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Vacua of 5D,NÄ2 gauged Yang-Mills-Einstein-tensor supergravity: Abelian case
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We give a detailed study of the critical points of the potentials of the simplest nontrivialN52 gauged
Yang-Mills-Einstein supergravity theories with tensor multiplets. The scalar field target space of these ex-
amples is SO(1,1)3SO(2,1)/SO(2). Thepossible gauge groups are SO(2)3U(1)R and SO(1,1)3U(1)R ,
where U(1)R is a subgroup of theR-symmetry group SU(2)R , and SO(2) and SO(1,1) are subgroups of the
isometry group of the scalar manifold. The scalar potentials of these theories consist of a contribution from the
U(1)R gauging and a contribution that is due to the presence of the tensor fields. We find that the latter
contribution can change the form of the supersymmetric extrema from maxima to saddle points. In addition, it
leads to novel critical points not present in the corresponding gauged Yang-Mills-Einstein supergravity theo-
rieswithout the tensor multiplets. For the SO(2)3U(1)R gauged theory these novel critical points correspond
to anti–de Sitter ground states. For the noncompact SO(1,1)3U(1)R gauging, the novel ground states are de
Sitter ground states. The analysis of the critical points of the potential carries over in a straightforward manner
to the generic family ofN52 gauged Yang-Mills-Einstein supergravity theories with tensor multiplets whose
scalar manifolds are of the form SO(1,1)3SO(n21,1)/SO(n21).

PACS number~s!: 04.65.1e, 04.50.1h
n
dS

p
in

u

D,

e

s
-
t

n

er
er

in
ory
-

ve
ed-

l

ese
tric

ed
to

vity

of

of

ed

-
etry

at
n,

th
I. INTRODUCTION

In the last few years there has been a renewed inte
interest in gauged supergravity theories. The work on A
CFT ~anti–de Sitter/conformal field theory! dualities in re-
cent years has reaffirmed the importance of gauged su
gravity theories in various dimensions to the understand
of the dynamics of M or superstring theory@1–5#. The best
studied example of this duality is between the type IIB s
perstring theory on the background manifold AdS53S5 with
N units of five-form flux through the five-sphere and 4
N54 super Yang-Mills theory with the gauge group SU(N),
which is a conformally invariant quantum field theory. In th
limit of small string coupling and largeN, the classical~i.e.,
tree level! type IIB supergravity approximation become
valid. The lowest lying Kaluza-Klein modes of type IIB su
pergravity on AdS53S5 are believed to form a consisten
nonlinear truncation1 @6,7# which is described by five-
dimensionalN58 gauged supergravity@9–11#. Many as-
pects of the AdS/CFT correspondence, such as, e.g., re
malization group ~RG! flows @12,13#, can therefore be
studied entirely within the framework of 5D gauged sup
gravity due to the lack of interference with the high
Kaluza-Klein modes.

*E-mail address: murat@phys.psu.edu
†E-mail address: zagerman@phys.psu.edu
1The consistency of the nonlinear truncation for a subsector of

scalar manifold has been shown recently@8#.
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On the other hand, five-dimensional,N52 gauged super-
gravity theories naturally occur as effective field theories
certain brane world scenarios based on heterotic M-the
compactifications@14–17#. Since gauged supergravity theo
ries typically also allow for AdS ground states, they ha
recently been discussed as a potential framework for emb
ding the Randall/Sundrum scenario@18# into M or string
theory.

Several attempts in this direction have been made~see,
e.g., Refs.@19–24#.! Many of them focused on what we wil
later call N52 ‘‘gauged Maxwell-Einstein theories’’@19–
23#. It was found, however, that the scalar potentials of th
theories are not of the right form to admit a supersymme
embedding of Randall-Sundrum-type models@21–23#. The
question of whether this is a generic feature of all gaug
supergravity theories provides one of the motivations
study the potentials of more general gauged supergra
theories in five dimensions.

Recently, we have constructed the general gaugings
5D, N52 supergravity coupled to vector as well astensor
multiplets @25#. This was an extension and generalization
earlier work on the gaugings ofN52 supergravity coupled
to vector multiplets only@26–30#.

Starting point of our construction were the ungaug
Maxwell-Einstein supergravity theories~MESGT’s! of Ref.
@26#, which describe the coupling of Abelian vector multip
lets to supergravity. These theories have a global symm
group of the form SU(2)R3G, whereG is the subgroup of
the isometry group of the scalar field target manifold th
extends to a global symmetry group of the full Lagrangia
e

©2000 The American Physical Society28-1
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and SU(2)R denotes theR-symmetry group of theN52 su-
persymmetry algebra. In general, there are various way
turn a subgroup of SU(2)R3G into a local gauge group. We
will use different names for these different possibiliti
@27,25#. We refer to theories in whichU(1)R,SU(2)R is
gauged as ‘‘gauged Maxwell-Einstein supergravity the
ries.’’ In order to gauge a subgroupK of G, a subset of the
vector fields of the ungauged theory has to transform in
adjoint representation ofK. If such a groupK exists, there
are two possibilities.

~i! There are additional vector fields outside the adjoint
K which transform nontrivially underK. These vector fields
have to be dualized to ‘‘self-dual’’ antisymmetric tens
fields in order to perform the gauging ofK in a supersym-
metric way@25#.2

~ii ! If there are no vector fields outside the adjoint ofK, or
if the additional vectors are all singlets underK ~‘‘spectator
vector fields’’!, the gauging ofK proceeds in a straightfor
ward way, and no tensor fields have to be introduced@27#.

In order to distinguish between gaugings of U(1)R andK,
we will refer to theories in whichK is gauged as ‘‘Yang-
Mills-Einstein supergravity theories’’@‘‘with or without ten-
sor fields,’’ depending on which of the possibilities~i! or ~ii !
is realized#.3

The most general gauging in this framework is then ob
ously a simultaneous gauging of U(1)R and K. For consis-
tency with our terminology, we will sometimes use the te
‘‘gauged Yang-Mills-Einstein supergravity theories~with or
without tensor multiplets!’’ for this type of gauging.

As for the scalar potentials that are introduced by th
different types of gaugings, one makes the following obs
vation @27,25#: ~i! The gauging of U(1)R introduces a scala
potential, which in all known cases~a! either has a maximum
that corresponds to an anti–de Sitter space,~b! vanishes
identically, or~c! has no critical points at all,~ii ! the gauging
of K introduces no potential when no vector fields have to
dualized to tensor fields;~iii ! if tensor fields have to be in
troduced, the gauging ofK introduces a scalar potentia
which is positive semidefinite and can therefore not lead
AdS vacua;~iv! the simultaneous gauging of U(1)R and K
leads to a scalar potential which is simply the sum of
potentials that would result from the gaugings of U(1)R and
K alone. The critical points of this combined potential ha
not yet been fully investigated.

The purpose of this paper is to give an explicit exam
of a gauged Yang-Mills-Einstein supergravity theory w
tensor fields which is simple enough to admit a compl
analysis of its scalar potential. The model we discu
describes the coupling of one vector multiplet and o
self-dual tensor multiplet~which contains two real tenso

2We should note that the gauging ofN58 Poincare´ supergravity
in 5D requires the dualization of twelve of the vector fields of t
N58 Poincare´ supermultiplet to self-dual tensor fields@9–11# for
completely analogous reasons.

3We will use the term ‘‘Yang-Mills’’ also whenK is Abelian ~as
is the case for our examples in Sec. IV!.
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fields! to supergravity. The three scalar fields from t
vector-tensor multiplets parametrize the spaceM
5SO(1,1)3SO(2,1)/SO(2), and thepossible gauge group
are U(1)R3SO(2) and U(1)R3SO(1,1). We will find that
the structure of the resulting scalar potentials is much ric
than for gaugings without tensor fields.

The organization of the paper is as follows. Section
briefly summarizes the most general form of a gauged Ya
Mills-Einstein supergravity theory with tensor fields. Secti
III discusses some general properties of the scalar poten
of these theories. The ungauged MESGT with scalar ma
fold M5SO(1,1)3SO(2,1)/SO(2), its U(1)R3SO(2) and
U(1)R3SO(1,1) gaugings and the resulting scalar potent
are analyzed in Sec. IV, which represents the main par
this paper. Section V discusses the generalization to the
lar manifolds SO(1,1)3SO(n21,1)/SO(n21), and Sec. VI
finally ends with some conclusions. An appendix summ
rizes the ‘‘very special geometry’’ of the ungaugedM
5SO(1,1)3SO(2,1)/SO(2) theory.

II. GAUGED YANG-MILLS-EINSTEIN SUPERGRAVITY
WITH TENSOR FIELDS

In this section, we briefly review the most releva
features ofN52 gauged Yang-Mills-Einstein supergravit
theories coupled to tensor multiplets@25#. Unless otherwise
stated, our conventions will coincide with those of Re
@26,27,25#, where further details can be found. In particula
we will use the metric signature (21111) and impose
the ‘‘symplectic’’ Majorana condition on all fermionic quan
tities.

The fields of theN52 supergravity multiplet are the fu¨n-
fbein em

m , two gravitini Cm
i ( i 51,2) and a vector fieldAm .

An N52 vector multiplet contains a vector fieldAm , two
spin-1/2 fermionsl i and one real scalar fieldw. The fermi-
ons of each of these multiplets transform as doublets un
the USp(2)R>SU(2)R R-symmetry group of theN52 Poin-
carésuperalgebra; all other fields are SU(2)R inert. A tensor
field satisfying a five-dimensional ‘‘self-duality’’ condition
must necessarily be complex@31#. We choose to work with
the real and imaginary parts of the complex tensors. A s
dual N52 tensor multiplet contains such a pair of tens
fields, four spin-1/2 fermions@i.e., two SU(2)R doublets# and
two scalars.

The general coupling ofm self-dual tensor multiplets to
N52 gauged Yang-Mills-Einstein supergravity was given
Ref. @25#. The field content of these theories is

$em
m ,Cm

i ,Am
I ,Bmn

M ,l i ã,w x̃%, ~2.1!

where
8-2
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I 50,1, . . . ,n,

M51,2, . . . ,2m,

ã51, . . . ,ñ,

x̃51, . . . ,ñ,

with ñ5n12m. Note that we have combined the ‘‘grav
photon’’ with the n vector fields of then vector multiplets
into a single (n11)-plet of vector fieldsAm

I labeled by the
index I. Also, the spinor and scalar fields of the vector a
tensor multiplets are combined intoñ tupels of spinor and
scalar fields. The indicesã,b̃, . . . , andx̃,ỹ, . . . , are the flat
and curved indices, respectively, of theñ-dimensional target
manifold M of the scalar fields. The metric, vielbein, an

spin connection onM will be denoted bygx̃ỹ , f x̃
ã , andV x̃

ãb̃ ,
respectively. The SU(2)R index i is raised and lowered with
the antisymmetric metric«125«1251 according to

Xi5« i j Xj , Xi5Xj« j i .

The fermionsCm
i and l i ã are U(1)R charged, whereas th

fields w x̃, l i ã, andBmn
M carry charge underK.

Denoting the U(1)R andK coupling constants bygR and
g, respectively, the@U(1)R3K# gauge covariant derivative
of these fields are as follows (¹ denotes the ordinary space
time covariant derivative!
04402
DmCn
i [¹mCn

i 1gRVIAm
I d i j Cn j ,

Dml i ã[¹ml i ã1gRVIAm
I d i j l j

ã1gAm
I LI

ãb̃l i b̃,

Dmw x̃[]mw x̃1gAm
I KI

x̃ ,

DmBnr
M [¹mBnr

M 1gAm
I L IN

M Bnr
N . ~2.2!

Here,KI
x̃ are the Killing vector fields onM that generate the

subgroupK of its isometry group. Thew-dependent matrices

LI
ãb̃ and theconstantmatricesL IN

M are theK-transformation

matrices ofl i ã andBmn
M , respectively. TheVI are some con-

stants that define the linear combination of the vector fie
Am

I that is used as the U(1)R-gauge field

Am@U~1!R#5VIAm
I . ~2.3!

They have to be constrained by

VI f JK
I 50, ~2.4!

with f JK
I being the structure constants ofK.4

We denote the curls of the vector fieldsAm
I by Fmn

I . The
non-Abelian field strengthsF mn

I [Fmn
I 1g fJK

I Am
J An

K (I
50,1, . . . ,n) of the gauge groupK and the self-dual tenso
fields Bmn

M (M51,2, . . . ,2m) are grouped together to defin

the tensorial quantityH mn
Ĩ 5(F mn

I ,Bmn
M ) with Ĩ 50,1, . . . ,n

12m.
The Lagrangian is then given by~up to four-fermion

terms! @25#
e21L52
1

2
R~v!2

1

2
C̄m

i GmnrDnCr i2
1

4
a° Ĩ J̃H mn

Ĩ H J̃mn2
1

2
l̄ i ã~GmDmd ãb̃1V x̃

ãb̃
GmDmw x̃!l i

b̃2
1

2
gx̃ỹ~Dmw x̃!~Dmw ỹ!

2
i

2
l̄ i ãGmGnCm i f x̃

ã
Dnw x̃1

1

4
hĨ

ã
l̄ i ãGmGlrCm iH lr

Ĩ 1
i

2A6
S 1

4
d ãb̃hĨ 1Tãb̃c̃hĨ

c̃D l̄ i ãGmnl i
b̃H mn

Ĩ

2
3i

8A6
hĨ @C̄m

i GmnrsCn iH rs
Ĩ 12C̄m iC i

nH mn
Ĩ #1

e21

6A6
CIJK«mnrslH Fmn

I Frs
J Al

K1
3

2
gFmn

I Ar
J~ f LF

K As
LAl

F!

1
3

5
g2~ f GH

J An
GAr

H!~ f LF
K As

LAl
F!Am

I J 1
e21

4g
«mnrslVMNBmn

M DrBsl
N 1gl̄ i ãGmCm iWã1gl̄ i ãl i

b̃Wãb̃2g2P

2
iA6

8
gRC̄m

i GmnCn
j d i j P02

1

A2
gRl̄ i ãGmCm

j d i j Pã1
i

2A6
gRl̄ i ãl j b̃d i j Pãb̃2gR

2 P(R). ~2.5!

4If there are spectator vector fields among theAm
I , the correspondingf IJ

K are just zero.
8-3



s

n

f-

e

get

n-

ous

li

e
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The transformation laws are~to leading order in fermion
fields!

dem
m5

1

2
«̄ iGmCm i ,

dCm
i 5Dm« i1

i

4A6
hĨ ~Gm

nr24dm
n Gr!H nr

Ĩ « i

1
i

2A6
gRP0Gmd i j « j ,

dAm
I 5qm

I ,

dBmn
M 52D[mqn]

M1
A6g

4
VMNhNC̄ [m

i Gn]« i

1
ig

4
VMNhNãl̄

i ãGmn« i ,

dl i ã52
i

2
f x̃

ã
Gm~Dmw x̃!« i1

1

4
hĨ

ã
Gmn« iH mn

Ĩ 1gWã« i

1
1

A2
gRPãd i j « j ,

dw x̃5
i

2
f ã

x̃
«̄ il i

ã , ~2.6!

with

qm
Ĩ [2

1

2
hã

Ĩ
«̄ iGml i

ã1
iA6

4
hĨC̄m

i « i . ~2.7!

The various scalar field dependent quantitiesa° Ĩ J̃ , hĨ , hĨ ,

hĨ
ã , hĨ ã, andTãb̃c̃ that contract the different types of indice

are already present in the correspondingungaugedMESGT’s
and describe the ‘‘very special’’geometry of the scalar ma
fold M ~see Ref.@26# for details!. The ungauged MESGT’s
also contain a constant symmetric tensorCĨ J̃K̃ . If the gaug-
ing of K involves the introduction of tensor fields, the coe
ficients of the typeCMNP andCIJM have to vanish@25#. The
only components that survive such a gauging are thusCIJK ,
which appear in the Chern-Simons-like term of Eq.~2.5!,
andCIMN , which are related to the transformation matric
of the tensor fields by

L IN
M 5

2

A6
VM PCIPN .

Here VMN is the inverse ofVMN , which is a ~constant!
invariant antisymmetric tensor of the gauge groupK:

VMN52VNM , VMNVNP5dM
P . ~2.8!

The terms proportional to
04402
i-

s

Wã~w!52
A6

8
hM

ã VMNhN ,

Wãb̃~w!52Wb̃ã~w!5 ihJ[ ãKJ
b̃]

1
iA6

4
hJKJ

[ ã;b̃] ~2.9!

~the semicolon denotes covariant differentiation on the tar
spaceM! and the potential term

P~w!52WãWã ~2.10!

are due to the presence of the tensor fields.
The supersymmetric gauging of the U(1)R factor, on the

other hand, introduces the terms proportional to

Pã~w!5A2hãIVI , ~2.11!

P0~w!52hIVI , ~2.12!

Pãb̃~w!5
1

2
d ãb̃P012A2Tãb̃c̃P

c̃

~2.13!

in Eqs.~2.5! and ~2.6! and leads to the scalar potential co
tribution

P(R)~w!52~P0!21PãPã. ~2.14!

III. SOME GENERAL PROPERTIES OF THE SCALAR
POTENTIAL

As summarized in the previous section, the simultane
gauging of U(1)R,SU(2)R and a subgroupK,G of the
isometry groupG of the vector-tensor multiplets modu
spaceM leads to a scalar potential of the form

e21Lpot52g2P2gR
2 P(R), ~3.1!

whereP(R) arises from the gauging of U(1)R , whereasP is
nonzero if and only if someK-charged vector fieldsAm

M had
to be dualized to tensor fieldsBmn

M in order to perform the
gauging ofK in a supersymmetric way. In the remainder w
will write

PtotªP1lP(R), with lª
gR

2

g2
~3.2!

so that

e21Lpot52g2Ptot . ~3.3!

The potentialsP andP(R) are given by

P52WãWã, ~3.4!

P(R)52~P0!21PãPã.
8-4
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Using hã
Ĩ
hJ̃

ã
5d J̃

Ĩ
2hĨhJ̃ @26#, it is easy to verify thatWã

andPã are orthogonal:

WãPã50.

Contracting^dl i ã&50 with Wã and Pã then shows that an
N52 supersymmetric ground state requires

^Wã&5^Pã&50. ~3.5!

This implies, in particular, that the cosmological constant
an N52 supersymmetric vacuum is given byP(R)(wc)
alone, i.e.,P(wc,SUSY)50, as has also been pointed out
Ref. @22#. Nevertheless,P can still have a nontrivial effect on
the form of a supersymmetric critical point, i.e., it ca
change it from a maximum to a saddle point. In additio
there might be critical points which do not preserve the f
N52 supersymmetry and thereforecanhaveP(wc)Þ0. We
will see examples for all this in the next section.

Using @26#

CĨ J̃K̃hK̃5hĨhJ̃2
1

2
hĨ ãhJ̃

ã ,

P andP(R) can be expressed in a more compact form wh
will facilitate the analysis of the critical points:

P5
3A6

16
hIL I

MNhMhN , ~3.6!

P(R)524CIJK̃VIVJhK̃ , ~3.7!

where we have defined

L I
MN[L IP

M VPN5
2

A6
VMRCIRPVPN, ~3.8!

CĨ J̃K̃[a° Ĩ Ĩ 8a° J̃J̃8a° K̃K̃8CĨ 8J̃8K̃8 ~3.9!

with a° Ĩ J̃ being the inverse ofa° Ĩ J̃ .
If M is associated with a Jordan algebra5 @26#, one has

~componentwise!

CĨ J̃K̃5CĨ J̃K̃5const.

In this case, because ofCIJM5CIJM50, P(R) simplifies to

P(R)524CIJKVIVJhK ~ for the Jordan family!
~3.10!

with constantCIJK5CIJK and summation overK instead
of K̃.

5We recall that the MESGT’s associated with Jordan algebras
those for which the cubic form defined by the symmetric ten
CĨ J̃K̃ can be identified with the norm form of a Jordan algebra
degree 3.
04402
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The critical points ofP(R) have been analyzed in Ref.@27#
for the purely U(1)R-gauged Maxwell-Einstein supergravit
theories~MESGTs! of the Jordan type. It was found that the
are characterized by the ‘‘dual’’ element

V# Ĩ[A2

3
CĨ J̃K̃VJ̃VK̃ ~3.11!

of VĨ . Three cases could be distinguished.~i! V# Ĩ 50. In this
case, the scalar potentialP(R) vanishes identically, leading to
Minkowski ground states with broken supersymmetry.~ii !
V# Ĩ is in the ‘‘domain of positivity’’ of the corresponding
Jordan algebraJ. In this case, there exists precisely one cr
cal point, which sits at the unique global maximum of t
scalar potentialP(R) and corresponds to an anti–de Sitt
ground state with unbrokenN52 supersymmetry and unbro
ken global Aut(J)-invariance, where Aut(J) denotes the au-
tomorphism group of the Jordan algebraJ. ~iii ! V# Ĩ is non-
zero and not in the domain of positivity ofJ. In this case, the
scalar potentialP(R) has no critical points at all. In order to
get a better understanding as to whether and how the p
ence of the tensor field related potentialP changes this pic-
ture, we will analyze the simplest nontrivial example of
gauged Yang-Mills-Einstein supergravity theory with tens
multiplets in full detail in the next section.

IV. THE SIMPLEST NONTRIVIAL EXAMPLE:
MÄSO„1,1…ÃSO„2,1…ÕSO„2…

A. The ungauged theory

The ungaugedMESGT with the scalar manifoldM
5SO(1,1)3SO(2,1)/SO(2) allows the construction of tw
of the simplest non-trivial examples of a gauged Yang-Mil
Einstein supergravity theory with tensor multiplets. Let
consider thisungaugedtheory first. It belongs to the generi
Jordan family6 and describes the coupling of three Abelia
vector multiplets to supergravity. Consequently, the fie
content is

$em
m ,Cm

i ,Am
Ĩ ,l i ã,w x̃% ~4.1!

with

i 51,2,

Ĩ 50,1, . . . ,3,

ã51, . . . ,3,

x̃51, . . . ,3,

where the three scalar fieldsw x̃ parametrize the target spac
M5SO(1,1)3SO(2,1)/SO(2). Thelatter can be described
as the hypersurface

re
r
f 6The ‘‘generic Jordan family’’ consists of the MESGT’s with sc
lar manifolds of the formM5SO(1,1)3SO(n21,1)/SO(n21).
8-5
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N~j!5S 2

3D 3/2

CĨ J̃K̃j Ĩj J̃j K̃51

in a four-dimensional ambient vector space parametrized
coordinatesj Ĩ . In the case at hand, this vector space can
identified with the Jordan algebra

J5R% S3 ,

whereS3 is the Jordan algebra of degree two correspond
to a quadratic formQ with signature (1,2,2) @26#. In the
most natural basis of this Jordan algebra,N(j) takes on the
following form:

N~j!5A2j0@~j1!22~j2!22~j3!2#,

where the normalization factorA2 ensures that the uniqu
selfdual pointj Ĩ 5j# Ĩ ~i.e. the ‘‘base point’’cĨ of the Jordan
algebra@26#! really lies on the hypersurfaceN(j)51, or

equivalently, that there is a point onM where a° Ĩ J̃5d Ĩ J̃
@26#.7

Hence, the nonvanishingCĨ J̃K̃ are

C0115
A3

2
,

C0225C03352
A3

2
. ~4.2!

The constraintN51 can be solved by

j05
1

A2iwi2
, ~4.3!

j15w1, ~4.4!

j25w2, ~4.5!

j35w3 ~4.6!

with

iwi2[~w1!22~w2!22~w3!2.

Obviously, the hypersurfaceN51 decomposes into thre
disconnected components:~i! iwi2.0 andw1.0, ~ii ! iwi2

,0, ~iii ! iwi2.0 andw1,0. In the following, we will con-
sider the ‘‘positive timelike’’ region~i! only, since in region

~ii !, gx̃ỹ anda° Ĩ J̃ are not positive definite~see the Appendix!,
and region~iii ! is isomorphic to region~i!. All the scalar field
dependent quantities in the Lagrangian and the supersym
try transformation laws can be derived fromN(j), and they
are listed in the Appendix.

7In our parametrization,cĨ 5(1/A2,1,0,0), which corresponds t

w x̃5(1,0,0) ~see the Appendix!.
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B. The U„1…RÃSO„2… gauging

We will now turn the above ungauge
SO(1,1)3SO(2,1)/SO(2) model into a gauged Yang-Mill
Einstein supergravity theory with tensor fields. The isome
group of the scalar manifoldM is G5SO(2,1)3SO(1,1),
which is simply the invariance group ofN(j). There are now
two different ways to construct a Yang-Mills-Einstein supe
gravity theory with tensor multiplets: Either one gauges
compact subgroup SO(2),SO(2,1), or one gauges the no
compact subgroup SO(1,1),SO(2,1). We will focus on the
compact gauging first and discuss the noncompact SO(
gauging in the next subsection. The SO(2) subgroup
SO(2,1) rotatesj2 andj3 into each other and therefore ac
nontrivially on the vector fieldsAm

2 andAm
3 . Hence, gauging

this SO(2) requires the dualization ofAm
2 andAm

3 to antisym-

metric tensor fields. Accordingly, we decompose the indeĨ
as follows:

Ĩ 5~ I ,M !

with I ,J,K, . . . 50,1 andM ,N,P, . . . 52,3.
It is easy to verify that ourCĨ J̃K̃ in Eqs.~4.2! are consis-

tent with the requirementsCIJM5CMNP50 for this type of
gauging. Having a closer look at theCĨ J̃K̃ of the typeCIMN
we also see thatC1MN is zero, whereasC0MN is nonvanish-
ing. This means, because ofL IN

M ;VM PCIPN , that the vector
field Am

0 plays the role of the SO(2)-gauge field, whereasAm
1

is just a ‘‘spectator vector field’’ with respect to the SO(2
gauging.

In addition to this SO(2) gauging, one can now use
linear combinationAm@U(1)R#5Am

I VI of the vector fields
Am

0 and Am
1 as the U(1)R-gauge field, and simultaneousl

gaugeU(1)R and SO(2). Theresult is agaugedYang-Mills-
Einstein supergravity theory with tensor fields with the fu
gauge group U(1)R3SO(2).

In our parametrization, the resulting potentialsP andP(R)

@see Eqs.~3.6!, ~3.10! and the Appendix# are found to be8

P5
1

8

@~w2!21~w3!2#

iwi6
, ~4.7!

P(R)522F2A2
w1

iwi2
V0V11iwi2~V1!2G .

~4.8!

For the functionsWx̃ , Px̃ , andP0 that enter the supersym
metry transformation laws of the fermions, one obtains

W150, ~4.9!

W25
1

4

w3

iwi4
, ~4.10!

8We are choosingV2352V32521.
8-6



la

ti

o

of
by
-
al

den-

s

e

read
e-

VACUA OF 5D, N52 GAUGED YANG-MILLS- . . . PHYSICAL REVIEW D 62 044028
W352
1

4

w2

iwi4
, ~4.11!

respectively,

P15A2S A2
w1

iwi4
V02V1D , ~4.12!

P2522
w2

iwi4
V0 , ~4.13!

P3522
w3

iwi4
V0 , ~4.14!

and

P05
2

A3
S V0

iwi2
1A2w1V1D . ~4.15!

This shows that the necessary condition for anN52 su-
persymmetric critical point,Wx̃(wc)5Px̃(wc)50, is equiva-
lent to

^w2&5^w3&50, ~4.16!

^w1&3V15A2V0 . ~4.17!

Let us now analyze the critical points of the above sca
potentials. We will first investigate the critical points ofP
andP(R) separately and then consider the combined poten
Ptot5P1lP(R).

The critical points of P.Taking the deriative ofP(w) with
respect tow x̃, one finds

P,152
3

4

@~w2!21~w3!2#

iwi8
w1, ~4.18!

52Aw11
w1

4iwi6
, ~4.19!

P,25Aw2, ~4.20!

P,35Aw3, ~4.21!

where

A[
3

4

@~w2!21~w3!2#

iwi8
1

1

4iwi6

has been introduced. There are now two possibilities.
Case 1: AÞ0. Then P,25P,350 implies wc

25wc
350

~which then also impliesP,150). But thenP(wc)50, and
we have a Minkowski ground state, which, because
Wx̃(wc)50, preserves the fullN52 supersymmetry@as long
as the U(1)R gauging is turned off#.
04402
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Case 2: A50. ThenP,150 impliesw1/4iwi650, which
is inconsistent withw1.0 andiwi2.0.

Summary for P. There exists a one parameter family
N52 supersymmetric Minkowski ground states, given
^w2&5^w3&50 and arbitrarŷ w1&.0. These vacua also pre
serve the SO(2)-gauge invariance. There are no other critic
points.

The critical points of P(R). The gradient ofP(R) is

P,1
(R)52Bw12

4A2V0V1

iwi2
, ~4.22!

P,2
(R)5Bw2, ~4.23!

P,3
(R)5Bw3, ~4.24!

where

B[28A2
w1

iwi4
V0V114~V1!2.

There are now two possibilities.
Case 1: B50. P,1

(R)50 then requiresV0V150. Thus ei-
ther V0 or V1 ~or both of them! have to be zero. IfV050,
B50 implies V150. Thus,B50 automatically impliesV1
50, and the potentialP(R) vanishes identically@see Eq.
~4.8!# resulting in a Minkowski vacuum. The U(1)R gauging
is nontrivial only when at least oneVI is nonzero. SinceV1
50 in the case at hand, a nontrivial U(1)R gauging requires
V0Þ0, implying P1Þ0, i.e., broken supersymmetry.

Case 2: BÞ0. The vanishing ofP,2
(R) and P,3

(R) then re-
quires^w2&5^w3&50, i.e.,^iwi2&5^w1&2. BecauseP,1

(R) has
to vanish, this implieŝw1&3(V1)25A2V0V1. Thus there are
two possibilities: EitherV150, or V0 andV1 are both non-
vanishing. The former case leads us back to the case of i
tically vanishing potentialP(R)[0. The second possibility
leads to a critical point witĥw2&5^w3&50 and

^w1&35A2
V0

V1
~4.25!

wheneverV0V1.0 ~sincew1.0). It is easy to see that thi
critical point satisfies the necessary conditions~4.16!, ~4.17!
for N52 supersymmetry. The value of the potentialP(R) at
this critical point is

P(R)~wc!526~wc
1!2~V1!2,0, ~4.26!

i.e., it corresponds to an anti–de Sitter ground state.
Summary for P(R). There are three possibilities:~a! V1

50. This implies a flat potentialP(R)[0 and Minkowski
ground states with broken supersymmetry@supersymmetry is
broken as long as the U(1)R gauging is nontrivial, i.e., if
V0Þ0#. ~b! V0V1.0. In this case, there exists exactly on
critical point. It is given by ^w2&5^w3&50 and ^w1&3

5A2V0 /V1 and corresponds to anN52 supersymmetric
AdS ground state whose cosmological constant can be
off from Eq. ~4.26!. This vacuum breaks the global symm
8-7
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try group SO(1,1)3SO(2,1) down to its maximal compac
subgroup SO(2). ~c! V0V1,0. No critical points exist in this
case.

It is instructive to recover the characterization of the cr
cal points in terms of the dual elementV# Ĩ @27# mentioned in
Sec. III. Using Eq.~3.11!, one finds

V# Ĩ 5@~V1!2/A2,A2V0V1,0,0#.

This shows thatV# Ĩ 50 is equivalent toV150 and thatV# Ĩ

is in the domain of positivity ifV0V1.0 so that our case
~a!–~c! are equivalent to the cases~i!, ~ii !, ~iii !, respectively,
listed in Sec. III.

The critical points of the combined potential(Ptot5P
1lP(R). The gradient ofPtot is given by

Ptot,152~A1lB!w11
w1

4iwi6
2l4A2

V0V1

iwi2
, ~4.27!

Ptot,25~A1lB!w2, ~4.28!

Ptot,35~A1lB!w3, ~4.29!

whereA andB are again as defined above.
There are now two possibilities.
Case 1: ^w2&5^w3&50. In this case,P,x̃(wc) vanishes

automatically~see the discussion ofP above!. This implies
that P,x̃

(R)(wc) also has to vanish separately, i.e., we are de
ing with critical points that are just simultaneous critic
points of the individual potentialsP and P(R). These have
already been discussed above.

Case 2:̂ w2&21^w3&2.0. This case involves a nontrivia
interplay of the two potentialsP and P(R). For Ptot,2 and
Ptot,3 to vanish, one obviously needsA1lB50. Ptot,150
then implies

w1

iwi4
516A2lV0V1 . ~4.30!

This implies~rememberingl.0 andw1.0)

V0V1.0. ~4.31!

Inserting Eq. ~4.30! into A1lB50, and reexpressing
(w2)21(w3)2 in terms of iwi2 and (w1)2, one derives the
additional condition

1

iwi6
5

1

2
~16A2lV0V1!218l~V1!2. ~4.32!

Now, by assumption,̂w2&21^w3&2.0. Hence

~w1!2

iwi8
.

1

iwi6
,

so that in order for Eqs.~4.30! and ~4.32! to be consistent,
one needs
04402
l-

32l~V0!2.1. ~4.33!

Thus, ifV0 is big enough such that Eq.~4.33! is satisfied and
if V1V0.0 @see Eq.~4.31!#, new non-trivial critical points
exist. Equation~4.32! fixes iwci2 so that Eq.~4.30! fixeswc

1 .
This in turn fixes@(wc

2)21(wc
3)2#, but notwc

2 and wc
3 indi-

vidually. Hence, we obtain a one-parameter family of critic
points, which, because of@(wc

2)21(wc
3)2#.0, do not pre-

serve the fullN52 supersymmetry@see Eq.~4.16!# and
spontaneously break the SO(2)-gauge invariance. Using
Eqs.~4.30! and~4.32!, one finds for the value ofPtot at these
critical points

Ptot~wc!52
3

8

1

iwi4
,0, ~4.34!

which again corresponds to an Anti-de Sitter solution. P
ting everything together, we arrive at the following.

Summary for Ptot : Depending on the values of theVI , the
total potentialPtot5P1lP(R) admits the following types of
critical points.~a! V150. In this case,P(R) vanishes identi-
cally, and one has a one-parameter family of SO(2) ga
invariant Minkowski ground states. They are given bywc

2

5wc
350 and an arbitrarywc

1.0. If V0Þ0 @i.e., if the
U(1)R-gauging is nontrivial#, these ground states break th
N52 supersymmetry. IfV050, the U(1)R gauging is
switched off, and supersymmetry is unbroken, correspond
to case 1 in the discussion ofP. ~b1! V0V1.0, and
32l(V0)2<1. In this case, there is precisely one grou
state. It preserves the fullN52 supersymmetry and th
SO(2) gauge invariance. It corresponds to an anti–de S
solution, and is given bywc

25wc
350 and (wc

1)35A2V0 /V1

with Ptot(wc)5lP(R)(wc)526l(wc
1)2(V1)2. Although the

potentialP due to the tensor fields does not contribute to t
cosmological constant, it does have an effect on the form
the extremum of the total potential: It is now a saddle poi
as opposed to the case of pure U(1)R gauging, where the
supersymmetric critical point is always a maximum.~b2!
V0V1.0, and in addition 32l(V0)2.1. In this case, there
are two types of critical points. The first one is an isolat
supersymmetric critical point which has exactly the sa
properties as the one described in~b1! above, with one ex-
ception: it is now a localmaximumof the total scalar poten
tial. Apart from this point, there is an additional on
parameter family of critical points. They are given by Eq
~4.30! and ~4.32!, which fix wc

1 , and @(wc
2)21(wc

3)2#. They
break theN52 supersymmetry and the SO(2)-gauge invari-
ance and correspond to an anti–de Sitter solution w
Ptot(wc)523/(8iwci4). These critical points are saddl
points of the total potential.~c! V0V1,0. In this case, there
are no critical points.

C. The U„1…RÃSO„1,1… gauging

We now come to the noncompact version of the abo
theory. Since the analysis is very similar to the compact ca
our presentation can be less detailed.
8-8
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We choose the SO(1,1) subgroup of SO(2,1) to rotate
componentsj1 and j2 into each other. Consequently, th
SO(1,1) acts nontrivially on the vector fieldsAm

1 and Am
2 ,

and its gauging requires the dualization ofAm
1 and Am

2 to
antisymmetric tensor fields. Accordingly, we decompose
index Ĩ as follows:

Ĩ 5~ I ,M !

with I ,J,K, . . . 50,3 andM ,N,P, . . . 51,2.
Since C0MNÞ0 and C3MN50, Am

0 plays the role of
the SO(1,1)-gauge field, whereasAm

3 is a ‘‘spectator
vector field’’ with respect to the SO(1,1) gauging. Usin
a linear combinationAm@U(1)R#5Am

I VI of the vector
fields Am

0 and Am
3 as the U(1)R-gauge field, one can the

simultaneously gauge U(1)R and SO(1,1), and obtains th
@U(1)R3SO(1,1)#-gauged analog of the@U(1)R3SO(2)#
theory discussed in the previous subsection.

The scalar potentialsP and P(R) are now~we useV125
2V21521)

P5
1

8

@~w1!22~w2!2#

iwi6
, ~4.35!

P(R)522F2A2
w3

iwi2
V0V32iwi2~V3!2G . ~4.36!

For the functionsWx̃ , Px̃ , andP0 that enter the supersym
metry transformation laws of the fermions, one obtains

W152
1

4

w2

iwi4
, ~4.37!

W25
1

4

w1

iwi4
, ~4.38!

W350, ~4.39!

respectively,

P152
w1

iwi4
V0 , ~4.40!

P2522
w2

iwi4
V0 , ~4.41!

P352A2S A2
w3

iwi4
V01V3D , ~4.42!

and

P05
2

A3
S V0

iwi2
1A2w3V3D . ~4.43!

This already shows that there can be noN52 supersymmet-
ric critical point, becauseW2 can never vanish.
04402
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Let us now come to the critical points of the scalar pote
tials. We will again first analyze the critical points ofP and
P(R) separately and then consider the combined poten
Ptot5P1lP(R).

The critical points of P.For the gradient ofP(w) with
respect tow x̃, one obtains

P,15Ãw1, ~4.44!

P,252Ãw2, ~4.45!

P,352Ãw31
w3

4iwi6
, ~4.46!

with

Ã[2
3

4

@~w1!22~w2!2#

iwi8
1

1

4iwi6
.

Since w1 cannot vanish,P,150 requiresÃ50. But then
P,350 implies w350. The assumptionÃ50 then leads to
the contradiction 153, and is therefore inconsistent.

Summary for P. P alone has no critical points at all.
The critical points of P(R). The gradient ofP(R) is

P,1
(R)5B̃w1, ~4.47!

P,2
(R)52B̃w2, ~4.48!

P,3
(R)52B̃w32

4A2V0V3

iwi2
, ~4.49!

where

B̃[8A2
w3

iwi4
V0V314~V3!2.

Sincew1 cannot vanish,P,1
(R)50 implies B̃50. The condi-

tion P,3
(R)50 then impliesV0V350. AssumeV3Þ0. Then

V050 would imply V350 by virtue of B̃50. Thus,V3 has
to vanish in any case if a critical point ofP(R) is assumed to
exist. However,P(R) then vanishes identically.

Summary for P(R). A critical point of P(R) exists if and
only if P(R) vanishes identically~which is equivalent toV3
50).

It is easy to recover the characterization of the critic
points of P(R) in terms of the dual elementV# Ĩ @27# men-
tioned in Sec. III. In the case at hand, one finds

V# Ĩ 5@2~V3!2/A2,0,0,2A2V0V3#.

This shows thatV# Ĩ 50 is equivalent toV350 and thatV# Ĩ

can never be in the domain of positivity ofV3Þ0. Thus, our
results are consistent with the discussion given in Sec. I

The critical points of the combined potential Ptot5P
1lP(R). The gradient ofPtot is given by

Ptot,15~Ã1lB̃!w1, ~4.50!

Ptot,252~Ã1lB̃!w2, ~4.51!

Ptot,352~Ã1lB̃!w31
w3

4iwi6
2l4A2

V0V3

iwi2
, ~4.52!
8-9
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whereÃ and B̃ are again as defined above.
Sincew1 cannot vanish,Ptot,150 requires (Ã1lB̃)50.

Ptot,350 then implies

w3

iwi4
516A2lV0V3 . ~4.53!

The analogous equation~4.30! in the compact gauging im
plied V0V1.0 @see Eq.~4.31!#. In the case at hand, howeve
Eq. ~4.53! does not imply any constraint forV0V3, because
w3/iwi4 does not have to be positive, as opposed tow1/iwi4,
which is always greater than zero.

Inserting Eq.~4.53! into Ã1lB̃50, one derives the ad
ditional condition@i.e., the analogue of Eq.~4.32!#

1

iwi6
52

1

2
~16A2lV0V3!218l~V3!2. ~4.54!

Since 1/iwi6.0, the last equation implies the consisten
conditions

V3Þ0,

32l~V0!2,1. ~4.55!

@The analogous equation~4.33! in the compact gauging aros
as a consistency condition of Eqs.~4.30! and ~4.32!. How-
ever, it is easy to see that Eqs.~4.53! and~4.54! do not imply
any additional constraints onV0 or V3, so that Eqs.~4.55!
remain the only constraints on theVI .#

For a given set ofVI andl subject to Eq.~4.55!, iwi2 is
fixed by Eq. ~4.54!. This in turn fixes w3 and @(w1)2

2(w2)2# by virtue of Eq.~4.53!, but leaves thew1 and w2

otherwise undetermined. We thus obtain a one param
family of critical points which can be viewed as the nonco
pact analog of the nontrivial nonsupersymmetric critic
points found for the compact gauging@i.e., the ones men
tioned in case~b2! in the discussion ofPtot#. However, for
the noncompact gauging, these critical points have very
ferent physical properties. In particular, the total scalar
tential becomes

Ptot~wc!53liwi2~V3!2@1232l~V0!2#, ~4.56!

which is positive because of the condition~4.55! and there-
fore corresponds to a de Sitter rather than an anti–de S
spacetime.

Summary for Ptot . If V3Þ0 and 32l(V0)2,1, there ex-
ists a one parameter family of critical points given by Eq
~4.53! and ~4.54!. They correspond to a de Sitter spacetim
with Ptot(wc)53liwi2(V3)2@1232l(V0)2#.0 and break
theN52 supersymmetry and the SO(1,1) gauge invarian
There are no other critical points of the combined potent
In particular, neither the analogue of theN52 supersymmet-
ric critical point mentioned in cases~b1! and ~b2!, nor the
analogs of the Minkowski ground states mentioned in c
~a! in the summary forPtot in Sec. IV B, exist for the non-
compact gauging.
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V. THE GENERIC JORDAN FAMILY OF NÄ2 GAUGED
YANG-MILLS-EINSTEIN SUPERGRAVITY THEORIES

COUPLED TO TENSOR MULTIPLETS

In the previous section we studied in detail the critic
points of the potentials of the simplest nontrivial gaug
Yang-Mills Einstein supergravity theories with tens
multiplets. The correspondingN52 MESGT belongs to
the generic Jordan family and has the scalar manif
SO(1,1)3SO(2,1)/SO(2). TheMESGT’s of the generic
Jordan family have the scalar manifold SO(1,1)3SO(n
21,1)/SO(n21). From the results of Ref.@25# and the ar-
guments given in the previous section it follows that a
gaugeable subgroupK of the isometry group withK-charged
vectors dualized to tensor fields must be Abelian. Since
vector fieldAm

0 must be the gauge field it follows that on
can only gauge SO(2) or SO(1,1) and have someK-charged
tensor fields under them. We should also note that the ga
able SO(1,1) must be a subgroup of SO(n21,1) and cannot
be the SO(1,1) factor in the isometry group since all t
vector fields are charged under the latter SO(1,1). T
SO(2) gauge group is some diagonal subgroup of the m
mal Abelian subgroup SO(2)13SO(2)23•••3SO(2)p of
SO(n21,1) ~for n52p11 or n52p12). The gaugeable
SO(1,1) subgroup is unique modulo some SO(n21) rota-
tion.

After the gauging of the Abelian subgroup of the isome
group with the charged vectors dualized to tensor fields,
remaining vector fields can be used to gauge some n
Abelian subgroupS of the full isometry group so long a
they decompose as the adjoint plus some singlets ofS. This
non-Abelian gauging does not introduce any additional
tential @27#. A linear combination of the remainingS singlet
vector fields can then be used to gauge the U(1)R subgroup
of the R-symmetry group SU(2)R . The full potential of the
K3U(1)R3S gauged Yang-Mills Einstein supergravity wit
K-charged tensor fields must have novel critical points of
type we discussed in the previous section since these the
can be truncated to the the simplest non-trivial model c
sistently.

There exist an infinite family of non-Jorda
MESGT’s with the scalar manifold SO(n,1)/SO(n)
@28#. For this family only the parabolic subgrou
SO(n21)3SO(1,1)(T(n21) , which is simply an ‘‘internal
Euclidean group’’ in (n21) dimensions times a dilatatio
factor, extends to a symmetry of the full action@32#. The
analysis of the possible gauge groupsK that involve a dual-
ization ofK-charged vectors to tensor fields is very similar
the generic Jordan case@25#. In this case too one finds tha
only a one dimensional Abelian subgroupK can be gauged
with nontrivial tensor fields carrying charge underK. How-
ever, there is one crucial difference between the Jordan f
ily and the non-Jordan family. For the non-Jordan family t
tensorCĨ J̃K̃ is not an invariant tensor of the full isometr
group SO(n,1) of the scalar manifold. As a consequence o
finds that

CĨ J̃K̃ÞCĨ J̃K̃, ~5.1!

and theCĨ J̃K̃ are no longer constant tensors but depend
the scalars.
8-10
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VI. CONCLUSIONS

In this paper we have analyzed the scalar potentials of
simplest examples of a gauged Yang-Mills-Einstein sup
gravity theory coupled to tensor multiplets. Although not
the results we have derived for these examples may c
over to the most general gauged Yang-Mills-Einstein sup
gravity theory with tensor fields, they show that the sca
potentials of these theories can exhibit a much richer st
ture than the purely U(1)R-gauged supergravity theories o
the gauged Yang-Mills-Einstein supergravity theorieswith-
out tensor fields. Our analysis revealed that even though
total potential is just a sum of the potentials that appea
the separate gaugings ofK and U(1)R , there can be critica
points of the total potential which would not be critic
points of the individual potentials. In particular, we foun
that, for a certain parameter range@case~b2!# in Sec. IV B!#,
the @U(1)R3SO(2)# gauging leads to a new one-parame
family of non-supersymmetric critical points, which a
saddle points of the total potential. These are accompa
by an isolatedN52 supersymmetricmaximum, which is al-
ready present in the purely U(1)R gauged theory withou
tensor fields. In another parameter range@case ~b1!#, the
novel nonsupersymmetric one-parameter family of criti
points disappears and theN52 supersymmetric critica
point becomes asaddle point~and remains supersymmetric!.
In yet another parameter range@case~a!#, the theory has a
one-parameter family of Minkowski ground states whi
break theN52 supersymmetry as long as the U(1)R gaug-
ing is nontrivial. If the U(1)R gauging is switched off, thes
critical points become supersymmetric.

The possible types of critical points are much more
stricted for the noncompact U(1)R3SO(1,1) gauging, which
can have at most a one-parameter family of nonsupers
metric de Sitter ground states~which are presumably un
stable!. This is consistent with the experience from comp
and noncompact gaugings of theN58 theory@10# where a
nonsupersymmetric de Sitter critical point was found in
SO(3,3)-gauged version of theN58 theory.
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In this paper we have not studied the critical points of t
potential when one gauges anon-AbeliansubgroupK of the
isometry group of the scalar manifold with tensor multiple
transforming in a nontrivial representation ofK. Such gauge
groups are possible for the magical JordanN52 theories as
well as for the infinite family of theories with SU(n) isom-
etries discussed in Ref.@25#. The study of the critical points
of these theories as well as those of the non-Jordan fam
will be the subject of a future investigation.

APPENDIX A: THE ‘‘VERY SPECIAL GEOMETRY’’
OF THE SO„1,1…ÃSO„2,1…ÕSO„2…-MODEL

This Appendix contains a list of the basic scalar fie
dependent quantities that enter the Lagrangian
the transformation laws of the ungauged and gau
SO(1,1)3SO(2,1)/SO(2) theory. In our parametrizatio

the hĨ 5A2
3 j Ĩ uN51 are

h05
1

A3iwi2
, h15A2

3
w1, h25A2

3
w2, h35A2

3
w3.

For the

hĨ 5
1

A6

]

]j Ĩ
NuN51

one obtains

h05
1

A3
iwi2, h15

2

A6

w1

iwi2
, h252

2

A6

w2

iwi2
,

h352
2

A6

w3

iwi2
.

The vector-tensor field metric

a° Ĩ J̃52
1

2

]

]j Ĩ

]

]j J̃
ln N~j!uN51

turns out to be
a° Ĩ J̃5S iwi4 0 0 0

0 2~w1!2iwi242iwi22 22w1w2iwi24 22w1w3iwi24

0 22w1w2iwi24 2~w2!2iwi241iwi22 2w2w3iwi24

0 22w1w3iwi24 2w2w3iwi24 2~w3!2iwi241iwi22

D .

This shows that the unique point witha° Ĩ J̃5d Ĩ J̃ corresponds tow x̃5(1,0,0), as has been mentioned earlier.9

Finally, the metricgx̃ỹ on M reads

gx̃ỹ5S 4~w1!2iwi242iwi22 24w1w2iwi24 24w1w3iwi24

24w1w2iwi24 4~w2!2iwi241iwi22 4w2w3iwi24

24w1w3iwi24 4w2w3iwi24 4~w3!2iwi241iwi22
D .

9If we had chosen another normalization forN, i.e.,N(j)5aj0@(j1)22(j2)22(j3)2# for someaPR, a° 00 would have beena2iwi4/2 with

the other components unchanged. It is easy to see that onlya5A2 can lead to a point wherea° Ĩ J̃5d Ĩ J̃ .
8-11
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For the determinants ofa° Ĩ J̃ andgx̃ỹ , one finds

deta° Ĩ J̃5iwi22, ~A1!

detgx̃ỹ53iwi26, ~A2!

which shows thata° Ĩ J̃ and gx̃ỹ are positive definite and
well behaved throughout the entire ‘‘positive timelike
B

ein
M

se
a

ys

tt

ys

ys

e

ra

04402
region~i! and that both are not positive definite in region~ii !,
whereiwi2,0.
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