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S-wave absorption of scalars by noncommutative D3-branes
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On the supergravity side, we study the propagation of the Ramond-RafR&)dscalar and the dilaton in
the D3-branes with a NB field. To obtain the noncommutative effect in a simple way, we consider the
interesting case oB— (60— 7/2). We represent this as the smeared D1-brane backgroundrwithi =0
approximately. In this background, considering the RR scalar equation only, it induces an instability of the
near-horizon geometry. However, it turns out that, considering all coupled equations, the RR scalar is non-
propagating. On the other hand, the dilaton is a physically propagating mode. We calcutateatie absorp-
tion cross section of the dilaton. One find$|s_...~ (0R,) Y ©°, while ¢|g—o~ (0Ro)® w® in the leading-
order calculation. This means that although the dilaton belongs to a minimally coupled scalar in the absence of
a B field, it becomes a sort of fixed scalar in the limit B .

PACS numbgs): 04.70.Dy, 04.50th, 11.25.Db

I. INTRODUCTION parallel to the braneh;,,a,b=0,1,2,3). We derived the ex-
act form of the absorption cross sectiom ) in a B field on

Recently noncommutative geometry has attracted mucthe supergravity side. It turns out thaf”°>¢P=°. This
interest in the study of string and M theory in tRBefield  implies that the presence of tiefield suppresses the curva-
[1-7]. For example, we consider the classical solution whichwure effect surrounding the 7 black hole. Consequently,
arises from D3-branes with a Neveu-Schwéis) B field.  this leads to an increase of the greybody factor.

According to the anti—de SittéAdS) conformal field theory Recently, Kaya[18] has calculated the absorption cross
(CFT) correspondencg8], we expect that classical physics section by considering only the Ramond-RamdRe®) sca-
based on the near-horizon Ag8f a D=7 black hole solu- |ar equation(26) in the D3-brane with the largB field. He

tion can describe the large-limit of noncommutative super showed in the first version that the greybody factor is not
Yang-Mills (NCSYM) theory on the boundary. In this direc- changed even if the field is large. This means that the RR
tion we take a decoupling limit to isolate the near horizonscalar becomes a minimally coupled scalar even for the pres-
geometry from the remaining one. Then the correspondencence of the largeB field. However, in the third version, he
naturally arises. commented that the RR scalar holds witf” > o5 ~°.

It turns out that the noncommutative effects are relevant In this paper we study the propagations of the RR scalar
for physics in the ultravioletUV) regime, leaving that in the (x) and the dilaton ¢) by D3-branes with & field along
infrared (IR) regime unchanged. On the other hand, thetheir world volume directionsX;,x3). Especially, we are
NCSYM theory is not useful for studying the UV theory at interested in the case &—-oc. In this sense our spacetime
short distances. An NCSYM with the noncommutativity background is different from Kaya’'s case. Here we use all
scaleA on a torus of size is equivalent to an ordinary information including all equations of motiofespecially
supersymmetric Yang-Mill§SOSYM) theory with a magnetic Egs. (26) and (28)], the Bianchi identities, and the gauge
flux, provided that® = A?/3? is a rational numbef9]. The  condition for graviton. In the absence ofBafield, all of
equivalence between the NCSYM and the OSYM can bey,®,h,, belong to minimally coupled scalars. However, in
understood from th& duality of the corresponding string the presence of & field, these fields are coupled to the
theory. Hence the OSYM witB field is the proper descrip- backgroundnonminimally In this sense, we may regard
tion for the UV region, while the NCSYM takes over the IR these as the fixed scalars. Actually, in the smeared D1-
region. Actually, the noncommutative effect comes from thebrane background, the dilatofiRR scalay turn out to be
B— oo limit of the ordinary theorie$5,6,10,11. (non)propagating modes. Also we wish to test whether or not

We remind the reader that, aside from the entropy, ther¢here is a change in the absorption cross sections of the di-
exists an important dynamical quantity, “the greybody factorlaton whenB— .

(absorption cross sectighto extract information for the The organization of this paper is as follows. In Sec. I, we
guantum black hol@12-15. It is well known that the cross briefly review the field equations which are relevant for our
section can be obtained from the solution to the linearizedtudy. Here we wish to study thH&—oo limit carefully and
equation upon the diagonalization. On the string side, theratroduce the smeared D1-brane black hole. Section Il is
was a calculation for the absorption of scalars into the nondevoted to analyzing the perturbations around the smeared
commutative D3 brangld 6]. D1-brane background. Because the linearized equation for

Myung, Kang, and Led17] have studied the quantum the RR scalar is completely decoupled, the propagation of
aspects of the D3-brane black hole in tBg; field back- the RR scalar is investigated in Sec. IV. This induces an
ground using a minimally coupled scalar. Such a field mightinstability of the near-horizon geometry of the smeared D1-
describe a fluctuation of the off-diagonal gravitons polarizedbrane black hole. In Sec. V we correct the propagation of the
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RR scalar in view of all linearized equations. And we deal 1

with the propagation of the dilaton with the dilaton gauge. InV5® —2(V®)%+ 1—2{H§— e’?(Fas— xHo)?} —€**(Vex)?
Sec. VI, we study the propagation of the dilaton with the

harmonic gauge and obtain its absorption cross section. We =0, 9

discuss our results in Sec. VII. Finally, we present the

smeared D1-brane solution in the Appendix.

Il. FORMALISM

We start with the low-energy limit of a type-IIB super-

string action in the Einstein framey(jy=e"*"?Gyn) [12]:

1 1 1
So=5 7 f dl°x[¢—_g[R—§<v<b)2— ¢ (9B2)°

K10

1 1 1
_ T 20 2_ 0 _ 2~
5 (902~ 76" (9C,~ xB) >~ 7,
1
— méj_oC‘laCzaBz y

Fg]

.Y

where® is the dilaton,y is the RR scalai3, is the NS two
form, C, is the RR two form, andC, is the RR four form.

And one has
Hunp= (dB2)mnp= 39imBney
Famnp= (9C2)mnp=39mConp »
(9Ca)mnpPQrR= 99 MCanpoR

F5: &C4+ 5( BZ&CZ— Cz&Bz),

)

where the self-duality constraifts=Fs is required at the
level of the equations of motion. The relevant equations of (14

motion lead tq[19]

-d
e
V2x+2VOVy+ —(Fs=xH)-H=0,

1
VD + e THZ-eP(Fy—xH)% - e*(Vx)?=0,
Vu(e” PHYPR) —Vy{xe®(Fs— xH)M"%}

2
+ §FPQRS_§:3RS'|: 0,

2
Vi{e®(F3—xH)"P - §FPQRST‘|RS1: 0,
VuFMPRRS=0,

In the string frame, Eq93)—(7) take the forms

1
V§X+€(F3S_XHS)'HS:OI

)

(4)

©)

(6)

()

®)

VSM(672¢H2APQ) - VSM{X(F3S_XHS)MPQ}

2
+3Fs M Fasrs=0, (10
MPQ 2 PQRS
Vem(Fas—xHs) - §Fs -HSRS'IZ 0, (11
V uFMPRRS=q, (12)

In addition, we require the remaining Maxwell equations as
three Bianchi identities,

dmHnpg = ImFNneg = dMFNPorg = 0. (13

The solution of the B-7 extremal black hole for the D3-
branes with a nonzerB,; field is given in the B=10 string
frame[5] by

ds2=f~ Y2 —dxZ+dx®+h(dx3+dx3)}

+H2(dr?+r2dQ3g),
R4
f=1+—, h~*=sir? 6f *+cog 6,
r

Bus=tan 0f h, e?®=g?h,

1
Fsm!:gsin H&r(ffl), F50123=aCOS Hh&r(ffl)

From now on we work in the string frame and thus neglect
the subscript 5.” Here the asymptotic value of thg field is
Bo,=tand and the parameteR, is defined by co#R}
=R}(=4mgNa’?). N is the number of the D3 branes agd
=0., is the string coupling constant. It is obvious that for
#=0(h=1) one recovers the ordinary D3-brane black hole
with the standard AdS< S° geometry in the near horizon. In
this case we have 51,5 =(1/g)d,(f 1), its dual Fs), and
eZ‘I’:gz.

For 6— m/2(h—f), however, one finds the D3-brane
black hole in the very larg8-field and thus the effect of
noncommutativity appears. Here one observes an apparent
deviation from Adg§X S° in the near horizon. However, it is
known that in order to make a connection to noncommuta-
tive geometry, thed— 7/2(B—o0) limit must be carefully
taken. In addition, we require a double scaling limitgifl
—»,w*a’?—-0 to keep the expansion parameiiR] very
small in the calculation of the absorption cross section. This
implies that one has to take both the decoupling limitgof
—0,0'—0,gN>1 and the low-energy limit¢—0). Here
we wish to take into account all of these limits mentioned the
above by takingx’—0 only:
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b
al

’ g=a’§1 N=

N — ). Hence we can neglect the effect® andH on the
tan 6= —
a

(15 abiorption cross secﬂon in favor §3 In this case oﬂ?5
=H=0, e®*=g%f, Fo,=(1/9)d,(f 1), one finds the

whereb,g,N stay fixed[5]. Then we have the relation smeared D1-brane solution in the Appendix. We regard this
solution as the simple one to include the noncommutative

=5 o =4 v B4 _
lim (Réz 0 >:47rngERfT,2. (16) effecti thr(.)ugkR,,,2>~I§ in T=1+R%?,/r*. HereR? ,=(1
o ml2 cos o +€)R* , with e=k?/ w?=k? w?(1—k?/ w?) 2.
2
This means that Iimﬁw,zR‘(‘, is nearly independent af and is Ill. PERTURBATIONS

finite with R? ,>R7. But we must choose the low-energy

limit (w—0) to keep the new expansion parametéR?,
small. Under this condition, one finds

For the perturbation analysis, we keep the background
symmetry up to the linearized level. Here we introduce the
perturbations to derive the greybody factor{26]

o 00— ml2
Hs=tan6s,(f"thy —— a’'—0, (17 Gun=Cun+Nun. (20
a,*)O
o 1 9— /2 1 x=0+m, D
Fo]_r:_sinear(fil) I —,—)OO, (18) —
g W @ =D+ ¢, (22
o 1 O— /2 = =
F0123=§cosaar(f*1) —— —finite. (19 Fou=Fou+for =Fou(1+f3), 23
a’'—0 _ I
H, os=H, o3+ p3=H55(1+hy), 24
Here one obtains a sequence of the background values: 23~ Hraat Nrag=Hradl 2 29
> > = =3
FOJJ Fo123>H,23. Although the flux of the RR five-form Fotos=Forza + forza=Foroa(1+fs) (25)

(F 5) counts the rank of the noncommutative gauge group,

we have to recognize that this is very small in comparisonyith setting all other perturbations to be zero. General fluc-
with the RR three-form E3) in the limit of #—=/2(B  tuations give us a coupled system of differential equations:

2y Si2y=0 (26)
7= gH 7=0,

. _ _ _ 1 _ _ _
—hMNY V@ = GMNST Ve ® + V2= 4VD -V + 2V DV PN+ T5(2H2hs— 3HyungH VM)

20
_2{2E§(¢+fB)_3FMNQFPNQhMP}:Oa (27)

& 22{(Vyy = 2V @) (HMNPhy) = (Vyho) HMOP+ (VP ) HMON= (7, i o) HRNP— Mo ¥  HONP— 2V, ) MNP}

— o 2 o
—2Vy(e 2PHYN) = Vi (FYPQy) + SFPORSFps(fo+f5) =0, (28)

V(FMNPE ) — (Viyho) FMQP+ (7 hP o) FMON— My FONP

~ — i 2 _
_(VMhMQ)FQNP_VM(HMPQﬂ)_ §FPQRSHRST(h3+ f5)=0, (29

Vi (FMNPQRf ) — gEMTIPQRy | NI (v AM ) FTNPOR_pM_y FTNPQR- g (30)

with 8T fy = 3GV yhno+ Vnhwo— Vohun) - Here we have a relation @“NoT'f =V yhMP, AMP=hMP—1GMPh with
h=h';. As a simple check, let us calculate the ordegah each equation. To obtain all consistent linearized equations, we
should scaley in Egs.(26), (28), and(29) as 5/g. Furthermore, we find from three Bianchi identities in EfR) with Egs.
(23)—(25) that
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4

f5,fs— propagating modes, # 59 ~ Ro 0
§_rZ+F(?_r+w 1+r—4 (2] :0 (35)

h;— nonpropagating mode.

This means that the NB field (Hynp) plays the role of a  With ©= V?Z—ki—ké—kézw(lf k2/20%), KP=Ki+K}
tool for giving the noncommutative effect but it is not the +Ks, @“>k*. The swave absorption cross section for Eq.
physically propagating field. For the graviton modes, we(35 can be obtained from the solution to the Mathieu’s
may use either the dilaton gaufi] equation ag13]

~ 4,7~ 8
VMhMP:hMNF:\DAN (31) ¢ :’7T (wRo) 36
0-O|B:0 8(,()5 ( )

or the harmonic gauge22]
P in the leading-order calculation. We note here thdfz_,
Vuh™"=0. (B2 =0¢|g_o=0¢|g—0, because both the RR scalar and the di-

. . o laton belong to minimally coupled scalars when Bigeld is
Although a choice of gal_Jge_con_d_ltlon does not ehr_mnate allypsent. For an arbitrar§, the corresponding equation for a
of the gauge freedom, it simplifies the perturbation equa

minimall led fieldy is gi b
tions. We remark that, although E@6) by itself is a decou- rinimatly coupled fielde 15 given by

pled one, Eqs(28) and(29) containz. Kaya considered Eq. 2 5 g &
(26) only in Ref.[18]. The dilaton equatiok27) takes a very [ 5+ — — + 22 1+_f ] qu: 0, (37)
complicated form which is coupled with various other fields. are roar r

To decouples from the other fields, we need some further 5 5
work. Hence we separate the RR scalar from the dilaton. Letvhere Rj=(1+ €)R} with €(6) = (k¥ w?)sir? <1. In the

us first investigate the RR scalar. limit of 6— /2, one findsR*,=(1+k¥®?)R%,. The
above equation is exactly the same form as in B§) with
IV. RR SCALAR PROPAGATION different “R.” Thus the absorption cross section can be read

Because the RR scalar equati@) is completely decou- Off from Eq. (36) by substitutingR, with Ry [17]
pled from others, we start with an arbitraB( ). A simple
way to obtain the noncommutative effect is to include the
momenta along the world volume directiofd. This is be-
cause theB,, field is set up along these directions. Hence
X»,X3 become the noncommuting coordinates. Upon rescalFor an arbitraryB field, one always finds that¢|s.

ing the coordinates;— (b/a’)X; and keeping the new coor- > o¢|g_o with R,>R,.

7T4(Z)ﬁe)8

T8t (38

0¢ls=0¢ls=0(Ro—Ry) =

dinates fixed in the limit ofa’ —0, one getdX,,x3]=ib. In order to transform Eq(34) into a familiar equation,
Now let us consider the spacetime dependence such as Eq(37), we redefiner® as n°=h"%25. Then this
leads to
77(t,X1,X2,X3,I',0|)
. . 2 D4 n4 0R8h2
=g iotgikpxatkaatkexaly (g, 6, ... 05) 7 (r) o"_ §i ~ & 4 si "~ _
(9['2+r (?r+w 1+ r4 + — r10f4 n 0

(33 (39)

with VﬁiY,(ei)=—l(l+4)Y|(0i). Y,(6;) denotes spherical

harmonics on 8with the unit radius. Herey'(r) is the radial
part of thel th-partial wave of energw. Then Eq.(26) takes

the form it ORSh?  sin ORER? Rl
= — L€
#? 549 h' o 1(+4) (k3+k3)f riop4 1054
a2 ra TR Tz “h o

We can rewrite the last term in E¢B9) in terms ofR,, T
=1+RYr* h™1=sir? 6f *+cod ¢ as

]
s+ (?—K)f - _
' R} cog

TS~ 4 +0 62
r*+ R} cog ()

(40)

f'2 sir? 0 cog oh?
_ fs

7'=0 (34)
For the leading-order calculation, it is sufficient to keep the
with f'=(d/dr)f. If k;=k,=ks=0, this is exactly the equa- first term of the rhs of Eq(40) only. Using n=r ~%23, Eq.
tion that Kaya has considered in the first version of RE8].  (39) leads to the Schringer-like equation as
If =0 (B field is turned off andl =0, one finds that Eq.

(34) reduces to theswave minimally coupled scalarg
equation in the B-7 black hole backgrounfl2]

P\
W-i—wz—v(,)f?:O, (42)
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Where dc+08 T T T T T T T T T

- o 15 4 sirf 9R3h?
V0=—w (f—l)‘l'm——r:mf[l— (42)

As will be shown in Eq(65), the first term in Eq(42) plays
the role of an energy term with=1 in the near horizon of
r<R,. Forr>Ry, the first term can be ignored. Thus we

can approximat&/, asV,

15 4 sirf 9R%h?

Vo=gqrz— ——moiF (43
For an arbitraryd(B), it is very difficult to solve Eq.(41). Ser07

1 L L 1 1 L L L 1
00002 00004 00006 0.0008 0.001 00012 00014 00016  0.0018 0,002
T

Thus, let us discuss two interesting case##0, h=1. In

this Casg, the Ia§t term of E@3) can be neglected, com-. FIG. 1. The graphs of the RR scalar potential in the near hori-

pared with the first one. Then the RR scalar cross sectiop,, ‘rorg_. /2, one finds a potential welldashed ling and for

takes the same form as that of the minimally coupled scalag_q one finds a potential barrigsolid line). The horizon is lo-

in Eq. (37). For 60— w/2, h—f. In this case, the last term of ated ar=0.

Eq. (43) plays an important role in the near horizon. In the

near horizon, one finds thath" =15/42 for =0 and V. DILATON PROPAGATION

ViR ,=—1/4r? for 6— m/2. The latter case induces an in- WITH THE DILATON GAUGE

stability of the near-horizon geometry in the smeared D1- In this section, we wish to study the propagation of the

brane background because the potential well allows us thdilaton with the dilaton gauge in E¢31). Under this gauge

scattering stated=real) as well as the exponentially grow- the dilaton equation takes a more simple form than the har-

ing state w=iQ). Also the same situation is recovered if monic gaugd21]. Assuming

one usesV27=0 instead of Eq(26). Hence the instability
= ) - : B(t,X1,X2,X3,T,6;)

appears even fod,np=0. As is shown in Fig. 1, the sin-

gular behaviors oV ,_, ., seem to appear as—0. How- =g lotgikpathkoxetkexady (g, 6,, ... .05 d'(r),

ever, this is a coordinate artifact. Using the coordinate

Sec.VI, instead of, one cannot find the singular behaviors in (44)
the near horizon. the dilaton equatiori27) leads to
|
#? 59 h g 1(1+4) , . (Ke+k§f 16 it 6 cos’ ORGh? 16 sirf gR%h?
St T o +(0?—k)f- + 103 + 10¢4 !
arc rar  hor r2 h r->f r-f
16 sirf 6 co$ 9RSh? 1 16 sirf OR3h? 1
+ 03 f3— 5 (h%+h' +h%+h3%) | + ——557——1 f3— 5 (h%+h' +h")
r=-f 2 rf 2
10 sirf 6RGh
T %2 h',=0. (45)

Our strategy is to disentangle the last three terms. For this purpose we have to use the dilaton gauge @hditionthe
linearized equations fod,F3,F5 in Egs.(28)—(30). Because this is a nontrivial task for an arbitratywe only consider a
simple and physically interesting case®f w/2(B—<0). For our purpose we choose the smeared D1-brane background with

Hunp=Funpor=0, Which implies also thati;=fs=0. Then Eq.(28) with this leads to a crucial equation
(Vum)EMPR=0, (46)

SinceFMPR=0, Eq.(46) implies »=0. This means thay is a nonpropagating mode in the smeared D1-brane background.
In the previous section we are confronted with the instability of the smeared D1-brane background. However, our previous
analysis comes from considering solely the linearized equation for the RR scalar. Actually, there exists other d@8ations
and (29) which include the RR scalar. In the smeared D1-brane black hole, the relevant equatiorid8) Elg.requires that
7 satisfy both Eqs(26) and(28). This leads top=0. Hence the instability problem is cured.
The remaining ones are tlsewave dilaton equation anél; equation
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52 54 2 2 2 4R§7/2 ~ 1OR8/2hr 16R71/2 1 0 1 r
(}TZ“‘FW“’((D _kl)f_(k2+k3)+ rlofz - Gf r10f2 f3_§(h 0+h 1+h I’) :0, (47)
VufMNP—(VyyhgM) FMOP+ (Vi hP o) FMON— (VM) FONP— hM o (v FONP) =0, (48)

Equation(47) is derived from Eq(45) with ¢°=h1’2<?> and For answave propagation, it is sufficient to consider the
6=/2. In order to decouple the last term in Ed.7), we scalar equationi53) instead of the tensorlike equatidA?2).
have to use both Eq48) and the dilaton gauge E¢31).  Its linearized equation takes the form
WhenN=0,P=1, solving Eq.(48) leads to[21]

GMNSRyn(h) —hMNRy—8(VD) -V p— 4V, V  dhMN

5 I
-t /h=0. — 4hMNY VD — 4GMNSTP VoD +4V24=0 (54)
(49

3,(f3—h%—h1)+ goh® + 9,ht, +

with the Lichnerowitz operatqg22]
Using the dilaton gauge, the last three terms turn out to be
d.(—h".+ 3 h). Then Eq.(49) gives us a crucial relation 1 1 1
5RMN(h): - EVZhMN_ EVMVNh+ EVPVNhPM

f——(h°0+h11+hrr)+ (h22+h33+h9,,) 0. (50

1 P
+ EV VMhPN (55)
We point out that the same relation as in E§0) can be
found if one uses the harmonic gau@®) [20]. For simplic- 1
ity, we can seh9i0i=0 andh',=0. Then, Eq(47) leads to =— EVZhMN—RQ(MhQN)JF Remonh”®
#? 59 4RE -
Szt o (@R KD (kKK + mf’f A +VmViph™ny- (56)
8R8/2 From Eg.(55) we obtain
—o7 (h%,+h33)=0. (51)
f MN 2 PN
G 5RMN:_V h+VpVNh . (57)

If the last term is absent, E§51) reduces to the RR scalar

equation(39) with = =/2. It is easily proved that, consid- The last term in Eq(57) with the dilaton gauge gives rise to
ering Egs(21) and(22) only, one finds that the dilaton equa- a difficult relation for hyy to solve Eq.(54). Hence we
tion (27) leads to Eq.(39). Hence the presence of the last would be better to use the harmonic gauge condi(8 to
term is important to distinguish the dilaton from the RR sca-obtain

lar. Without theB field, the fixed scalak is given by[14]

D-7 p-7. 00 V. e GMN5RMN=—%V2h, (58)
A= 25 Bog (52)
where V is the world volume measured in terms @fy - which is also recovered from E¢56) with Eq. (32).
This implies that a trace of gravitonk?,) polarized parallel
in the world volume plays the role of a fixed scalar. With theVI. DILATON PROPAGATION WITH HARMONIC GAUGE
B field, we may assume a relation between the dilaton and
h?,. However, although we have a simple dilaton equation
with the dilaton gauge, one cannot determine the relation
betweeng andh?,+ h*;. This is so because we do not have ) h\ 4f’ 1 ) 5f
further information forh?,+ h?;. This can be obtained from (4¢_ —) f3’2¢ - f5,2(2ff" f'9)h" — —fmh '
the linearized Einstein equation. Hence we have to use the
Einstein equatiortA2) in the smeared D1-brane background f'2(h%+h';—h%—h3%+h’,—h?%,)
of the Appendix. Using Eq9/A2) and (A3), one obtains a + = L =0. (59
scalar equation 2f

Equation(54) leads to

!

R—4(V®)2+4V2D=0. (53)  Also the dilaton equatiofi27) takes the form
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£ of! Schralinger-like equation with the energg=1 which is
V22— 3/2¢ ?,? h', rf—3,§h‘9i,,i valid for largez (in the near horizon of —0). The solution
f is given by

f2{h%+h*;—5(h%+h%+h% )}

+ 8f5/2

—0. (60) $1(2)=2%H 5(2). (69)

In the intermediate zonél), the  term can be ignored.
Choosing Eq.(32) with h=0 (D=10 transverse-traceless Thus one finds the solution
gauge, one hash%+h'y=—(h%+h%) with h';=h",

V32—
=0. Then the above two equations become, respectively, ~ _ p ez
du(p)=Cl ==——7— (69)
8 (U)R#/Z) +p
# 54 -, Rip| |- 4RSa(h%+h%)
WJr T E+w 1+ —+ 4 - T:O’ In the far infinity region(lll) we have the equation
(61) # 5d .\ 0 70
- (9_[)2"‘;@4'0) i (p)=0. (70
P 59 -, R, 4RE,|
pr A el R Its solution is given by
12R]p(h%+ h%) 5 __Jalp)
1Of2 =0. (62) ¢|||( - 2 (71)
The two equation$61) and (62) should be the same. Here Matching lil to Il leads to
2 + 3 — . . .
we assumé“,+h°;=a¢. Then one finds a relation D=8C. (72)
4-12a=-4a, 63 Also matching | to Il gives
which gives usa=1/2. Hence one obtains the correct dilaton ~ B
equation as )2 e, (73
8
ﬁ_2+ 59 .~ Rﬂ/z 2R #—0. (64 Considering the ratio of the flux at the horizon<0) to the
are roor 4] o2 ' incoming flux at infinity leads to the absorption probability
as
This can be approximated by using E40) as
4 1 772 ((I)R /2 )2\6+4
P(;S Z(wRﬂ'/Z) (74)
LA P - D 16226 (\6)?

4

ﬁz 54 ~ 1 R1T/2 2R71'/2
(9r r or

m]¢ C

;
Finally, we obtain thes-wave absorption cross section of the

for the leading-order calculation. Finally, it remains to find dilaton in the limit ofB— as
an approximate solution to Eq65) for low energies § _ 4 ~= 44208
—0) and derive its absorption cross section. We divide the 2°m p.— & (0R72)
space into three regiornisll,lll1 ) and then match solutions in 5 ¢ 22V6-1 \/— 2 5

. . . ) (V6) 1)
them together. In the near horizon regidn the equation
takes the form 4 wR_,,)89

w ((1) 71'/2)

a-g|B~>°0:

= (79
P 50 (Rt 2 0. (66 226-1p(\g)2 oS
apz p dp p4 pz iIp )
VII. DISCUSSIONS
wherep=Z;r. Defining p= (wR,;)%/z and ¢, (p) =24, , First we discuss the propagation of fields in the smeared
this leads to D1-brane background that can give us the effect of Bhe
) - —oo [imit approximately. We have shown that, considering
J R W b : 2 3 __pl
—z+1——z] 31(2)=0, 6n N ?r h'i,=0, the dilatong, f5, and h*,+h’;=—ht;
dz 4z —h%,=¢/2 are physically propagating modes whereas the

RR scalaryn, hs, andfs, are nonpropagating modes. Inter-
which is nothing but the standard Bessel equation fofestingly, it turns out that the absorption cross section of the
¢>|(z) H 5(z). The above equation can be interpreted as thelilaton in the limit ofB—« is given by the replacement of

044031-7
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Ro—R,, and 8-8.9 in Egs. (36) and (75). The R,

—R,»(8—8.9) arise from the presence of tBefield (the
coupling is changed: minimal oneB& 0)— complicated

PHYSICAL REVIEW D62 044031

connections with the noncommutative effects. However, al-
though we do not count the fluxes B andH correctly, we
still give the effects of the noncommutativity on the absorp-

form (B—)). We note that the RR scalar is a propagatingtion cross section througR?,>Rg in f=1+R%,/r* and
mode in the larg® field [18]. If one considers the decoupled the important coupling of ;. If H# 0 andFs+# 0, we expect

equation (26) in the smeared D1-brane background Bf

that there will be a change m 2—_>s(2sss 32). This is so

— 0 I|m|t, this induces an InStablllty EXpI|C|tIy, the RR sca- because the Coup"ng scheme laf~ O,E57&0 will Change
lar has a negative potential as shown in Fig. 1. This induces s» eyventually.

an InStablllty of the near horizon geometry in the smeared Fina”y, we summarize the ways to account for the non-

D1-brane background. However, considering all of £86),
(28), and (29 including the RR scalar), we find thaty
=0.

For a general analysis, let us consider the following equag,q parameteR®

tion with the parametes upon the diagonalization:
92 - RY,|  sF
|W+ 2( 14 _/2) B REr/z

=0. (76
r4 rmf‘z} s
For s> —4, its absorption cross section is given by

~— s
4 (wRW/Z)Zv4+S+4

o
UO¢S|B~>°C: —
22v/4+s—11'*( /4+S)2 wS

(77

For the case o= 32, one finds an interesting cross section

7t (R,
- 214>< 15 ws ’ (78)

hs=32
o)

B—o

which is the same order as i, in the absence of B field
andk?=0 [14]

B '’ (wRp) 16
217X 34 (1)5

h?,

0 (79

B=0

Hence we expect that the new scalar appearing in the limit of
B—o may take a value of-4<s<32. Exceptionally, the
RR scalar withs=—4 is not allowed for matching proce-
dure, which confirms that it cannot be a propagating mode.
The dilaton has=2 and its absorption cross section is given

by Eqg. (75). For thes=0 case(minimally coupled scalar
one can recover Eq38) with 6= 7/2 from Eq.(77).
In conclusion, the way to take thg— oo (68— 7/2) limit is

a delicate issue. Here for a simple calculation of the absorp-

tion cross section, we take only the limit af —0. In this
case one findsl«a’, Fyxl/a’, Fgofinite. It is known that

commutative effect on the cross section of the dilaton on the
supergravity side. These aR¢,,>Rj, k?#0, and the cou-
plings to all other fields. Here we include the expansion of
1 (>R}, the presence of momenta along
the world volume directionski ,k3) to detect theB,; field,

and the coupling of; with H=F;=0. Analysis for an ar-
bitrary 6(B) remains unexplored. A similar work on D6
branes withB fields appears in Ref23].
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APPENDIX: THE SMEARED D1-BRANE SOLUTION

In the case ofF;=H3=y, the string frame action takes
the form

oot f 4% /=G| e 2

107245, 12

R+4(V(D)2—iF§H,

(A1)
which leads to the equations of motion

1 1
RMN: _ZVMVNCI)+ Zezq>FMpQFNPQ_ ﬂGZ(bF%GMN,

(A2)

1
V2D —-2(Vd)2— 1—2e2<1>|:2=0, (A3)
VuF¥PR=0. (A4)

The smeared D1-brane solution is given by

1
ds2p,=f~ 2{—dx3+dxC+f(dx3+dx3)}

+Y2(dr?+r2dQ3g),

Es counts the rank of the noncommutative group. However,

if F5#0 andH#0, we find the complicated coupled equa-
tions. Solving these coupled equations is a formidable task.

We remind the reader that the fluxes B andH can be

C = — 1
f:1+r_4, eZ(I):ng, FOlI’:aal‘(fil)'
(A5)

neglected in comparison with that &%. Hence we choose HereC is an arbitrary constant, but in order to make connec-

the simple smeared D1-brane background by seﬁgrgﬁ

tion to the noncommutative geometry we have to chddse

=0. At first sight, this action seems to be eliminating all =R?,=47gbN>R}.
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