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Spherically symmetric solutions in f „R… theories of gravity obtained using
the first order formalism
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~Received 1 December 1999; published 24 July 2000!

The solutions of a class of theories obtained when we apply the first order formalism are studied. In the
linear approximation we obtain the Green function and we prove that the field is independent of the size and
internal stresses of the source. We show that the solutions of the field equations for a mass point are also the
exterior solutions for an arbitrary spherically symmetric mass distribution. We construct the solutions of the
field equation, without any approximation, for the spherically symmetric matter distribution, and prove that the
exterior solutions match correctly with the interior solutions. We also prove that one of the exterior solutions
is always the Schwarzschild solution. Finally, in the same case, we show that Birkhoff’s theorem is satisfied.
All the above results are quite similar to general relativity but are very different from the results of the fourth
order theories; then we have shown that the first order formalism theories have better classical properties than
fourth order theories.

PACS number~s!: 04.50.1h, 04.20.Cv, 04.25.Nx
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I. INTRODUCTION

The study of fourth order theories was originally stim
lated by Eddington’s suggestion on the existence of a c
of theories which were observationally equivalent to E
stein’s@1# because they included as one of their solutions
~exterior! Schwarzschild metric. It was noted by Pauli@3#
and Buchdahl@2# that every vacuum solution~including the
Schwarzschild solution! of general relativity~GR! is also a
solution of any fourth order theory. More generally, eve
nonvacuum solution of GR, associated with a conforma
invariant source,T50, is also a solution of any fourth orde
theory @4#.

Later on, attempts to quantize GR, or to regularize
stress-energy-momentum tensor of quantum fields propa
ing in curved spacetimes, led investigators to consider gr
tational actions involving curvature squared terms@5#.
Higher-derivative theories appear to enjoy better renorma
ability properties than GR@6#, and in modern cosmology
have become standard since the Starobinsky model
curvature-squared terms leads automatically to the des
inflationary period. More recently@7#, the stability and
Hamiltonian formulation of these theories have been stud

Higher order theories of gravity are the generally cova
ant extensions of GR when we consider in the Lagrang
density nonlinear terms in the curvature. The field equati
derived by second order variation of this Lagrangian cont
metric derivatives of an order higher than the second. T
most general action containing the Einstein plus Gau
Bonnet terms is~for vacuum!.

S5E A2g~R1vR21bRcdR
cd!d4x, ~1!

where we have not considered surface terms since they
not contribute to the analysis of the field equations we w
perform. The factorsa andb are new universal constants~a
Riemann-squared term can be eliminated using the Ga
Bonet identity!; the term linear inR is necessary for a prope
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Newtonian limit@4#. The early investigators emphasized th
the empty space solutions of Einstein’s equationsRab50 are
solutions of the field equations derived from the Hilber
action

E d4xRA2g ~2!

as well as, for example, from

S85E d4xR2A2g, ~3!

which is straightforward since

dS85E d4xR~RdA2g12A2gdR! ~4!

and thusdS850 if R50. On other words, the fourth orde
equations corresponding to the Lagrangian density~1! share
with GR its vacuum solutions. This may suggest that
classical test of GR are automatically satisfied through
Schwarzschild solution@8,1#. However, the empty space so
lutions are to be matched to interior solutions and it may w
occur that the matching conditions are not satisfied@9,10#.
Higher order theories have a richer set of vacuum solut
than GR@11,12#; in other words, the vacuum solutions of G
are also solutions of higher order theories but the convers
in general not true. Unlike lower derivative corrections, ho
ever, it is false to assume that adding a higher deriva
correction term, with a small coefficient will only perturb th
original theory. The presence of an unconstrained higher
rivative term, no matter how small it may naively appe
makes the new theory dramatically different from the ori
nal one. Also it was pointed out, using the weak field a
proximation@9#, that although, e.g., the Schwarzschild so
tion is a solution to the empty space equations, it does
couple to a positive definite matter distribution. In fact, tho
solutions of purely four-derivative models~without a linear
©2000 The American Physical Society27-1
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term in R) which do couple to a positive matter source a
not asymptotically flat at infinity.

The Green functions of the linear field equations for
Lagrangian~1! with b50 differ from the Newtonian Green
function by a Yukawa term. Then, coupling the lineariz
theory to a pressurized fluid distribution shows that the
efficients of the Yukawa potentials depend on the press
and the size of the distribution. This shows that Birkhof
theorem is not valid in these models. Therefore the the
defined by the above Lagrangian have, as we have just m
tioned, some quantum and cosmological interesting prop
but have a great trouble with the Schwarzschild solution
cause it is not the one that matches to a realistic inte
solution. Then, we can not say that the classical tests
general relativity are automatically satisfied, as the early
vestigators emphasized.

On the other hand, the Palatini approach, or first or
formalism, can be applied to obtain the field equations in
assuming the metric and the connection as independent
ables. This formalism has also been applied to more gen
Lagrangian densities, with quadratic terms@13# or a general
function of the scalar curvature, to study other geometr
theories of gravitation. More recently@14#, the latter theories
have been extended by including a scalar field in the
grangian and a connection allowing torsion@15# . One appar-
ent conceptual advantage of these theories is that quan
fluctuations of the metric and the connection are independ
of each other.

In the present work we consider those theories that
obtained from a Lagrangian densityLT(R)5 f (R)A2g
1LM , that depends on the curvature scalar and a ma
Lagrangian that does not depend on the connection, and
ply Palatini’s method to obtain the field equations. We pro
that in the first order formalism it is true that the vacuu
solution that matches with the physical interior solution a
is asymptotically flat, is the Schwarzschild solution. The l
statement it is proved not only in the weak field approxim
tion but also using the full, nonlinear field equations, ste
ming from the general Lagrangian* f (R)A2gd4x.

Also, we show that there exist some Lagrangians
which Birkhoff’s theorem is valid, i.e., the only vacuum
spherically symmetric solution is the Schwarzschild soluti
although the active mass is different to the active mass of
for the same source.

In the second section we present the general structur
this class of theories; in the third one, we prove, in the we
field approximation, that inf (R) theories using the first orde
formalism we do not have the drawbacks of the fourth or
theories. In the last section, using the full equations,
prove, for a spherically symmetric star, that there exist so
cases off (R), not only GR, where Birkhoff’s theorem is als
valid, i.e., there is only one vacuum solution, that is t
Schwarzschild solution, and it matches with a physical in
rior solution. Also we prove, for anyf (R), with f (R50)
50, that the exterior solutions match to physical inter
solutions, and that one of this exterior solutions is t
Schwarzschild solution.

The results of the second and third sections show that
properties of thef (R) first order theories are quite differen
04402
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from the second order theories. The first order theories sh
better physical properties and are similar to GR.

II. THE STRUCTURE OF THE THEORY

Let M be a manifold with metricgab and a torsionless
derivative operator¹a , both considered as independent va
ables. Consider a Lagrangian densityL5 f (R)A2g1LM ,
where the matter LagrangianLM does not depend on th
connection.

Suppose we have a smooth one-parameter (l) family of
field configurations starting from given fieldsgab, ¹a , andc
~the matter fields!, with appropriate boundary conditions, an
denote bydgab, dGab

c , dc the corresponding variations, i.e
dgab5(dgl

ab/dl)ul50, etc. Then the field equations, if w
vary with respect to the metric, are

f 8~R!Rab2
1

2
f ~R!gab5Tab , ~5!

where f 8(R)5(d f /dR), (dSM /dgab)[2TabA2g. The
variation with respect to the connection, recalling that this
fixed at the boundary, gives

¹c@A2ggabf 8~R!#50. ~6!

Now, we choose Lagrangiansf (R) with f 8(R) derivable and
not null for any value ofR. Then the last equation become

¹cgab5bcgab , ~7!

where

bc52@ ln f 8~R!# ,c . ~8!

Thus, we have a Weyl conformal geometry with a Weyl fie
given by Eq.~8!.

The vanishing of the connection in a particular frame,
example in a geodesic frame, however, does not mean
the metric is flat there, because from Eq.~7! ]cgab
5bcgab . Therefore the strong equivalence principle is
general not satisfied.

From Eq.~5! we obtain

f 8~R!R22 f ~R!5T, ~9!

which defineR(T), and we suppose the functionf (R) is
such thatR(T) would be differentiable respect to the var
able T. Thereforebc is determined byT and its derivatives
except in the casef (R)5vR2, for which R f822 f [0, and
then we must consistently haveT[0. It is important to note
that bc has solution only ifT is differentiable inM; this
condition onT, for the existence of solution, is not necessa
in other theories, as GR or fourth order theories.

Therefore, the field equations~5! can be written as

Gab1
1

2
L~T!gab5k~T!Tab~g!, ~10!

with L(T)5R(T)2 f @R(T)#/ f 8@R(T)# and k(T)
51/f 8@R(T)#, and both of them continuous. In the last equ
7-2
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SPHERICALLY SYMMETRIC SOLUTIONS INf (R) . . . PHYSICAL REVIEW D 62 044027
tion we have made explicit the dependency ofTab on the
metric. We see that, within the first order formalism, the fie
equations~10! are, formally, those of GR with a cosmolog
cal constant and a gravitational constant which depend on
trace of the stress energy momentum tensor.

The connection solution to Eq.~7! is

Gbc
a 5Cbc

a 2
1

2
~db

abc1dc
abb2gbcb

a!, ~11!

whereCbc
a are the Christoffel symbols~metric connection!.

Then we have to solve only Eq.~10!.
In order to compare the results with the fourth order gr

ity, we can write the geometrical tensors in terms of t
Christoffel symbols plus contributions from the vectorba .
The Riemann and Ricci tensors, and the scalar curvature

Rbcd
a 5Gdb,c

a 2Gcb,d
a 1Gc f

a Gdb
f 2Gd f

a Gcb
f 5Rbcd

0a 1bb,[ddc]
a

1db
ab[c,d]2b,[d

a gc]b1
1

2
~d [c

a bd]bb1bfb
fd [d

a dc]b

1bagb[dbc] ! ~12!

Rab5Rab
0 1

3

2
Dabb2

1

2
Dbba1

1

2
gabD•b1

1

2
babb

2
1

2
gabb

2 ~13!

R5R013D•b2
3

2
b2, ~14!

whereRbcd
0a , Rab

0 , R0, andDc are the Riemann, Ricci, scala
curvature and covariant derivative, defined from the me
connection, respectively. For a quadraticf (R) @16# it is easy
to rewrite the Lagrangian density in the form of a met
compatible fourth order term plus a noncompatible addit
that includes a massive vector fieldba with coupling to itself
and the curvatureR0. This last term is absent in the secon
order formalism. Thus, we may expect that any action, ot
than the Hilbert action one, may not necessarily yield
same physics, in the first order formalism as compared to
second order formalism.

In particular, the field equations~5! and~7! are of second
order, while in the second order formalism the field equ
tions are of fourth order. This difference will be apparent
the next section, when we study the weak field approxim
tion, and obtain the Green function for the basic field eq
tion, which would be different to the corresponding Gre
function in the fourth order theory@4#.

From Eq.~13! we obtain the skewsymmetric part of th
Ricci tensor in the form

R[ab]5]abb2]bba . ~15!

Then Eq. ~8! gives R(ab)5Rab . Thus, the Ricci tensor is
actually symmetric in this theory.
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Because the matter action must be invariant under diff
morphisms and the matter fields satisfy the matter field eq
tions, thenTab is conserved

DaTab50. ~16!

Therefore, we may conclude that a test particle will follo
the geodesics of the metric connection. Using Eqs.~8! and
~9! we have

bc52
f 9¹cT

f 8~R f92 f 8!
. ~17!

Except for the case of GR,f 9[0, the Weyl field is nonzero
wherever the trace of the energy-momentum tensor va
with respect to the coordinates. IfT is constant, thenR is also
constant,bc50 and Eq.~5! takes the form

Gab1
1

2
Lgab5kTab , ~18!

whereL andk are two constants depending onR. All those
cases with constant trace of the energy-momentum tenso
equivalent to GR for a given cosmological constant. This
the so-called@17# Universality of the Einstein equations fo
matter with constantT.

III. THE WEAK FIELD APPROXIMATION

Writing gab5hab1hab the linearized Ricci tensor, from
Eqs.~13! and ~8!, is found to be

Rab5]c] (bha)c2
1

2
]c]chab2

1

2
]a]bh1] (abb)1

1

2
hab]

cbc ,

~19!

where h5habhab and we are working in a global inertia
coordinate system. As it is well known there is a gauge fr
dom in any geometrical theory of gravitation correspond
to the group of diffeomorphism of spacetime. In practic
these diffeomorphisms may be viewed as coordinate freed
which may be used to impose coordinate conditions.
instance, we may employ harmonic coordinatesxa which
satisfy

gabGab
c 50. ~20!

In the linear approximation the last expression can
achieved by an infinitesimal coordinate transformation t
leaves the flat metrichab unchanged. Then, in this approx
mation the perturbationhab and the vector fieldba satisfy the
gauge condition

]chca2
1

2
]ah1ba50. ~21!

In this gauge the linearized Ricci tensor simplifies to beco

Rab5
1

2
hab]

cbc2
1

2
]c]chab . ~22!
7-3
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D. E. BARRACO AND V. H. HAMITY PHYSICAL REVIEW D 62 044027
Therefore, the linearized field equations~10! are

hS hab2hab

f 9~0!

f 8~0!
TD 52

2

f 8~0!
S Tab2

1

2
habTD ,

~23!

where we have assumed, for simplicity,f (0)50 and we
have used Eq.~8! and the first order of Eq.~9! to expressed
ba in terms of the traceT.

In the nonrelativistic limit the operatorh reduces to¹
and the source has a Newtonian behavior,Tab'rtatb where
ta is the time direction of our global inertial coordinate sy
tem; thus, Eq.~23! becomes

¹2S hab1
f 9~0!

f 8~0!
habr D 52

2

f 8~0!
S tatb1

1

2
habD r.

~24!

This operator has the Green function

@ tatb1~1/2!hab#

2p f 8~0!ux2x8u
2

f 9~0!

f 8~0!
habd~x2x8!. ~25!

Therefore, the only solutions of Eq.~24! which are well be-
haved at infinity~we assume thatr is of compact support! is

hab5
1

2p f 8~0!
S tatb1

1

2
habDVN2

f 9~0!

f 8~0!
habr~x!,

~26!

whereVN is the Newtonian potential.
Using the properties of the spherically symmetric Ne

tonian potential we are able to show that, in this theory a
in the linear approximation, the Schwarzschild solution is
exterior solution for the above energy-momentum ten
when it is spherically symmetric; the last statement is
true in the case of fourth order theories.

It is important to note that the solution~25! of the field
equations for a mass point is also the exterior solution for
arbitrary spherically symmetric mass distribution. This im
portant property of GR is shared by these theories, but
not true for fourth order theories.

According to Eq.~26! the field exterior to a spherica
body is independent of its size and internal stresses an
identical to the static spherically symmetric solution
vacuum field equations. From this point of view, apparen
these theories satisfy Birkhoff’s theorem. In the next sect
we will see that this is not always true for the theories out
the linear approximation.

Havas @4,11# has pointed out, when he studied, in t
fourth order theories, the importance of the spherically sy
metric solutions for extended sources and its relation w
the exterior solutions, that this problem is close to the o
which caused Newton to delay publication of the Princip
for two decades. The problem that concerned him was
relation between a postulated force law between two m
points and the corresponding force law between two hom
geneous spheres. This problem is independent of any
04402
-
d
e
r
t

n
-
is

is

,
n
f

-
h
e

e
ss
-
ld

equation satisfied by the force or the corresponding poten
however, if such equations, rather than elementary fo
laws, are taken as basic, a new question arises; nam
whether these equations admit more than one type of sph
cally symmetric solutions. Then Havas pointed out~and re-
ferred also to Ref.@18#! that no potential between point pa
ticles, other than one proportional toe2lr /r , yields a
potential between spheres that has the same dependencer,
and only if l vanishes~the Newtonian case!, it is the coef-
ficient of the resultant potential independent of the radii.

In our case, we have the superposition of two potentials
the type e2lr /r . One corresponds to the Newtonian ca
(l50), and the other isd(x2x8) which is obtained as a
limit of

l2e2lr , ~27!

whenl→`. To obtain the delta function we have to remem
ber that

lim
l→`

E
0

`

l2e2lr rdr 51. ~28!

Therefore, the potential~25! between point particles has th
same dependence onr that the potential between spheres. O
the other hand, the superposition of one potential withl
50 and other withl→` also gives a potential betwee
spheres with coefficients which do not depend on the ra
The second one is an special case ofe2lr /r and corresponds
to a case which was not discussed before.

IV. SPHERICALLY SYMMETRIC SOLUTIONS AND
BIRKHOFF’S THEOREM

In the caseT50, the scalarR is any of the roots,Ri , of
f 8(R)R22 f (R)50. For each root the solutions of the fie
equations are the solutions of GR with cosmological cons
L5Ri /2.

From now on, we will consider only those theories whi
have as possible solutions, in vacuum, the solutions of G
Then we asked thatf (R50)50; with this condition one of
the roots is alwaysR50 and it corresponds to the caseL
50. Therefore, we have in vacuum a set of solutions: so
of them corresponding to GR and the others to GR w
cosmological constant. But there exist Lagrangian withf (R)
which have the property that they have only one root, th
this is R50. For these Lagrangians the vacuum solutions
the theory are only the solutions of GR. One example
f (R)5aR1bR2.

Therefore, in vacuum the spherically symmetric solutio
are the Schwarzschild metric with cosmological consta
Ri /2, although the name is properly used only if we putL
50; in all the cases the solutions are static. Then Birkho
theorem is valid only in those theories with a unique ro
Ri50.

When the theories have more than one root, only one
the vacuum solutions is asymptotically flat and spherica
symmetric, that is the Schwarzschild metric. In the line
case we only have the linear Schwarzschild solution beca
7-4
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in the linear approximation equation~9! has the unique roo
R52T/ f 8(0), andthen for vacuumR50.

In the general case we still have to prove that the exte
metric matches correctly to an interior solution which wou
correspond to a physical situation. In this section we w
study those solutions which correspond to having spheric
symmetric matter in a region of spacetime.

Consider a conformal transformation of the metric, giv
by

g̃ab5V2~x!gab . ~29!

Then, the field equation~7! changes as

¹cg̃ab5@bc12~ ln V!c#g̃ab . ~30!

Taking into account the definition ofbc , Eq. ~8!, we can
chooseV(T)5CAu f 8u, where the constantC is such that
V(0)51. Then the field equation~30! for the transformed
metric is

¹cg̃ab50. ~31!

Therefore, the connection of our theory is the metric conn
tion for the g̃ab metric. Thus,Gab5G̃ab

0 and the other field
equation, Eq.~10!, can be written in the form

G̃ab1
1

2

L~T!

V2~T!
g̃ab5k~T!Tab~V22g̃!, ~32!

where we have dropped the ‘‘0’’ fromG̃ab
0 , for simplicity,

and taken into account the dependence ofTab on the metric.
It is apparent from Eq.~32! that our theory is conformally
equivalent to GR without minimal coupling, and with co
mological and gravitational constants that are not in fact c
stants, except in the linear case. We may expect to find s
observational consequence of this fact, for instance in a
mological model, if we use the present values of the cosm
logical parametersq0 ,H0 ,(Ġ/G)0, and (G̈/G)0, to estimate
the order of magnitude of what may be essentially the de
ture of f (R) from linearity.

Let us consider now a spherically symmetric spaceti
manifold with a metricg̃ in the standard form~curvature
coordinates!

ds̃25ea(r ,t)dr21r 2dv22eg(r ,t)dt2. ~33!

The nonzero components of the Einstein tensor are

G̃r
r5

e2a

r 2
~11rg ,r !2

1

r 2
,

G̃u
u5G̃f

f ,
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G̃u
u5e2aS g ,rr

2
1

g ,r
2

4
1

g ,r

2r
2

a ,r

2r
2

a ,rg ,r

4 D
2e2gS a ,tt

2
1

a ,t
2

4
2

a ,tg ,t

4 D ,

G̃t
t5

e2a~12ra ,r !

r 2
2

1

r 2
,

G̃t
r52eg2aGr

t 5
e2aa ,t

r
. ~34!

The nonzero components of the energy-momentum ten
with spherical symmetry areTr

r , Tu
u5Tf

f , Tt
t , Tt

r , Ttr , with
eaTt

r52egTr
t . Let us regardTr

r andTt
t as assigned, then th

solutions of the field equations~32! are

e2a512
2M̃~r ,t !

r
, ~35!

eg5e2a1expS E
o

r

r̂ eak~T!@Tr
r~V22g̃!2Tt

t~V22g̃!#dr̂ D ,

~36!

whereM̃(r ,t) is

M̃~r ,t !52
1

2E0

r

r̂ 2S k~T!Tt
t2

1

2

L~T!

V2~T!
D dr̂. ~37!

The spherical symmetry of the metric is, of course, invari
under the conformal change~29! and we can write the metric
g in the form

ds25A~r 8,t !dr821r 82dv22B~r 8,t !dt2, ~38!

wherer 85r /V.
Having thus expressed the metricg̃ab in terms of

Tr
r(V22g̃), Tt

t(V22g̃) and T we get the following expres-
sions for the metricgab :

A~r 8,t !5V22~T!
1

~122M̃~r 8,t !/r 8!
, ~39!

B~r 8,t !5V22~T!F12
2M̃~r 8,t !

r 8
1expS E

o

r 8V
r̂ eak~T!

3@Tr
r~V22g̃!2Tt

t~V22g̃!#dr̂ D G , ~40!

where

M̃~r 8,t !52
1

2VE
0

r 8V
r̂ 2S k~T!Tt

t2
1

2

L~T!

V2~T!
D dr̂.

~41!

In the exterior region,r .R, the solution is
7-5
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A~r !5
1

122M /r 1Ri /12~r 22R2!
, ~42!

B~r !512
2M

r
1

Ri

12
~r 22R2!, ~43!

whereM is

M52
1

2E0

R

r̂ 2S k~T!Tt
t2

1

2

L~T!

V2~T!
D dr̂. ~44!

In writing Eq. ~43! we have reabsorbed the integral term
Eq. ~40! by introducing a new time coordinate, as is usual
GR; recall also thatV(0)51. The functionV(T) is differ-
entiable, then we have proved that in all cases, the exte
metrics match correctly with the interior solutions. In pa
ticular, the Schwarzschild solutionRi50, which is always
one of the exterior solutions, satisfies the junction conditio
with a physical interior metric. On the other hand, it is cle
that the active mass of the Schwarzschild solution, in th
theories, it is quite different from the active mass of GR
the same source. However, as it was recently proved@19#,
the active mass, in these theories, is equal to the ine
mass.

It is interesting to estimate the relative difference betwe
the active mass in GR and the active mass in our theory
this end, we choose as a model theoryf (R)5R1aR2. In
this model we haveR52T. We consider a star similar to
our Sun~radiusR), and work in the Newtonian approxima
tion. Thus T'2r and M /R 3'4310228 cm22, in geo-
metrical units (c5G51). Also M /R'231026. We have
V25 f 8, L(T)'aT2, k(T)5(122aT)21. If we call M 8
the active mass of GR, and use thatr'3M 8/4pR 3, we
obtain from Eq.~44! that

M 82M

M 8
'

9a

2p
10228 cm22. ~45!
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The constanta has dimensions of cm2 and its value could be
estimated, in principle, from the values of observational c
mological parameters in the same model theory.

V. CONCLUSIONS

We have analyzed for the first orderf (R) theories of
gravity the properties of the solutions in the linear case, a
the properties of the spherically symmetric solutions in
nonlinear case. We have compared the results with the
sults for the fourth order theories.

We have identified the Green function of the field equ
tions, in the linear approximation, and proved that the o
exterior solution which is well behaved at infinity and has
physical source, is the Schwarzschild solution. Also, we h
shown that the solution of the field equations for a ‘‘ma
point’’ is also the exterior solution for an arbitrary sphe
cally symmetric mass distribution. The exterior linear so
tion does not depend on the size and internal stresses o
source. In this approximation we have proved Birkhof
theorem but in most cases it is not true when we work in
full theory.

In the case of the spherically symmetric solutions we ha
obtained the exterior and interior metrics and we have sho
that they satisfy the junctions conditions, although t
Birkhoff’s theorem is not satisfied in all the cases. Howev
one of the exterior solutions is always the Schwarzsch
solution and it matches correctly with an interior physic
metric.

All the above statements, which are shared by GR, are
true for the theories with the same Lagrangians in the sec
order formalism~fourth order theories!. Therefore, we may
conclude that the class of theories that we have studie
this paper has a better classical behavior than the fourth o
theories.
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