PHYSICAL REVIEW D, VOLUME 62, 044028

Vacua of 5D,N=2 gauged Yang-Mills-Einstein-tensor supergravity: Abelian case
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We give a detailed study of the critical points of the potentials of the simplest nonti¥4a2 gauged
Yang-Mills-Einstein supergravity theories with tensor multiplets. The scalar field target space of these ex-
amples is SO(1,2¥S0O(2,1)/SO(2). Theossible gauge groups are SO(Y(1)g and SO(1,1XU(1)g,
where U(1) is a subgroup of th&®symmetry group SU(2Z), and SO(2) and SO(1,1) are subgroups of the
isometry group of the scalar manifold. The scalar potentials of these theories consist of a contribution from the
U(1)r gauging and a contribution that is due to the presence of the tensor fields. We find that the latter
contribution can change the form of the supersymmetric extrema from maxima to saddle points. In addition, it
leads to novel critical points not present in the corresponding gauged Yang-Mills-Einstein supergravity theo-
rieswithoutthe tensor multiplets. For the SO(2)J(1)g gauged theory these novel critical points correspond
to anti—de Sitter ground states. For the noncompact SOXL){1)r gauging, the novel ground states are de
Sitter ground states. The analysis of the critical points of the potential carries over in a straightforward manner
to the generic family of\'=2 gauged Yang-Mills-Einstein supergravity theories with tensor multiplets whose
scalar manifolds are of the form SO(14$5O(n—1,1)/SOH—1).

PACS numbds): 04.65+e, 04.50+h

I. INTRODUCTION On the other hand, five-dimensionAl'=2 gauged super-
gravity theories naturally occur as effective field theories in

. certain brane world scenarios based on heterotic M-theory
In the last few years there has been a renewed intensé

interest in gauged supergravity theories. The work on AdS?insnF:acit;;f;_(f|atlg[]siolgﬁjv?. fsrm,g\g Sgat:gﬁg dsi?:t:agsra;/rlltg tf;]zc\)/-e
CFT (anti—de Sitter/conformal field theorglualities in re- ypicaly g  (NEY

. . recently been discussed as a potential framework for embed-
cent years has reaffirmed the importance of gauged super-

. o . . . . “ding the Randall/Sundrum scenaifi@8] into M or string
gravity theories in various dimensions to the understandmgi;heory

of the dynamics of M or superstring thediy—5]. The best ' o

studied example of this duality is between the type IIB su- Several attempts in this direction have been méwke,

perstring theory on the background manifold ASS® with Ietg Relflsjgflggz“zl].) Mar:jy'af then|1| fg.cufe.d ?E Wh.at \[{vl%WIII
N units of five-form flux through the five-sphere and 4D, ater call/v=2< - gauge axwetl-tinstein theoresfLo-

N'=4 super Yang-Mills theory with the gauge group SU( 23]. It_ was found, howev_er, that the scala}r potentials of the;e
which is a conformally invariant quantum field theory. In the theorles.are not of the right form to admit a supersymmetric
limit of small string coupling and largd, the classicali.e.,, €mpedding of Randall-Sundrum-type modgld—-23. The
tree level type IIB supergravity approximation becomes duestion of whether this is a generic feature of all gauged
valid. The lowest lying Kaluza-Klein modes of type IIB su- Supergravity the(_)rles provides one of the motivations to
pergravity on Ad§x S® are believed to form a consistent Study the potentials of more general gauged supergravity
nonlinear truncatioh [6,7] which is described by five- theories in five dimensions.
dimensionalA’'=8 gauged supergravitjf9—11]. Many as- Recently, we have constructed the general gaugings of
pects of the AdS/CFT correspondence, such as, e.g., rendsD, N'=2 supergravity coupled to vector as well @ssor
malization group (RG) flows [12,13, can therefore be multiplets[25]. This was an extension and generalization of
studied entirely within the framework of 5D gauged super-earlier work on the gaugings df'=2 supergravity coupled
gravity due to the lack of interference with the higherto vector multiplets onlyf26—30.
Kaluza-Klein modes. Starting point of our construction were the ungauged
Maxwell-Einstein supergravity theorid®IESGT's) of Ref.
[26], which describe the coupling of Abelian vector multip-

*E-mail address: murat@phys.psu.edu lets to supergravity. These theories have a global symmetry

TE-mail address: zagerman@phys.psu.edu group of the form SU(2)X G, whereG is the subgroup of

The consistency of the nonlinear truncation for a subsector of théhe isometry group of the scalar field target manifold that
scalar manifold has been shown recer8y. extends to a global symmetry group of the full Lagrangian,
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and SU(2), denotes thd&R-symmetry group of theV=2 su-  fields) to supergravity. The three scalar fields from the
persymmetry algebra. In general, there are various ways teector-tensor multiplets parametrize the spac#t
turn a subgroup of SU(Z)X G into a local gauge group. We =S0(1,1)xS0(2,1)/SO(2), and thpossible gauge groups
will use different names for these different possibilitiesare U(1xkXS0(2) and U(13xSO(1,1). We will find that
[27,25. We refer to theories in whiclJ(1)rCSU(2)g is  the structure of the resulting scalar potentials is much richer
gauged as “gauged Maxwell-Einstein supergravity theo-than for gaugings without tensor fields.
ries.” In order to gauge a subgroup of G, a subset of the The organization of the paper is as follows. Section Il
vector fields of the ungauged theory has to transform in thé@riefly summarizes the most general form of a gauged Yang-
adjoint representation df. If such a groupK exists, there Mills-Einstein supergravity theory with tensor fields. Section
are two possibilities. Il discusses some general properties of the scalar potentials
(i) There are additional vector fields outside the adjoint ofof these theories. The ungauged MESGT with scalar mani-
K which transform nontrivially undeK. These vector fields fold M=S0(1,1)x SO(2,1)/SO(2), its U(19x SO(2) and
have to be dualized to “self-dual” antisymmetric tensor U(1)gXSO(1,1) gaugings and the resulting scalar potentials
fields in order to perform the gauging &f in a supersym- are analyzed in Sec. IV, which represents the main part of
metric way[25].2 this paper. Section V discusses the generalization to the sca-
(ii) If there are no vector fields outside the adjoinkgfor  lar manifolds SO(1,1X SO(n—1,1)/SOf—1), and Sec. VI
if the additional vectors are all singlets undén“spectator  finally ends with some conclusions. An appendix summa-
vector fields"), the gauging oK proceeds in a straightfor- rizes the “very special geometry” of the ungaugedt
ward way, and no tensor fields have to be introdul&d. =S0(1,1)xS0(2,1)/S0O(2) theory.
In order to distinguish between gaugings of UgBndK,
we will refer to theories in whiclK is gauged as “Yang-
Mills-Einstein supergravity theories[*‘with or without ten-
sor fields,” depending on which of the possibilitié$ or (ii) Il. GAUGED YANG-MILLS-EINSTEIN SUPERGRAVITY
is realized.® WITH TENSOR FIELDS
The most general gauging in this framework is then obvi-
ously a simultaneous gauging of U@land K. For consis-
tency with our terminology, we will sometimes use the term  In this section, we briefly review the most relevant
“gauged Yang-Mills-Einstein supergravity theoriasith or ~ features ofA/=2 gauged Yang-Mills-Einstein supergravity
without tensor multiplets' for this type of gauging. theories coupled to tensor multipldt85]. Unless otherwise
As for the scalar potentials that are introduced by thesstated, our conventions will coincide with those of Refs.
different types of gaugings, one makes the following obser{26,27,23, where further details can be found. In particular,
vation[27,25: (i) The gauging of U(1y introduces a scalar we will use the metric signature{+ + ++) and impose
potential, which in all known case€s) either has a maximum the “symplectic” Majorana condition on all fermionic quan-
that corresponds to an anti—de Sitter spad®, vanishes tities.
identically, or(c) has no critical points at allji) the gauging The fields of the\/'=2 supergravity multiplet are thé fiu
of K introduces no potential when no vector fields have to bgpein e, two gravitini \piﬂ (i=1,2) and a vector field, .
dualized to tensor fielddjii) if tensor fields have to be in- An NV'=2 vector multiplet contains a vector fieki, , two

troducgd, th?. gauging O_K_ introduces a scalar potential spin-1/2 fermions\' and one real scalar field. The fermi-
VAVQ;:h IS pq.zltl;/ (:hsem|dell‘£n|te and can 'thereffolje not dl?(ad toons of each of these multiplets transform as doublets under
vacua,(lv) the simuiianeous gauging o (7L the USp(2x=SU(2)z R-symmetry group of th&v=2 Poin-

leads to a scalar potential which is simply the sum of the ", : )

potentials that would result from the gaugings of U{&End garesup.erallgebra,'all o?her f'?lds are Suﬁzm?rt' A ten;gr

K alone. The critical points of this combined potential havefleld satlsfylng_a five-dimensional “self-duality cond|t|_0n

not yet been fully investigated. must necessarlly pe complé®1]. We choose to work with
The purpose of this paper is to give an explicit examplethe real and imaginary parts of the complex tensors. A self-

of a gauged Yang-Mills-Einstein supergravity theory with d_ual N=2 tensor multlplet contains such a pair of tensor
tensor fields which is simple enough to admit a completdields, four spin-1/2 fermiong.e., two SU(2}, doublet§ and
analysis of its scalar potential. The model we discusgWo scalars. _ _
describes the coupling of one vector multiplet and one _The general coupling ofn self-dual tensor multiplets to

self-dual tensor multipletwhich contains two real tensor V=2 gauged Yang-Mills-Einstein supergravity was given in
Ref.[25]. The field content of these theories is

2We should note that the gauging .4f=8 Poincaresupergravity o
in 5D require; the dualization of twelve of the vector fields of the {ef ,\piﬂ vAI;uB;'\fV ,)\ia7¢><}, (2.9
N=8 Poincaresupermultiplet to self-dual tensor fiel@i8—11] for
completely analogous reasons.
3We will use the term “Yang-Mills” also wherK is Abelian (as
is the case for our examples in Sec.,) IV where

044028-2



VACUA OF 5D, N=2 GAUGED YANG-MILLS-. .. PHYSICAL REVIEW D 62 044028

1=0,1,...n, D,V,=V, ¥ +grVA, &IV,
M=12,...,, DNI=V N2+ goV Al SINE+ g AL LEPAD,
3=1,... 7 D,0"=0,0" + gALK,

%=1 % 9,BV=V,B) +gA A\B) . (2.2

L~ , W . Here K} are the Killing vector fields oo\t that generate the
with n=n4_r2m. Note that we have combined the _gravi- subgroupK of its isometry group. The-dependent matrices
photon” with the n vector fields of then vector multiplets "+ : .
into a single -+ 1)-plet of vector fleldsA' labeled by the L™ and theconstantmatncesA are theK-transformation
index I. Also, the spinor and scalar flelds of the vector andmatrices of\'@ and B,L'\:Iw respectively. Th&/, are some con-

tensor multiplets are combined info tupels of spinor and stants that define the linear combination of the vector fields

| . .
scalar fields. The indices,b, . .., andx,y, ..., are the flat A, thatis used as the U(#jgauge field

and curved indices, respectively, of thedimensional target
manifold M of the scalar fields. The metric, vielbein, and
spin connection oo\ will be denoted bygs;, : andﬂgb,

respectively. The SU(%)indexi is raised and lowered with
the antisymmetric metrie,=&?=1 according to

A [U(DRI=V/A,. 2.3
They have to be constrained by
Vv, f=0, (2.4)

)(i:8i1'>(j , Xi:stji ] with f!, being the structure constants kf*
We denote the curls of the vector fieldé by F The
non-Abelian field strengthsF), =F ,+gf}A) AK (I
The fermlons\If' and /@ areU(1)g charged, whereas the =0,1,...n) of the gauge group( and the self- dual tensor
fields ¢, )\Ia and B'V' carry charge undekK. fields B'V' (M=12,...,2n) are grouped together to define
Denoting the U(laa andK coupling constants bgg and  the tensorlal quantitw —(]—' V) withT=0,1,...n
g, respectively, th¢ U(1)gX K] gauge covariant derivatives +2m.

of these fields are as follow§/(denotes the ordinary space-  The Lagrangian is then given bgup to four-fermion
time covariant derivative terms [25]

v

1 1_— lo -~ ~ 1
e—lc:—ER(w)—Ew;ww@y\ppi—zaﬁmvww x'a(w@ 5ab+Q F'“@,u(px)Rb 2g (®M¢X)(@ﬂ Y)

i FOI R a 7 &\ a1
— SNATATW D, @ ZENET AT i Saphi + 55~ch$)>\'arm?HLV

N

2

3 R S -
— =W, TP | A 2WHWIH T+ ——
8\/6 I[ o i’tp i M] 6\/5

uv' po

C.JKW“(F' FooAX+ ZgFW A(TEEAGAT)

3 5 ) AGAH e’ —= %
+§gz(fGHAvA )(FEAS Ax) +E8MVPU)\QMNB ) Bax"’g)\'arﬂ‘l’ W2+ gNEN P Wap— g2P

|\/_ 1
3 gR\I' [l ,0ijPo— gR)\'aF”\If 6ijPat —=

3

—— g\ 5 P — 9P, (2.5

Zf

4If there are spectator vector fields among tkjg the correspondinc‘[}FJ are just zero.
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The transformation laws aréo leading order in fermion
fields)

1
5eE:§8|Fm\I’Mi y

. . T
SV =D+ —=hy(I'P— 45/ TP H), ¢

4.6

| -
+ ——=0rPol s/,
2\/€gR 0t u j
I _ gl
oAl =19!,,

V6g

SBY, =20, 9] +— 0 MNh P T e

i o~
+ ZQQMNhNy\'aFMsi ,

P i s L ig T Aei
O\ == S ETH(D,¢"e !+ Z T e M, + gWPe!
+ing~a5ij8.
V2 B
~ | 7— =~
5¢X:§f§?)\ia, 2.8
with
ﬁTE h~ T )\ +£h \If' (2.7

_ The various scalar field dependent quantiﬁejs, hy, h~',

hTa, h~'5, and T35z that contract the different types of indices
are already present in the correspondimgaugedVESGT'’s

and describe the “very special’geometry of the scalar mani-

fold M (see Ref[26] for detaily. The ungauged MESGT's
also contain a constant symmetric ten€ggi . If the gaug-
ing of K involves the introduction of tensor fields, the coef-
ficients of the typeCynp @andC, ;) have to vanishi25]. The
only components that survive such a gauging are Gygs,
which appear in the Chern-Simons-like term of Eg.5),

andC,yn,» Which are related to the transformation matrices

of the tensor fields by

2
_QMPC“DN .

V6

Here QMN is the inverse of()y,\, which is a(constank
invariant antisymmetric tensor of the gauge gréup

AN =

QMN:_QNM, QMNQNP=5,'\D,|. (28)

The terms proportional to

PHYSICAL REVIEW D 62 044028

J6 -~
_hﬁﬂQMNth

We(¢)= ¢

W3B( ) = — Wh3( ) = ih (3K

iV6

—hJ

EB

(2.9

(the semicolon denotes covariant differentiation on the target
spaceM) and the potential term

P()=2W5WA (2.10
are due to the presence of the tensor fields.

The supersymmetric gauging of the Uglfactor, on the
other hand, introduces the terms proportional to

P3(¢)=12h"V/, (2.1
Po(¢)=2h'V|, (2.12
1
Pa(#)= 5 S5Pot2\2Ta5P®
(2.13

in Egs. (2.5 and(2.6) and leads to the scalar potential con-
tribution
PR (p)=—(Pg)2+ P3PA. (2.14

Ill. SOME GENERAL PROPERTIES OF THE SCALAR
POTENTIAL

As summarized in the previous section, the simultaneous
gauging of U(1xCSU(2)gz and a subgrougCG of the
isometry groupG of the vector-tensor multiplets moduli
spaceM leads to a scalar potential of the form

e L= —g°P—giPW®, (3.0
whereP(® arises from the gauging of U(%) whereasP is
nonzero if and only if som&-charged vector f|eIdA"’I had
to be dualized to tensor fleI(BM in order to perform the
gauging ofK in a supersymmetnc way. In the remainder we

will write

2

Poi=P+AP®  with A::g—j (3.2
g
so that
e 1£pot: ~9?Pyor. (3.3
The potentials® and P® are given by
P=2WWA, (3.4)
PR = —(Pg)?+ P;P2.
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~ -~ ~ ~ ~ g . R .
Using h—;hgz %_hlhj [26], it is easy to verify thatVe The critical points oP® have been analyzed in R¢27]
> ] for the purely U(1x-gauged Maxwell-Einstein supergravity
andP* are orthogonal: theories MESGTS of the Jordan type. It was found that they
~ are characterized by the “dual” element
W;P2=0.

~ - - - 2
Contracting(8\'3)=0 with W? and P? then shows that an Vi = \@C'JKWVR (3.1
N=2 supersymmetric ground state requires

(W;‘):(PZ‘):O 3.5 of V. Three cases could be distinguish@V*' = 0. In this

' ' case, the scalar potentiaf® vanishes identically, leading to
This implies, in particular, that the cosmological constant ofVlinkowski ground states with broken supersymmet(iy)
an N'=2 supersymmetric vacuum is given B®(¢.)  V* is in the “domain of positivity” of the corresponding
alone, i.e.,P(¢¢ susy) =0, as has also been pointed out in Jordan algebrd. In this case, there exists precisely one criti-
Ref.[22]. NeverthelessP can still have a nontrivial effect on cal point, which sits at the unique global maximum of the
the form of a supersymmetric critical point, i.e., it can scalar potentiaP® and corresponds to an anti-de Sitter
change it from a maximum to a saddle point. In addition,ground state with unbrokeN=2 supersymmetry and unbro-
there might be critical points which do not preserve the fullken global AutQ)-invariance, where Aufl) denotes the au-
N=2 supersymmetry and therefatanhaveP(¢.)#0. We  tomorphism group of the Jordan algelka(iii) V*' is non-

will see examples for all this in the next section. zero and not in the domain of positivity f In this case, the
Using [26] scalar potentiaP(® has no critical points at all. In order to
B get a better understanding as to whether and how the pres-
e K — et } e ence of the tensor field related potentfathanges this pic-
Ciskh™=hyh;— 5 hizhy, . : e
2 ture, we will analyze the simplest nontrivial example of a

. ) ~gauged Yang-Mills-Einstein supergravity theory with tensor
P andP™ can be expressed in a more compact form whichyytiplets in full detail in the next section.

will facilitate the analysis of the critical points:

\/6 IV. THE SIMPLEST NONTRIVIAL EXAMPLE:
P:EhlA:\ANthNa (3.6) M=S0(1,1) XSO(2,1)/SO(2)
A. The ungauged theory
PR =—4C"%v,V;hg, (3.7 The ungaugedMESGT with the scalar manifold\t
] =S0(1,1)xS0(2,1)/S0O(2) allows the construction of two
where we have defined of the simplest non-trivial examples of a gauged Yang-Mills-
Einstein supergravity theory with tensor multiplets. Let us
AMNZ A M QPN:iQMRC QPN 3.8 consider thisungaugedheory first. It belongs to the generic
Lo e 6 IRPEZ ' Jordan famil§ and describes the coupling of three Abelian
vector multiplets to supergravity. Consequently, the field
Cﬁkzaﬁ'gﬁi'akk'q@k, (3.9 content is
— . em'\I,i ,AT ')\ig, X 4.1
with a'¥ being the inverse of3. e WAy ey “.9
If M is associated with a Jordan algebfa6], one has  with
(componentwise
— =12,
C"K=Cysr=const. B
. JM R - . I :011! - 131
In this case, because 6"M=C,;,=0, PR simplifies to
PR =—4CVKy,V;h, (for the Jordan family a=1,....3
(3.10
x=1,...,3,
with constantCV=C,;« and summation oveK instead B
of K. where the three scalar fields' parametrize the target space

M=S0(1,1)X SO(2,1)/SO(2). Théatter can be described
as the hypersurface

SWe recall that the MESGT's associated with Jordan algebras are
those for which the cubic form defined by the symmetric tensor
Cisx can be identified with the norm form of a Jordan algebra of ®The “generic Jordan family” consists of the MESGT’s with sca-
degree 3. lar manifolds of the formM=S0(1,1)x SO(h—1,1)/SOfh—1).
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2 3/2 o
N(§):<§) Crké' &¢"=1
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B. The U(1)gX SO(2) gauging

We will now turn the above ungauged
SO(1,1)xS0(2,1)/SO(2) model into a gauged Yang-Mills-

in a four-dimensional ambient vector space parametrized bEinstein supergravity theory with tensor fields. The isometry
coordinatest'. In the case at hand, this vector space can b@roup of the scalar manifold is G=S0(2,1)XSO(1,1),

identified with the Jordan algebra

JZR@Eg,

which is simply the invariance group df(£). There are now
two different ways to construct a Yang-Mills-Einstein super-
gravity theory with tensor multiplets: Either one gauges the
compact subgroup SO(2)S0O(2,1), or one gauges the non-

whereX.3 is the Jordan algebra of degree two correspondingompact subgroup SO(1,d)SO(2,1). We will focus on the

to a quadratic formQ with signature ¢-,—,—) [26]. In the
most natural basis of this Jordan algebi¥d¢) takes on the
following form:

N(&)=2&% (612 (£2)2— (&2,

where the normalization factoy2 ensures that the unique
selfdual points' = ¢! (i.e. the “base point’c' of the Jordan
algebra[26]) really lies on the hypersurfach(§¢)=1, or
equivalently, that there is a point anm where 573=8,’3
[26].

Hence, the nonvanishinGysx are

V3
C011:7y
V3
Co22=Co3z= — > (4.2
The constrainN=1 can be solved by
&= - 4.3
V2| ¢l '

=l (4.9
£=¢? (4.5)
£=¢° (4.6)

with
lel?=(eh 2= (¢2)?—(¢%)%

Obviously, the hypersurfacBl=1 decomposes into three
disconnected component$) | ¢[|>>0 and¢*>0, (i) ||¢|/?
<0, (iii) | ¢||>>0 ande'<0. In the following, we will con-
sider the “positive timelike” regior(i) only, since in region

(i), gy and 513 are not positive definitésee the Appendjx
and region(iii ) is isomorphic to regiofi). All the scalar field

compact gauging first and discuss the noncompact SO(1,1)
gauging in the next subsection. The SO(2) subgroup of
S0O(2,1) rotateg? and &2 into each other and therefore acts
nontrivially on the vector fieldsé\i andAi. Hence, gauging
this SO(2) requires the dualization Af, andA’ to antisym-
metric tensor fields. Accordingly, we decompose the intlex
as follows:

T=(,M)

with 1,J,K, ...=0,1 andM,N,P, ...=2,3.

It is easy to verify that ou€Cy3k in Egs.(4.2) are consis-
tent with the requirement§,;y=Cynp=0 for this type of
gauging. Having a closer look at tlgsx of the typeC,un
we also see thatqyy is zero, wherea€yyy is nonvanish-
ing. This means, because &ff,~QMPC,py, that the vector
field A%, plays the role of the S@)-gauge field, whereas,,
is just a “spectator vector field” with respect to the SO(2)
gauging.

In addition to this SO(2) gauging, one can now use a
linear combinationA,[U(1)g]=A}V, of the vector fields
AZ and Ai as the U(1p-gauge field, and simultaneously
gaugeU (1)g and SO(2). Theesult is agaugedYang-Mills-
Einstein supergravity theory with tensor fields with the full
gauge group U(19XS0O(2).

In our parametrization, the resulting potentiglgand P(®
[see Egs(3.6), (3.10 and the Appendikare found to b

_10(e??+(¢%)7]

P —Y
S

4.7
ot

pRI=_> 2\/§WV0V1+ ||‘P||2(Vl)21 .
¢

(4.8

For the functionshy, Py, andP, that enter the supersym-
metry transformation laws of the fermions, one obtains

dependent quantities in the Lagrangian and the supersymme-

try transformation laws can be derived frad{¢), and they
are listed in the Appendix.

ZIn our parametrizationc~'=(1/\/5,1,0,0), which corresponds to
¢©*=(1,0,0) (see the Appendix

W1=0, (49)
1 ¢°
Wo=3 =, (4.10
4 el

8We are choosing)®= — %= —1.
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1 <p2
WS__ZW (4.12)
respectively,
(,Dl
P1=ﬁ( ﬁwvo—vl , (4.12
¢
2
5 ¢
Po=— 0 (4.13
||</»||4
3
Py=—2"—V (4.14
el
and
2
Po= 201V, |. (4.15
Blle ||2

This shows that the necessary condition forNds 2 su-
persymmetric critical pointWy(¢.) =Px(¢:) =0, is equiva-
lent to

(®)=(¢%=0,

(e1)2Vy =12V,

(4.16
4.17

Let us now analyze the critical points of the above scalar_

potentials. We will first investigate the critical points Bf

andP® separately and then consider the combined potential

Poi=P+AP®R),
The critical points of PTaking the deriative oP(¢) with
respect top*, one finds

377+ (%7

’1= - @, (418)
4 lll®
1
¢
=—Apl+ , (4.19
4| gl|®
P,=A¢?, (4.20
Ps=A¢3, (4.2
where
Al 3L+ 1
4 loll® 4| g]|®

has been introduced. There are now two possibilities.
Case 1 A#0. Then P,=P ;=0 implies p2=¢3=0
(which then also implie® ;=0). But thenP(¢;)=0, and

PHYSICAL REVIEW D 62 044028

Case 2: A=0. ThenP ;=0 implies ¢*/4] ¢||°=0, which
is inconsistent withp!>0 and|¢|?>0.

Summary for P There exists a one parameter family of
N=2 supersymmetric Minkowski ground states, given by
(¢?)=(¢3 =0 and arbitrary ¢')>0. These vacua also pre-
serve the S(2)-gauge invariance. There are no other critical
points.

The critical points of BY. The gradient oP® is

4\2VoV
P'(f)=—qul—Q, (4.22
lel?
PR =Bg¢? (4.23
PR =B (4.24)

where
(Pl
B= —8J§Wvovl+ 4(V,)2,
¢

There are now two possibilities.

Case 1: B=0. P(=0 then requires/;V,=0. Thus ei-
ther Vqy or V, (or both of them have to be zero. IVy=0,
B=0 impliesV,;=0. Thus,B=0 automatically impliesv;
=0, and the potentiaP(® vanishes identicallyfsee Eq.
(4.89)] resulting in a Minkowski vacuum. The U(&)gauging
is nontrivial only when at least oné, is nonzero. Sincé/,
0 in the case at hand, a nontrivial Uglyauging requires
Vo#0, implying P;#0, i.e., broken supersymmetry.

Case 2: B£0. The vanishing oP%® and P then re-
quires(e?)=(¢% =0, i.e..(|¢]?) = ((pl>2 BecauseP(R) has

to vanish, this impliege)3(V;)2= y2V,V,. Thus there are
two possibilities: Eithel,;=0, orV, andV, are both non-
vanishing. The former case leads us back to the case of iden-
tically vanishing potentiaP®=0. The second possibility
leads to a critical point witl{¢?)=(¢%)=0 and

(¢1)°=12 $ (4.25

1
wheneveiV,V;>0 (sincee!>0). It is easy to see that this
critical point satisfies the necessary conditi¢h< 6, (4.17)
for N=2 supersymmetry. The value of the poten®4PR at
this critical point is

PR (po)=—6(¢g)%(V1)?<0, (4.26

e., it corresponds to an anti—de Sitter ground state.
Summary for Y. There are three possibilitiesa) V,
=0. This implies a flat potentiaP(R=0 and Minkowski
ground states with broken supersymmeésypersymmetry is
broken as long as the U(g)gauging is nontrivial, i.e., if
V#0]. (b) VoV1>0. In this case, there exists exactly one
critical point. It is given by{¢?)=(¢3=0 and (¢)3

we have a Minkowski ground state, which, because of=.2V,/V; and corresponds to aV=2 supersymmetric

Ws(¢c) =0, preserves the fulN'=2 supersymmetrjas long
as the U(1) gauging is turned off

AdS ground state whose cosmological constant can be read
off from Eg. (4.26). This vacuum breaks the global symme-
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try group SO(1,1XS0O(2,1) down to its maximal compact
subgroup SQ2). (c) VoV;1<0. No critical points exist in this
case.

It is instructive to recover the characterization of the criti-

cal points in terms of the dual elemenif! [27] mentioned in
Sec. Ill. Using Eq(3.11), one finds

VA=[(V)¥2,12V,V,,0,0].

This shows thav* =0 is equivalent tov/;=0 and thatv*'
is in the domain of positivity ifVyV;>0 so that our cases
(a)—(c) are equivalent to the casés, (ii), (iii), respectively,
listed in Sec. lll.

The critical points of the combined potentiélP,,,=P
+AP(® The gradient oP,, is given by

VoV
Pioy1= — (A+AB) @l + ——— —\4\2——, (4.27
4 ¢l leel
Ptot,zz(A+7\B)<P2, (4.28
Ptot,sz(A+)\B)<P3, (4.29

whereA andB are again as defined above.

There are now two possibilities.

Case 1:(¢?)=(¢%=0. In this casePx(¢,) vanishes
automatically(see the discussion & above. This implies
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32)\(V0)2> 1. (4.33
Thus, ifVq is big enough such that E¢4.33 is satisfied and
if V,Vy>0 [see EQq.(4.3D)], new non-trivial critical points
exist. Equatior(4.32) fixes||¢|? so that Eq(4.30) fixes ¢
This in turn fixes[ (¢2)?+ (¢2)?], but note? and ¢? indi-
vidually. Hence, we obtain a one-parameter family of critical
points, which, because df(¢2)2+ (¢3)?]>0, do not pre-
serve the full N’=2 supersymmetnfsee Eq.(4.16] and
spontaneously break the $Z)-gauge invariance. Using
Eqgs.(4.30 and(4.32, one finds for the value d®,; at these
critical points

1
—<0,

ol (.34

3
Pl c) = — g

which again corresponds to an Anti-de Sitter solution. Put-
ting everything together, we arrive at the following.
Summary for R;: Depending on the values of thg, the
total potentialP,,,= P+ X PR admits the following types of
critical points.(a) V;=0. In this caseP(® vanishes identi-
cally, and one has a one-parameter family of SO(2) gauge
invariant Minkowski ground states. They are given by
=¢3=0 and an arbitraryel>0. If V,#0 [i.e., if the
U(1)gr-gauging is nontrividl these ground states break the
N=2 supersymmetry. IfVy,=0, the U(1)k gauging is

thatP(;R)(npc) also has to vanish separately, i.e., we are dealswitched off, and supersymmetry is unbroken, corresponding
ing with critical points that are just simultaneous critical to case 1 in the discussion d?. (bl) V,V;>0, and

points of the individual potential® and P(®. These have
already been discussed above.

Case 2 ¢?)2+(¢%)?>0. This case involves a nontrivial
interplay of the two potential® and P(®. For P, and
Pt 3 to vanish, one obviously needs+AB=0. Py, =0
then implies

—— =16J2\V,V,. (4.30
lell
This implies(remembering\>0 and ¢!>0)
VoV;>0. (4.31)

Inserting Eg. (4.30 into A+XAB=0, and reexpressing
(9?4 (¢%? in terms of|¢|? and (@1)?, one derives the
additional condition

1 1
T = E(16@\v0v1)2+ 8N (V)2 (4.32
(0]
Now, by assumptior{,¢?)2+( %)2>0. Hence
(eH? 1
8 = 6’
lel® el
so that in order for Eqs4.30 and (4.32 to be consistent,

one needs

322 (Vo)?<1. In this case, there is precisely one ground
state. It preserves the fulN=2 supersymmetry and the
SO(2) gauge invariance. It corresponds to an anti—de Sitter
solution, and is given by?2=3=0 and ()%= \2V,y/V;
with P 0c) =AP® (@)= —6\(¢l)?(V;)2. Although the
potentialP due to the tensor fields does not contribute to this
cosmological constant, it does have an effect on the form of
the extremum of the total potential: It is now a saddle point,
as opposed to the case of pure Uf{ldauging, where the
supersymmetric critical point is always a maximuth2)
VoV;>0, and in addition 32(V,)?>1. In this case, there
are two types of critical points. The first one is an isolated
supersymmetric critical point which has exactly the same
properties as the one described(bl) above, with one ex-
ception: it is now a locaimaximumof the total scalar poten-
tial. Apart from this point, there is an additional one-
parameter family of critical points. They are given by Egs.
(4.30 and (4.32, which fix ¢%, and[(¢2)%+ (¢2)?]. They
break theN=2 supersymmetry and the $2)-gauge invari-
ance and correspond to an anti-de Sitter solution with
Pt ©c)=—3/(8|¢c|*). These critical points are saddle
points of the total potentialc) V,V;,<0. In this case, there
are no critical points.

C. The U(1)gXSO(1,1) gauging

We now come to the noncompact version of the above
theory. Since the analysis is very similar to the compact case,
our presentation can be less detailed.
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We choose the SO(1,1) subgroup of SO(2,1) to rotate the Let us now come to the critical points of the scalar poten-
componentsét and &2 into each other. Consequently, this tials. We will again first analyze the critical points Bfand
SO(1,1) acts nontrivially on the vector fields, and A2,  P® separately and then consider the combined potential

. . . . . — R
and its gauging requires the dualization Af and A% to Pioi=P+AP®. _ _
antisymmetric tensor fields. Accordingly, we decompose the TN€ critical points of P.For the gradient oP(¢) with

indexT as follows: respect top*, one obtains
o P.=Ag¢l, (4.44
P,=—A¢? (4.45
with 1,J,K, ...=0,3 andM,N,P, ...=1,2. 3
Since Couqn#0 and Cgyn=0, A‘; plays the role of Pa=—Agd3+ ——, (4.46
the SO(1,1)-gauge field, wherea&’ is a “spectator ' 4 ¢l

vector field” with respect to the SO(1,1) gauging. Using yith

a linear combinationAM[U(l)R]=A'MV| of the vector _§[(¢1)2—(<P2)2] 1

fields A% and A° as the U(1)-gauge field, one can then A= - .
simultaneously gauge U(&)and SO(1,1), and obtains the 4 el 4 ¢f
[U(1)gXSO(1,1)-gauged analog of theU(1)gxSO(2)] . 1 . _ L=
theory discussed in the previous subsection. Since ¢ cgnnog vanishP ,=0 rqulriasA—O. But then
The scalar potential® and P(® are now(we useQ 2= P 3=0 implies ¢°=0. The assumptioh=0 then leads to
—Q2=_1) the contradiction ¥ 3, and is therefore inconsistent.
Summary for PP alone has no critical points at all.
1[(ehH%=(¢?] The critical points of BY. The gradient oP® is
P=c——7—1— (4.39 -
8 llel® PR=Be!, (4.47)
3 PR =—Be?, (4.48
PRI=—2( 22— VoV~ gl2(V2)?|. (4.36
lel? R = 3 42VoVs,
P'(3)= —Bp°— 0 (449)
For the functiondig, Py, andP, that enter the supersym- h lel
metry transformation laws of the fermions, one obtains where o3
1 o BES\/§—||(PH4VOV3+ 4(V3)2.
W1= - Z W, (4.37) B
Since ¢* cannot vanishP’=0 impliesB=0. The condi-
1 ¢t tion PP'=0 then impliesVoV;=0. AssumeVs+0. Then
W2:Z ||(p||4’ (4.39 V=0 would imply V5=0 by virtue ofB=0. Thus,V; has
to vanish in any case if a critical point 8¢® is assumed to
Waz O (4.39 exist. HoweverP® then vanishes identically.
3T : Summary for 9. A critical point of P® exists if and
vel only if P(R vanishes identicallywhich is equivalent to/,
respectively, -0).
ot It is easy to recover the characterization of the critical
P;=2—Vo, (440  points of P(R in terms of the dual element”' [27] men-
4
Il tioned in Sec. lll. In the case at hand, one finds
2 #_r_ 2 _
P,= _ZHQDWVO, (4.41) VA =[—(V3)2/12,0,0—V2V,V3].
¢ This shows thav*' =0 is equivalent td/3=0 and thatv*'
3 can never be in the domain of positivity ¥+ 0. Thus, our
@ p y
Pa=—12 \/5—4V0+V3 , (4.42  results are consistent with the discussion given in Sec. IIl.
lel The critical points of the combined potential, P
g +XP®_ The gradient of,, is given by
an
) Ptot,lz(A+)\B)(Ply (4.50
V
POZ_( NERRC AL (443 Py=—(A+AB)¢? (4.51
V3l '
This already shows that there can beXfe:2 supersymmet- Pora= — (A+AB) @3+ _ )\4\/§V°V3, (4.52
ric critical point, becaus&V, can never vanish. ' 4] ¢||® el
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where andB are again as defined above. V. THE GENERIC JORDAN FAMILY OF A/=2 GAUGED
cinceo! L vanishP. - —0 requires &+ xE) =0 YANG-MILLS-EINSTEIN SUPERGRAVITY THEORIES
ince ¢* cannot vanishP,y ;=0 requires A+\B)=0. COUPLED TO TENSOR MULTIPLETS

Pt 3=0 then implies
In the previous section we studied in detail the critical

@3 points of the potentials of the simplest nontrivial gauged
—4216\/57\V0V3- (453  Yang-Mills Einstein supergravity theories with tensor
lll multiplets. The correspondingy=2 MESGT belongs to

_ _ L the generic Jordan family and has the scalar manifold
The analogous equatio@.30 in the compact gauging im- SO(L,1x SO(2,1)/SO(2). TheMESGT's of the generic
plied VoV,>0 [see Eq(4.31)]. In the case at hand, however, Jordan family have the scalar manifold SO(XBO(n
Eq. (4.53 does not imply any constraint fafoV;, because 1 1)/50fn—1). From the results of Ref25] and the ar-
¢°/l¢|* does not have to be positive, as opposedtie[*,  guments given in the previous section it follows that any

which is always greater than zero. gaugeable subgroug of the isometry group with-charged
Inserting Eq.(4.53 into A+ AB=0, one derives the ad- vectors dualized to tensor fields must be Abelian. Since the
ditional condition[i.e., the analogue of Edq4.32)] vector fieIdAfL must be the gauge field it follows that one

can only gauge SO(2) or SO(1,1) and have sétreharged

1 tensor fields under them. We should also note that the gauge-

= 5(16\/57\V0V3)2+ 8\(V3)2. (454  able SO(1,1) must be a subgroup of ®&(1,1) and cannot

lel be the SO(1,1) factor in the isometry group since all the

. 6 o . vector fields are charged under the latter SO(1,1). The

Since 1Y ¢||°>0, the last equation implies the conS|stencySO(2) gauge group is some diagonal subgroup of the maxi-

conditions mal Abelian subgroup SO(2X SO(2),x - - - X SO(2), of
SO(h—1,1) (for n=2p+1 or n=2p+2). The gaugeable

1

V370, SO(1,1) subgroup is unique modulo some 8O() rota-
tion.
320 (Vo)< 1. (4.59 After the gauging of the Abelian subgroup of the isometry

. ) . group with the charged vectors dualized to tensor fields, the
[The analogous equatid¥.33 in the compact gauging arose remaining vector fields can be used to gauge some non-
as a consistency condition of Eq€.30 and (4.32. How-  apelian subgroupS of the full isometry group so long as
ever, it is easy to see that Eq4.53 and(4.54 do notimply  they decompose as the adjoint plus some single® Ghis
any additional constraints oW, or Vs, so that Eqs(4.559  non-Abelian gauging does not introduce any additional po-
remain the only constraints on thg . | . tential [27]. A linear combination of the remaining singlet
~ For a given set o/, and\ subject to Eq(4.55), [¢]® is  vector fields can then be used to gauge the W(€)bgroup
fixed by Eq. (4.54. This in tum fixes ¢* and [(¢)?  of the R-symmetry group SU(2). The full potential of the
—(¢%)?] by virtue of Eq.(4.53, but leaves thep and ¢® K x U(1)xx S gauged Yang-Mills Einstein supergravity with
otherwise undetermined. We thus obtain a one paramet®{-charged tensor fields must have novel critical points of the
family of critical points which can be viewed as the noncom-type we discussed in the previous section since these theories
pact analog of the nontrivial nonsupersymmetric criticalcan be truncated to the the simplest non-trivial model con-
points found for the compact gaugirige., the ones men- sistently.
tioned in casgb?) in the discussion OPtot]' However, for There exist an infinite family of non-Jordan
the noncompact gauging, these critical points have very difmMESGT's with the scalar manifold S@(1)/SoM)
fere_nt physical properties. In particular, the total scalar pof2g]. For this family only the parabolic subgroup
tential becomes SO(—1)xSO(1,12T (1, Which is simply an “internal
9 2 2 Euclidean group” in —1) dimensions times a dilatation
Pt c) =3\ ¢l *(Va) T1 =32 (Vo)"],  (4.56 factor, extends to a symmetry of the full actipd2]. The
analysis of the possible gauge groufshat involve a dual-
ization ofK-charged vectors to tensor fields is very similar to
Ghe generic Jordan ca$25]. In this case too one finds that
only a one dimensional Abelian subgropcan be gauged
with nontrivial tensor fields carrying charge undér How-

. ~ 1~ aver, there is one crucial difference between the Jordan fam-
(4.53 and(4.54. They correspond to a de Sitter spaceUmeily and the non-Jordan family. For the non-Jordan family the

H — 2 2r1 _ 2
mtr}\/_litg("%)_s)‘“@” (tv3) [é thszg(ovol) 1]>0 and. break tensor Cy3g is not an invariant tensor of the full isometry

e/V=< supersymmetry and the (1.1) gauge mva”an.cegroup S0G0,1) of the scalar manifold. As a consequence one
There are no other critical points of the combined potential &

) - finds that

In particular, neither the analogue of thé=2 supersymmet- o
ric critical point mentioned in casg$l) and (b2), nor the Cryg#C'K, (5.
analogs of the Minkowski ground states mentioned in case s
(a) in the summary foP,y in Sec. IV B, exist for the non- and theC'’¥ are no longer constant tensors but depend on

compact gauging. the scalars.

which is positive because of the conditioh55 and there-
fore corresponds to a de Sitter rather than an anti—de Sitt
spacetime.

Summary for B;. If V3#0 and 32 (V,)?<1, there ex-
ists a one parameter family of critical points given by Egs.
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VI. CONCLUSIONS In this paper we have not studied the critical points of the
gotential when one gaugesnan-AbeliansubgroupK of the

. In this paper we have analyzed the scqlar pptent_lals of th|sometry group of the scalar manifold with tensor multiplets
simplest examples of a gauged Yang-Mills-Einstein super:

gravity theory coupled to tensor multiplets. Although not all transforming in a nontrivial representation ¥f Such gauge
the results we have derived for these ex.amples may car roups are possible for the magical Jordd 2 theories as

) . : Il as for the infinite family of theories with SWdj isom-
over to the most general gauged Yang-Mills-Einstein super- c . . » .
gravity theory with tensor fields, they show that the scalarﬁ#r'tiseselsf#essrﬁgslgssvjiﬁ]'azhtﬁjézdgfci];]teh?]sr:'_t\;f)?ldgg'?;Sm"
potentials of these theories can exhibit a much richer Struc\ivill be the subject of a future investigation y
ture than the purely U(XR}rgauged supergravity theories or '
the gauged Yang-Mills-Einstein supergravity theonweih-
out tensor fields. Our analysis revealed that even though the

total potential is just a sum of the potentials that appear in
the separate gaugings Kfand U(1), there can be critical This Appendix contains a list of the basic scalar field
points of the total potential which would not be critical dependent quantities that enter the Lagrangian and
points of the individual potentials. In particular, we found the transformation laws of the ungauged and gauged
that, for a certain parameter rangase(b2)] in Sec. IVB],  SO(1,1)x SO(2,1)/SO(2) theory. In our parametrization,
the[U(1)rX SO(2)] gauging leads to a new one-parametery, . i _ \/Z§T| _. are
family of non-supersymmetric critical points, which are 85 IN=1
saddle points of the total potential. These are accompanied , 1 1_\F 1 2_\F 5 3_\F 3
by an isolatedV=2 supersymmetrienaximum which is al- h BN h=1v3¢" h"=\3¢% h"=y3¢"

. . 3l
ready present in the purely U(d)gauged theory without
tensor fields. In another parameter rarfgase (b1)], the  Forthe
novel nonsupersymmetric one-parameter family of critical :i —&”N|
points disappears and th&=2 supersymmetric critical ! \/Eag' Nt
point becomes aaddle pointand remains supersymmeric
In yet another parameter ranfease(a)], the theory has a
one-parameter family of Minkowski ground states which

APPENDIX A: THE “VERY SPECIAL GEOMETRY”
OF THE SO(1,1) XS0O(2,1)/S0O(2)-MODEL

one obtains

break the\N'=2 supersymmetry as long as the Uglgaug- ho=—|¢|2 h :ii ho— — i‘:’;z
ing is nontrivial. If the U(1) gauging is switched off, these ENEY e V6 lel2” 2 VB llel?’
critical points become supersymmetric.

The possible types of critical points are much more re- e — 2 ¢°
stricted for the noncompact U(AX SO(1,1) gauging, which 3 % W

can have at most a one-parameter family of nonsupersym- _ )
metric de Sitterground stategwhich are presumably un- The vector-tensor field metric

stablg. This is consistent with the experience from compact . 19 9

and noncompact gaugings of thé=8 theory[10] where a 13= =5 7 5NN(EIn-1
nonsupersymmetric de Sitter critical point was found in the 9& 9¢
S0O(3,3)-gauged version of th€=8 theory. turns out to be

lell* 0 0 0
o | 0 2@Hel =l —2¢M %ol —2¢'¢% o] ¢
' 0 —2¢'e?llell™* 20022l ell el 2 2¢0%¢% o] 7
0 —2¢'¢% o] 2¢%¢% ¢ 2(0) % ¢ll ™+l ol 72

This shows that the unique point Wia‘[jz 873 corresponds t@7‘=(1,0,0), as has been mentioned earier.
Finally, the metricgy; on M reads

4ol =llel™?  —4e el * —4o'e3 o]
go=| —4etedllel™ 4@l el 2 40%0% o] ™*
— 4003 74 40%0% ¢l ~* 402 ol +lle] 2

%f we had chosen another normalization fdri.e., N(&) = a£%[ (£)2— (£2)2— (£3)2] for someae R, aq, would have beea?| ¢||*/2 with
the other components unchanged. It is easy to see thataenklj2 can lead to a point wher?a~= 573 -
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For the determinants cgfﬁ andgs;, one finds region(i) a;nd that both are not positive definite in regian,
where||¢|*<0.
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