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The solutions of a class of theories obtained when we apply the first order formalism are studied. In the
linear approximation we obtain the Green function and we prove that the field is independent of the size and
internal stresses of the source. We show that the solutions of the field equations for a mass point are also the
exterior solutions for an arbitrary spherically symmetric mass distribution. We construct the solutions of the
field equation, without any approximation, for the spherically symmetric matter distribution, and prove that the
exterior solutions match correctly with the interior solutions. We also prove that one of the exterior solutions
is always the Schwarzschild solution. Finally, in the same case, we show that Birkhoff's theorem is satisfied.
All the above results are quite similar to general relativity but are very different from the results of the fourth
order theories; then we have shown that the first order formalism theories have better classical properties than
fourth order theories.

PACS numbgs): 04.50:+h, 04.20.Cv, 04.25.Nx

[. INTRODUCTION Newtonian limit[4]. The early investigators emphasized that
the empty space solutions of Einstein’s equatiBgs=0 are
The study of fourth order theories was originally stimu- solutions of the field equations derived from the Hilbert’s
lated by Eddington’s suggestion on the existence of a clasaction
of theories which were observationally equivalent to Ein-
stein’s[1] because they included as one of their solutions the f dx R\/—_
(exteriop Schwarzschild metric. It was noted by Pal8i] 9
and Buchdah[2] that every vacuum solutiotincluding the
Schwarzschild solutionof general relativity(GR) is also a  as well as, for example, from
solution of any fourth order theory. More generally, every
nonvacuum solution of GR, associated with a conformally ' 4,2 [~
invariant sourceT =0, is also a solution of any fourth order S _f dxR g, ®
theory[4].
Later on, attempts to quantize GR, or to regularize thevhich is straightforward since
stress-energy-momentum tensor of quantum fields propagat-
ing in curved spacetimes, led investigators to consider gravi- ' 4
ta?ional actionz involving curvaturg squared terrﬁ?z;](::J oS _f d XR(R‘S\/__Q+2\/__95R) @
Higher-derivative theories appear to enjoy better renormaliz-
ability properties than GH6], and in modern cosmology and thuséS'=0 if R=0. On other words, the fourth order
have become standard since the Starobinsky model witBquations corresponding to the Lagrangian denditshare
curvature-squared terms leads automatically to the desirediith GR its vacuum solutions. This may suggest that the
inflationary period. More recentlyf7], the stability and classical test of GR are automatically satisfied through the
Hamiltonian formulation of these theories have been studiedSchwarzschild solutiof8,1]. However, the empty space so-
Higher order theories of gravity are the generally covari-lutions are to be matched to interior solutions and it may well
ant extensions of GR when we consider in the Lagrangia®ccur that the matching conditions are not satisfied0].
density nonlinear terms in the curvature. The field equationgligher order theories have a richer set of vacuum solution
derived by second order variation of this Lagrangian contairthan GR[11,12; in other words, the vacuum solutions of GR
metric derivatives of an order higher than the second. Thé&re also solutions of higher order theories but the converse is
most general action containing the Einstein plus Gaussin general not true. Unlike lower derivative corrections, how-
Bonnet terms igfor vacuum). ever, it is false to assume that adding a higher derivative
correction term, with a small coefficient will only perturb the
original theory. The presence of an unconstrained higher de-
S:f V=g(R+ wR?+ BRR)d*x, (1) rivgtive term,yno mzftter how small it may naively zgppear,
makes the new theory dramatically different from the origi-
where we have not considered surface terms since they witial one. Also it was pointed out, using the weak field ap-
not contribute to the analysis of the field equations we willproximation[9], that although, e.g., the Schwarzschild solu-
perform. The factorgxr and 8 are new universal constan@  tion is a solution to the empty space equations, it does not
Riemann-squared term can be eliminated using the Gausseuple to a positive definite matter distribution. In fact, those
Bonet identity; the term linear irR is necessary for a proper solutions of purely four-derivative mode{siithout a linear
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term in R) which do couple to a positive matter source arefrom the second order theories. The first order theories show

not asymptotically flat at infinity. better physical properties and are similar to GR.
The Green functions of the linear field equations for a
Lagrangian(1) with =0 differ from the Newtonian Green Il. THE STRUCTURE OF THE THEORY

function by a Yukawa term. Then, coupling the linearized ) , ) )

theory to a pressurized fluid distribution shows that the co-, L€t M be a manifold with metrig,;, and a torsionless
efficients of the Yukawa potentials depend on the pressurd€rivative operatoV,, both considered as independent vari-
and the size of the distribution. This shows that Birkhoff's @Ples. Consider a Lagrangian density- f(R) V=g+ Ly,
theorem is not valid in these models. Therefore the theoryvhere the matter Lagrangiady does not depend on the
defined by the above Lagrangian have, as we have just mefonnection. _

tioned, some quantum and cosmological interesting property SUPPOSe we have a smooth one-paramexgrfgmily of
but have a great trouble with the Schwarzschild solution befield configurations starting from given fields®, V,, andy
cause it is not the one that matches to a realistic interiofthe matter fields with appropriate boundary conditions, and
solution. Then, we can not say that the classical tests dienote bydg®®, sT'g,, 8¢ the corresponding variations, i.e.,

general relativity are automatically satisfied, as the early in992°=(dg3’/d\)|,—o, etc. Then the field equations, if we

vestigators emphasized. vary with respect to the metric, are

On the other hand, the Palatini approach, or first order 1
formalism, can be applied to obtain the field equations in GR f(R)R..— —f(R =T 5
assuming the metric and the connection as independent vari- (R)Rap= 5 (R)Gap=Tap, ®

ables. This formalism has also been applied to more general
Lagrangian densities, with quadratic terfig] or a general Where f'(R)=(df/dR), (8Sy/89*")=-TapV/—g. The
function of the scalar curvature, to Study other geometrica}/ariation with respect to the ConneCtion, recalling that this is
theories of gravitation. More recentl{4], the latter theories fixed at the boundary, gives
have been extended by including a scalar field in the La- ,
grangian and a connection allowing torsidb] . One appar- Vel ‘/__ggabf (R)]=0. ©)
ent conceptual advantage of these theories is that quantu
fluctuations of the metric and the connection are independe
of each other.

In. the present work we ponsider j[hose theories that are V 9ab=bcIab (7)
obtained from a Lagrangian densit¢(R)=f(R)\—g
+ Ly, that depends on the curvature scalar and a mattekhere
Lagrangian that does not depend on the connection, and ap- ,
ply Palatini’'s method to obtain the field equations. We prove be=—[Inf"(R)]. ®)
that in the first order formalism it is true that the vacuum.p o e have a Weyl conformal geometry with a Wey field
solution that matches with the physical interior solution and . "™’
is asymptotically flat, is the Schwarzschild solution. The last' Vel by Eq.(8).

o ’ . ; ' ! The vanishing of the connection in a particular frame, for

statement it is proved not only in the weak field approxima-

tion but also using the full, nonlinear field equations, Stem_example in a geodesic frame, however, does not mean that

. . the metric is flat there, because from E!) 9.9ap
ming from the general Lagrangiaif(R) —gd*x. _ ; o o
Also, we show that there exist some Lagrangians for b.g.,- Therefore the strong equivalence principle is in

which Birkhoff’'s theorem is valid, i.e., the only vacuum ger'l?(r)?rll r:Eo(: (Sg)tl\?\ftlaeg'btain

spherically symmetric solution is the Schwarzschild solution, '

although the active mass is different to the active mass of GR f"(RIR—2f(R)=T, 9
for the same source.

In the second section we present the general structure afhich defineR(T), and we suppose the functidi{R) is
this class of theories; in the third one, we prove, in the wealsuch thatR(T) would be differentiable respect to the vari-
field approximation, that ifi(R) theories using the first order able T. Thereforeb, is determined byl and its derivatives
formalism we do not have the drawbacks of the fourth ordeexcept in the casé(R)=wR?, for which Rf’ —2f=0, and
theories. In the last section, using the full equations, wehen we must consistently haife=0. It is important to note
prove, for a spherically symmetric star, that there exist somenhat b, has solution only ifT is differentiable inM; this
cases of (R), not only GR, where Birkhoff's theorem is also condition onT, for the existence of solution, is not necessary
valid, i.e., there is only one vacuum solution, that is thein other theories, as GR or fourth order theories.
Schwarzschild solution, and it matches with a physical inte- Therefore, the field equatior{§) can be written as
rior solution. Also we prove, for any(R), with f(R=0)
=0, that the exterior solutions match to physical interior 1
solutions, and that one of this exterior solutions is the Gapt 5 A(T)Gap=x(T) Tan(9), (10
Schwarzschild solution.

The results of the second and third sections show that theith ~ A(T)=R(T)—f[R(T)]/f'[R(T)] and «(T)
properties of the (R) first order theories are quite different =1/f'[R(T)], and both of them continuous. In the last equa-

Rlow, we choose LagrangiaéR) with f’(R) derivable and
"ot null for any value ofR. Then the last equation becomes
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tion we have made explicit the dependencyTgf, on the Because the matter action must be invariant under diffeo-
metric. We see that, within the first order formalism, the fieldmorphisms and the matter fields satisfy the matter field equa-
equationg10) are, formally, those of GR with a cosmologi- tions, thenT,, is conserved

cal constant and a gravitational constant which depend on the

trace of the stress energy momentum tensor. DT,,=0. (16)

The connection solution to Eq7) is . .
a7 Therefore, we may conclude that a test particle will follow

the geodesics of the metric connection. Using E&s.and

1
gcz Cgc_ E(agbc+ 5§bb_ Jbcb?), (13) (9) we have
: : . f'V T
where C; . are the Christoffel symbolémetric connection b.=-— m (17)

Then we have to solve only E(LO).

. In order to compare the resu!ts with the fo_urth order graV'Except for the case of GR;=0, the Weyl field is nonzero
ity, we can write the geometrical tensors in terms of the

Christoffel symbols plus contributions from the vectsy wherever the trace of the energy-momentum tensor varies
. y plus ' with respect to the coordinates.Tfis constant, theR is also
The Riemann and Ricci tensors, and the scalar curvature are -
constantb.=0 and Eq.(5) takes the form
f f 0
Rbca=Tdb.c— Tebat el ap— L'atl co=Rpeat Po,1adg) 1
Gapt EAgab: KTap, (18)

1
+ 8pbrc,a)—b%a9ep E(gﬁcbd]bb"_ bfbf‘s?d‘sc]b _
whereA and« are two constants depending BnAll those
+bgp b)) (12) cases with constant trace_ of the energyimomentum tens_or are
equivalent to GR for a given cosmological constant. This is
the so-called17] Universality of the Einstein equations for

3 1 1 1 .
Rap=R%,+ > Dby — szba"'EgabD b+ Ebabb matter with constant.
1 Ill. THE WEAK FIELD APPROXIMATION
= 5 anb’ (13 iy . .
2 Writing g.,= 7ap+ hap the linearized Ricci tensor, from

Egs.(13) and(8), is found to be

3
R=R°+3D.b—§b2, (14 . 1. 1 1 .
Rab: J &(bha)c— =d achab_iaaﬂbh‘l' &(abb)+ E 7]ab(9 bc,
0

2

Oa 0 ; [ (19)
whereRy54, Rap, R, andD. are the Riemann, Ricci, scalar
curvature and covariant derivative, defined from the metriGyhere h= 52h,, and we are working in a global inertial
connection, respectively. For a quadrdt(®) [16] it is easy  coordinate system. As it is well known there is a gauge free-
to rewrite the Lagrangian density in the form of & metric yom in any geometrical theory of gravitation corresponding
compatible fourth order term plus a noncompatible additiong the group of diffeomorphism of spacetime. In practice,
that includes a massive vector figdg with coupling to itself  these diffeomorphisms may be viewed as coordinate freedom
and the curvatur®. This last term is absent in the second ywhich may be used to impose coordinate conditions. For
order formalism. Thus, we may expect that any action, othefystance, we may employ harmonic coordina@swhich
than the Hilbert action one, may not necessarily yield thesagisfy
same physics, in the first order formalism as compared to the
second order formalism. g?Pré,=0. (20)

In particular, the field equation®) and(7) are of second

order, while in the second order formalism the field equain the linear approximation the last expression can be
tions are of fourth order. This difference will be apparent inachieved by an infinitesimal coordinate transformation that
the next section, when we study the weak field approximateaves the flat metrig/2® unchanged. Then, in this approxi-
tion, and obtain the Green function for the basic field equamation the perturbatioh,, and the vector fielth, satisfy the
tion, which would be different to the corresponding Greengauge condition
function in the fourth order theorj].

From Eq.(13) we obtain the skewsymmetric part of the 1 _
Ricci tensor in the form INca— §5ah+ba_0' (22)
Riab] = dabp— dpba - (15 In this gauge the linearized Ricci tensor simplifies to become
Then Eq.(8) gives Rap=Rap- Thus, the Ricci tensor is :E c _1 ¢
actually symmetric in this theory. Rab=7 7an?™e = 5 7 dcap (22)
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Therefore, the linearized field equatiofi®) are equation satisfied by the force or the corresponding potential;
however, if such equations, rather than elementary force

f”(0) 2 1 laws, are taken as basic, a new question arises; namely,

ab™ ﬂabf,(—o) == f’(—O)( Tap— 2 ﬂabT) , whether these equations admit more than one type of spheri-

cally symmetric solutions. Then Havas pointed ¢and re-
ferred also to Ref{18]) that no potential between point par-
where we have assumed, for simpliciti(0)=0 and we ticles, other than one proportional te*'/r, yields a
have used Eq8) and the first order of E(9) to expressed Potential between spheres that has the same dependengce on

(23

b, in terms of the tracd. and only if A vanishesthe Newtonian cageit is the coef-

In the nonrelativistic limit the operatdf] reduces toV ficient of the resultant potential independent of the radii.
and the source has a Newtonian behaviag~ pt,t, where In our case, we have the superposition of two potentials of
t, is the time direction of our global inertial coordinate sys-the typee *'/r. One corresponds to the Newtonian case
tem; thus, Eq(23) becomes (N=0), and the other is5(x—x") which is obtained as a

limit of
f"(0 2 1
Vz( hab+f,i_oi77abp :_m(tatb"'inab).& N M, (27)
(24)  when\—. To obtain the delta function we have to remem-

. ) ber that

This operator has the Green function
" lim f N2e Mrdr=1. 28
[tatp+(1/2) 7ap]  £7(0) S (X— ). 25 m (28)

27 (0)[x—x'| '(0)
Therefore, the potentidR5) between point particles has the
Therefore, the only solutions of E(24) which are well be-  same dependence orthat the potential between spheres. On
haved at infinity(we assume that is of compact supporis  the other hand, the superposition of one potential with
=0 and other with\—x also gives a potential between

hoo= N P f7(0) spheres with coefficients which do not depend on the radii.
ab_zwf’(O) atb™ 5 Mab| VN £(0) MabP (X), The second one is an special caseof'/r and corresponds
(26) o acase which was not discussed before.
whereV) is the Newtonian potential. _ IV. SPHERICALLY SYMMETRIC SOLUTIONS AND
Using the properties of the spherically symmetric New- BIRKHOFF'S THEOREM

tonian potential we are able to show that, in this theory and

in the linear approximation, the Schwarzschild solution is the In the caseT=0, the scalaR is any of the rootsR;, of
exterior solution for the above energy-momentum tensoif '(R)R—2f(R)=0. For each root the solutions of the field
when it is spherically symmetric; the last statement is nogduations are the solutions of GR with cosmological constant
true in the case of fourth order theories. A=Ri/2.

It is important to note that the solutiof25) of the field From now on, we will consider only those theories which
equations for a mass point is also the exterior solution for afiave as possible solutions, in vacuum, the solutions of GR.
arbitrary spherically symmetric mass distribution. This im-Then we asked thaft(R=0)=0; with this condition one of
portant property of GR is shared by these theories, but it ighe roots is always=0 and it corresponds to the cade
not true for fourth order theories. =0. Therefore, we have in vacuum a set of solutions: some

According to Eq.(26) the field exterior to a spherical of them corresponding to GR and the others to GR with
body is independent of its size and internal stresses and Bpsmological constant. But there exist Lagrangian W({tR)
identical to the static spherically symmetric solution of which have the property that they have only one root, then
vacuum field equations. From this point of view, apparentlythis isR=0. For these Lagrangians the vacuum solutions of
these theories satisfy Birkhoff's theorem. In the next sectiorthe theory are only the solutions of GR. One example is
we will see that this is not always true for the theories out off (R) =aR+ bR?.
the linear approximation. Therefore, in vacuum the spherically symmetric solutions

Havas[4,11] has pointed out, when he studied, in theare the Schwarzschild metric with cosmological constants
fourth order theories, the importance of the spherically symR;/2, although the name is properly used only if we put
metric solutions for extended sources and its relation with=0; in all the cases the solutions are static. Then Birkhoff's
the exterior solutions, that this problem is close to the ongheorem is valid only in those theories with a unique root
which caused Newton to delay publication of the PrincipiaR;=0.
for two decades. The problem that concerned him was the When the theories have more than one root, only one of
relation between a postulated force law between two masthe vacuum solutions is asymptotically flat and spherically
points and the corresponding force law between two homosymmetric, that is the Schwarzschild metric. In the linear
geneous spheres. This problem is independent of any fieldase we only have the linear Schwarzschild solution because
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in the linear approximation equatidf) has the unique root ~ Yo Ve oy, a, a,y,

R=—T/f'(0), andthen for vacuunR=0. Gz=e_“( 2 +T' 2—}—2—}— ’4 :
In the general case we still have to prove that the exterior

metric matches correctly to an interior solution which would @y @4 gy

correspond to a physical situation. In this section we will —ey(T T_ '4 : )

study those solutions which correspond to having spherically
symmetric matter in a region of spacetime.

Consider a conformal transformation of the metric, given é{
by r2 r2’

Gap=0%(X)Gap- (29 &= —eragi=2 (34)

Then, the field equatiof¥) changes as The nonzero components of the energy-momentum tensor
_ 5 with spherical symmetry arg; , TZ=T$, Ti, Tp, T'r, with
VeGab=[bc+2(INQ)c]1Yap - (30 e*TI=—e"T!. Let us regard’ andT! as assigned, then the
solutions of the field equation82) are
Taking into account the definition df., Eq. (8), we can

chooseQ(T)=Cy/|f’|, where the constan€ is such that ca—q_ 2M(r b) 3
Q(0)=1. Then the field equatiofB0) for the transformed e = r ' (35
metric is
r
~ Y=g o+ re“sx(T)[TH(Q %g)—THQ Zg)]dr |,
¥ B0, Gy e exp( fore c(MITHQ %) - THQ 7g)]dr
(36)
Therefore, the connection of our theory is the metric connec- herek i
tion for the G, metric. Thus,G,y= 62, and the other field " ereM(r.t) is
equation, Eq(10), can be written in the form 1 (r 1 A(T)
~ i, LAY
A M(r,t) 5 0r (K(T)Tt 5 QZ(T)>dr. (37
Gap+ = ——Gab=«k(T) Tan(Q%g 2 . . o
Gan 2 92(T)gab #e(T) Tan( 9) 32 The spherical symmetry of the metric is, of course, invariant

under the conformal chandg29) and we can write the metric

0 g in the form

where we have dropped the “0” frors2,, for simplicity,
and taken into account the dependencé gf on the metric. ds®=A(r’,t)dr'?+r’2dw?—B(r’,t)dt?, (39)
It is apparent from Eq(32) that our theory is conformally

equivalent to GR without minimal coupling, and with cos- wherer’=r/().

mological and gravitational constants that are not in fact con- Having thus expressed the metrig,, in terms of
stants, except in the linear case. We may expect to find somfzf(Q—zé) TY(Q %) and T we get the following expres-
observational consequence of this fact, for instance in a cosgl'onS for t,hetmetriag :

mological model, if we use the present values of the cosmo- ab-

logical parametersjy,Hg,(G/G)o, and G/G),, to estimate

the order of magnitude of what may be essentially the depar- A(r',t)=072(T) =, (39
ture of f(R) from linearity. (1=2M(r",0/r’)
Let us consider now a spherically symmetric spacetime ~
manifold with a metricg in the standard forn{curvature B(r'.t)=0 3T 1— 2M(r',1) +ex fr’“Fe“K(T)
coordinates ’ r’ 0
(22 ma(r)qr2a r2d 02— a¥(fD 42 _ _ ~
ds'=eCldri+rido®-e’0dt. (33 X[THQ ) - THQ 25)]0””, (40
The nonzero components of the Einstein tensor are
where
~ e 1 - r'Qa 1 A(T)) .
G = 1+ - —, )= — — 2 t -V
=2 (I+ry,) 2 M(r',t) 20 ), r (K(T)Tt 2 02(T) dr
(41
ég:éﬁ, In the exterior regiony >R, the solution is
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1 The constantr has dimensions of cfrand its value could be
(42)  estimated, in principle, from the values of observational cos-

A(r)= ;
1-2M/r+Ri/12(r?—R?) mological parameters in the same model theory.

2M R V. CONCLUSIONS
B(r)=1-—+ 1—2(r2—R2), (43
We have analyzed for the first ordé(R) theories of
whereM is gravity the properties of the solutions in the linear case, and
the properties of the spherically symmetric solutions in the
1(R., . LAY . nonlinear case. We have compared the results with the re-
M=— EJO i «(MTi—35 02T (44)  sults for the fourth order theories.
We have identified the Green function of the field equa-
tions, in the linear approximation, and proved that the only
exterior solution which is well behaved at infinity and has a

Eq. (40) by introducing a new time coordinate, as is usual ir1physical source, is the Schwarzschild solution. Also, we have
GR; recall also thaf}(0)=1. The function(}(T) is differ- . shown that the solution of the field equations for a “mass

entiable, then we have proved that in all cases, the exteno,goint,, is also the exterior solution for an arbitrary spheri-

metrics match correctly with the interior solutions. In par- .o symmetric mass distribution. The exterior linear solu-

ticular, the Schwarzschild solutioR; =0, which is always o does not depend on the size and internal stresses of the
one of the exterior solutions, satisfies the junction conditionggyrce, In this approximation we have proved Birkhoff's

with a physical interior metric. On the other hand, it is cleartheorem but in most cases it is not true when we work in the
that the active mass of the Schwarzschild solution, in thesgy|| theory.
theories, it is quite different from the active mass of GR for  |n the case of the spherically symmetric solutions we have
the same source. However, as it was recently prqé&,  obtained the exterior and interior metrics and we have shown
the active mass, in these theories, is equal to the inertiahat they satisfy the junctions conditions, although the
mass. Birkhoff's theorem is not satisfied in all the cases. However,
It is interesting to estimate the relative difference betweerone of the exterior solutions is always the Schwarzschild
the active mass in GR and the active mass in our theory. Teolution and it matches correctly with an interior physical
this end, we choose as a model thed(R) =R+ aR?. In  metric.
this model we haveR= —T. We consider a star similar to All the above statements, which are shared by GR, are not
our Sun(radiusR), and work in the Newtonian approxima- true for the theories with the same Lagrangians in the second
tion. Thus T~—p and M/R3~4Xx10"2 cm 2, in geo- Order formalism(fourth order theorigs Therefore, we may
metrical units €=G=1). Also M/R~2x10"¢. We have co_nclude that the class of 'gheorles th_at we have studied in
Q2=f', A(T)=aT?, x(T)=(1—2aT)"L. If we call M’ this paper has a better classical behavior than the fourth order

the active mass of GR, and use that3M'/47R3 we 1'€OMeS.
obtain from Eq.(44) that

In writing Eq. (43) we have reabsorbed the integral term in
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