~ADM vs AF2!; all computational param-
eters, such as parameters in the ICN finite differenc
scheme, grid parameters, radiative boundary conditions,
maximal slicing condition are the same. In Fig. 7, first pan
we show the radial-radial metric component along a line
the equatorial plane at various times for the ADM case. W
can clearly see the familiar ever-growing peak caused by
grid stretching associated with singularity avoiding slicing
In the first panel of Fig. 8 we show the lapse function alo
a line on the equatorial plane at various times for the AD
case, and here an instability becomes apparent at arout
514M which is not yet reflected in the metric. This sho
wave length instability grows rapidly and causes the code
crash att514M . In the second panel we show the AF2 ca
No metric instability is seen until towards the end of t
simulation att524M , although the peak appears to be d
formed. At this time the radial metric function peak h
grown to about two times higher than that attained in
ADM case. The lapse for the AF2 case in Fig. 8 does
show an instability.

However, note that a smooth and stable evolution of
lapse does not mean that the computed data is still useful
emphasize this point, Fig. 9 shows the same run as ab
with AF2 on a smaller grid with only 663 points, but with the
same grid spacing as before~so the boundaries are muc
closer in!. While ADM crashes when the gradients in th
metric become too severe, the AF2 run is able to contin
with a smooth lapse even after the metric becomes defor
~cmp. @18# where the evolution of the metric is not dis
cussed!. The lapse eventually collapses in the whole gr
freezing the evolution~so one could keep running ‘‘for-
ever,’’ but the evolution becomes meaningless!.

Next, we compare the accuracy of both simulations.
Fig. 10 we show the L2 norm of the Hamiltonian constra
for a grid size of 1303. The dashed line represents the AD
run, and the solid line the AF2 run. We see that the AD

FIG. 8. Evolution of the lapse function along a line on the equ
torial plane at various times for Misner data (m52.2). Plots are
every 3.5M in time. The ADM system crashes aftert514M , while
the AF2 system remains stable.
4-8
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TOWARDS A STABLE NUMERICAL EVOLUTION OF . . . PHYSICAL REVIEW D 62 044034
results are more accurate than the AF2 results until just
fore time t514M , when the instability in the ADM evolu-
tion begins to dominate and the code crashes~with higher
resolution this crash time can be delayed somewhat!. Starting
at aroundt520M for AF2, there is a spurious growth in th
Hamiltonian constraint that corresponds to the deforma
in the metric. For maximal slicing one expects continuo
growth of a smooth metric peak, but with AF2 the should
in the lapse seems to overtake the outward movement o
metric peak, freezing its growth in an irregular manner.

These results for black holes with grid stretching can
be compared directly to the wave runs in the previous sec
because in the case of the black hole runs we do not

FIG. 9. Evolution of the lapse and the metric at various times
Misner data (m52.2). Plots are every 5M in time. With the AF2
system the evolution remains stable even after the metric pea
severely deformed.

FIG. 10. Evolution of the L2 norm of the Hamiltonian constrai
for Misner data (m52.2). The ADM system crashes at aroundt
514M , while the AF2 remains stable. However, the accuracy of
AF2 run degrades significantly after aroundt520M .
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proach a static final state. However, the CT formulation s
offers some advantages over ADM in achievable run tim
We find stability far beyond were the runs are meaningf
and it remains to be explored how far one can push the
runs while maintaining convergence.

B. Matter spacetimes

In the previous sections we studied the stability proper
of the vacuum Einstein equations. What will happen if the
equations are coupled to dynamical matter sources that
themselves governed by evolution equations coupled to
spacetime geometry? The complete set of equations can
have more complicated types of unstable modes. W
would be the effects of switching from the ADM formulatio
to the CT formulation?

To respond to this question we consider next the follo
ing systems:~i! the evolution of boson stars governed by t
scalar field Klein-Gordon equation and~ii ! the evolution of
neutron stars governed by the hydrodynamical equati
~general relativistic Euler equations!. The numerical evolu-
tion of the Klein-Gordon equation is straightforward wi
many well-known stable schemes. However, the numer
evolution of the hydrodynamical equations is considera
more challenging, especially in the presence of shocks
highly relativistic flows. For this purpose we use a recen
developed hydrodynamical code@42# which employs a con-
servative formulation of the equations together with hig
resolution shock-capturing~HRSC! schemes based on ap
proximate Riemann solvers. In@42# we demonstrated tha
this code is capable of handling hydrodynamical evolutio
in a stable and accurate fashion for a range of scenarios

We focus here on analyzing the stability and accuracy
evolutions of both static boson stars and static neutron s
using the ADM formulation and the AFA implementation o
the CT equations discussed above. We use the AFA im
mentation rather than AF2 because the simulations discu
here have all been performed using algebraic slicings
implementation AF2 applies only to maximal slicing. Th
main motivation for this has been the fact that, as we w
show below, implementation AFA with algebraic slicings a
ready gives excellent results when compared with stand
ADM and is far less computationally expensive than ru
that use maximal slicing.

1. Boson stars

We begin with a simple kind of matter source: se
gravitating scalar fields. This system has served as a us
testbed for developing numerical techniques for dealing w
relativistic matter coupled to the Einstein equatio
@43,35,44,45#, and also has a distinguished history in t
field, having provided the first example of critical phenom
ena in relativity@46#.

The dynamics of a massive scalar field are described
the minimally coupled Klein-Gordon~KG! equation

hgf5m2f ~34!

~see, e.g.@43#!. The KG equation can be obtained from th
Lagrangian

r

is

e
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L5
1

2
gmnf,mf* ,n1

1

2
mufu2, ~35!

which leads to the stress-energy tensor

Tmn5
2

A2g

dL
dgmn

, ~36!

which is used as the matter source for the Einstein equati
Self-gravitating massive scalar fields have bound, s

like solutions called boson stars with stability properties v
much like those of neutron stars. These objects have b
studied numerically, extensively in 1D@43,45# and also in
3D @35#. Apart from the fact that their evolution equation
much simpler than the hydrodynamical equations, bo
stars are also easier to handle numerically when compare
neutron stars because they have no sharp changes in the
sity distribution near the surface layer of the star. For m
details on the properties of boson stars and their beha
under perturbations see@43# and references cited therein.

We perform our numerical evolutions of boson stars
writing the KG equation as a flux-conservative system of
form

u̇a5]bFa
b1Sa

bub ~37!

whereuW contains the scalar field and its time and space
rivatives. The method used to integrate this equation i
symmetrized MacCormack with both directional and Stra
splitting. Symmetrized here means that the order of left-h
and right-hand differencing changes every time step~this im-
proves the stability of the scalar field evolution!. The code
for solving the KG equation converges to second order
time and space. See Refs.@47,48# for details of the numerica
methods.

We have carried out evolutions of equilibrium boson s
configurations with the metric background held fixed art
cially ~not updating the metric functions!, and evolutions of
the metric of such configurations with the scalar field h
fixed artificially ~not updating the scalar field!, for a range of
compactness of the boson stars, using both the ADM
AFA schemes. For all these cases, we have seen tha
simulations are stable and second order convergent. The
of coupled spacetime-scalar field evolution is much m
challenging, and we focus on that below.

We begin by showing an equilibrium boson star with
central density near the maximum stable value~field strength
at centerf050.26, total massM50.6322 mp

2/m, with mp

the Planck mass,m the mass of the scalar field!. In Fig. 11,
we show the evolution of radial metric componentgrr in a
fully coupled simulation, using a three step ICN schem
11log slicing withN52, no shift, a radiative boundary con
dition on the metric, and a flat boundary condition on t
scalar field. A 323 grid is used to cover only one octant. I
the first panel we show the results of the ADM evolutio
We see that for a short time, the spacetime remains ne
static~as it should!. However, a short wavelength instabilit
becomes significant by timet57, and quickly grows causing
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the code to crash. The timet here is expressed in terms of th
intrinsic oscillation time scale of the scalar field@the exact
equilibrium boson star field has the formc(r )eit ]. In the
second panel we show the evolution with exactly the sa
setup but using now implementation AFA instead of ADM
We see that the static configuration is maintained for a m
longer time. Towards the end of the evolution, neart5150,
we see that numerical error starts to build-up near the bou
ary of the computational domain.

In Fig. 12, we compare the L2-norm of the Hamiltonia
constraint for the ADM and AFA runs. We see that at ea
times the ADM run gives a more accurate result, but ins
bilities cause the L2-norm to blow byt.8. For the AFA run
the constraint violation is larger at first, but the evolutio
remains stable or a much longer time. The oscillation of
Hamiltonian constraint we see here can be understood
reaction of the scalar field to the numerical truncation err
which can be interpreted as a kind of perturbation. The f
quency of these oscillations coincides with the ones obtai
in 1D studies of perturbed boson stars. Notice that with

FIG. 11. Evolution of the radial metric functiongrr using ADM
~upper panel! and the AFA implementation~lower panel!. The
ADM evolution crashes att.8.
4-10
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ADM run the code crashes so early that one can not even
the first oscillation.

2. Static neutron stars

We turn now to the study of hydrodynamical evolutio
of neutron stars. In@42# we developed a three-dimensiona
fully relativistic code to integrate the hydrodynamical equ
tions coupled to the ADM equations. Convergence stud
using polytropic neutron stars showed that the code is sec
order accurate in both space and time. For the integratio
the hydrodynamical equations we used HRSC scheme
the total-variation-diminishing ~TVD! class, with a
piecewise-linear reconstruction of a sufficient set of hyd
dynamical variables~rest-mass density, three-velocity an
internal energy density!. For more details on the scheme
available in the code, see@42#. In the studies reported in thi
paper we use the ICN scheme for the integration of
spacetime equations~either ADM or AFA! and Roe’s ap-
proximate Riemann solver for the hydrodynamical equatio
We use ‘‘11log’’ slicing with N52.

As in the boson star studies we have first considered e
lutions which test separately the individual components
the code. In these, we either solve the hydrodynamical eq
tions in a prescribed~static! spacetime or the gravitationa
field equations for a prescribed matter source. In particu
we have evolved static neutron star configurations with
zero-temperature polytropic equation of state, of the fo
P5KrG ~where P is pressure andr is rest-mass density!.
This included stars with a large polytropic indexG ~very
stiff! having density profiles with a discontinuous first d
rivative at the surface. In the case of prescribed ma
sources, we have confirmed that the comparison of the A
and AF2 systems to the ADM system, in terms of stabil
and accuracy, remains the same as in the vacuum cases
ied above. Static neutron stars with polytropic indexG52
have also been studied in@11# using the CT equations with
prescribed hydrodynamical sources.

FIG. 12. Evolution of the L2 norm of the Hamiltonian constrai
for a static and stable fully coupled boson star using the ADM a
AFA systems. The evolutions where carried out on a 323 grid, with
a resolution ofDx50.45.
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We focus next on the coupled spacetime and hydro
namical evolution of static Tolman-Oppenheimer-Volko
~TOV! @49# neutron stars~in isotropic coordinates!. Again,
we compare the results obtained using the AFA implem
tation of the CT equations to those of the ADM equations.
principle both the matter distribution inside the star and
spacetime should remain static. In practice they evolve
to truncation errors of the finite-difference scheme, with t
hydrodynamics and the spacetime responding to one ano
The static TOV solution provides a reference to monitor
accuracy of the coupled numerical evolution. Note that
these evolutions, static outer boundary conditions were u

In Fig. 13, we show the evolution of the L2-norm of th
Hamiltonian constraint for a polytropic,N51, TOV star of
gravitational mass 1.4M ( and compactness ratioM /R
50.146. A 643 grid is used to cover the first octant, wit
dx5dy5dz50.34 km. The dashed line corresponds to t
ADM system and the solid line to the AFA system. Again,
in the vacuum studies, we see that the ADM evolution s
denly becomes unstable at roughly 2.7 ms, while the A
evolution remains stable after more than 6ms~we followed
the evolution for more than twice that!.

In Fig. 14 we show the evolution of the radial compone
of the metric~constructed from the evolved Cartesian met
components!. The first panel of Fig. 14 corresponds to th
evolution obtained with ADM. We see that the star basica
maintains its initial equilibrium, until the high-frequency in
stability crashes the code. In the second panel, we showgrr
at various times, obtained with the AFA implementation. A
other parameters are the same as in the ADM evolution.
ADM run is more accurate, before it becomes unstab
while the AFA run is stable but less accurate~there is a
secular drift away from the initial configuration!.

The truncation errors of the coupled evolution code i
tiate a pulsation of the star in, mainly, its radial modes

d FIG. 13. Evolution of the L2 norm of the Hamiltonian constrai
for a N51.0 polytropic neutron star model~coupled spacetime and
hydrodynamical evolution!. The ADM system crashes after les
than 2.7 ms, while the AFA system evolves stably for a sign
cantly longer time. A 643 grid was used to cover the first octant.
4-11
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MIGUEL ALCUBIERRE et al. PHYSICAL REVIEW D 62 044034
pulsation. These pulsations are damped in time due to
viscosity of the numerical scheme~see@50,51#!. The TVD
schemes we are using describe well the physical pulsat
of the fluid, except in a small region around the center of
star, where short wavelength noise appears in the radia
locity. Our trials with other HRSC schemes show that t
behavior seems to be generic for higher order HR
schemes.1 In all such schemes, the radial momentum near
center has a small residual value of constant sign. This
mentum appears in the right-hand side~RHS! of the evolu-
tion equation forG̃ i @Eq. ~20!#. This, in turn, leads to an erro
in the spacetime evolution. It is noteworthy that this does
cause an instability in the coupled evolution, except at v
late times, when the violation of the Hamiltonian constra
has already become extremely large.

We note that as the TVD schemes are only first-or
accurate at local extrema, such as the maximum of the d
sity at the center of the star, so the increase in the Ha
tonian constraint at the center converges to roughly first
der with increasing resolution. Away from the center, t
scheme is second order convergent. The convergence o
L2-norm of the Hamiltonian constraint with the AFA system
for different grid-sizes~and for the same initial configuratio
as above!, is shown in Fig. 15.

1We have extensively experimented with other hydrodynam
evolution schemes. If one uses a first-order~Godunov! scheme, us-
ing piecewise constant reconstructed data for the Riemann prob
instead of piecewise linear, the radial velocity oscillates around z
near the center of the star, without any short wavelength noise.
a low-order scheme is not capable of accurately describing the
lution of the stellar surface where the density distribution is cha
ing rapidly ~unless prohibitively large grids are used! and large
errors from the surface layers soon propagate inside the star
have also experimented with a mixed system: first-order near
center and second-order near the surface. In this case the
grows at the interface of the two regime, yielding a even less a
rate evolution overall.

FIG. 14. Comparison of the evolution of the radial metric co
ponent for aN51.0 polytrope with ADM ~left panel! and AFA.
The evolution with the latter system proceeds well beyond the t
at which the ADM system becomes unstable.
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IV. DISCUSSION AND CONCLUSIONS

In this paper we have studied the stability of thre
dimensional numerical evolutions of the Einstein equatio
in a formulation that separates out the conformal and tra
less parts of the system. In our study we have conside
different spacetimes including gravitational waves, bla
holes, boson stars and neutron stars.

We investigated several implementations of t
conformal-traceless~CT! evolution equations. We identified
two of them which give the best long term stability behavio
the AF2 implementation for maximal slicing, and the AF
for algebraic slicings. The AFA implementation actively e
forces the trace of the conformally rescaled extrinsic cur
ture (Ã) to zero at each step of the time evolution, while t
AF2 implementation enforces as well the fact that the tra
of the extrinsic curvature~K! should vanish in maximal slic-
ing. On the analytic level, the CT evolution equations imp
that Ã50 throughout the evolution, but this is inevitab
violated in numerical evolution due to truncation error, u
less actively enforced. Similarly, for maximal slicing,K will
not remain zero numerically unless actively forced to do
We find that these two implementations of the CT equatio
lead to a more stable evolution compared to what one
obtain using the standard ADM evolution equations, un
the same resolution, boundary condition and grid param
choices, for all systems investigated. In comparison
straightforward implementation of the CT equatio
~‘‘Mom’’ ! is capable of giving a stable evolution for wea
but not strong field systems. We should also mention that
have recently become aware of the work of Lehner, Huq a
Garrison@15# where a comparison of the ADM and CT fo
mulations has been carried out and where it is also found
freezing the evolution ofK ~what these authors call ‘‘locked
evolution’’! improves considerably the stability of simula
tions that use the CT formulation.

Beyond stability, we have also compared the accuracy

l

m,
ro
t,
o-
-

e
e
ror
u-

-

e
FIG. 15. Convergence of the L2 norm of the Hamiltonian co

straint, at three different resolutions, for a N51.0 polytropic neu-
tron star model. The AFA system is used.
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the evolutions obtained by the ADM equations and CT eq
tions. For all spacetimes considered we have found that
ADM system is consistently more accurate than the CT s
tem in short term evolutions, before the instabilities set
Although at present we can offer no explanation of this d
ference in accuracy between the different formulations,
believe that it is not a consequence of our numerical imp
mentation, but is rather a property of the system of differ
tial equations. It therefore points in the direction for a po
sible improvement of the CT approach. We note th
formulations combining the CT approach and the hyperb
approach have been proposed@52,53#. A similar investiga-
tion of the stability and accuracy properties of such form
lations will be presented elsewhere.

In this paper we have focused on the implementations
the numerical properties of their evolutions. Some und
standing of the different stability of properties on the analy
level is discussed in a companion paper@4#.
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APPENDIX A: STABILITY ANALYSIS OF THE
ITERATIVE CRANK-NICHOLSON SCHEME

The numerical scheme used for the simulations descr
in this paper is the so-called iterative Crank-Nicholson~ICN!
scheme, which is an iterative, explicit version of the stand
implicit Crank-Nicholson~CN! scheme@54,55#. The idea be-
hind this method is to solve the implicit equations by
iterative procedure, where each iteration is an explicit ope
tion depending only on previously computed data. Norma
this process is stopped after a certain number of iteration
until some tolerance is achieved. For a linear equation~and
in particular in one dimension!, the iterative procedure ca
easily be much more computationally expensive than the
trix inversion required to solve the original implicit schem
For a non-linear system, however, solving the impli
scheme directly can prove to be extremely difficult.

In this appendix we study the stability properties of t
ICN scheme in the particular case of the simple wave eq
tion, and derive two very important results:

In order to obtain a stable scheme one must doat least
three iterations, and not just the two one would norma
expect~two iterations are enough to achieve second or
accuracy, but they are unstable!.
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The iterative scheme itself is only convergent if the sta
dard Courant-Friedrichs-Lewy~CFL! stability condition
is satisfied, otherwise the iterations diverge.

These two results taken together imply that there is
reason~at least from the point of view of stability! to ever do
more that three ICN iterations. Three iterations are alre
second order accurate, and provide us with a~conditionally!
stable scheme. Increasing the number of iterations will
improve the stability properties of the scheme any further
particular, we will never achieve the unconditional stabil
properties of the full implicit CN scheme, since if we viola
the CFL condition the iterations will diverge.2

For our stability analysis we will consider the simp
wave equation in N-dimensions. Numerical experime
have shown that the full Einstein equations have essent
the same stability properties.

Consider then the N-dimensional wave equation writ
in ‘‘3 11 like’’ form:

] tf5A, ] tA5(
i 51

N

] i
2f. ~A1!

For the finite difference approximation to these equatio
we employ the usual notation

f m
n
ª f ~xi5miDx,t5nDt !, ~A2!

with n and m5(m1 , . . . ,mN) integers. The implicit CN
scheme is then given by

fm
n115fm

n 1
Dt

2
~Am

n111Am
n !, ~A3!

Am
n115Am

n 1
Dt

2~Dx!2 (
i 51

N

d i
2~fm

n111fm
n !, ~A4!

where the finite difference operatorsd i
2 are defined as

d i
2f mi

n
ª f mi11

n 22 f mi

n 1 f mi21
n . ~A5!

The implicit CN scheme is well known to be unconditio
ally stable for the wave equation~i.e. stable for any value o
Dt).

The ICN scheme is defined in the following way:

fm
(1)5fm

n 1DtAm
n , ~A6!

Am
(1)5Am

n 1Dt(
i 51

N

fm
n , ~A7!

2As we were finishing this manuscript we became aware o
paper by S. Teukolsky where he does essentially the same ana
and obtains the same results@56#. His analysis and ours comple
ment each other, since he considers any finite number of iterati
while we consider only 1, 2 and 3 iterations. On the other ha
here we also consider the question of the convergence properti
an infinite number of iterations.
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fm
( i )5fm

n 1
Dt

2
~Am

( i 21)1Am
n !, ~A8!

Am
( i )5Am

n 1
Dt

2~Dx!2 (
i 51

N

d i
2~fm

( i 21)1fm
n !, ~A9!

and finally,

fm
n115fm

( i max) , ~A10!

Am
n115Am

( i max) . ~A11!

From these expressions it is clear that if the iteratio
converge, we will recover the implicit CN scheme.

For the stability analysis of the ICN scheme we use
standard von Neumann ansatz@54,57#

fm
n 5j1lnei (k•m)Dx, ~A12!

Am
n 5j2lnei (k•m)Dx, ~A13!

with k the ‘‘wave vector.’’ Notice that the highest wav
number that can be represented on the finite difference
corresponds tokiDx5p. The stability condition for our nu-
merical scheme will then be

ulu<1. ~A14!

Let us consider first the ‘‘1-step’’ ICN scheme, that is, t
so-called forward-time centered-space~FTCS! scheme. This
scheme is well known to be only first order accurate, a
unconditionally unstable. The fact that is only first order a
curate can be easily seen from a simple Taylor expansio
time. For the stability analysis we substitute the von Ne
mann ansatz~A13! into the ICN scheme defined above wi
i max51. Doing this we obtain

l222l1112r2u250, ~A15!

whererªDt/Dx is the Courant parameter and

u2
ª(

i 51

N

ui
2 , ~A16!

ui
2
ª12cos~kiDx!. ~A17!

Solving for l we find

l516 iA2ru, ~A18!

which implies

ulu5112r2u2.1. ~A19!

Comparing with Eq.~A14! we conclude that the 1-ste
scheme is unstable for any value ofDt.

Let us now consider the 2-step scheme. If we take
ICN scheme above withi max52, and do the appropriate sub
stitutions we find
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fm
n115fm

n 1DtAm
n 1

r2

2 (
i 51

N

d i
2fm

n , ~A20!

Am
n115Am

n 1
r2

2 (
i 51

N

d i
2~2fm

n 1DtAm
n !. ~A21!

As before, a simple Taylor expansion shows that this
proximation is now second order both in time and space

Using again the ansatz~A13! we find now that

l212l~r2u221!111r4u450. ~A22!

Solving again forl we obtain

l512r2u26 iA2ru, ~A23!

which implies

ulu511r4u4.1. ~A24!

Comparing again with Eq.~A14! we conclude that the
2-step ICN scheme is also unstable for any value ofDt. This
result is surprising, sincea priori one might expect that the
2-step scheme should behave like a predictor-corre
scheme, and should therefore be stable.

Finally, let us consider the 3-step scheme. By taking
ICN scheme above withi max53, and doing the appropriat
substitutions we now find

fm
n115fm

n 1DtAm
n 1

r2

4 (
i 51

N

d i
2~2fm

n 1DtAm
n !,

~A25!

Am
n115Am

n 1
r2

2 (
i 51

N

d i
2~2fm

n 1DtAm
n !

1
r3

4Dx S (
i 51

N

d i
2D 2

fm
n . ~A26!

A Taylor expansion now shows that this 3-step scheme
still only second order accurate in both time and space.
ing the ansatz~A13! on this scheme we now find

l212l~r2u221!112r4u41
1

2
r6u650. ~A27!

And solving forl we obtain

l512r2u26 iA2ruu12r2u2/2u, ~A28!

which now implies

ulu512r4u41
1

2
r6u6. ~A29!

Comparing now with Eq.~A14! we obtain the following
stability condition:

r2u2<2. ~A30!
4-14
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And finally, from the fact that the maximum value ofu2 is
2AN we find

r<1/AN. ~A31!

Notice that this is just the standard CFL condition inN di-
mensions. We then conclude that in order to obtain a~con-
ditionally! stable scheme we need to do at least three it
tions.

Next, we address the question of the stability of the ite
tions themselves, that is, if we iterate an infinite number
times do we converge to something~that is, to the implicit
CN scheme!? For this we consider two consecutive iterati
steps (i 21,i ), and subtract them to get

fm
( i )2fm

( i 21)5
Dt

2
~Am

( i 21)2Am
( i 22)!, ~A32!

Am
( i )2Am

( i 21)5
Dt

2~Dx!2 (
i 51

N

~fm
( i 21)2fm

( i 22)!. ~A33!

Let us now defineF1m
( i )
ªfm

( i )2fm
( i 21) and F2m

( i )
ªAm

( i )

2Am
( i 21) . The above equations become

F1m
( i )5

Dt

2
F2m

( i 21) , ~A34!

F2m
( i )5

Dt

2~Dx!2 (
i 51

N

F1m
( i 21) . ~A35!
ys

e

.
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We now use the von Neumann ansatz again

F1m
( i )5 f 1l iei (k•m)Dx, ~A36!

F2m
( i )5 f 2l iei (k•m)Dx. ~A37!

Substituting this ansatz back into the equations above
find

l21
1

2
r2u250, ~A38!

from which we obtain

l56 i
ru

A2
. ~A39!

In this case, the condition for the iterations to conver
implies that the norm of the successive differences should
to zero, which in turn impliesulu,1. Using again the fact
that the maximum value ofu2 is 2AN we see that the con
vergence condition reduces to

r,1/AN. ~A40!

This is again the standard CFL stability condition. So w
have just shown that if this condition is violated, the iter
tions will fail to converge. This means that there is no reas
to try to iterate to convergence in the hope of improvi
stability. If Dt was too big in the first place the iterations w
never converge.
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@38# B. Brügmann, Int. J. Mod. Phys. D8, 85 ~1999!.
@39# J. Thornburg, Class. Quantum Grav.4, 1119~1987!.
@40# E. Seidel and W.-M. Suen, Phys. Rev. Lett.69, 1845~1992!.
@41# R. Gomezet al., Phys. Rev. Lett.80, 3915~1998!.
@42# J. A. Font, M. Miller, W. M. Suen, and M. Tobias, Phys. Re

D 61, 044011~2000!.
@43# E. Seidel and W.-M. Suen, Phys. Rev. D42, 384 ~1990!.
@44# J. Balakrishna and H. Shinkai, Phys. Rev. D58, 044016

~1998!.
04403
@45# J. Balakrishna, E. Seidel, and W.-M. Suen, Phys. Rev. D58,
104004~1998!.

@46# M. Choptuik, Phys. Rev. Lett.70, 9 ~1993!.
@47# T. Dramlitsch, Master’s thesis, Universita¨t Potsdam, 1999.
@48# J. Balakrishna, Ph.D. thesis, Washington University, St. Lou

1999.
@49# C. W. Misner, K. S. Thorne, and J. A. Wheeler,Gravitation

~Freeman, San Francisco, 1973!.
@50# N. Stergioulas, J. A. Font, and K. Kokkotas, gr-qc/99040

~1999!.
@51# J. A. Font, N. Stergioulas, and K. D. Kokkotas, gr-qc/990801
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