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S-wave absorption of scalars by noncommutative D3-branes
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Department of Physics, Inje University, Kimhae 621-749, Korea

~Received 25 February 2000; published 24 July 2000!

On the supergravity side, we study the propagation of the Ramond-Ramond~RR! scalar and the dilaton in
the D3-branes with a NSB field. To obtain the noncommutative effect in a simple way, we consider the

interesting case ofB→`(u→p/2). We represent this as the smeared D1-brane background withF̄55H̄50
approximately. In this background, considering the RR scalar equation only, it induces an instability of the
near-horizon geometry. However, it turns out that, considering all coupled equations, the RR scalar is non-
propagating. On the other hand, the dilaton is a physically propagating mode. We calculate thes-wave absorp-

tion cross section of the dilaton. One findss0
fuB→`;(ṽR̃p/2)

8.9/v5, while s0
fuB50;(ṽR0)8/v5 in the leading-

order calculation. This means that although the dilaton belongs to a minimally coupled scalar in the absence of
a B field, it becomes a sort of fixed scalar in the limit ofB→`.

PACS number~s!: 04.70.Dy, 04.50.1h, 11.25.Db
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I. INTRODUCTION

Recently noncommutative geometry has attracted m
interest in the study of string and M theory in theB field
@1–7#. For example, we consider the classical solution wh
arises from D3-branes with a Neveu-Schwarz~NS! B field.
According to the anti–de Sitter~AdS! conformal field theory
~CFT! correspondence@8#, we expect that classical physic
based on the near-horizon AdS5 of a D57 black hole solu-
tion can describe the large-N limit of noncommutative supe
Yang-Mills ~NCSYM! theory on the boundary. In this direc
tion we take a decoupling limit to isolate the near horiz
geometry from the remaining one. Then the corresponde
naturally arises.

It turns out that the noncommutative effects are relev
for physics in the ultraviolet~UV! regime, leaving that in the
infrared ~IR! regime unchanged. On the other hand,
NCSYM theory is not useful for studying the UV theory
short distances. An NCSYM with the noncommutativi
scaleD on a torus of sizeS is equivalent to an ordinary
supersymmetric Yang-Mills~OSYM! theory with a magnetic
flux, provided thatQ5D2/S2 is a rational number@9#. The
equivalence between the NCSYM and the OSYM can
understood from theT duality of the corresponding strin
theory. Hence the OSYM withB field is the proper descrip
tion for the UV region, while the NCSYM takes over the I
region. Actually, the noncommutative effect comes from
B→` limit of the ordinary theories@5,6,10,11#.

We remind the reader that, aside from the entropy, th
exists an important dynamical quantity, ‘‘the greybody fac
~absorption cross section!’’ to extract information for the
quantum black hole@12–15#. It is well known that the cross
section can be obtained from the solution to the lineari
equation upon the diagonalization. On the string side, th
was a calculation for the absorption of scalars into the n
commutative D3 branes@16#.

Myung, Kang, and Lee@17# have studied the quantum
aspects of the D3-brane black hole in theB23 field back-
ground using a minimally coupled scalar. Such a field mi
describe a fluctuation of the off-diagonal gravitons polariz
0556-2821/2000/62~4!/044031~9!/$15.00 62 0440
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parallel to the brane (hab ,a,b50,1,2,3). We derived the ex
act form of the absorption cross section (s l) in a B field on
the supergravity side. It turns out thats l

BÞ0.s l
B50 . This

implies that the presence of theB field suppresses the curva
ture effect surrounding the D57 black hole. Consequently
this leads to an increase of the greybody factor.

Recently, Kaya@18# has calculated the absorption cro
section by considering only the Ramond-Ramond~RR! sca-
lar equation~26! in the D3-brane with the largeB field. He
showed in the first version that the greybody factor is n
changed even if theB field is large. This means that the R
scalar becomes a minimally coupled scalar even for the p
ence of the largeB field. However, in the third version, he
commented that the RR scalar holds withs0

BÞ0.s0
B50.

In this paper we study the propagations of the RR sca
(x) and the dilaton (F) by D3-branes with aB field along
their world volume directions (x2 ,x3). Especially, we are
interested in the case ofB→`. In this sense our spacetim
background is different from Kaya’s case. Here we use
information including all equations of motion@especially
Eqs. ~26! and ~28!#, the Bianchi identities, and the gaug
condition for graviton. In the absence of aB field, all of
x,F,hab belong to minimally coupled scalars. However,
the presence of aB field, these fields are coupled to th
backgroundnonminimally. In this sense, we may regar
these as the fixed scalars. Actually, in the smeared
brane background, the dilaton~RR scalar! turn out to be
~non!propagating modes. Also we wish to test whether or
there is a change in the absorption cross sections of the
laton whenB→`.

The organization of this paper is as follows. In Sec. II, w
briefly review the field equations which are relevant for o
study. Here we wish to study theB→` limit carefully and
introduce the smeared D1-brane black hole. Section II
devoted to analyzing the perturbations around the sme
D1-brane background. Because the linearized equation
the RR scalar is completely decoupled, the propagation
the RR scalar is investigated in Sec. IV. This induces
instability of the near-horizon geometry of the smeared D
brane black hole. In Sec. V we correct the propagation of
©2000 The American Physical Society31-1



a
In

he
W
h

r-

o

as

-

ect

or
le

e
f
rent

ta-

his

the

Y. S. MYUNG, GUNGWON KANG, AND H. W. LEE PHYSICAL REVIEW D62 044031
RR scalar in view of all linearized equations. And we de
with the propagation of the dilaton with the dilaton gauge.
Sec. VI, we study the propagation of the dilaton with t
harmonic gauge and obtain its absorption cross section.
discuss our results in Sec. VII. Finally, we present t
smeared D1-brane solution in the Appendix.

II. FORMALISM

We start with the low-energy limit of a type-IIB supe
string action in the Einstein frame (gMN5e2F/2GMN) @12#:

S10
E 5

1

2k10
2 E d10xFA2gH R2

1

2
~¹F!22

1

12
e2F~]B2!2

2
1

2
e2F~]x!22

1

12
eF~]C22x]B2!22

1

4•5!
F5

2J
2

1

2•4!•~3! !2 e10C4]C2]B2G , ~1!

whereF is the dilaton,x is the RR scalar,B2 is the NS two
form, C2 is the RR two form, andC4 is the RR four form.
And one has

HMNP5~]B2!MNP53] [ MBNP] ,

F3MNP5~]C2!MNP53] [ MC2NP] ,

~]C4!MNPQR55] [ MC4NPQR] ,

F55]C415~B2]C22C2]B2!, ~2!

where the self-duality constraintF55F̃5 is required at the
level of the equations of motion. The relevant equations
motion lead to@19#

¹2x12¹F¹x1
e2F

6
~F32xH !•H50, ~3!

¹2F1
1

12
$e2FH22eF~F32xH !2%2e2F~¹x!250, ~4!

¹M~e2FHM PQ!2¹M$xeF~F32xH !M PQ%

1
2

3
FPQRSTF3RST50, ~5!

¹M$eF~F32xH !M PQ%2
2

3
FPQRSTHRST50, ~6!

¹MFM PQRS50. ~7!

In the string frame, Eqs.~3!–~7! take the forms

¹s
2x1

1

6
~F3s2xHs!•Hs50, ~8!
04403
l

e
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¹s
2F22~¹sF!21

1

12
$Hs

22e2F~F3s2xHs!
2%2e2F~¹sx!2

50, ~9!

¹sM~e22FHs
M PQ!2¹sM$x~F3s2xHs!

M PQ%

1
2

3
Fs

PQRSTF3sRST50, ~10!

¹sM~F3s2xHs!
M PQ2

2

3
Fs

PQRSTHsRST50, ~11!

¹sMFs
M PQRS50. ~12!

In addition, we require the remaining Maxwell equations
three Bianchi identities,

] [ MHNPQ]5] [ MFNPQ]5] [ MFNPQRS]50. ~13!

The solution of the D57 extremal black hole for the D3
branes with a nonzeroB23 field is given in the D510 string
frame @5# by

dss
25 f 2 1/2$2dx0

21dx1
21h~dx2

21dx3
2!%

1 f 1/2~dr21r 2dV5
2!,

f 511
Ru

4

r 4
, h215sin2 u f 211cos2 u,

B̄s235tan u f 21h, e2F̄5g2h,

F̄s01r5
1

g
sin u] r~ f 21!, F̄s0123r5

1

g
cosuh] r~ f 21!.

~14!

From now on we work in the string frame and thus negl
the subscript ‘‘s.’’ Here the asymptotic value of theB field is
B̄23

` 5tanu and the parameterRu is defined by cosuRu
4

5R0
4(54pgNa82). N is the number of the D3 branes andg

5g` is the string coupling constant. It is obvious that f
u50(h51) one recovers the ordinary D3-brane black ho
with the standard AdS53S5 geometry in the near horizon. In
this case we haveF̄0123r5(1/g)] r( f 21), its dual (F! 5), and
e2F̄5g2.

For u→p/2(h→ f ), however, one finds the D3-bran
black hole in the very largeB-field and thus the effect o
noncommutativity appears. Here one observes an appa
deviation from AdS53S5 in the near horizon. However, it is
known that in order to make a connection to noncommu
tive geometry, theu→p/2(B→`) limit must be carefully
taken. In addition, we require a double scaling limit ofgN
→`,v4a82→0 to keep the expansion parameterv4R0

4 very
small in the calculation of the absorption cross section. T
implies that one has to take both the decoupling limit ofg
→0,a8→0,gN@1 and the low-energy limit (v→0). Here
we wish to take into account all of these limits mentioned
above by takinga8→0 only:
1-2
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tan u5
b̃

a8
, g5a8g̃, N5

Ñ

a82
, ~15!

whereb̃,g̃,Ñ stay fixed@5#. Then we have the relation

lim
u→p/2

S Ru
45

R0
4

cosu D 54pg̃b̃Ñ[Rp/2
4 . ~16!

This means that limu→p/2Ru
4 is nearly independent ofu and is

finite with Rp/2
4 @R0

4 . But we must choose the low-energ

limit ( v→0) to keep the new expansion parameterṽ4Rp/2
4

small. Under this condition, one finds

H̄r235tanu] r~ f 21h! ——→
a8→0

u→p/2

a8→0, ~17!

F̄01r5
1

g
sinu] r~ f 21! ——→

a8→0

u→p/2 1

a8
→`, ~18!

F̄0123r5
1

g
cosu] r~ f 21! ——→

a8→0

u→p/2

→finite. ~19!

Here one obtains a sequence of the background val
F̄01r@F̄0123r@H̄r23. Although the flux of the RR five-form
(F̄5) counts the rank of the noncommutative gauge gro
we have to recognize that this is very small in comparis
with the RR three-form (F̄3) in the limit of u→p/2(B
04403
s:

,
n

→`). Hence we can neglect the effect ofF̄5 and H̄ on the
absorption cross section in favor ofF̄3. In this case ofF̄5

5H̄50, e2F̄5g2f , F̄01r5(1/g)] r( f 21), one finds the
smeared D1-brane solution in the Appendix. We regard
solution as the simple one to include the noncommuta
effects throughR̃p/2

4 @R0
4 in f̃ 511R̃p/2

4 /r 4. Here R̃p/2
4 5(1

1e)Rp/2
4 with e5k2/ṽ25k2/v2(12k2/v2)21.

III. PERTURBATIONS

For the perturbation analysis, we keep the backgrou
symmetry up to the linearized level. Here we introduce
perturbations to derive the greybody factor as@20#

GMN5ḠMN1hMN , ~20!

x501h, ~21!

F5F̄1f, ~22!

F01r5F̄01r1 f 01r5F̄01r~11 f 3!, ~23!

Hr235H̄r231hr235H̄r23~11h3!, ~24!

F0123r5F̄0123r1 f 0123r5F̄0123r~11 f 5! ~25!

with setting all other perturbations to be zero. General fl
tuations give us a coupled system of differential equation
, we
¹2h2
1

6
H̄2h50, ~26!

2hMN¹M¹NF̄2ḠMNdGMN
P ¹PF̄1¹2f24¹F̄•¹f12¹MF̄¹NF̄hMN1

1

12
~2H̄2h323H̄MNQH̄PNQhM

P!

2
e2F̄

12
$2F̄3

2~f1 f 3!23F̄MNQF̄PNQhM
P%50, ~27!

e22F̄$~¹M22¹MF̄!~H̄MNPh3!2~¹MhQ
N!H̄MQP1~¹MhP

Q!H̄MQN2~¹MĥM
Q!H̄QNP2hM

Q¹MH̄QNP22~¹Mf!H̄MNP%

22¹M~e22F̄H̄MNP!f2¹M~ F̄M PQh!1
2

3
F̄PQRSTF̄RST~ f 31 f 5!50, ~28!

¹M~ F̄MNPf 3!2~¹MhQ
N!F̄MQP1~¹MhP

Q!F̄MQN2hM
Q¹MF̄QNP

2~¹MĥM
Q!F̄QNP2¹M~H̄M PQh!2

2

3
F̄PQRSTH̄RST~h31 f 5!50, ~29!

¹M~ F̄MNPQRf 5!24F̄MT[ PQR¹MhT
N]2~¹MĥM

T!F̄TNPQR2hM
T¹MF̄TNPQR50 ~30!

with dGMN
P 5 1

2 ḠPQ(¹MhNQ1¹NhMQ2¹QhMN). Here we have a relation ofḠMNdGMN
P 5¹MĥM P, ĥM P5hM P2 1

2 ḠM Ph with
h5hT

T . As a simple check, let us calculate the order ofg in each equation. To obtain all consistent linearized equations
should scaleh in Eqs.~26!, ~28!, and~29! ash/g. Furthermore, we find from three Bianchi identities in Eq.~13! with Eqs.
~23!–~25! that
1-3
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f 3 , f 5→propagating modes,

h3→nonpropagating mode.

This means that the NSB field (HMNP) plays the role of a
tool for giving the noncommutative effect but it is not th
physically propagating field. For the graviton modes,
may use either the dilaton gauge@21#

¹MĥM P5hMNGMN
P ~31!

or the harmonic gauge@22#

¹MĥM P50. ~32!

Although a choice of gauge condition does not eliminate
of the gauge freedom, it simplifies the perturbation eq
tions. We remark that, although Eq.~26! by itself is a decou-
pled one, Eqs.~28! and~29! containh. Kaya considered Eq
~26! only in Ref.@18#. The dilaton equation~27! takes a very
complicated form which is coupled with various other field
To decouplef from the other fields, we need some furth
work. Hence we separate the RR scalar from the dilaton.
us first investigate the RR scalar.

IV. RR SCALAR PROPAGATION

Because the RR scalar equation~26! is completely decou-
pled from others, we start with an arbitraryB(u). A simple
way to obtain the noncommutative effect is to include t
momenta along the world volume directions@5#. This is be-
cause theB23 field is set up along these directions. Hen
x2 ,x3 become the noncommuting coordinates. Upon res
ing the coordinatesxi→(b̃/a8) x̃i and keeping the new coor
dinates fixed in the limit ofa8→0, one gets@ x̃2 ,x̃3#5 i b̃.
Now let us consider the spacetime dependence

h~ t,x1 ,x2 ,x3 ,r ,u i !

5e2 ivtei (k1x11k2x21k3x3)Yl~u1 ,u2 , . . . ,u5!h l~r !

~33!

with ¹̄u i

2 Yl(u i)52 l ( l 14)Yl(u i). Yl(u i) denotes spherica

harmonics on S5 with the unit radius. Hereh l(r ) is the radial
part of thel th-partial wave of energyv. Then Eq.~26! takes
the form

H ]2

]r 2 1
5

r

]

]r
1

h8

h

]

]r
2

l ~ l 14!

r 2
1~v22k1

2! f 2
~k2

21k3
2! f

h

2
f 82 sin2 u cos2 uh2

f 3 J h l50 ~34!

with f 85(d/dr) f . If k15k25k350, this is exactly the equa
tion that Kaya has considered in the first version of Ref.@18#.

If u50 (B field is turned off! andl 50, one finds that Eq
~34! reduces to thes-wave minimally coupled scalar (w)
equation in the D57 black hole background@12#
04403
ll
-

.

et

l-

H ]2

]r 2 1
5

r

]

]r
1ṽ2S 11

R0
4

r 4 D J w050 ~35!

with ṽ5Av22k1
22k2

22k3
2.v(12k2/2v2), k25k1

21k2
2

1k3
2, v2.k2. The s-wave absorption cross section for E

~35! can be obtained from the solution to the Mathieu
equation as@13#

s0
wuB505

p4~ṽR0!8

8v5 ~36!

in the leading-order calculation. We note here thats0
huB50

5s0
fuB505s0

wuB50, because both the RR scalar and the
laton belong to minimally coupled scalars when theB field is
absent. For an arbitraryB, the corresponding equation for
minimally coupled fieldw is given by

H ]2

]r 2 1
5

r

]

]r
1ṽ2S 11

R̃u
4

r 4 D J wB
050, ~37!

where R̃u
45(11e)Ru

4 with e(u)5(k2/ṽ2)sin2 u,1. In the

limit of u→p/2, one finds R̃p/2
4 5(11k2/ṽ2)Rp/2

4 . The
above equation is exactly the same form as in Eq.~35! with
different ‘‘R.’’ Thus the absorption cross section can be re
off from Eq. ~36! by substitutingR0 with R̃u @17#

s0
wuB5s0

wuB50~R0→R̃u!5
p4~ṽR̃u!8

8v5 . ~38!

For an arbitraryB field, one always finds thats0
wuBÞ0

.s0
wuB50 with R̃u.R0.

In order to transform Eq.~34! into a familiar equation,
such as Eq.~37!, we redefineh0 as h05h21/2ĥ. Then this
leads to

H ]2

]r 2 1
5

r

]

]r
1ṽ2S 11

R̃u
4

r 4 D 1
4 sin4 uRu

8h2

r 10f 4 J ĥ50.

~39!

We can rewrite the last term in Eq.~39! in terms ofR̃u , f̃

511R̃u
4/r 4, h̃215sin2 u f̃211cos2 u as

sin4uRu
8h2

r 10f 4 5
sin4uR̃u

8h̃2

r 10f̃ 4 H 122eS 12
R̃u

4

r 41R̃u
4

2
R̃u

4 cos2u

r 41R̃u
4 cos2u

D 1O~e2!J . ~40!

For the leading-order calculation, it is sufficient to keep t
first term of the rhs of Eq.~40! only. Usingĥ5r 25/2h9 , Eq.
~39! leads to the Schro¨dinger-like equation as

S ]2

]r 2 1ṽ22ṼuDh9 50, ~41!
1-4
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where

Ṽu52ṽ2~ f̃ 21!1
15

4r 2 2
4 sin4 uRu

8h2

r 10f 4 . ~42!

As will be shown in Eq.~65!, the first term in Eq.~42! plays
the role of an energy term withE51 in the near horizon of
r ,Ru . For r .Ru , the first term can be ignored. Thus w
can approximateṼu asVu

Vu5
15

4r 2 2
4 sin4 uRu

8h2

r 10f 4 . ~43!

For an arbitraryu(B), it is very difficult to solve Eq.~41!.
Thus, let us discuss two interesting cases. Ifu.0, h.1. In
this case, the last term of Eq.~43! can be neglected, com
pared with the first one. Then the RR scalar cross sec
takes the same form as that of the minimally coupled sc
in Eq. ~37!. For u→p/2, h→ f . In this case, the last term o
Eq. ~43! plays an important role in the near horizon. In t
near horizon, one finds thatVu50

NH 515/4r 2 for u50 and
Vu→p/2

NH 521/4r 2 for u→p/2. The latter case induces an in
stability of the near-horizon geometry in the smeared D
brane background because the potential well allows us
scattering state (v5real! as well as the exponentially grow
ing state (v5 iV). Also the same situation is recovered
one uses¹2h50 instead of Eq.~26!. Hence the instability
appears even forH̄MNP50. As is shown in Fig. 1, the sin
gular behaviors ofVu50,p/2 seem to appear asr→0. How-
ever, this is a coordinate artifact. Using the coordinatez in
Sec.VI, instead ofr, one cannot find the singular behaviors
the near horizon.
04403
n
ar

-
e

V. DILATON PROPAGATION
WITH THE DILATON GAUGE

In this section, we wish to study the propagation of t
dilaton with the dilaton gauge in Eq.~31!. Under this gauge
the dilaton equation takes a more simple form than the h
monic gauge@21#. Assuming

f~ t,x1 ,x2 ,x3 ,r ,u i !

5e2 ivtei (k1x11k2x21k3x3)Yl~u1 ,u2 , . . . ,u5!f l~r !,

~44!

the dilaton equation~27! leads to

FIG. 1. The graphs of the RR scalar potential in the near h
zon. Foru→p/2, one finds a potential well~dashed line! and for
u50, one finds a potential barrier~solid line!. The horizon is lo-
cated atr 50.
with

und.
revious

ons
H ]2

]r 2 1
5

r

]

]r
2

h8

h

]

]r
2

l ~ l 14!

r 2
1~v22k1

2! f 2
~k2

21k3
2! f

h
1

16 sin2 u cos2 uRu
8h2

r 10f 3 1
16 sin4 uR u

8 h2

r 10f 4 J f l

1
16 sin2 u cos2 uRu

8h2

r 10f 3 H f 32
1

2
~h0

01h1
11h2

21h3
3!J 1

16 sin4 uRu
8h2

r 10f 4 H f 32
1

2
~h0

01h1
11hr

r !J
2

10 sin2 uRu
4h

r 6f 2 hr
r50. ~45!

Our strategy is to disentangle the last three terms. For this purpose we have to use the dilaton gauge condition~31! and the
linearized equations forH,F3 ,F5 in Eqs.~28!–~30!. Because this is a nontrivial task for an arbitraryu, we only consider a
simple and physically interesting case ofu→p/2(B→`). For our purpose we choose the smeared D1-brane background
H̄MNP5F̄MNPQR50, which implies also thath35 f 550. Then Eq.~28! with this leads to a crucial equation

~¹Mh!F̄M PQ50. ~46!

SinceF̄M PQÞ0, Eq. ~46! implies h50. This means thath is a nonpropagating mode in the smeared D1-brane backgro
In the previous section we are confronted with the instability of the smeared D1-brane background. However, our p
analysis comes from considering solely the linearized equation for the RR scalar. Actually, there exists other equati~28!
and ~29! which include the RR scalar. In the smeared D1-brane black hole, the relevant equation is Eq.~28!. It requires that
h satisfy both Eqs.~26! and ~28!. This leads toh50. Hence the instability problem is cured.

The remaining ones are thes-wave dilaton equation andF3 equation
1-5
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H ]2

]r 2 1
5

r

]

]r
1~v22k1

2! f 2~k2
21k3

2!1
4Rp/2

8

r 10f 2 J f̂2
10Rp/2

8 hr
r

r 6f
1

16Rp/2
8

r 10f 2 H S f 32
1

2
~h0

01h1
11hr

r !J 50, ~47!

¹M f MNP2~¹MhQ
N!F̄MQP1~¹MhP

Q!F̄MQN2~¹MĥM
Q!F̄QNP2hM

Q~¹MF̄QNP!50. ~48!
b

r
-
-

st
a

he
an
io
tio
ve

t
nd

e

o

Equation~47! is derived from Eq.~45! with f05h1/2f̂ and
u5p/2. In order to decouple the last term in Eq.~47!, we
have to use both Eq.~48! and the dilaton gauge Eq.~31!.
WhenN50,P51, solving Eq.~48! leads to@21#

] r~ f 32h0
02h1

1!1]0h0
r1]1h1

r1S 5

r
1

f 8

f Dhr
r50.

~49!

Using the dilaton gauge, the last three terms turn out to

] r(2hr
r1

1
2 h). Then Eq.~49! gives us a crucial relation

f 32
1

2
~h0

01h1
11hr

r !1
1

2
~h2

21h3
31hu i

u i
!50. ~50!

We point out that the same relation as in Eq.~50! can be
found if one uses the harmonic gauge~32! @20#. For simplic-
ity, we can sethu i

u i
50 andhr

r50. Then, Eq.~47! leads to

H ]2

]r 2 1
5

r

]

]r
1~v22k1

2! f 2~k2
21k3

2!1
4Rp/2

8

r 10f 2 J f̂

2
8Rp/2

8

r 10f 2 ~h2
21h3

3!50. ~51!

If the last term is absent, Eq.~51! reduces to the RR scala
equation~39! with u5p/2. It is easily proved that, consid
ering Eqs.~21! and~22! only, one finds that the dilaton equa
tion ~27! leads to Eq.~39!. Hence the presence of the la
term is important to distinguish the dilaton from the RR sc
lar. Without theB field, the fixed scalarl is given by@14#

l5
D27

2b
F2

1

2b
log V, ~52!

where V is the world volume measured in terms ofgMN .
This implies that a trace of gravitons (ha

a) polarized parallel
in the world volume plays the role of a fixed scalar. With t
B field, we may assume a relation between the dilaton
ha

a . However, although we have a simple dilaton equat
with the dilaton gauge, one cannot determine the rela
betweenf andh2

21h3
3. This is so because we do not ha

further information forh2
21h3

3. This can be obtained from
the linearized Einstein equation. Hence we have to use
Einstein equation~A2! in the smeared D1-brane backgrou
of the Appendix. Using Eqs.~A2! and ~A3!, one obtains a
scalar equation

R24~¹F!214¹2F50. ~53!
04403
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For an s-wave propagation, it is sufficient to consider th
scalar equation~53! instead of the tensorlike equation~A2!.
Its linearized equation takes the form

ḠMNdRMN~h!2hMNR̄MN28~¹F̄!•¹f24¹MF̄¹NF̄hMN

24hMN¹M¹NF̄24ḠMNdGMN
P ¹PF̄14¹2f50 ~54!

with the Lichnerowitz operator@22#

dRMN~h!52
1

2
¹2hMN2

1

2
¹M¹Nh1

1

2
¹P¹NhPM

1
1

2
¹P¹MhPN ~55!

52
1

2
¹2hMN2R̄Q(MhQ

N)1R̄PMQNhPQ

1¹ (M¹ uPuĥ
P

N) . ~56!

From Eq.~55! we obtain

GMNdRMN52¹2h1¹P¹NhPN. ~57!

The last term in Eq.~57! with the dilaton gauge gives rise t
a difficult relation for hMN to solve Eq.~54!. Hence we
would be better to use the harmonic gauge condition~32! to
obtain

GMNdRMN52
1

2
¹2h, ~58!

which is also recovered from Eq.~56! with Eq. ~32!.

VI. DILATON PROPAGATION WITH HARMONIC GAUGE

Equation~54! leads to

¹2S 4f2
h

2D2
4 f 8

f 3/2
f82

1

f 5/2
~2 f f 92 f 82!hr

r2
5 f 8

2r f 3/2hu i
u i

1
f 82~h0

01h1
12h2

22h3
31hr

r2hu i
u i

!

2 f 5/2 50. ~59!

Also the dilaton equation~27! takes the form
1-6
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¹2f2
2 f 8

f 3/2
f82

f 9

2 f 3/2hr
r2

2 f 8

r f 3/2hu i
u i

1
f 82$h0

01h1
125~h2

21h3
31hu i

u i
!%

8 f 5/2 50. ~60!

Choosing Eq.~32! with h50 ~D510 transverse-traceles
gauge!, one hash0

01h1
152(h2

21h3
3) with hr

r5hu i
u i

50. Then the above two equations become, respectively

H ]2

]r 2 1
5

r

]

]r
1ṽ2S 11

R̃p/2
4

r 4 D J f̂2
4Rp/2

8 ~h2
21h3

3!

r 10f 2 50,

~61!

H ]2

]r 2 1
5

r

]

]r
1ṽ2S 11

R̃p/2
4

r 4 D 1
4Rp/2

8

r 10f 2 J f̂

2
12Rp/2

8 ~h2
21h3

3!

r 10f 2 50. ~62!

The two equations~61! and ~62! should be the same. Her
we assumeh2

21h3
35af. Then one finds a relation

4212a524a, ~63!

which gives usa51/2. Hence one obtains the correct dilat
equation as

H ]2

]r 2 1
5

r

]

]r
1ṽ2S 11

R̃p/2
4

r 4 D 2
2Rp/2

8

r 10f 2 J f̂50. ~64!

This can be approximated by using Eq.~40! as

H ]2

]r 2 1
5

r

]

]r
1ṽ2S 11

R̃p/2
4

r 4 D 2
2R̃p/2

8

r 10f̃ 2 J f̂.0 ~65!

for the leading-order calculation. Finally, it remains to fin
an approximate solution to Eq.~65! for low energies (ṽ
→0) and derive its absorption cross section. We divide
space into three regions~I,II,III ! and then match solutions i
them together. In the near horizon region~I! the equation
takes the form

H ]2

]r2 1
5

r

]

]r
1

~ṽR̃p/2!
4

r4
2

2

r2J f̂ I~r!50, ~66!

wherer5ṽr . Defining r5 (ṽR̃p/2)
2/z and f̂ I(r)5z3/2f9 I ,

this leads to

H ]2

]z2 112
23

4z2J f9 I~z!50, ~67!

which is nothing but the standard Bessel equation
f9 I(z)5HA6(z). The above equation can be interpreted as
04403
e

r
e

Schrödinger-like equation with the energyE51 which is
valid for largez ~in the near horizon ofr→0). The solution
is given by

f̂ I~z!5z2HA6~z!. ~68!

In the intermediate zone~II !, the ṽ term can be ignored
Thus one finds the solution

f̂ II ~r!5CH r4

~ṽR̃p/2!
41r4J 1/2A3/221/2

. ~69!

In the far infinity region~III ! we have the equation

S ]2

]r2 1
5

r

d

dr
1ṽ2D f̂ III ~r!50. ~70!

Its solution is given by

f̂ III ~r!5D
J2~r!

r2
. ~71!

Matching III to II leads to

D58C. ~72!

Also matching I to II gives

C5
2A6

p
G~A6!~ṽR̃p/2!

22A6. ~73!

Considering the ratio of the flux at the horizon (r 50) to the
incoming flux at infinity leads to the absorption probabili
as

Pf5
4

uDu2 ~ṽR̃p/2!85
1

16

p2

22A6

~ṽR̃p/2!2A614

G~A6!2
. ~74!

Finally, we obtain thes-wave absorption cross section of th
dilaton in the limit ofB→` as

s0
fuB→`5

25p2

v5
Pf5

p4

22A621G~A6!2

~ṽR̃p/2!412A6

v5

.
p4

22A621G~A6!2

~ṽR̃p/2!8.9

v5
. ~75!

VII. DISCUSSIONS

First we discuss the propagation of fields in the smea
D1-brane background that can give us the effect of theB
→` limit approximately. We have shown that, consideri
h5hr

r5hu i
u i

50, the dilatonf, f 3, and h2
21h3

352h1
1

2h2
25f/2 are physically propagating modes whereas

RR scalarh, h3, and f 5, are nonpropagating modes. Inte
estingly, it turns out that the absorption cross section of
dilaton in the limit ofB→` is given by the replacement o
1-7
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R0→R̃p/2 and 8→8.9 in Eqs. ~36! and ~75!. The R0

→R̃p/2(8→8.9) arise from the presence of theB field ~the
coupling is changed: minimal one (B50)→complicated
form (B→`)!. We note that the RR scalar is a propagati
mode in the largeB field @18#. If one considers the decouple
equation ~26! in the smeared D1-brane background ofB
→` limit, this induces an instability. Explicitly, the RR sca
lar has a negative potential as shown in Fig. 1. This indu
an instability of the near horizon geometry in the smea
D1-brane background. However, considering all of Eqs.~26!,
~28!, and ~29! including the RR scalar (h), we find thath
50.

For a general analysis, let us consider the following eq
tion with the parameters upon the diagonalization:

H ]2

]r 21
5

r

]

]r
1ṽ2S 11

R̃p/2
4

r 4 D 2
sR̃p/2

8

r 10f̃ 2J cs50. ~76!

For s.24, its absorption cross section is given by

s0
csuB→`5

p4

22A41s21G~A41s!2

~ṽR̃p/2!
2A41s14

v5
.

~77!

For the case ofs532, one finds an interesting cross secti

s0
cs532U

B→`

5
p4

214315

~ṽR̃p/2!
16

v5
, ~78!

which is the same order as inha
a in the absence of aB field

andk250 @14#

s0
ha

aU
B50

5
p4

217334

~vR0!16

v5
. ~79!

Hence we expect that the new scalar appearing in the lim
B→` may take a value of24<s<32. Exceptionally, the
RR scalar withs524 is not allowed for matching proce
dure, which confirms that it cannot be a propagating mo
The dilaton hass52 and its absorption cross section is giv
by Eq. ~75!. For thes50 case~minimally coupled scalar!,
one can recover Eq.~38! with u5p/2 from Eq.~77!.

In conclusion, the way to take theB→`(u→p/2) limit is
a delicate issue. Here for a simple calculation of the abso
tion cross section, we take only the limit ofa8→0. In this
case one findsH̄}a8, F̄3}1/a8, F̄5}finite. It is known that
F̄5 counts the rank of the noncommutative group. Howev
if F̄5Þ0 andH̄Þ0, we find the complicated coupled equ
tions. Solving these coupled equations is a formidable ta
We remind the reader that the fluxes ofF̄5 and H̄ can be
neglected in comparison with that ofF̄3. Hence we choose
the simple smeared D1-brane background by settingF̄55H̄
50. At first sight, this action seems to be eliminating
04403
s
d

-

of

e.

p-

r,

k.

l

connections with the noncommutative effects. However,
though we do not count the fluxes ofF5 andH correctly, we
still give the effects of the noncommutativity on the abso
tion cross section throughR̃p/2

4 @R0
4 in f 511R̃p/2

4 /r 4 and

the important coupling ofF3. If H̄Þ0 andF̄5Þ0, we expect
that there will be a change ins: 2→s(2<s<32). This is so
because the coupling scheme ofH̄Þ0,F̄5Þ0 will change
‘‘ s’’ eventually.

Finally, we summarize the ways to account for the no
commutative effect on the cross section of the dilaton on
supergravity side. These areRp/2

4 @R0
4 , k2Þ0, and the cou-

plings to all other fields. Here we include the expansion
the parameterRp/2

4 (@R0
4), the presence of momenta alon

the world volume directions (k2 ,k3) to detect theB23 field,
and the coupling ofF3 with H5F550. Analysis for an ar-
bitrary u(B) remains unexplored. A similar work on D
branes withB fields appears in Ref.@23#.
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APPENDIX: THE SMEARED D1-BRANE SOLUTION

In the case ofF55H35x, the string frame action take
the form

S10
SD15

1

2k10
2 E d10xA2GFe22FH R14~¹F!22

1

12
F3

2J G ,
~A1!

which leads to the equations of motion

RMN522¹M¹NF1
1

4
e2FFM PQFN

PQ2
1

24
e2FF3

2GMN ,

~A2!

¹2F22~¹F!22
1

12
e2FF250, ~A3!

¹MF3
M PQ50. ~A4!

The smeared D1-brane solution is given by

dsSD1
2 5 f 2

1
2$2dx0

21dx1
21 f ~dx2

21dx3
2!%

1 f 1/2~dr21r 2dV5
2!,

f 511
C

r 4 , e2F̄5g2f , F̄01r5
1

g
] r~ f 21!.

~A5!

HereC is an arbitrary constant, but in order to make conn
tion to the noncommutative geometry we have to chooseC

5Rp/2
4 54pg̃b̃Ñ@R0

4.
1-8
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