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Group theoretical quantization of a phase spaceS1ÃR¿ and the mass spectrum
of Schwarzschild black holes inD space-time dimensions

M. Bojowald,* H. A. Kastrup,† F. Schramm, and T. Strobl‡

Institute for Theoretical Physics, RWTH Aachen, D-52056 Aachen, Germany
~Received 26 August 1999; revised manuscript received 14 February 2000; published 24 July 2000!

The symplectic reduction of pure spherically symmetric~Schwarzschild! classical gravity inD space-time
dimensions yields a two-dimensional phase space of observables consisting of the massM (.0) and a
canonically conjugate~Killing ! time variableT. Imposing~mass-dependent! periodic boundary conditions in
time on the associated quantum-mechanical plane waves which represent the Schwarzschild system in the
period just before or during the formation of a black hole yields an energy spectrum of the hole which realizes
the old Bekenstein postulate that the quanta of the horizonAD22 are multiples of a basic area quantum. In the
present paper it is shown that the phase space of such Schwarzschild black holes inD space-time dimensions
is symplectomorphic to a symplectic manifoldS5$(wPR mod 2p, p}AD22PR1)% with the symplectic
form dw`dp. As the action of the group SO↑(1,2) on that manifold is transitive, effective and Hamiltonian,

it can be used for a group theoretical quantization of the system. The area operatorp̂ for the horizon corre-
sponds to the generator of the compact subgroup SO(2) and becomes quantized accordingly: The positive
discrete series of the irreducible unitary representations of the group SO↑(1,2) yields an~horizon! area spec-
trum }(k1n), where k51,2, . . . , characterizes the representation andn50,1,2, . . . , the number ofarea
quanta. If one employs the unitary representations of the universal covering group of SO↑(1,2), the numberk
can take any fixed positive real value (u parameter!. The unitary representations of the positive discrete series
provide concrete Hilbert spaces for quantum Schwarzschild black holes.

PACS number~s!: 04.60.Ds, 04.50.1h, 04.60.Kz
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I. INTRODUCTION

Understanding the quantum properties of black holes
the associated quantum statistics~thermodynamics! is one of
the outstanding topics of present-day approaches to quan
gravity: In string theory extremal black holes with their r
lations between masses and charges and the associate
generacies play a prominent role~for a review see Ref.@1#!.
In loop quantum gravity the action of the corresponding a
operators on appropriate spin-network states is expecte
yield information about the entropy of black holes~see Ref.
@2#!.

Already in 1974 Bekenstein proposed@3# a Bohr-
Sommerfeld type of quantization for black holes whi
amounts to the simple quantum relation

A~n!}nlP,4
2 , nPN[$1,2, . . .% ~1!

( l P,4 : Planck’s length inD54 space-time dimensions! for
the two-dimensional areaA54pRS

2 of the horizon of a
Schwarzschild black hole~SBH! in four space-time dimen
sions. Because ofRS52GM/c2 this is equivalent to the as
sertion that the energy levelsEn of such holes are propor
tional to An:

En}AnEP,4 , nPN ~2!

(EP,4 : Planck’s energy!.
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Together with the assumption that thenth level ~1! has a
degeneracydn5gn,g.1, one then gets the Bekenstei
Hawking entropy of the black hole as proportional to t
area of the horizon. As to the further history of the spectr
~1! and its degeneracies see the recent review by Beken
@4# and Refs.@5,6#.

However, having an appropriate spectrum including
degeneracies is not sufficient for a complete quantu
mechanical description of the system. For that purpose
has to know the Hilbert space and the action of the ba
operators associated with the system.

It is the main aim of the present paper to provide th
Hilbert space~or a number of unitarily equivalent ones! and
the basic self-adjoint operators in terms of the positive d
crete series of the irreducible unitary representations of
proper orthochronous Lorentz group SO↑(1,2) or its respec-
tive covering groups. The method to achieve this makes
of a proposal of one of us@7# how to relate the spectrum~2!
to plane wave solutions of the simple Schro¨dinger equation
resulting from the symplectic reduction of spherically sym
metric pure gravity@8–11#.

In order to have this paper to some extent self-contai
we first summarize the essential steps and assumptions
ing to the required quantum theory. As to more details a
possible questions concerning these steps we refer to Re@7#
and the companion paper@6#.

The symplectic reduction of spherically symmetric pu
Einstein gravity yields one pair of canonical variables~‘‘ob-
servables’’ in the sense of Dirac!, namely, the~ADM ! mass
M of the system—here considered as the canon
momentum—and a canonically conjugate time variableT,
with the associated symplectic form
©2000 The American Physical Society26-1
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v5dT`dM. ~3!

The Schro¨dinger equation of the corresponding quantum m
chanics is extremely simple

i\]tc~t!5Mc2c~t!, ~4!

wheret is the proper time of an observer at~Minkowski flat!
spatial infinity.

Equation~4! has the plane wave solutions

e2( i /\)Mc2t. ~5!

Up to now no restrictions have been imposed on the sp
trum of the massesM which a priori may be any real numbe
MPR. However, for physical reasons—no naked singula
ties, etc.—one wantsM to be a positive real number,M
PR1[$r PR,r .0%.

The discrete spectrum~2! may be obtained as follows@7#:
Suppose the plane wave~5! represents the system only du
ing a finite time periodD. Implementing this finite duration
by periodic boundary conditions int leads to the relation

c2MD52p\n, nPN. ~6!

Here the assumptionM.0 is made.
It appears necessary to stress the following point in c

nection with the boundary condition~6!: The postulate tha
the wave function~5! has the periodD does not mean tha
the asymptotic timet is periodic. It just means that the sy
tem is in a~quasi! stationary state~5! during a finite time
intervalD. This is a situation completely analogous to a s
tem of free particles in a finite spatial interval of lengthL
where the associated state is a plane wave with periodic
tial boundary conditions~yielding discrete momenta!. Such a
property of the wave function does not mean that space it
is confined to an interval or periodic.

The question now is how to choose the time intervalD.
As the only intrinsic length~time! scale of the system is th
Schwarzschild radiusRS(M ), the intervalD has to be related
to RS /c. There are two important time scales associated w
a Schwarzschild black hole, namely, the ‘‘formation’’ tim
or the inverse Hawking temperature which are proportio
to RS /c and the ‘‘evaporation’’ time due to Hawking radia
tion which in 4 space-time dimensions is proportional toRS

3

~Stefan-Boltzmann’s law@12#!. It appears to be more plau
sible @6# to associate the plane wave~5! with the quasista-
tionary precollapse phase of the system than with the eva
ration one. The assumptionD5gRS /c, g5O(1), leads to
the quantization condition

gcMnRS~Mn!52p\n, nPN. ~7!

With RS52MG/c2 one immediately get the relations~1! and
~2!.

The relations~5!–~7! may be generalized@13,6# to arbi-
trary space-time dimensionsD>4 ~see also Appendix B o
the present paper!, where the relationship between Schwarz
child mass and Schwarzschild radius is given by@14#
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D235

16pGDM

c2~D22!vD22

. ~8!

„GD denotes the gravitational constant inD space-time di-
mensions andvD2252p (D21)/2/G@(D21)/2# the volume
of SD22.…

As the areaAD22 of the (D22)-dimensional horizon is
RS

D22vD22, the relations~7! and ~8! imply a horizon area
spectrum

AD22~n!5nãD22 , nPN,

ãD225
32p2GD\

g~D22!c3
[

32p2

g~D22!
l P,D
D22 , ~9!

which, according to Eq.~8!, leads to the energy spectrum

En5aD n(D23)/(D22)EP,D , ~10!

aD5S ~2p!D24~D22!vD22

8gD23 D 1/(D22)

,

EP,D5~cD11\D23/GD!1/(D22).

The energyEn may be interpreted@15,6# as the surface en
ergy of a ‘‘bubble’’ of n area quantaãD22.

The above arguments, which lead to the spectra~9! and
~10!, respectively, are unsatisfactory for the following re
sons: The periodD(M ) of the time variablet ~or T) is a
function of M. This means that the phase space of inter
here is the subspace~‘‘wedge’’ ! of the (M ,t) plane which is
bounded by the positiveM axis—without the origin—and
the curvet5D(M )5constM1/(D23).0, where the pointsM
and D(M ) have to be identified. This is an unusual pha
space. In addition it is not obvious what is the Hilbert spa
associated with the quantized system.

It is the purpose of the present paper to improve the s
ation by employing a group theoretical quantization@16,17#
based on the group SO↑(1,2)—the orthochronous prope
Lorentz group in 112 dimensions—and its irreducible un
tary representations.

The transformation

w5
2p

D
t5

2pc

gRS~M !
t, ~11!

p5bAD22~M !, b5
gc~D23!

32p2GD

, ~12!

is canonical~symplectic!:

v5dw`dp5dt`dM. ~13!

As wPR mod 2p now, one sees that the phase space in qu
tion is diffeomorphic to S13R1.R22$0[(0,0)%. This
phase space may be interpreted as ‘‘half’’ of the cotang
bundleT* S15$(w,p)% with the restrictionp.0.
6-2
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The task is then to quantize this classical system ap
priately. This will be done in the following way.

In Sec. II we summarize, following Isham’s review@16#,
the essential features of the group theoretical approach
quantizing a classical symplectic~phase! manifold. In Sec.
III we discuss the symplectic, transitive, and effective act
of the three-dimensional noncompact group SO↑(1,2) on

S5$~w,p!;wPR mod 2p, p.0% ~14!

by employing the twofold covering group SU(1,1). We sho
which vector fields are induced onS by the generators o
three independent one-dimensional subgroups of SO↑(1,2),
how the isomorphism between these vector fields and
corresponding Hamiltonian ones and their Poisson alge
looks like and which observables~functions! on S corre-
spond to the three selected Lie algebra elements of SO↑(1,2).
It turns out that the above variablep corresponds to the gen
erator of the compact subgroup of SO↑(1,2).

As this group is infinitely connected with first homotop
group p15Z, its covering groups, especially the univers
one, act only almost effectively onS, because the elemen
of their discrete abelian center leave every point ofS fixed.
The phase spaceS is diffeomorphic to the complex plan
with the origin deleted, and likewise to the coset spa
SO↑(1,2)/N, where N is the nilpotent subgroup in a
Iwasawa decomposition of SO↑(1,2).

Quantization, which is discussed in Sec. IV, consists
passing to the irreducible unitary representations of SO↑(1,2)
where the basic observables corresponding to three Lie a
bra elements mentioned above become self-adjoint opera
The operator representing the generator of the compact
group, i.e., the observablep, has a discrete spectrum in a
irreducible unitary representations. However, as we wanp
}AD22 to be positive, only the unitary representations of t
‘‘positive discrete’’ series are suitable for our purpose.

If we denote the operator corresponding top by p̂, then
this operator has spectra}k1n,n50,1,2, . . . , where the
numbersk51,2, . . . characterize the different unitary repr
sentations with the Casimir operatork(12k). The main dif-
ference between the unitary representations of SO↑(1,2) and
those of its universal covering group is that for the latter
numberk may be any positive real number.

The irreducible unitary representations provide the p
sible Hilbert spaces for the system. We discuss several
crete realizations which may be useful for future applic
tions.

One especially interesting example is the spa
L2(R1,r a exp(2r)dr), an orthonormal basis of which i
given in terms of Laguerre’s polynomialsLn

a , where a
52k21 in our case. As this space is also the space of
radial wave functions for the 3-dimensional hydrogen ato
we can identify the following correspondence: for positi
integersk we havek5 l 11, wherel is the angular momen
tum quantum number, andn5nr , where nrPN0
[$0,1, . . .% is the radial quantum number of the hydrog
atom. Thus the SBH wave functions withk51 correspond to
the different s-wave wave functions of the hydrogen ato
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Because of the obvious similarities between Coulomb’s e
trical and Newton’s gravitational potentials this relationsh
may not be purely accidental.

Section VI discusses some~preliminary! conclusions. Ap-
pendix A contains the main properties of the gro
SO↑(1,2), its covering groups and those features of the ir
ducible unitary representations which are necessary for
purposes. Appendix B contains the symplectic reduction
spherically symmetric pure Einstein gravity inD space-time
dimensions.

II. PRINCIPLES OF GROUP THEORETICAL
QUANTIZATION

A pedestrian way to quantize a classical system is to
place the classical Poisson brackets of observables~functions
on phase space! by commutators of corresponding operato
on a ~Hilbert! space of states. This prescription has sev
limits, however: It does not work properly for function
which are polynomials in the basic variables (q,p) of degree
higher than 2@17,18# and, another possibility, the operato
may not be self-adjoint~see, e.g., Refs.@19,16#!. Already
Weyl pointed out very early that, in order to guarantee se
adjointness of the~two! unbounded operatorsQ andP, it is
advisable to pass from the Heisenberg commutation relat
@P,Q#5\/ i , etc., to the bounded operators

U~a!5e2 iaP, V~b!5e2 ibQ, ~15!

U~a!V~b!5ei\abV~b!U~a!, ~16!

U~a1!U~a2!5U~a2!U~a1!, V~b1!V~b2!5V~b2!V~b1!
~17!

and look for continuous irreducible unitary representations
this ~Heisenberg-Weyl! group which provide self-adjoin
generatorsP and Q. Heisenberg’s commutation relation
may be interpreted as representing the Lie algebra of a th
parameter group with the group law

~a1 ,b1 ,t1!~a2 ,b2 ,t2!5S a11a2 ,b11b2 ,t11t2

1
1

2
~b1a22a1b2! D , ~18!

which represents a central extension of the Abelian~sym-
plectic, transitive, and effective! translation group ofR2 in-
terpreted as the phase space~cotangent bundle! T* R. Ac-
cording to the von Neumann–Stone uniqueness theore
see, e.g., Refs.@18,19,16#—all continuous irreducible unitary
representations of the Heisenberg-Weyl group are unita
equivalent to the Schro¨dinger representation, where the spe
tra of P andQ are the complete real linesR.

Group theoretical quantization tries to generalize th
properties to phase spaces~symplectic manifolds! with non-
trivial topological structures. The main steps are~for more
details we refer to the literature@16,17#; we closely follow
Isham’s presentation@16#!.
6-3
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~1! Given a ~here finite-dimensional! symplectic space
~manifold! S5$s% with a nondegenerate symplectic formv,
find a finite-dimensional Lie transformation groupG5$g% of
S which leaves the symplectic formv invariant and which
acts transitively and effectively@i.e., if g•s5s;s, then g
5e ~unit element!#. The latter condition may be relaxed t
almost effective actions~i.e., if g•s5s;s, theng is an ele-
ment of a discrete center subgroup!. The one-parameter sub
groupsg(t)5exp(2At) of G generate vector fieldsÃ on S.
As the transformationsg(t)•s leave v invariant the Lie-
derivativesLÃ have the propertyLÃv50, which—together
with dv50—impliesd( i Ãv)50, wherei X denotes interior
multiplication of an exterior form by a vector fieldX. The
last relation means thati Ãv is a closed one-form onS. The
corresponding vector fieldsÃ are called ‘‘locally Hamil-
tonian.’’ According to Poincare´’s lemma one has locally
i Ãv5d f , where f (s) is some function onS. If the first co-
homology groupH1(S;R) vanishes theni Ãv is exact and we
have a~globally defined! Hamiltonian vector field which—in
local canonical coordinates—has the form

Ã5Xf5
] f

]pi

]

]qi
2

] f

]qi

]

]pi
. ~19!

If the vector fieldX can be written as the commutator of tw
other vector fields,X5@X1 ,X2#, then, because ofi [X1 ,X2]v

5d( i X1
i X2

v), X is Hamiltonian. This is the case for sem
simple transformation groupsG.

~2! The relation~19! provides a map from smooth func
tions f (s) on S onto Hamiltonian vector fields onS, the
kernel of which are the constant real numbers. As the co
mutator@X1 ,X2# of two vector fields is again a vector field
the question is, which Hamiltonian vector field correspon
to the commutator. The answer is given by the Pois
bracket structure for functions onS: The Poisson bracket o
two functionsf i(s),i 51,2, is given by

$ f 1 , f 2%5v~Xf 1
,Xf 2

!52Xf 1
~ f 2!5

] f 1

]qi

] f 2

]pi
2

] f 1

]pi

] f 2

]qi

~20!

and we have

@Xf 1
,Xf 2

#52X$ f 1 , f 2% , ~21!

which means that there is an homomorphism

f→2Xf ~22!

from the Lie algebra of ‘‘observables’’f (s) onto the Lie
algebra of Hamiltonian vector fields onS with the ~constant!
real numbers as kernel.

~3! We now come to a crucial point of the quantizatio
procedure: We have—due to the~almost! effective action of
the transformation groupG onS—an isomorphism of the Lie
algebraL(G) into the Hamiltonian vector fields onS and a
homomorphism of the Lie algebra of observablesf onto the
Hamiltonian vector fields. What is needed, however, is
04402
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following: One wants an isomorphism between the Lie alg
braL(G)5$A% and the Poisson algebra of a preferred set
observablesPA(s) such that

Ã52XPA, $PA1,PA2%5P[A1 ,A2] . ~23!

Such an isomorphism—a so-called ‘‘momentum map’’—
not always possible, due to the fact that the constant fu
tions PS have vanishing Hamiltonian vector fields~Poisson
brackets!. If, however, the second cohomology grou
H2(L(G);R) vanishes, the momentum map does exist. T
is the case for semisimple Lie groups, such as SO↑(1,2).

If the second cohomology group is not trivial, one may
forced to look for appropriate central extensions of the ori
nal group, as in the case of the Heisenberg group, wh
represents a central extension of the abelian transla
group.

~4! Having established an isomorphism between the
algebraL(G) and a corresponding Poisson algebra of a s
tem $PA% of preferred observables onS, one then can quan
tize the classical system by using the irreducible unitary r
resentations of the transformation groupG where the self-
adjoint generatorsK(A) of the one-parameter subgroup
U@g(t)5exp(At)#5exp@2iK(A)# represent the correspondin
original classical observablesPA.

~5! As there may be different groups with symplecti
transitive, and effective action onS, one has to make a
choice which one to use. Here physical considerations co
into play: One wants a group such that the correspond
observablesPA(s) constitute basic functions onS so that all
physically interesting observables can be expressed by th
For additional discussions of these problems see Ref.@20#.

III. THE ACTION OF THE GROUP SO _
„1,2… ON S1ÃR¿

The local versions~3! and~13! of the symplectic formv
may belong to different global geometries and, according
to different ensuing quantum theories@16#. If we have the
usual phase spaceT* R.R2 then the ‘‘quantizing’’ group is
the Abelian translation group ofR2 enlarged by a centra
extension as described at the beginning of the preceding
tion.

If the phase space has the global formT* R15$(q,p);q
.0,pPR% the quantizing groupG is the affine group
G5$g(a,t); a,tPR; g(a2 ,t2)g(a1 ,t1)5g(a21e2t2a1 ,
et11t2)% with actiong(a,t)(q,p)5(etq,e2tp2a). The self-
adjoint generatorK(S) of the scale transformationsg(0, t)
here corresponds to the classical observableqp.

Closer ‘‘home’’ to our system~14! is the phase spac
T* S15$(w,p); wPR mod 2p, pPR% for which Isham
discusses in detail the three-parametric euclidean grouG
[E25$g(a1 ,a2 ,u);uPR mod 2p,a1 ,a2PR% of R2 with
the action g(a1 ,a2 ,u)•(w,p)5@(w1u) mod 2p, p
1a1 sin(w1u)2a2 cos(w1u)# as quantizing group. Details
can be found in Ref.@16#.

The phase space of the last example is still a cotang
bundle which is no longer so in our case~14!, where we have
p.0. In that case the orthochronous proper Lorentz gro
SO↑(1,2)—which leaves the quadratic form (x0)22(x1)2
6-4
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2(x2)2, x0.0, invariant—appears to be the appropria
quantizing group~see also Ref.@20#!: The cone (x0)2

2(x1)22(x2)250, x0.0, is diffeomorphic toR22$0%: put
x05p.0, x15p cosw, x25psinw.

In the following it is advantageous to employ the twofo
covering group SU(1,1) of SO↑(1,2) ~see Appendix A! the
elementsg0 of which are given by

g05S a b

b̄ ā
D , uau22ubu251, ~24!

whereā means the complex conjugate of the complex nu
ber a. If we define the matrix

X05S x0 x12 ix2

x11 ix2 x0 D , detX05~x0!22~x1!22~x2!2,

~25!

then the transformations xm→ x̂m, m50,1,2, under
SO↑(1,2) are implemented by

X0→X̂05g0X0g0
1 , detX̂05X0, ~26!

whereg0
1 denotes the hermitian conjugate of the matrixg0.

Applying a general transformationg0 to the matrix

S p pe2 iw

peiw p D ~27!

yields the mapping: (p,w)→( p̂,ŵ),

p̂5ua1eiwbu2p, ~28!

ei ŵ5
āeiw1b̄

a1eiwb
. ~29!

As

]ŵ

]w
5ua1eiwbu22 ~30!

we have

dŵ`dp̂5dw`dp, ~31!

that is, the transformations~28! and ~29! are symplectic.
One sees immediately thatg0 and2g0 lead to the same

transformations ofp andw. Thus, the group SU(1,1) acts o
S only almost effectively with kernelZ2 representing the
center of the twofold covering group of SO↑(1,2). It is well
known that the latter group acts effectively and transitiv
on the forward light cone and thus onS ~see also below!.

We next discuss the actions of the 1-parametric subgro
K0 , A0, and N0 forming the Iwasawa decompositio
SU(1,1)5K0•A0•N0, with the general element
04402
-

ps

k0a0n05S e2 iu/2 0

0 eiu/2D S cosh~ t/2! 2 i sinh~ t/2!

i sinh~ t/2! cosh~ t/2!
D

3S 12 i j/2 j/2

j/2 11 i j/2D , ~32!

whereuP(22p,12p#; t,jPR.
The actions of the subgroupsK0 ,A0 ,N0, respectively, are

the following ones:

K0 : p̂5p, ei ŵ5ei (w1u), ~33!

A0 : p̂5r~ t,w!p, r~ t,w!5cosht1sinht sinw,

cosŵ5cosw/r~ t,w!,

sinŵ5~cosht sinw1sinht !/r~ t,w!, ~34!

N0 : p̂5r~j,w!p, r~j,w!511j cosw1j2~12sinw!/2,

cosŵ5@cosw1j~12sinw!#/r~j,w!,

sinŵ5@sinw1j cosw1j2~12sinw!/2#/r~j,w!.
~35!

The groups~33! and ~34! act transitively onS: Any point
s15(w1 ,p1) may be transformed into any other points2
5(w2 ,p2) in the following way: first transform (w1 ,p1) into
(0,p1) by k0(u52w1), then map this point into@ŵ

5arctan(sinht̂), p2# by a0( t̂ ;cosht̂5p2 /p1) and finally trans-
form (ŵ,p2) by k0(u5w22ŵ) into s25(w2 ,p2). As K0 and
A0 combined act already transitively onS one might wonder
whether they alone are not sufficient for our purpose. Ho
ever, they do not form a two-dimensional subgroup
SU(1,1), onlyA0 andN0 do. The above transitivity proper
ties reflect the fact that any elementg0 of SU(1,1) may be
written ask0(u2)a0(t)k0(u1) ~see Appendix A!.

The transformation formulas~35! show that the groupN0
leaves the half-linew5p/2, p.0 invariant, that is,N0 is the
stability group of these points. This means that the symp
tic space ~14! is diffeomorphic to the coset spac
SU(1,1)/(Z23N0).SO↑(1,2)/N0. Notice thatN0, andA0 as
well, does not contain the second center element2e of
SU(1,1). The centerZ2 is a subgroup ofK0.

If we pass to the universal covering group SU(1,1)˜ of
SU(1,1) @or of SO↑(1,2)#, see Eq.~24!,

SU~1,1!̃5$g̃5~v,g!; v[arg~a!PR,

g5b/a, ugu,1)%, ~36!

~as to the group multiplication laws see Appendix A!, the
transformations~28! and ~29! take the form

p̂5r~ g̃,w!p, r~ g̃,w!5u11eiwgu2~12ugu2!21, ~37!
6-5
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ei ŵ5e22iv
eiw1ḡ

11eiwg
. ~38!

As ]ŵ/]w51/r(g̃,w), the equality~31! holds again.
With the elements of the group SU(1,1) given by t

restriction2p,v<1p, a5exp(iv)(12ugu2)21/2, b5ga,
the homomorphisms

h:SU~1,1!̃→SU~1,1!, ~39!

h0 :SU~1,1!→SO↑~1,2!, ~40!

have the kernels ker(h)52pZ, ker(h0)5Z2, respectively,
and the composite homomorphismh0+h has the kernelpZ.

As the spaceS, Eq. ~14!, is diffeomorphic toR22$0%
5C2$0%, its universal covering space is given byw
PR, pPR1 which is the infinitely sheeted Riemann surfa
of the logarithm. The transformations~37! and ~38! may be
interpreted as acting transitively and effectively on that u
versal covering space.

We would like to mention that one can define genu
effectiveactions of any covering group of SO↑(1,2) on S.
However, these actions violate the ‘‘strong generating p
ciple’’ of Isham @16# and are not adequate for a group the
retical quantization@20#.

The action of SO↑(1,2) onS may also be obtained as a li
of the respective subgroup of Diff(S1) to T* S1.S. This will
be discussed further in Ref.@20#, where it is also shown that
under certain conditions, the group SO↑(1,2) is unique as to
the required action onS.

IV. HAMILTONIAN VECTOR FIELDS INDUCED ON S
BY SU„1,1… TRANSFORMATIONS AND THE

CORRESPONDING CLASSICAL OBSERVABLES

For infinitesimal values of the parametersu,t,j the trans-
formations~33!–~35! take the form

K: dw5u, uuu!1, dp50, ~41!

A: dw5~cosw!t, dp5p~sinw!t, utu!1, ~42!

N: dw5~12sinw!j, dp5p~cosw!j, uju!1.
~43!

They induce onS the vector fields

ÃK52]w , ~44!

ÃA52cosw]w2p sinw]p , ~45!

ÃN5~sinw21!]w2p cosw]p . ~46!

It follows from the general considerations of the preced
section and it is easy to check that their Lie algebra is i
morphic to the Lie algebra of SO↑(1,2) ~see Appendix A!
~and all its covering groups, of course!. A general element is
the linear combination
04402
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Ã~lK ,lA ,lN!5lKÃK1lAÃA1lNÃN

52~lAp sinw1lNp cosw!]p

2@lK1lA cosw1lN~12sinw!#]w .

~47!

One sees immediately that this vector field can be identi
with the Hamiltonian vector field

2Xf5
] f

]w
]p2

] f

]p
]w , ~48!

f ~w,p!5lKp1lAp cosw1lNp~12sinw!. ~49!

If we replace the Lie algebra elementl N by l B5 l N2 l K ~see
Appendix A!, then the observablef becomes

f ~w,p!5lKp1lAp cosw2lBp sinw, ~50!

and we see that the associated three basic classical ob
ables are

PK5p, PA5p cosw, PB52p sinw. ~51!

As any smooth functionh(w,p) periodic in w with period
2p can, under certain conditions, be expanded in a Fou
series and as sin(nw) and cos(nw) can be expressed as poly
nomials ofnth order in sinw and cosw, the observables~51!
are indeed basic ones onS. Actually they are just the Carte
sian coordinates ofR22$0% we started with, see Eq.~27!.

V. QUANTUM SPECTRUM OF THE AREA OPERATOR
AND ASSOCIATED HILBERT SPACES

We now come to the quantization of the classical syst
we have been discussing. It consists in replacing each of
three basic observables~51! by the self-adjoint generato
K( l ) of the unitary operator Ul(t)5exp@2iK(l)t# „or
exp@iK(l)t#…, representing any of the associated on
parameter subgroups exp(lt), lPLSO↑(1,2), in an appropriate
irreducible unitary representation of SO↑(1,2) or its covering
groups: Thus, the observablep is to be replaced by the self
adjoint generatorK3[K( l K) of the unitary operatorU(u)
5exp(2iK3u) representing the compact subgroupK
5$exp(lK u)% and the observablesp cosw and2p sinw are to
be replaced by the corresponding self-adjoint generatorsK1
andK2 of the unitary operatorsU(t1) andU(t2) represent-
ing the ~‘‘boost’’ ! subgroupsA andB.

In this section we mainly use the known properties of t
irreducible unitary representations of SO↑(1,2) and
SO↑(1,2)̃. More details and references to the literature a
contained in Appendix A. We first put\51 and restore it
explicitly later.

BecauseK3 is associated with a compact subgroup,
spectrum is discrete in all irreducible unitary representati
of SO↑(1,2) or its covering groups. However, not all irredu
ible unitary representations are suitable for our purposes,
causep̂5K3 corresponds to a classical area, Eq.~12!, which
is positive. Thus, we are interested in those irreducible r
6-6
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resentations for which the spectrum ofK3 is positive. This is
the case for the so-called ‘‘positive discrete series’’ of ir
ducible unitary representations. These representations
characterized by the valuek(12k) of the associated Casim
operator Q5K1

21K2
22K3

2, where k can take the values
1,2, . . . , for a‘‘true’’ representation of SO↑(1,2), butk can
be any positive real number.0 for the corresponding rep

resentations of the universal covering group SO↑(1,2)̃. For
the groups SU(1,1).SL(2,R) the numberk can take the
values 1/2,1,3/2,2, . . . . In all cases the operatorp̂5K3 has
the spectrum

spec~ p̂[K3!5$k1n,nPN0%. ~52!

For the representations of the universal covering gro
k mod1 represents the so-called ‘‘u parameter’’ which oc-
curs in other unitary representations involving the infinite
sheeted compact group SO(2)@16,21#. For a more genera
setting of that parameter in connection with multiply co
nected symplectic manifolds see again Ref.@16#.

As only SO↑(1,2) acts effectively on the symplectic spa
S of Eq. ~14!, theu parameter comes into play merely if w
allow for almost effective group actions by the univers
covering group. Whether one has to do so or not, finally
to be decided by physical considerations. We next com
the discussion of concrete Hilbert spaces on which the
eratorsKi , i 51,2,3, act as self-adjoint operators and whe
K3 has one of the spectra~52!.

A. Hilbert space of holomorphic functions
inside the unit discD

Probably the most important Hilbert space is the~Barg-
mann! Hilbert spaceHD,k of holomorphic functions in the
unit discD5$z5x1 iy ,uzu,1% with the scalar product

~ f ,g!D,k5
2k21

p E
D

f̄ ~z!g~z!~12uzu2!2k22dxdy. ~53!

It can be used for any realk.1/2 and also in the limiting
casek→1/2. As

~zn1,zn2!D,k5
G~2k!G~n111!

G~2k1n1!
dn1n2

, ~54!

and since any holomorphic function inD can be expanded in
powers ofz the functions

ek,n~z!5A G~2k1n!

G~2k!G~n11!
zn, nPN0 , ~55!

form an orthonormal basis ofHD,k . The operatorsKi here
have the explicit forms

K35k1z
d

dz
, ~56!

K1[K11 iK 252kz1z2
d

dz
, ~57!
04402
-
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K2[K12 iK 25
d

dz
. ~58!

The basis functions~55! are the eigenfunctions ofK3 with
eigenvaluesk1n, the operatorsK1 and K2 being raising
and lowering operators:

K3ek,n5~k1n!ek,n , ~59!

K1ek,n5@~2k1n!~n11!#1/2ek,n11 , ~60!

K2ek,n5@~2k1n21!n#1/2ek,n21 . ~61!

The formulas~1! and ~9! suggest to associate them with th
irreducible representationk51, that is with scalar produc
and eigenfunctions

~ f ,g!5
1

pED
dxdy f̄~z!g~z!, e1,n5An11zn, nPN0 .

~62!

If we have onD the holomorphic functions

f ~z!5 (
n50

`

anzn, g~z!5 (
n50

`

bnzn, ~63!

then, according to Eq.~54!, their scalar product (f ,g)D,k is
given by

~ f ,g!D,k5 (
n50

`
G~2k!G~n11!

G~2k1n!
ānbn . ~64!

This series can be used as a scalar product to extend
definition of the Hilbert spacesHD,k to all realk.0.

B. The Hardy space of the unit circle

For the special casek51/2 the coefficient in front ofānbn
in Eq. ~64! has the value 1. This allows for a reinterpretati
of the Hilbert spaceHD,1/2: Consider theL2-space on the unit
circle with the scalar product

~c1 ,c2!5
1

2pE0

2p

dfc̄1~f!c2~f!, ~65!

an orthonormal basis of which is given by the functio
exp(inf), nPZ.

That subspace of functionsh(f)PL2 which have only
‘‘positive’’ Fourier coefficients,an50, n,0, is called the
‘‘Hardy spaceH1

2 of the unit circle,’’ and the correspondin
scalar product is denoted by (h1 ,h2)1 . It has the orthonor-
mal basis exp(inf), nPN0.

Hardy spaces@22–24# have a number of interesting prop
erties and are closely related to Hilbert spaces of holom
phic functions@22–25#. If we have the two Fourier serie
PH1

2

h1~f!5 (
n50

`

aneinf, h2~f!5 (
n50

`

bneinf, ~66!
6-7
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they have the scalar product

~h1 ,h2!15
1

2pE0

2p

dfh̄1~f!h2~f!5 (
n50

`

ānbn . ~67!

Thus we may realize the Hilbert spaceHD,1/2 by using the
Hardy spaceH1

2 .

C. Unitary representations on Hardy space related Hilbert
spaces

What is the relation of the other spacesHD,k to the Hardy
spaceH1

2 ? The answer is somewhat subtle@26,27,57#: De-
fine the self-adjoint operatorAk in H1

2 which is diagonal in
the basis$exp(inf)% of H1

2 and which acts on it as

Ake
inf5

G~2k!G~n11!

G~2k1n!
einf. ~68!

Then define anH1
2 related Hilbert spaceHAk

2 with the scalar

product

~h1 ,h2!k5~h1 ,Akh2!5 (
n50

`
G~2k!G~n11!

G~2k1n!
ānbn ~69!

for the functions~66!. The series~69! representing the scala
product ofHAk

2 is obviously the same as the series~64! which

represents the scalar product forHD,k . This exhibits the very
close relationship between the two Hilbert spaces. The m
ematical background for this is that holomorphic functio
inside the unit discD have holomorphic limits on]D5S1

~for mathematical details see the Refs.@22–24#!.
An orthonormal basis forHAk

2 is given by

xk,n~f!5A G~2k1n!

G~2k!G~n11!
ei (k1n)f, nPN0 , ~70!

~xk,n1
,xk,n2

!k5dn1n2
,

where we have included an overall phase factor exp(ikf).
With respect to this basis the operatorsK3 ,K1 ,K2 have

the form

K35
1

i
]f , K15eif~ ik1]f!, K25e2 if~ ik2]f!.

~71!

Their action on the basis functions~70! is given by

K3xk,n5~k1n!xk,n , ~72!

K1xk,n5 i @~2k1n!~n11!#1/2xk,n11 , ~73!

K2xk,n5
1

i
@~2k1n21!n!] 1/2xk,n21 . ~74!

It is important to realize that the operatorsK3 ,K1 ,K2 be-
long to a representation which is unitary only with respec
the scalar product~69!, not with respect to the scalar produ
04402
h-

o

~67!! This may be seen explicitly as follows: Applying th
operatorsK1 andK2 from Eq. ~71! to the series

f 1~f!5 (
m50

`

am xk,m~f!, f 2~f!5 (
n50

`

bnxk,n~f!,

~75!

using the relations~73! and~74! and the orthonormality~70!
yields

~ f 2 ,K1 f 1!k5 (
n50

`

i @~2k1n!~n11!#1/2b̄n11an

5~K2 f 2 , f 1!k , ~76!

which says thatK2 is the adjoint operator ofK1 with re-
spect to the scalar product~69!. But one sees immediatel
that this is not so with respect to the scalar product~67!.

Furthermore, the multiplication operator exp(if) is not a
unitary operator onH1

2 , because its inverse does not alwa
exist: for instance, the constant functionf 51 is an element
of H1

2 , but exp(2if)•15exp(2if) is not. Such isometric
operators are called ‘‘shift operators’’ and their propert
have been investigated systematically by the mathematic
@28,22–24#.

The question is, whether there are irreducible unitary r
resentations of the positive discrete series of SO↑(1,2) or its
covering groups on the Hardy spaceH1

2 itself? Sally has
shown@51#, by a detour, that there are such representati
on H1

2 and that they are unitarily equivalent to the on
above. We shall briefly indicate how this works, because
the way we learn about other interesting Hilbert spaces
which some of the above irreducible representations are
alized.

D. Unitary representations in the Hilbert space
of holomorphic functions on the upper half plane

The unit discD and its associated Hilbert space with th
scalar product~53! is especially suited for the construction o
unitary representations of SU(1,1) because that group
transitively on D ~see Appendix A!. Similarly, the group
SL(2,R), which is isomorphic to SU(1,1), see Appendix A
acts transitively on the upper complex half planeC1 i5$w
5u1 iv, v.0%. The mapping

w5
12 iz

z2 i
5

2x1~12x22y2!i

x21~y21!2
, ~77!

z5
iw11

w1 i
, uzu25

u21~v21!2

u21~v11!2
, ~78!

provides a holomorphic diffeomeorphism fromD onto C1 i

and back. Because of

dudv

4v2
5

dxdy

~12uzu2!2
, 12uzu25

22v

~w1 i !~w̄2 i !
, ~79!
6-8
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we have fork51/2,1,3/2, 2, . . . , thefollowing isomorphism:

~ f ,g!D,k5~ f̃ ,g̃!C1 i ,k5
1

G~2k21!
E

C1 i
f̃ g̃v2k22dudv,

~80!

where

Ek : f̃ ~w!5AG~2k!

p
22k21~w1 i !22kf S z5

11 iw

i 1w D ,

~81!

Ek
21 : f ~z!52A p

G~2k!
~z2 i !22k f̃ S w5

12 iz

z2 i D . ~82!

The ~unitary! transformationEk maps the basis~55! of HD,k
onto the basis

ẽk,n~w!5AG~2k1n!

pG~n11!
22k21i n~w2 i !n~w1 i !22k2n,

nPN0 , ~83!

of HC1 i ,k . One can, of course, discard the phase factori n.
On this Hilbert space the irreducible unitary represen

tions Tk
1 of the positive discrete series of SL(2,R) are given

by

@T1~g1 ,k! f̃ #~w!5~a12w1a22!
22k f̃ S a11w1a21

a12w1a22
D ,

~84!

g15S a11 a12

a21 a22
D PSL~2,R!, ~85!

which is defined fork51/2,1,3/2, 2, . . . , only. The sub-
groups

K1 : k15S cos~u/2! sin~u/2!

2sin~u/2! cos~u/2!
D , ~86!

A1 : a15S et1/2 0

0 e2t1/2D , ~87!

B1 : b15S cosh~ t2/2! sinh~ t2/2!

sinh~ t2/2! cosh~ t2/2!
D ~88!

are associated with the following generators of their unit
representations~we choose the sign ofK̃3 such that its spec
trum is positive!:

K̃35
1

i S kw1
1

2
~w211!

d

dwD , ~89!

K̃656k~w7 i !6
1

2
~w7 i !2

d

dw
. ~90!

Their action on the basis~83! is given by
04402
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K̃3ẽk,n5~k1n!ẽk,n , ~91!

K̃1ẽk,n5 i @~2k1n!~n11!#1/2ẽk,n11 , ~92!

K̃2ẽk,n5
1

i
@~2k1n21!n!] 1/2ẽk,n21 . ~93!

For the limiting casek→1/2 the Hilbert space with the scala
product~80! now can be replaced by the ‘‘Hardy spaceH1 i

2

of the upper half plane’’@22–24#, the elements of which are
the functionsf̃ (u) which are limits for Im(w)5v→0 of the
previous holomorphic functionsf̃ (w) on the upper half plane
and the Hilbert space of which has the scalar product

~ f̃ 1 , f̃ 2!1 i5E
2`

`

duf̃ 1~u! f̃ 2~u!. ~94!

E. Hilbert space of the Fourier transformed holomorphic
functions on the upper half plane

We now pass to still another Hilbert spaceĤC1 i ,k by the
Fourier transform

F: f̂ ~ t !5
1

A2p
E

2`

`

f̃ ~w!e2 i twdu, f̃ ~w!PHC1 i ,k , tPR.

~95!

Because of the analyticity properties off̃ one has@29#

]v f̂ (t)50 andf̂ (t)50 for t,0 and the inversion is given by

F 21: f̃ ~w!5
1

A2p
E

0

`

f̂ ~ t !eiwtdt. ~96!

The scalar product induced onĤC1 i ,k is

~ f̃ ,g̃!k5~ f̂ ,ĝ!k5
1

22k21E0

`

f̂ ~ t !ĝ~ t !t122kdt. ~97!

The Fourier transform~95! maps the basis~83! of HC1 i ,k
onto the basis@30#

êk,n~ t !5 i n22kA2G~n11!

G~2k1n!
~2t !2k21e2tLn

2k21~2t !

~98!

of ĤC1 i ,k . Here Ln
2k21 are Laguerre’s polynomials which

obey the equation@31#

xLn
2k2191~2k2x!Ln

2k2181nLn
2k2150. ~99!

Using the inverse Fourier transform~96! the operatorK̃3 can
be seen to take now the form

K̂352
1

2

d2

dt2
t1k

d

dt
1

t

2
, ~100!
6-9
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of which the basis functions~98! are eigenfunctions with
eigenvaluek1n. It is important that onĤC1 i ,k the parameter
k can take any value.0, contrary toHC1 i ,k wherek can take
only the values 1/2,1,3/2, 2, . . . .

F. Unitary representations on the Hilbert spaceL 2
„R¿,dt…

The measuredt/(2t)2k21 in the scalar product~97! and
the form of the eigenfunctions~98! strongly suggest to intro
duce the unitary mapping

Vk : f̂ ~ t !→ f̌ ~ t !5 f̂ ~ t !~2t !1/22k ~101!

of L2@R1,(2t)122kdt# onto Ĥ1,k , the standard Hilbert
spaceL2(R1,dt) on the positive real line with the standa
orthonormal basis

f k,n~ t !5A2G~n11!

G~2k1n!
~2t !k21/2e2tLn

2k21~2t !5 i 2k2něk,n~ t !.

~102!

The operatorǨ3 here has the form

Ǩ352
1

2 S t
d2

dt2
1

d

dtD 1
1

2
t1

~2k21!2

8t
, ~103!

with the property

Ǩ3f k,n~ t !5~k1n! f k,n~ t !. ~104!

G. Relationship to the radial wave functions
of the hydrogen atom

If we define f k,n5t1/2hk,n(t), then the eigenvalue equa
tion ~104! can be rewritten as

2
1

2 S hk,n9 1
2

t
hk,n8 ~ t ! D1S k~k21!

2t2
2

k1n

t D hk,n~ t !

52
1

2
hk,n~ t !. ~105!

This is just the radial Schro¨dinger equation for the hydroge
atom in three space dimensions with massm51, angular
momentumk5 l 11, fine structure constanta5k1n and
bound state energyEl , nr

521/2. As

El ,nr
52

1

2

a2

~ l 1nr11!2
~106!

for the energy levels of the hydrogen atom, we see that
quantum numbern here is to be identified with the radia
quantum numbernr50,1, . . . .

Thus, for k51,2, . . . , we have related the quantum
theory of the Schwarzschild black hole to that of the hyd
gen atom with varying fine structure constant. The irred
ible representation withk51 corresponds to the s-wav
04402
ur
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bound states of the hydrogen atom. As in the gravitatio
casea}M2, we see that we are consistent here with t
relation ~2!.

H. Unitary representations on the Hardy spaces of the upper
half plane and the unit circle

Next we give the form of the eigenfunctions ofK3 in the
Hardy spacesH1 i

2 andH1
2 with the scalar products~94! and

~67!, respectively. We have to apply the inverse Four
transformation~96! to the functionsf̌ k,n(t) with real w5u
and in this context use the relations@32#

E
0

`

e2pttk21/2Ln
2k21~ t !dt

5
G~2k1n!G~k11/2!

G~n11!G~2k!
p2k21/2FS 2n,k1

1

2
;2k;

1

pD
~107!

5
G~k1n11/2!

G~n11!
~p21!np2n2k21/2 ~108!

3FS 2n,k2
1

2
;
1

2
2k2n;

p

p21D ,

p5
1

2
~12 iu !,

where

F~a,b;c;z!

511
ab

c
z1

a~a11!b~b11!

c~c11!

z2

2!
1•••

1
a~a11!•••~a1n21!b~b11!•••~b1n21!

c~c11!•••~c1n21!

3
zn

n!
••• ~109!

is the hypergeometric series@33# which here is a polynomia
of degreen becausea52n. Since@34#

GS k1
1

2D5
ApG~2k!

22k21G~k!
, ~110!

we get the orthonormal system of eigenfunctionsf̃ k,n(u) of
K3 on H1 i

2 :

f̃ k,n~u!522k11/2AG~2k1n!

G~n11!

G~2k!

G~k!
~12 iu !2k21/2

3FS 2n,k1
1

2
;2k;

2

12 iu D , ~111!
6-10
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~12 iu !k5~11u2!k/2eikf,2
p

2
,f52arctan~u!,1

p

2
.

This set of orthonormal functions onH1 i
2 5L2(R,du) can be

interpreted in the framework of orthogonal polynomials@35#
in the following manner. For anyk.0 define the weight
function

w̃k~u!5
G2~2k!

22k21G2~k!
~11u2!k21/2 ~112!

and the polynomials of degreen:

b̃k,n~u!5AG~2k1n

G~n11!
FS 2n,k1

1

2
;2k;

2

12 iu D .

~113!

Then the scalar product~94! may written as

~ f̃ k,n1
, f̃ k,n2

!1 i5E
2`

`

duw̃k~u!b̃k,n1
~u!b̃k,n2

~u!5dn1n2
.

~114!

The operatorK3 now is no longer a pure differential opera
tor, but due to the term}t21 in Eq. ~103!, an integrodiffer-
ential operator onH1 i

2 .
In order to get the eigenfunctionsf k,n(f) of K3 in H1

2 on
the unit circle we have to follow up the inverse Fourier tran
formation~108! from above by the mapping—see Eq.~82!—

E1/2
21 : f ~z!52Ap~z2 i !21 f̃ S w5u5

12 iz

z2 i D , uzu51.

~115!

Observing thatp/(p21)521/(iz) and using the relations
@33#

z2aFS a,a2c11;a2b11;
1

zD5F~a,b;c;z! ~116!

and Eq.~108!, we then finally get fork>1/2

f k,n~f!5gk,n~12eif!k21/2FS 2n,k1
1

2
;
3

2
2k2n;eifD ,

~117!

gk,n5 i
G~n1k11/2!

AG~n11!G~2k1n!
,

where we have put2 iz5exp(if) becauseuzu51.
We now may proceed as before. As

~12eif!~12e2 if!52~12cosf!54 sin2~f/2!

we may define the weight

wk~f!522k21 sin2k21~f/2! ~118!

and the orthogonal polynomials
04402
-

bk,n~f!5gk,nFS 2n,k1
1

2
;
3

2
2k2n;eifD ~119!

for all k.0 and can then write the scalar product~67! as

~ f k,n1
, f k,n2

!15
1

2pE0

2p

dfwk~f!b̄k,n1
~f!bk,n2

~f!5dn1n2
.

~120!

We repeat the basic difference between the eigenfunct
~70! and ~117! of the self-adjoint generatorK3 of the corre-
sponding unitary representations of the compact subgrou
SO↑(1,2) both sets of which belong to the same vector spa
The set~70! belongs to the representations which are unit
with respect to the scalar product~69! whereas the set~117!
is associated with the scalar product~67!. Both representa-
tions are unitarily equivalent: this follows from the sequen
of mappings we have been using and which are all unita

I. Other unitary representations on the Hardy space
H¿

2 of the unit circle

One can implement the constituting relations~A60!–
~A62! for a unitary representation on the Hardy spaceH1

2

with the scalar product~67! and the basis exp(inf),nPN0, by
chosing for the ‘‘ladder’’ operatorsK6 ‘‘nonlocal’’ expres-
sions@20#

K̆35k1
1

i

d

df
, ~121!

K̆15eifF S 2k1
1

i

d

df D S 11
1

i

d

df D G1/2

, K̆25~K̆1!1,

~122!

because

K̆1einf5@~2k1n!~n11!#1/2ei (n11)f. ~123!

J. Unitary representations in the state space
of two harmonic oscillators

Finally we mention that all irreducible unitary represen
tions of the positive discrete series of SU(1,1) withk
51/2,1,3/2, 2, . . . , arecontained in the tensor product of th
Hilbert spaces of two harmonic oscillators@36–38#, gener-
ated by creation and annihilation operators

@ai ,aj
1#5d i j , @ai ,aj #50, @ai

1 ,aj
1#50, i , j 51,2.

~124!

The operators

K35
1

2
~a1

1a11a2
1a211!, K15a1

1a2
1 , K25a1a2

~125!

obey the commutation relations

@K3 ,K1#5K1 , @K3 ,K2#52K2 , @K1 ,K2#522K3
~126!
6-11
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of the Lie algebra of SO↑(1,2) and its covering groups. Th
‘‘ground state’’ uk;0& is defined by the property

aj uk;0&50, j 51,2, ~127!

and the other normalized states by

uk;n1 ,n2&5
1

An1!n2!
~a2

1!n2~a1
1!n1uk;0&, njPN0 .

~128!

Notice that K3 is just half the sum of the two Hamilton
operatorsH j5(aj

1aj11/2), j 51,2, of the two harmonic
oscillators.

The relation between the number pair (n1 ,n2) and the
pair (k,n),nPN0, characterizing a state in an irreducible re
resentation is obtained as follows. First we have

K3uk;n1 ,n2&5
1

2
~n11n211!uk;n1 ,n2&5~k1n!uk;n1 ,n2&

~129!

and second we have for the Casimir operatorQ5K1
21K2

2

2K3
25K1K21K3(12K3):

Quk;n1 ,n2&5H n1n21
1

4
~11n11n2!~12n12n2!J

3uk;n1 ,n2&

5k~12k!uk;n1 ,n2&. ~130!

Thus we have the two relations

k5
1

2
1

1

2
un12n2u;

n5
1

2
~n11n2!2

1

2
un12n2u5min$n1 ,n2%. ~131!

They show that in this construction only representations w
half integer or integer positivek are realizable and that th
relations~131! are symmetric inn1 andn2. The latter prop-
erty means that, except fork51/2 wheren15n2, each irre-
ducible representation with fixedk occurs twice in the tenso
product H 1

osc
^ H 2

osc @becausen12n256(2k21)# of the
harmonic oscillator Hilbert spacesH j

osc, j 51,2, realized,
e.g., by the orthogonal Hermite functions onL2(R,dx). For
k51 we have the two possibilitiesen1

(x1) ^ en111(x2) or

en1
(x1) ^ en121(x2), where en1

(x1)PH 1
osc and en2

(x2)

PH 2
osc.

K. Reintroducing Planck’s constant

Up to now we have set\51. We restore it explicitly in
the same way as in the case of the rotation group: We
multiply each operatorK j by \. This corresponds to the fac
that the operatorp̂5K3 is canonically conjugate to the d
mensionless angle variablew. According to Eq.~12! the
quantization of the horizon area is then given by
04402
-
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AD22~k;n!5~k1n!aD22 , aD225
32p2

g~D23!
l P,D
D22 .

~132!

VI. CONCLUSIONS

Our above results show that the original ansatz of Ref.@7#
to associate the Bekenstein spectrum~1! or ~2! with a f inite
time intervalD}RS(M ) which precedes the collaps of th
Schwarzschild system to a black hole can be put on m
solid grounds: Implementing the finite time interval b
M-dependent periodic boundary conditions leads to a ph
space with symplectic formdw`dp which is globally dif-
feomorphic toS13R1. Such a phase space can be quantiz
group theoretically by means of the group SO↑(1,2) ~or its
covering groups!.

The main advantage of this approach is that it provide
Hilbert space and the basic self-adjoint operators for qu
tized Schwarzschild black holes. The crucial point is that
classical variablep is proportional to the areaAD22 of the
black hole horizon in any space-time dimensionD>4 and
that the self-adjoint operatorp̂ has a discrete spectrum in an
irreducible unitary representation of SO↑(1,2). As we want
the spectrum to be positive—because the areaA is a positive
quantity—only the positive discrete series among the ir
ducible unitary representations has the required propertie
provides the spectrum

AD22~k;n!}k1n, nPN0 . ~133!

Here the numberk.0 mathematically characterizes the re
resentation and physically the ‘‘remnant’’ area of the grou
state. As the energy of thenth level is given by—see Eq
~10!—

Ek;n5aD~k1n!(D23)/(D22)EP,D , nPN0 , ~134!

the numberk determines the ground state energy such as
number 1/2 in the case of the harmonic oscillator. The va
of k depends on the representation to be employed: For
‘‘true’’ representations of SO↑(1,2) themselvesk can take
only the values 1,2, . . . ~corresponding to thes-, p-, etc.,
states of the hydrogen atom!. For the twofold covering
groups SU(1,1) or SL(2,R) k may assume the valuesk
51/2,1,3/2, 2, . . . and for the universal covering group

SO↑(1,2)̃ k can be any real positive number. Physical arg
ments will have to select the right value. Ifk51 the ground
state area quanta have the same value as those of the ex
levels which would leave us with only one kind of are
quanta, but this must not be so, as can be seen from
harmonic oscillator where the energy of the ground state
just half of the basic energy quantum\v.

In Ref. @20# arguments will be presented which sugge
that the possible values ofk should be restricted to the inter
val (0,1#. As to the physics we see the following pictu
emerging: Thearea of the quantized Schwarzschild blac
hole is built up additively and equidistantly from basic
quanta whereas theenergy~134! behaves differently: the en
6-12
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ergy of thenth level may be interpreted@15,13,6# as the
surface energy of a ‘‘bubble’’ ofn area quanta.

It is an interesting and supporting result that the eigenv
ues of the area operator in the spherically symmetric se
of loop quantum gravity~without matter! in 311 space-time
dimensions for largen are proportional ton, too @39#. As to
the degeneracies of the states one sees immediately from
formulas above that the eigenstatesek,n , etc., are not degen
erate in an irreducible representation.

One might think about passing to reducible represen
tions, e.g., in terms of Fock spaces constructed from ‘‘o
particle’’ wave functions discussed above~second quantiza
tion!. The operator K3 then becomes a sum of th
corresponding ‘‘irreducible’’K3. The degeneracies of the a
sociated eigenvalues are then given by the possible partit
of a positive numbern into smaller ones. For largen this
yields @40# dn;gAn, g.1, in contrast togn required to yield
the correct Bekenstein-Hawking entropy@see Eq.~133!#.

Yet one gets the desired thermodynamics, if, as one o
has proposed@6#, each area quantum is assigned two degr
of freedom corresponding to the two possible orientations
a ~classical! sphere. The energy spectrum~134! together with
the degeneracy 2n of the nth level then lead@13,6# to the
Hawking temperature and the Bekenstein-Hawking entr
of a Schwarzschild black hole. Thus, altogether a quite
herent picture of the quantum theory of Schwarzschild bl
holes and their thermodynamics emerges.

The groups SO↑(1,2), SL(2,R), etc., and their Lie alge-
bra have been playing a number of roles in the contex
recent attempts to quantize black holes. Hollmann@41# has
analyzed the quantum theory of Schwarzschild~Taub-NUT!
black holes in terms of the coset space SL(2,R)/SO(2)
which yields a continuous spectrum, whereas we use
coset space SL(2,R)/N, whereN is the nilpotent group from
an Iwasawa decomposition.

The group SL(2,R) and its Lie algebra have a promina
role also in recent discussions of black holes in (D52)- and
(D53)-dimensional models of quantum gravity, especia
anti–de Sitter spaces AdS2 and AdS3 ~see Refs.@42–44# and
the literature quoted there!. In the three-dimensional case th
Lie algebraLSL(2,R) plays an essential role as the bas
subalgebra of the associated Virasoro algebras@45,46#. At
the moment it is an open question whether and how th
approaches are related to ours above. See also the intere
application of the group SL(2,R) to black holes by Gibbons
and Townsend@47#.

Note added. After our paper was submitted as an e-pr
we became aware of an earlier group theoretical quantiza
of the symplectic manifoldS13R1 in terms of the group
SO↑(1,2) by R. Loll @48# in a different context.
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APPENDIX A: PROPERTIES OF THE GROUP SO _
„1,2…,

OF SOME OF ITS COVERING GROUPS AND
THEIR IRREDUCIBLE UNITARY REPRESENTATIONS

OF THE POSITIVE DISCRETE SERIES

The purpose of the present appendix is to summarize
main properties of the group SO↑(1,2) which are important
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for our discussion above, where this group, its cover
groups, its Lie algebra and its irreducible unitary represen
tions, especially those of the positive discrete series, h
been employed as the quantizing framework for Schwa
child black holes. Practically all of this appendix is contain
in a wealth of literature about this group which is the mo
elementary of noncompact semisimple Lie groups. Poten
readers of this paper, however, will find it convenient to ha
the required properties assembled in one unit.

The essential classical paper on the group SO↑(1,2) and
its irreducible unitary repesentations is~still! that of Barg-
mann @49#. In the meantime there are a number of mon
graphs which deal with the group SO↑(1,2), its covering
groups and their representations@50–57,38#. As these text-
books contain many references to the original literature
mention only the most essential ones for our purposes.

1. The group and some of its covering groups

In order to see the homomorphism between SO↑(1,2) and
its mutually isomorphic twofold covering group
SU(1,1),SL(2,R) and the symplectic groupSp(1,R) in two
dimensions it is convenient to start from the action of t
group SL(2,C)—the twofold covering group of the prope
orthochronous Lorentz group SL↑(1,3)—on Minkowski
space M4 with the scalar productx•x5(x0)22(x1)2

2(x2)22(x3)2. Define the Hermitean matrix

X5S x01x3 x12 ix2

x11 ix2 x02x3 D ,

detX5~x0!22~x1!22~x2!22~x3!2. ~A1!

If CPSL(2,C), detC51, then

X→X̂5C•X•C1, detX̂5detX, ~A2!

induces a proper orthochronous Lorentz transformation
M4. HereC1 means the Hermitean conjugate of the mat
C.

Subgroups SO↑(1,2) may be obtained by looking fo
those transformations~A2! which leave one of the coordi
natesxj , j 51, 2, or 3 fixed. The transformations with th
property

C S 1 0

0 21DC15S 1 0

0 21D ~A3!

leave the coordinatesx3 invariant and represent the subgrou
SU(1,1)5$g0%,SL(2,C):

g05S a b

b̄ ā
D , uau22ubu251. ~A4!

ā: complex conjugate ofa. If we let g0 act on a two-
dimensional complex vector space, then

g0S z1

z2
D 5S ẑ1

ẑ2
D , uẑ1u22uẑ2u25uz1u22uz2u2. ~A5!
6-13
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If now uz2u.uz1u andz5z1 /z2 then SU(1,1) maps the inte
rior D5$z;uzu,1% of the unit disc in the complexz plane
~transitively! onto itself:

z→ ẑ5
az1b

b̄z1ā
. ~A6!

If we write a5a11 ia2 ,b5b11 ib2, then uau22ubu25a1
2

1a2
22b1

22b2
251. This means that the group manifold

SU(1,1) is homeomorphic to the three-dimensional anti–
Sitter space@58# AdS3.

The subgroup of SL(2,C) with the property

CS 0 2 i

i 0 DC15S 0 2 i

i 0 D ~A7!

leaves the coordinatesx2 invariant. It constitutes the grou
SL(2,R):

C5g15S a11 a12

a21 a22
D , ajkPR, detg151. ~A8!

As

g1S 0 1

21 0D g1
T5S 0 1

21 0D , ~A9!

the group SL(2,R) is identical with the real symplectic grou
Sp(1,R) in 2 dimensions.

The unitary matrix

C05
1

A2
S 1 2 i

2 i 1 D , detC051, C0
215

1

A2
S 1 i

i 1D 5C0
1

~A10!

has the property

C0S 0 2 i

i 0 DC0
215S 1 0

0 21D ~A11!

and therefore implements an isomorphism between SU(
and SL(2,R):

C0•g0•C0
215g1 . ~A12!

It is obvious that the isomorphic groups SU(1,1), SL(2,R),
andSp(1,R) are twofold covering groups of SO↑(1,2).

The group SL(2,R) maps the complex upper half plan
C1 i5$z5x1 iy , y.0% transitively onto itself:

z→ ẑ5
a11z1a12

a21z1a22
, Im~ ẑ!5

y

~a221a21x!21a21
2 y2

.

~A13!

Of special interest for our purposes is the~unique! Iwasawa
decomposition@59,56# of the groupsG1[SL(2,R) and G0
[SU(1,1): G1[K1•A1•N1 , G05K0•A0•N0, whereK is
04402
e

1)

the maximal compact subgroup, A a maximally abelian non-
compact subgroup andN a nilpotent group. ForG1 this de-
composition is

K1: k15S cos~u/2! sin~u/2!

2sin~u/2! cos~u/2!
D , uP~22p,12p#,

~A14!

A1: a15S et/2 0

0 e2t/2D , tPR, ~A15!

N1: n15S 1 j

0 1D , jPR. ~A16!

Each element g1 has a unique decompositiong1
5k1•a1•n1. The isomorphism~12! gives the corresponding
decomposition ofG0:

K0: k05S e2 iu/2 0

0 eiu/2D , uP~22p,12p#,

~A17!

A0: a05S cosh~ t/2! 2 i sinh~ t/2!

i sinh~ t/2! cosh~ t/2!
D , tPR,

~A18!

N0: n05S 12 i j/2 j/2

j/2 11 i j/2D , jPR.

~A19!

In addition to the above subgroups the following two on
are of interest to us:

B1: b15S cosh~s/2! sinh~s/2!

sinh~s/2! cosh~s/2!
D , sPR, ~A20!

B0: b05C0
21

•b1•C05S cosh~s/2! sinh~s/2!

sinh~s/2! cosh~s/2!
D ,

~A21!

N̄1: n̄15S 1 0

j 1D , jPR, ~A22!

N̄0: n̄05S 11 i j/2 j/2

j/2 12 i j/2D . ~A23!

Two more decompositions of SL(2,R) or SU(1,1) are impor-
tant for the construction of their unitary representations.

Cartan~or ‘‘polar’’ ! decomposition@59,56#: Each element
of SL(2,R) can be written as

g15k~u2!a1~ t !k~u1!, ~A24!

wherea1(t) is determined uniquely andk(u1),k(u2) up to a
relative sign, that is up to the centerZ2 of SL(2,R).

Bruhat decomposition@59,52,53#: From
6-14
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k~u!•a1~ t !•k~2u!5S cos2~u/2!et/21sin2~u/2!e2t/2 sin~u/2!cos~u/2!~e2t/22et/2!

sin~u/2!cos~u/2!~e2t/22et/2! cos2~u/2!e2t/21sin2~u/2!et/2D ~A25!
t

ar

-

-
t

om

ra
s
m.

-

e

one sees that

k~u!•a1~ t !•k~2u!5a1~ t ! for u50, 2p, ~A26!

k~u!•a1~ t !•k~2u!,A1 for u50,6p,2p, ~A27!

which means that the centralizerCK1
(A1) and normalizer

NK1
(A1) of A1 in K1 are given by

CK1
~A1!5H 6S 1 0

0 1D J 5Z2 , ~A28!

NK1
~A1!5H 6S 1 0

0 1D , 6S 0 1

21 0D J . ~A29!

The quotient group

W5NK1
~A1!/Z25H S 1 0

0 1DmodZ2 ,w5S 0 1

21 0DmodZ2J
~A30!

is called the Weyl group of SL(2,R). Its associated Bruha
decomposition of SL(2,R) is

G15Z2•A1•N1øN1•w•Z2•A1•N1 , w5S 0 1

21 0D .

~A31!

HereZ2•A1 is the group

D15Z2•A15H S c 0

0 c21D , cPR2$0%J . ~A32!

The relation~A31! means that each element of SL(2,R) may
be decomposed uniquely either as an element of the ‘‘p
bolic’’ subgroupP15D1N1 or as an element ofN1wP1.

The Bruhat decomposition of SL(2,R) plays a central role
in Sally’s construction@51# of the irreducible unitary repre
sentations of the universal covering group SL(2,R)̃ .

As the compact subgroupK1, or K0 , .S1, is infinitely
connected, the groups SL(2,R) and SU(1,1) have an infi
nitely sheeted universal covering group which, according
Bargmann, may be parametrized as follows. Starting fr
SU(1,1) define

g5b/a, uau22ubu251 ~⇒ugu,1!; v5arg~a!,
~A33!

a5eiv~12ugu2!21/2, ugu,1, b5eivg~12ugu2!21/2.
~A34!
04402
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Then

SU~1,1!5$g05~v,g!, vP~2p,p#, ugu,1%,
~A35!

G̃[SU~1,1!̃5SL~2,R!̃

5$g̃5~v,g!, vPR, ugu,1%. ~A36!

The group composition law forg̃35g̃2g̃1 is given by

g35~g11g2e22iv1!~11ḡ1g2e22iv1!21, ~A37!

v35v11v21
1

2i
ln@~11ḡ1g2e22iv1!~11g1ḡ2e2iv1!21#.

~A38!

2. Lie algebra

As the structure of the three-dimensional Lie algeb
L SO↑(1,2)5$ l % of SO↑(1,2) is the same as that of all it
covering groups we may calculate it by using any of the
For SL(2,R) we get from the subgroups~A14!–~A16!,
~A20!, and~A22!

l K1
5

1

2 S 0 1

21 0D , l A1
5

1

2 S 1 0

0 21D , l B1
5

1

2 S 0 1

1 0D ,

~A39!

l N1
5S 0 1

0 0D , l N̄1
5S 0 0

1 0D , ~A40!

which are not independent~in the following we skip the
indices ‘‘1’’ or ‘‘2,’’ because the structure relations are in
dependent of them!:

l N1 l N̄52l B , l N2 l N̄52l K . ~A41!

We have the commutation relations

@ l K ,l A#52 l B , @ l K ,l B#5 l A , @ l A ,l B#5 l K , ~A42!

@ l K ,l N#5 l A , @ l K ,l N̄#5 l A , ~A43!

@ l A ,l N#5 l N , @ l A ,l N̄#52 l N̄ , ~A44!

@ l B ,l N#52 l A , @ l B ,l N̄#5 l A , ~A45!

@ l N ,l N̄#52l A . ~A46!

The relations~A42! show that the algebra is semisimple, th
first of the Eqs.~A44! that A and N combined form a two-
dimensional subgroup and thatA is a normalizer ofN.
6-15
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3. Irreducible unitary representations
of the positive discrete series

As the group SO↑(1,2) is noncompact, its irreducible un
tary representations are infinite dimensional. Their struct
can be seen already from its Lie algebra: In unitary repres
tations the elements2 i l K ,2 i l A ,2 i l B of the Lie algebra
correspond to self-adjoint operatorsK3 ,K1 ,K2 which obey
die commutation relations

@K3 ,K1#5 iK 2 , @K3 ,K2#52 iK 1 , @K1 ,K2#52 iK 3 ,
~A47!

or, with the definitions

K15K11 iK 2 , K25K12 iK 2 , ~A48!

@K3 ,K1#5K1 , @K3 ,K2#52K2 , @K1 ,K2#522K3 .
~A49!

The relations~A47! are invariant under the replacementK1
→2K1 ,K2→2K2 and the relations~A49! invariant under
K1→vK1 ,K2→v̄K2 , whereuvu51. These relations are
in addition invariant under the transformation
K1↔K2 ,K3→2K3.

In irreducible unitary representations the operatorK2 is
the adjoint operator ofK1 :( f 1 ,K1 f 2)5(K2 f 1 , f 2), and
vice versa, where it is assumed thatf 1 , f 2 belong to the do-
mains of definition ofK1 andK2 . The Casimir operatorQ
of a representation is defined by

Q5K1
21K2

22K3
2 ~A50!

and we have the relations

K1K25Q1K3~K321!, K2K15Q1K3~K311!.
~A51!

All unitary representations make use of the fact thatK3 is the
generator of a compact group and that its eigenfunctionsgm
are normalizable elements of the associated Hilbert spacH.

The relations~A49! imply

K3gm5mgm , ~A52!

K3K1gm5~m11!K1gm , ~A53!

K3K2gm5~m21!K2gm , ~A54!

which, combined with Eqs.~A51!, lead to

~gm ,K1K2gm!5~K2gm ,K2gm!5q1m~m21!>0,
~A55!

~gm ,K2K1gm!5q1m~m11!>0, q5~gm ,Qgm!,
~A56!

implying

~K1gm ,K1gm!52m1~K2gm ,K2gm!>0. ~A57!
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In the following we assume that we have an irreducible r
resentation for which the functionsgm are eigenfunctions of
the Casimir operatorQ, too: Qgm5qgm .

The relations~A52!–~A54! show that the eigenvalues o
K3 in principle can be any real number, where, howev
different eigenvalues differ by an integer. For the ‘‘prin
ciple’’ and the ‘‘complementary’’ series the spectrum ofK3
is unbounded from below and above .

The positive discrete seriesD1 of irreducible unitary rep-
resentations is characterized by the property that there e
a lowest eigenvaluem5k such that

K2gk50. ~A58!

Then the relations~A55!–~A57! imply

q5k~12k!, k.0, m5k1n, n50,1,2, . . . .
~A59!

The relations~A52!–~A54! now take the form

K3gk,n5~k1n!gk,n , ~A60!

K1gk,n5vn@~2k1n!~n11!#1/2gk,n11 , uvnu51,
~A61!

K2gk,n5
1

vn21
@~2k1n21!n#1/2gk,n21 . ~A62!

The phasesvn guarantee that (f 1 ,K1 f 2)5(K2 f 1 , f 2).
Up to now we have allowed for any value ofk.0. It

turns out@26,51# that this is so for the irreducible represe
tations of the universal covering group SO↑(1,2)̃. These rep-
resentations may be realized fork>1/2 in the Hilbert space
of holomorphic functions on the unit discD5$z,uzu,1%
with the scalar product

~ f ,g!k5
2k21

p E
D

f̄ ~z!g~z!~12uzu2!2k22dxdy,

~A63!

as

@U~ g̃,k! f #~z!5e2ikv~12ugu2!k~11ḡz!22kf S az1b

b̄z1ā
D ,

~A64!

g̃5~v,g!, S a b

b̄ ā
D 5h~ g̃!PSU~1,1!.

~A65!

Becauseugzu,1, the function (11ḡz)22k is, for k.0, de-
fined in terms of a series expansion.

For SU(1,1) we havevPR mod 2p. Uniqueness of the
phase factor then requiresk51/2,1,3/2, . . . . For SO↑(1,2)
itself we havevPR modp which impliesk51,2, . . . .More
about the unitary representations can be found in Sec. V
the main text.
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APPENDIX B: REDUCED PHASE SPACE
OF D-DIMENSIONAL SCHWARZSCHILD

GRAVITATIONAL SYSTEMS

1. Symplectic reduction

We start from the spherically symmetricADM line ele-
ment

ds252N2dt21P2~dr1Nrdt!21Q2dV2, ~B1!

wherer is the radial coordinate anddV2 the line element of
a unit sphereSD22, embedded in (D21)-dimensional flat
space. The functionsP, Q, N, andNr depend only onr andt.

The line element of the two-dimensional radial manifo
with coordinates (x0,x1)5(t,r ) will be denoted by

ds25gi j dxidxj52N2dt21P2~dr1Nrdt!2. ~B2!

The line elementds2 is conformally equivalent to

dŝ25dŝ21dV2, dŝ25Q22ds2, ~B3!

dV25gABdyAdyB, 2<A, B<D21,

where dV2 is the line element of a (D22)-dimensional
space of constant positive curvature 1. Its Ricci curvat
tensor is given byRAB

(D22)5LgAB . A direct calculation us-
ing, e.g., the special form

dV25
dCDyCyD

~11 1
4 dAByAyB!2

shows thatL5D23.
In order to perform a symplectic reduction we have

insert the metric~B1! into the Einstein-Hilbert action. This
has already been done, for a different purpose, in Ref.@60#
with the result that the spherically symmetric theory is d
scribed by a two-dimensional dilaton action

S5E dtdrAudetg̃i j u@fR̃2V~f!#. ~B4!

The metricg̃i j is obtained fromgi j by the conformal trans-
formation

ds̃25g̃i j dxidxj5QD23ds2 ~B5!

and the dilaton fieldf is introduced by

f5QD22, ~B6!

with potential

V~f!52~D22!Lf2(D22)21

52~D22!~D23!f2(D22)21
. ~B7!

Now that we have arrived at a two-dimensional dilaton
tion we can adopt results of the symplectic reduction of R
@10#. There the line element is parametrized as
04402
e

-

-
f.

ds̃25e2r@2s2dt21~dr1Ldt!2# ~B8!

and the canonical variables are (r,Pr ;f,Pf ;L,PL ;s,Ps)
subject to the constraints

PL'0, ~B9!

Ps'0, ~B10!

Eªr8Pr1f8Pf2Pr8'0, ~B11!

Gª2f922f8r82
1

2
PfPr1e2rV~f!'0. ~B12!

A prime denotes differentiation with respect tor, whereas a
dot will denote differentiation with respect tot.

The first two constraints eliminate the variablesL ands,
whereas the remaining two are equivalent toE'0 andC8
'0 with

Cªe22rS 1

4
Pr

22~f8!2D2 j ~f!,
d j

df
5V~f!. ~B13!

C is a physical observable, which is forced by the constra
to be spatially constant. It represents the only physical
gree of freedom.

The last step consists in connecting the results of the
quoted papers@10,60# by the transformation of variables

r°P5erf (32D)/(2D24), ~B14!

f°Q5f1/(D22), ~B15!

L°Nr5L, ~B16!

s°N5serf (32D)/(2D24). ~B17!

For the momenta we get

PN50, ~B18!

PNr
50, ~B19!

Pf5
1

D22
Q32DPQ2

1

2

D23

D22
PQ22DPP , ~B20!

Pr5PPP52~D22!PQD23N21~2Q̇1NrQ8!.
~B21!

Using ourV(f) we have

j ~f!52~D22!2f (D23)/(D22)1k. ~B22!

Herek is a constant of integration. Inserting all these form
las in Eq.~B13! we obtain

C5
1

4
QD23PP

2 2~D22!2QD23@~Q8P21!221#2k.

~B23!
6-17
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In order to reveal its relation to the Schwarzschild massM
we compare it with the Schwarzschild line element inD
space-time dimensions@14#: Q5r , Nr50, and

P225N25Fª12
16pGM

~D22!vD22r D23
, ~B24!

where GD is the Newton constant,M the Schwarzschild
~ADM ! mass. Due toQ̇5Nr50 we havePP50 ~outside the
horizon! and the resulting expression

C52~D22!2r D23~F21!2k5
16pGDM ~D22!

vD22
2k

~B25!

shows the relation ofC to the Schwarzschild mass.

2. Reduced Hamiltonian

In order to determine the Hamiltonian associated with
observableC we have to add an appropriate surface te
which renders the action functionally differentiable. For o
functions (r,Pr ,f,Pf ,L,s) we choose fall-off conditions
which are prescribed by asymptotic flatness of the Schwa
child space time. The remaining formulas remain, howev
true for arbitrary dilaton potentialsV(f). For the functions
(P,PP ,Q,PQ ,N,Nr) the fall-off conditions atr→6` (r is
the radial coordinate of an asymptotically cartesian coo
nate system! are

Q5ur u1O~ ur u2e!, ~B26!

P511M 6~ t !ur u32D1O~ ur u32D2e!, ~B27!

PQ5O~ ur u212e!, ~B28!

PP5O~ ur u2e!, ~B29!

Nr5O~ ur u2e!, ~B30!

N5N6~ t !1O~ ur u2e!. ~B31!

From these conditions follow the fall-off conditions for th
functionsr, Pr , f, Pf , L, s by using the transforma
tion ~B14!–~B17!.

In order to extract the surface term we first perform, f
lowing Ref. @9#, an appropriate canonical transformatio
which replaces the variabler by the observableC. The mo-
mentum conjugate toC is ~locally!

PC52
2e2rPr

Pr
224~f8!2

. ~B32!

The relation~B32! becomes singular on the horizon. One c
avoid this by defining a variable conjugate toC which is
nowhere singular, e.g., in the framework of Poissons mod-
els @61,62#, that is the singularity in Eq.~B32! causes no
problems here.

BecauseC and PC do not depend onPf we have
$C,f%505$PC ,f% and we can usef as a second variable
04402
e
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However, due to$Pf ,C%5” 0, we have to replacePf by a
new momentumPc conjugate tocªf. As in Ref.@9# it can
be calculated by equating the generators of diffeomorphis
in both sets of variables

r8Pr1f8Pf2Pr85C8PC1f8Pc ~B33!

using the fact that bothC andf are scalars. The last equatio
yields

Pc5Pf14
f8Pr82f9Pr

Pr
224~f8!2

22
e2rPrV~f!

Pr
224~f8!2

522@Pr
224~f8!2#21~PrG12f8E! ~B34!

which shows thatPc is constrained to be zero.
Now we will show that the transformation

(r,Pr ,f,Pf)°(C,PC ,f,Pc) is canonical by showing tha
the difference of the corresponding Liouville forms is exa
First, we have

Prdr1Pfdf2PCdC2Pcdf

5dS Pr12f8logU2f82Pr

2f81Pr
U D 12S df logU2f81Pr

2f82Pr
U D 8

.

~B35!

As a consequence of the fall-off conditions the integral o
the last derivative term vanishes~at the horizon, i.e., at the
singular points of the logarithm, the integral has to be int
preted as principal value!. Therefore, the difference

E dr~Prdr1Pfdf2PCdC2Pcdf!

5dE drS Pr12f8logU2f82Pr

2f81Pr
U D ~B36!

of the Liouville forms is exact, and the transformation to t
variables (C,PC ,f,Pc) is canonical. Assumingf85” 0,
which will be fulfilled for Schwarzschild systems, the co
straintsE'0 andG'0 are equivalent toC8'0 andPc'0.
We use these constraints together with the new canon
variables and obtain the action

S5E dtdr~PCĊ1Pcḟ2NCC82NcPc!, ~B37!

whereNC andNc are new Lagrange multipliers. Because
the asymptotic relationC8;7(D22)G, which follows from
the fall-off conditions, the asymptotic values ofNC andN are
related byNC;7(D22)21N. The only spatial derivative in
the new action appears in the term2NCC8, and, therefore,
the action can be made functionally differentiable by add
the surface term
6-18



f

g

GROUP THEORETICAL QUANTIZATION OF A PHASE . . . PHYSICAL REVIEW D 62 044026
E dt~N1
C C12N2

C C2!

52E dt~D22!21~N1C11N2C2!.

~B38!

C6(t), N6
C (t), andN6(t) are the values ofC, NC, andN at

r→6`. This surface action and the formula~B25! show that
in any space-time dimension the reduced Hamiltonian o
lli,

cs
to
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spherically symmetric black hole is given by its mass~times
the lapse function! after imposing the constraints: Rescalin
S by (16pGD)21vD22 to obtain the physical action inD
dimensions, and settingk50 in Eq. ~B25!, we finally obtain

H red5
vD22

16pGD
~N11N2!

C

D22
5~N11N2! M

~B39!

with CªC15C2 ~due toC850).
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