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Group theoretical quantization of a phase spac&'XR* and the mass spectrum
of Schwarzschild black holes inD space-time dimensions
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The symplectic reduction of pure spherically symmetSchwarzschilil classical gravity inD space-time
dimensions yields a two-dimensional phase space of observables consisting of th&m@as®) and a
canonically conjugatéKilling) time variableT. Imposing(mass-dependenperiodic boundary conditions in
time on the associated quantum-mechanical plane waves which represent the Schwarzschild system in the
period just before or during the formation of a black hole yields an energy spectrum of the hole which realizes
the old Bekenstein postulate that the quanta of the horgon, are multiples of a basic area quantum. In the
present paper it is shown that the phase space of such Schwarzschild black lilggace-time dimensions
is symplectomorphic to a symplectic manifol={(¢ e R mod 27, pxAp_,eR¥)} with the symplectic
form de/\dp. As the action of the group SQL,2) on that manifold is transitive, effective and Hamiltonian,
it can be used for a group theoretical quantization of the system. The area opﬁefatd]he horizon corre-
sponds to the generator of the compact subgroup SO(2) and becomes quantized accordingly: The positive
discrete series of the irreducible unitary representations of the grolpLSXp yields an(horizon area spec-
trum o (k+n), wherek=1,2, ..., characterizes the representation and0,1,2 ..., the number ofarea
quanta. If one employs the unitary representations of the universal covering group (df,8Qthe numbek
can take any fixed positive real valué parameter The unitary representations of the positive discrete series
provide concrete Hilbert spaces for quantum Schwarzschild black holes.

PACS numbe(s): 04.60.Ds, 04.50:h, 04.60.Kz

I. INTRODUCTION Together with the assumption that théh level (1) has a
degeneracyd,=g",g>1, one then gets the Bekenstein-
Understanding the quantum properties of black holes anélawking entropy of the black hole as proportional to the
the associated quantum statistitteermodynamicsis one of  area of the horizon. As to the further history of the spectrum

the outstanding topics of present-day approaches to quantufm) and its degeneracies see the recent review by Bekenstein
gravity: In string theory extremal black holes with their re- [4] and Refs][5,6].

lations between masses and charges and the associated deHowever, having an appropriate spectrum including its

generacies play a prominent rafer a review see Refl]).  gegeneracies is not sufficient for a complete quantum-
In loop quantum gravity the action of the corresponding arégnechanical description of the system. For that purpose one
operators on appropriate spin-network states is expected ¥ 1o know the Hilbert space and the action of the basic
yield information about the entropy of black holee Ref. operators associated with the system

[2]). ; S _
Already in 1974 Bekenstein proposef] a Bohr- _It is the main aim of the prgse_nt paper to provide that
s . Hilbert spaceglor a number of unitarily equivalent oneand
Sommerfeld type of quantization for black holes which the basi if-adioint tors in t £ th itive di
amounts to the simple quantum relation € basic sel-acjoint operators in terms of the positive dis-
crete series of the irreducible unitary representations of the
A(n)xnl2,, neN={1,2,...} (1)  proper orthochronous Lorentz group §D,2) or its respec-
’ tive covering groups. The method to achieve this makes use
(Ip4: Planck’s length inD=4 space-time dimensiopgor  of a proposal of one of us7] how to relate the spectrug)
the two-dimensional ared=4mR3 of the horizon of a to plane wave solutions of the simple Sctlirger equation
Schwarzschild black holéSBH) in four space-time dimen- resul_ting from th_e symplectic reduction of spherically sym-
sions. Because dks=2GM/c? this is equivalent to the as- metric pure gravityf8—11].

sertion that the energy levels, of such holes are propor- In order to have this paper to some extent self-contained
tional to yn: we first summarize the essential steps and assumptions lead-
ing to the required quantum theory. As to more details and
En \/ﬁEPAr nelN 2 possible questions concerning these steps we refer td Ref.
and the companion pap§s].
(Ep4: Planck’s energy The symplectic reduction of spherically symmetric pure

Einstein gravity yields one pair of canonical variab{ésb-
servables” in the sense of Diramamely, the ADM) mass

*Email address: bojowald@physik.rwth-aachen.de M of the system—here considered as the canonical
"Email address: kastrup@physik.rwth-aachen.de momentum—and a canonically conjugate time variable
*Email address: pth@tpi.uni-jena.de with the associated symplectic form
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o=dT/A\dM. 3 b_3  16mGpM
S - .
The Schrdinger equation of the corresponding quantum me- cA(D-2)wp-»

chanics is extremely simple

®

(Gp denotes the gravitational constantnspace-time di-

- _ mensions andwp_,=27P YT [(D—-1)/2] the volume

it0,4(7)=Mc?y(7), C ©-2) p-2=27 [( )/2]
wherer is the proper time of an observer(@®tinkowski flat) D'f‘g the areah, , of the (D —2)-dimensional horizon is
spatial infinity. Rs “wp-_»,, the relations(7) and (8) imply a horizon area

Equation(4) has the plane wave solutions spectrum
o (iImMc?r ) Ap_»(N)=nap_,, nel,

Up to now no restrictions have been imposed on the spec- ~  320°Gph  32a° |02 9
trum of the massels! which a priori may be any real number ap-2~ y(D—2)c3 = y(D—2) PP ©

M e R. However, for physical reasons—no naked singulari-

ties, etc.—one wantd/ to be a positive real numbeM  which, according to Eq(8), leads to the energy spectrum
eR*={reR,r>0}.

The discrete spectruii2) may be obtained as followg]: E,=apnP-30O-2g, (10)
Suppose the plane wayb) represents the system only dur-
ing a finite time periodA. Implementing this finite duration (2m)P 4D =2)wp_,| " ° 2
by periodic boundary conditions inleads to the relation ap= gD 3 '
Y
c®MA=2xhn, nel. (6)

EP D:(CDJrlﬁD*S/GD)l/(D*Z).

Here the assumptiok! >0 is made. .
It appears necessary to stress the following point in con:rhe energyE, may be interpreted15,6] as the surface en-

nection with the boundary conditiof®): The postulate that €rgy of a “bubble” of n area quantap ».

the wave function(5) has the period\ does not mean that  The above arguments, which lead to the spe(@aand

the asymptotic timer is periodic. It just means that the sys- (10), respectively, are unsatisfactory for the following rea-

tem is in a(quas) stationary staté5) during a finite time SOns: The period\(M) of the time variabler (or T) is a

interval A. This is a situation completely analogous to a sys-unction of M. This means that the phase space of interest

tem of free particles in a finite spatial interval of lendth ~here is the subspacewedge™) of the (M, ) plane which is

where the associated state is a plane wave with periodic spgounded by the positivé1 axis—without the origin—and

tial boundary conditionéyielding discrete momentaSuch a  the curver=A(M)=constM*®~%)>0, where the point

property of the wave function does not mean that space itse@nd A(M) have to be identified. This is an unusual phase

is confined to an interval or periodic. space. In addition it is not obvious what is the Hilbert space
The question now is how to choose the time interyal ~ @ssociated with the quantized system. .

As the only intrinsic lengttitime) scale of the system is the It iS the purpose of the present paper to improve the situ-

Schwarzschild radiuRs(M), the intervalA has to be related ation by employing a group theoretical quantizat[ds,17

to Rs/c. There are two important time scales associated witased on the group SQ,2)—the orthochronous proper

a Schwarzschild black hole, namely, the “formation” time Lorentz group in 2 dimensions—and its irreducible uni-

or the inverse Hawking temperature which are proportionafa’y representations.

to Rg/c and the “evaporation” time due to Hawking radia- ~ 1he transformation

tion which in 4 space-time dimensions is proportionaR@) o orC

(Stefan-Boltzmann’s law12]). It appears to be more plau- o= —T= —— 7, (12)

sible [6] to associate the plane way®) with the quasista- A YRs(M)

tionary precollapse phase of the system than with the evapo-

ration one. The assumptiah=yRg/c, y=0(1), leads to yc(D—-3)
S o =BAp_»(M), B=——F—, 12
the quantization condition P=pAp-2(M), B 322G,
YeMyRs(Mp)=27#in, nel. (7) is canonicallsymplectio:
With Rg=2M G/c? one immediately get the relatiof®) and w=de/A\dp=drAdM. (13)
(2).

The relations(5)—(7) may be generalizefil3,6] to arbi-  As ¢ € R mod 277 now, one sees that the phase space in ques-
trary space-time dimensioi3=4 (see also Appendix B of tion is diffeomorphic to S'xXR*=R?—{0=(0,0)}. This
the present papgmwhere the relationship between Schwarzs-phase space may be interpreted as “half” of the cotangent
child mass and Schwarzschild radius is given[ b#]| bundleT* St={(¢,p)} with the restrictionp>0.
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The task is then to quantize this classical system approBecause of the obvious similarities between Coulomb’s elec-
priately. This will be done in the following way. trical and Newton’s gravitational potentials this relationship
In Sec. Il we summarize, following Isham’s revidu6], may not be purely accidental.
the essential features of the group theoretical approach for Section VI discusses sonfpreliminary) conclusions. Ap-
quantizing a classical symplectiphas¢ manifold. In Sec. pendix A contains the main properties of the group
Il we discuss the symplectic, transitive, and effective actionSO'(1,2), its covering groups and those features of the irre-

of the three-dimensional noncompact group' §G2) on ducible unitary representations which are necessary for our
purposes. Appendix B contains the symplectic reduction of
S={(¢,p);¢cRmod 27, p>0} (14) spherically symmetric pure Einstein gravity Ihspace-time
dimensions.

by employing the twofold covering group SU(1,1). We show
which vector fields are induced afi by the generators of
three independent one-dimensional subgroups of($@),
how the isomorphism between these vector fields and the A pedestrian way to quantize a classical System is to re-
corresponding Hamiltonian ones and their Poisson algebrgjace the classical Poisson brackets of observahlestions
looks like and which observableunctiong on S corre-  on phase spagédy commutators of corresponding operators
spond to the three selected Lie algebra elements 6{5@).  on a (Hilbert) space of states. This prescription has severe
It turns out that the above variabecorresponds to the gen- |imits, however: It does not work properly for functions
erator of the compact subgroup of §@,2). which are polynomials in the basic variableg§) of degree

As this group is infinitely connected with first homotopy higher than 217,18 and, another possibility, the operators
group m; =7, its covering groups, especially the universalmay not be self-adjointsee, e.g., Refd19,16)). Already
one, act only almost effectively ofi, because the elements Wweyl pointed out very early that, in order to guarantee self-
of their discrete abelian center leave every poinSdixed.  adjointness of thétwo) unbounded operato® andP, it is
The phase spac$ is diffeomorphic to the complex plane advisable to pass from the Heisenberg commutation relations
with the origin deleted, and likewise to the coset spacg P Q]=+#/i, etc., to the bounded operators
SO(1,2)/N, where N is the nilpotent subgroup in an

II. PRINCIPLES OF GROUP THEORETICAL
QUANTIZATION

lwasawa decomposition of SCL,2). U(a)=e 2P V(b)=e PQ (15)
Quantization, which is discussed in Sec. IV, consists in
passing to the irreducible unitary representations of(3(2) U(a)V(b)=¢e"2b/(bh)U(a), (16)

where the basic observables corresponding to three Lie alge-

bra elements mentioned above become self-adjoint operatorsu(al)u(az) =U(ay)U(ay), V(by)V(b,y)=V(b,)V(b,)

The operator representing the generator of the compact sub- (17)
group, i.e., the observablg has a discrete spectrum in all

irreducible unitary representations. However, as we want and look for continuous irreducible unitary representations of
*Ap-, to be positive, only the unitary representations of thethis (Heisenberg-Weyl group which provide self-adjoint

“positive discrete” series are suitable for our purpose. generatorsP and Q. Heisenberg’'s commutation relations
If we denote the operator correspondingptdy p, then  may be interpreted as representing the Lie algebra of a three-
this operator has spectrak+n,n=0,1,2 ..., where the parameter group with the group law

numbersk=1,2, . .. characterize the different unitary repre-

sentations with the Casimir operataofl —k). The main dif-

ference between the unitary representations of($Q) and (ar,by,ty)(az,by,tz) =
those of its universal covering group is that for the latter the

numberk may be any positive real number.

The irreducible unitary representations provide the pos-
sible Hilbert spaces for the system. We discuss several con-
crete realizations which may be useful for future applica-which represents a central extension of the Abeligym-
tions. plectic, transitive, and effectiyeranslation group oRR? in-

One especially interesting example is the spaceerpreted as the phase spacetangent bundleT* R. Ac-
L?(R*,r*exp(-r)dr), an orthonormal basis of which is cording to the von Neumann—Stone uniqueness theorem—
given in terms of Laguerre’s polynomials;, where «  see, e.g., Ref§18,19,16—all continuous irreducible unitary
=2k—1 in our case. As this space is also the space of theepresentations of the Heisenberg-Weyl group are unitarily
radial wave functions for the 3-dimensional hydrogen atomequivalent to the Schdinger representation, where the spec-
we can identify the following correspondence: for positivetra of P andQ are the complete real linds.
integersk we havek=1+1, wherel is the angular momen- Group theoretical quantization tries to generalize these
tum quantum number, andn=n,, where n,eNy  properties to phase spaceymplectic manifoldswith non-
={0,1, ...} is the radial quantum number of the hydrogentrivial topological structures. The main steps &f@ more
atom. Thus the SBH wave functions wih-1 correspond to  details we refer to the literatufel6,17]; we closely follow
the different s-wave wave functions of the hydrogen atomlsham’s presentatiofiL6]).

1
+ E(blaZ_ a;b,) |, (18)
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(1) Given a (here finite-dimensionalsymplectic space
(manifold S={s} with a nondegenerate symplectic fokmn
find a finite-dimensional Lie transformation groGp={g} of
S which leaves the symplectic form invariant and which
acts transitively and effectivelfi.e., if g-s=sVs, theng
=e (unit elemenk]. The latter condition may be relaxed to
almost effective action§.e., if g-s=sVs, theng is an ele-
ment of a discrete center subgrouphe one-parameter sub-

groupsg(t) =exp(—At) of G generate vector fieldd on S.

As the transformationg(t)-s leave w invariant the Lie-
derivativesLz have the property.zw =0, which—together
with dw=0—impliesd(izw)=0, whereiy denotes interior
multiplication of an exterior form by a vector field. The
last relation means thatw is a closed one-form o8. The

corresponding vector fieldé are called “locally Hamil-
tonian.” According to Poincars lemma one has locally
izo=df, wheref(s) is some function orf. If the first co-
homology groupH*(S;R) vanishes theimw is exact and we
have a(globally defined Hamiltonian vector field which—in
local canonical coordinates—has the form

- 19
IPi 9q' -

Xf:

If the vector fieldX can be written as the commutator of two
other vector fieldsX=[X;,X,], then, because dfy x,o
=d(ixlix2w), X is Hamiltonian. This is the case for semi-
simple transformation groups.

(2) The relation(19) provides a map from smooth func-
tions f(s) on § onto Hamiltonian vector fields o, the

PHYSICAL REVIEW B2 044026

following: One wants an isomorphism between the Lie alge-
bra£(G)={A} and the Poisson algebra of a preferred set of
observable®”(s) such that

A=—Xpa, {PA1,PA2}=plALA2 (23
Such an isomorphism—a so-called “momentum map”—is
not always possible, due to the fact that the constant func-
tions € S have vanishing Hamiltonian vector fiel@8oisson
brackets. If, however, the second cohomology group
H2(£(G);R) vanishes, the momentum map does exist. This
is the case for semisimple Lie groups, such as(3(@).

If the second cohomology group is not trivial, one may be
forced to look for appropriate central extensions of the origi-
nal group, as in the case of the Heisenberg group, which
represents a central extension of the abelian translation
group.

(4) Having established an isomorphism between the Lie
algebraZ(G) and a corresponding Poisson algebra of a sys-
tem{P*} of preferred observables & one then can quan-
tize the classical system by using the irreducible unitary rep-
resentations of the transformation groGwhere the self-
adjoint generatorK(A) of the one-parameter subgroups
U[g(t) =exp@t)]=exd —iK(A)] represent the corresponding
original classical observabld®.

(5) As there may be different groups with symplectic,
transitive, and effective action o8, one has to make a
choice which one to use. Here physical considerations come
into play: One wants a group such that the corresponding
observable$”\(s) constitute basic functions afi so that all
physically interesting observables can be expressed by them.

kernel of which are the constant real numbers. As the comEor additional discussions of these problems see [R6l.

mutator[ X4,X,] of two vector fields is again a vector field,

the question is, which Hamiltonian vector field corresponds |iI. THE ACTION OF THE GROUP SO T(1,2) ON StXR*
to the commutator. The answer is given by the Poisson

bracket structure for functions a$t The Poisson bracket of
two functionsf;(s),i=1,2, is given by

(fafah =X, Xy ==X (f) = Fon =g
(20)
and we have
[Xe, X, 1= = Xty 1,0 (21

which means that there is an homomorphism

from the Lie algebra of “observablest(s) onto the Lie
algebra of Hamiltonian vector fields @dhwith the (constant
real numbers as kernel.

The local versiong3) and(13) of the symplectic formw
may belong to different global geometries and, accordingly,
to different ensuing quantum theorigs6]. If we have the
usual phase spad* R=R? then the “quantizing” group is
the Abelian translation group df? enlarged by a central
extension as described at the beginning of the preceding sec-
tion.

If the phase space has the global fofthR* ={(q,p);q
>0,pe R} the quantizing groupG is the affine group
G={g(a,t); ateR; g(axt)g(a.t;)=g(a,+e ‘2ay,
el1*'2)1 with actiong(a,t)(q,p)=(e'g,e 'p—a). The self-
adjoint generatoK(S) of the scale transformatiorgg0,t)
here corresponds to the classical observajpe

Closer “home” to our system(14) is the phase space
T*S'={(¢,p); ¢eRmod2m, peR} for which Isham
discusses in detail the three-parametric euclidean gBup
=E,={g(a;,a,,0);0c Rmod 27,a,,a, R} of R? with
the action g(aj,ay,0)-(¢,p)=[(¢+6) mod 2w, p

(3) We now come to a crucial point of the quantization +a; sin(p+ 6)—a, cosi+6)] as quantizing group. Details

procedure: We have—due to tk@mos) effective action of
the transformation grou@ on S—an isomorphism of the Lie
algebraZ(G) into the Hamiltonian vector fields off and a
homomorphism of the Lie algebra of observahiemto the

Hamiltonian vector fields. What is needed, however, is theSO'(1,2)—which leaves the quadratic formx%)?—

can be found in Refl16].

The phase space of the last example is still a cotangent
bundle which is no longer so in our cadel), where we have
p>0. In that case the orthochronous proper Lorenti g]roup
(x%)
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—(x®?% x°>0, invariant—appears to be the apprtgp;iate e 102 0 \[cosht/2) —isinht/2)
quantizing group(see also Ref[20]): The cone X°) Ko@oNo= 02| i
~ ()2 (x3)2=0, x°>0, is diffeomorphic tak2—{0}: put 0 e™/\isinht/2)  cosht/2)
x%=p>0, x'=pcose, X*=psine. 1—-ié&l2 €2
ing it i X
In the following it is advantageous to employ the twofold ( g2 1+ §/2>, (32

covering group SU(1,1) of S©1,2) (see Appendix Athe

elementgy, of which are given by wherefe (—2m,+27]; t,écR

The actions of the subgroupg,Aq,Ng, respectively, are

a B .
= _ 2_|g12=1, 24 the following ones:
0 (B a) a2~ 24 A
B Ko: E):p, gle=gllet ) (33)
wherea means the complex conjugate of the complex num-
ber . If we define the matrix Ao: P=p(t,@)p, p(t,@)=cosht+sinhtsine,
X xi-ix® 0V2_ (y1)2_ (42)2 cose=cose/p(t,¢)
Xo= 1 ix2 N E detXp=(X")—=(x7)"=(x)*, ¢
(25 Lo~ . .
sing = (cosht sinp+sinht)/p(t, ¢), (39
then the transformations x*—x*, w=0,1,2, under . ) _
S0O/(1,2) are implemented by No: p=p(&e)p, p(& @)=1+Ecosp+E(1—sing)/2,
whereg, denotes the hermitian conjugate of the matix sing=[sin@+ £ cose+ £2(1—sine)/2)/p(¢, ).
Applying a general transformatiagy to the matrix (35
p pe'¢ The groups(33) and (34) act transitively onS: Any point
pee  p (27 s;=(¢1,p1) may be transformed into any other poist

=(¢2,p2) in the following way: first transform¢, ,p;) into
(0,p1) by ko(6=—¢;), then map this point into[ ¢

= arctan(sinh), p,] by ay(t;cosht=p,/p,) and finally trans-
p=|a+e*ps|?p, (28 form (&%F_’z) by Ko(6= ¢, — @) into s,= (¢2,P2). AsKq and

A, combined act already transitively ghone might wonder
whether they alone are not sufficient for our purpose. How-

yields the mapping: i, ¢) — (P, ),

elo— “ewfﬁ_ (29) ever, they do not form a two-dimensional subgroup of
a+e'*B SU(1,1), onlyA; andN, do. The above transitivity proper-
ties reflect the fact that any elemegy of SU(1,1) may be
As written askq(60,)ag(t)ko(6,) (see Appendix A

The transformation formula@5) show that the groupl,
99 ‘ leaves the half-ling=7/2, p>0 invariant, that isNg is the
—=|a+e°p|? (300  stability group of these points. This means that the symplec-

I¢ tic space (14) is diffeomorphic to the coset space
we have SU(1,1)/ (X Ng)=S0O (1,2)/N,. Notice thatN,, andA, as
well, does not contain the second center elememt of
~ oA SU(1,1). The centef,, is a subgroup oK.
de/\dp=de/\dp, (31

If we pass to the universal covering gromlcﬂf)

that is, the transformation®8) and(29) are symplectic. SU(L1)[or of SO(1,2)], see Ea(24)

One sees immediately thgt and — g, lead to the same
transformations op and ¢. Thus, the group SU(1,1) acts on
S only almost effectively with kernel, representing the

SULD={g=(0,y); w=arga)ek,

center of the twofold covering group of $@1,2). It is well y=Bla, |y[<1)}, (36)
known that the latter group acts effectively and transitively o '
on the forward light cone and thus ¢h(see also beloy (as to the group multiplication laws see Appendiy, Ahe

We next discuss the actions of the 1-parametric subgroupgansformationg28) and (29) take the form
Ko, Ag, and Ny forming the Iwasawa decomposition R _ _ _
SU(1,1)=Kq-Ag- Ny, with the general element p=p(g,0)p, p(g,0)=|1+€*y]?(1—|y|>" 1 (37
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ei(’;:eiziw eiqo_}‘—;. (38) ‘A()\K’)\A’)\N):)\K’AK-F)\A’AAJF)\N’AN
1+e'%y = —(AaP SiN@+\\p €OSP) )
As dplde=1lp(g,¢), the equality(31) holds again. —[Ak+Nacosp+Ay(1—sing)]d, .
With the elements of the group SU(1,1) given by the 47)
restriction — 7<w<+m, a=explw)(1—|¥>) "2 B=rya,
the homomorphisms One sees immediately that this vector field can be identified
with the Hamiltonian vector field
h:SU(1,1)—SU(1,1), (39) . jy ) y ) -
he:SU(1,1)— SO (1,2), (40) o™ gpe
have the kernels ken)=2wZ, ker(hy)=7,, respectively, f(¢.p)=Akp+Aap cose+Ayp(l—sing). (49)

and the composite homomorphidmeh has the kernetrZ. ,

As the spaceS, Eq. (14), is diffeomorphic toR2—{0} If we replace the Lie algebra elemdptby Ig=1y—Ik (see
—(—{0}, its universal covering space is given by APPendix A, then the observabiebecomes
eR, peR™ which is the infinitely sheeted Riemann surface _ _ ;
of the logarithm. The transformatiori87) and (38) may be f(¢:P)=Akp+Aap COSe—AgpSine, (50
interpreted as acting transitively and effectively on that uni-and we see that the associated three basic classical observ-
versal covering space. ables are

We would like to mention that one can define genuine
effectiveactions of any covering group of $(,2) onS. PK=p, PA=pcosp, PB=—psine. (51)
However, these actions violate the ‘“strong generating prin-
ciple” of Isham[16] and are not adequate for a group theo-As any smooth functiom(¢,p) periodic in ¢ with period
retical quantizatiori20]. 24 can, under certain conditions, be expanded in a Fourier

The action of SO(1,2) onS may also be obtained as a lift series and as sing) and cosiig) can be expressed as poly-
of the respective subgroup of Dif#t) to T*S'DS. This will ~ nomials ofnth order in sinp and cosp, the observable&1)
be discussed further in Rd20], where it is also shown that, are indeed basic ones ¢h Actually they are just the Carte-
under certain conditions, the group §@,2) is unique as to  Sian coordinates ok*—{0} we started with, see E¢27).
the required action os.

V. QUANTUM SPECTRUM OF THE AREA OPERATOR

IV. HAMILTONIAN VECTOR FIELDS INDUCED ON S AND ASSOCIATED HILBERT SPACES
BY SU(1,1) TRANSFORMATIONS AND THE

We now come to the quantization of the classical system
CORRESPONDING CLASSICAL OBSERVABLES

we have been discussing. It consists in replacing each of the
For infinitesimal values of the parametﬁsyg the trans- three basic Observab|d§1) by the Se|f-adj0int generator

formations(33)—(35) take the form K(l) of the unitary operator U,(t)=exp—iK(I)t] (or
exdiK()t]), representing any of the associated one-
K: 6¢=0, |0|<1l, 6p=0, (47 parameter subgroups ex)(l e £SO (1,2), in an appropriate
irreducible unitary representation of §Q@,2) or its covering
A Sp=(cose)t, Sp=p(sine)t, [t|<1, (42)  groups: Thus, the observalyes to be replaced by the self-
adjoint generatoK;=K(l¢) of the unitary operatol(6)
N:  Se=(1—sing)é, Sp=p(cose)é, |&<1. =exp(—iKzf) representing the compact subgrould
(43 ={exp(k 0)} and the observablgscose and— p sing are to
be replaced by the corresponding self-adjoint generagrs
They induce onS the vector fields andK, of the unitary operators)(t;) andU(t,) represent-
_ ing the (“boost™”) subgroupsA andB.
A=—10,, (44 In this section we mainly use the known properties of the
irreducible unitary representations  of 80,2) and
Ap= —COS¢d,—psined,, (45) SO (1,2). More details and references to the literature are
contained in Appendix A. We first put=1 and restore it
A= (sing—1)d,— p cosed, . (46)  explicitly later.

BecauseK; is associated with a compact subgroup, its
It follows from the genera| considerations of the preced|ngspectrum is discrete in all irreducible Un|tary representatlons
section and it is easy to check that their Lie algebra is isof SO (1,2) or its covering groups. However, not all irreduc-
morphic to the Lie algebra of SQL,2) (see Appendix A  ible unltary representations are suitable for our purposes, be-
(and all its covering groups, of coudsé general element is causep=Kj corresponds to a classical area, Ekp), which
the linear combination is positive. Thus, we are interested in those irreducible rep-
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resentations for which the spectrumkof is positive. This is d

the case for the so-called “positive discrete series” of irre- K-=K1=iKy=7- (58)
ducible unitary representations. These representations are

characterized by the valug1—k) of the associated Casimir The basis function$55) are the eigenfunctions df; with
operator Q=K%+ K35—K3, where k can take the values eigenvaluesk+n, the operatork , and K being raising
1,2,..., for a“true” representation of S(1,2), butk can  and lowering operators:

be any positive real number0 for the corresponding rep-

resentations of the universal covering group' 8CR). For Kain= (k+N)egn., (59
the groups SU(1,5SL(2R) the numberk can take the
groups SU(L£SL(2K) ! K s n=[(2k+ ) (n+1)1 % 0,1, (60)
values 1/2,1,3/2,2 . .. In all cases the operatg@r=K; has
the spectrum K_en=[(2k+n—1)n]"%, , ;. (61)
spe¢p=Kz)={k+n,neNg}. (52)  The formulas(1) and(9) suggest to associate them with the

] ) ) irreducible representatiok=1, that is with scalar product
For the representations of the universal covering grougyng eigenfunctions

kmodl represents the so-called ‘parameter” which oc-
curs in other unitary representations involving the infinitely 1 _
sheeted compact group SO(P)6,21. For a more general  (f.9)= ;dedyf(z)g(z), ep=Vyn+12", nelo.
setting of that parameter in connection with multiply con- (62)
nected symplectic manifolds see again R&b|.

As only SO(1,2) acts effectively on the symplectic space |f we have onD the holomorphic functions
S of Eq. (14), the # parameter comes into play merely if we
allow for almost effective group actions by the universal ”
covering group. Whether one has to do so or not, finally has f(z)= ZO anz", 9(2)= 2 bnz", (63
to be decided by physical considerations. We next come to " -
the discussion of concrete Hilbert spaces on which the opmen, according to Eq54), their scalar productf(g)p  is
eratorsK;, i=1,2,3, act as self-adjoint operators and wheregjyen py ’
K3 has one of the spect(&2).

©

©

rekrin+1)—

A. Hilbert space of holomorphic functions (f,.9)pk= 2 —F v @nbn- (64)
o - =0 ['(2k+n)
inside the unit disc D

Probably the most important Hilbert space is flarg-  This series can be used as a scalar product to extend the
mann Hilbert spaceHp,, of holomorphic functions in the definition of the Hilbert space®y  to all realk>0.
unit discD={z=x+iy,|z| <1} with the scalar product
B. The Hardy space of the unit circle

2k—1( — _
- f f(2)9(2)(1—]2]*)% 2dxdy. (53 For the special cade= 1/2 the coefficient in front oé,,b,,
b in Eq. (64) has the value 1. This allows for a reinterpretation

It can be used for any re&l>1/2 and also in the limiting ©f the Hilbert spacéty, ;- Consider the. %-space on the unit
casek— 1/2. As circle with the scalar product

(f vg)D,k:

1 27 _
rk)r'(ng+1) =
(anlznz)D'k:F(T—f—;l) nyny (54) (17[,1 ’ ‘/’2) 2 0 d(ﬁlr/jl(gé) 1/1‘2(¢)1 (65)

and since any holomorphic function can be expanded in &N orthonormal basis of which is given by the functions

powers ofz the functions exp(ng), neZ. _ ,
That subspace of functions(¢) e L which have only

I'(2k+n) “positive” Fourier coefficients,a,=0, n<O0, is called the
e n(2)= Wz”, nelNo, (55 “Hardy spaceH? of the unit circle,” and the corresponding
scalar product is denoted by{,h,). . It has the orthonor-
form an orthonormal basis df(p . The operatorK; here ~ mal basis exp#), neNo.

have the explicit forms Hardy space§22—24 have a number of interesting prop-
erties and are closely related to Hilbert spaces of holomor-

d phic functions[22-25. If we have the two Fourier series
K3:k+ Z—, (56) 2
dz e H%
d oo ) oo )
K. =Ki+iK,=2kz+22 o, (57) hi(¢)= 2 ae™, hy($)= 2, b, (66)
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they have the scalar product

2w _ - _
. dohy(p)hy(d)= >, ab,. (67

n=0

hy,hy) = !
( 1 2)+_Z

Thus we may realize the Hilbert spagé, ,, by using the
Hardy spaceH? .

C. Unitary representations on Hardy space related Hilbert
spaces

What is the relation of the other spacks  to the Hardy
spaceH? ? The answer is somewhat subf®6,27,57: De-
fine the self-adjoint operatak, in Hi which is diagonal in
the basis{exp(n)} of H2 and which acts on it as

_T(2KI(n+1)

ing
Ae T (2k+n)

ein?, (69)

Then define aiti? related Hilbert spacei with the scalar
product

rekrin+1)—
(h,ho)=(hy Ay = 2, (F(T(fn))anbn (69)

)

for the functiong66). The serie$69) representing the scalar

product ofH ik is obviously the same as the ser{éd) which
represents the scalar product f@p, . This exhibits the very

PHYSICAL REVIEW B2 044026

(67)! This may be seen explicitly as follows: Applying the
operatorK, andK_ from Eq.(71) to the series

fl<¢>=m20 am Xim(®), f2<¢>=n20 boXicn(®),
(75)

using the relation$73) and(74) and the orthonormality70)
yields

[

(fz,K+fl>k=n§0 i[(2k+n)(n+1)]1"%,,a,

=(K_f2,f1)k, (76)
which says thaK _ is the adjoint operator oK, with re-
spect to the scalar produ@9). But one sees immediately
that this is not so with respect to the scalar prod6a).

Furthermore, the multiplication operator eip) is not a
unitary operator om? , because its inverse does not always
exist: for instance, the constant functibr 1 is an element
of H2 , but exp{-i¢)-1=exp(—i¢) is not. Such isometric
operators are called “shift operators” and their properties
have been investigated systematically by the mathematicians
[28,22-24.

The question is, whether there are irreducible unitary rep-
resentations of the positive discrete series of @(®) or its
covering groups on the Hardy spak¥ itself? Sally has

close relationship between the two Hilbert spaces. The mathshown[51], by a detour, that there are such representations

inside the unit disc® have holomorphic limits owD= St
(for mathematical details see the Rdf22—24).
An orthonormal basis fon\k is given by

LK) s o n

F2KI(n+1)° » nelo, (70

Xin( @)=

(Xk,nliXk,nz)k: 5n1n21

where we have included an overall phase factor i&g)(
With respect to this basis the operatéts,K . ,K_ have
the form

1 X .
Ke=7 g, Ki=e'%ik+dy), K =e(ik=d,).

(71)

Their action on the basis functiorg0) is given by
Kaxkn=(K+N)xkn, (72)
K Xien=i[(2k+n)(n+1)]"xy 11, (73
K—Xk,n:%[(2k+ n—1)N]"xin-1- (74)

It is important to realize that the operatdfs,K ,K_ be-

long to a representation which is unitary only with respect to =
the scalar produdi69), not with respect to the scalar product

above. We shall briefly indicate how this works, because on
the way we learn about other interesting Hilbert spaces on
which some of the above irreducible representations are re-
alized.

D. Unitary representations in the Hilbert space
of holomorphic functions on the upper half plane

The unit discD and its associated Hilbert space with the
scalar produc(53) is especially suited for the construction of
unitary representations of SU(1,1) because that group acts
transitively onD (see Appendix A Similarly, the group
SL(2,R), which is isomorphic to SU(1,1), see Appendix A,
acts transitively on the upper complex half plafe' ={w
=u+iv, v>0}. The mapping

1-iz :2x+(1—x2—y2)i

w= . 7
z-1 X2+ (y—1)? 7
iw+1 u?+(v—1)>2

zZ= — |z/*= ———, 78
wii o 12 u?+(v+1)2 (79

provides a holomorphic diffeomeorphism frof onto C*!
and back. Because of

dudvy dxdy 2%y

_|9l2—= -
(1-]2»% 11 (W+i)(w—i)’

(79

4p?
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we have forkk=1/2,1,3/2,2. . ., thefollowing isomorphism:

(1,9ps= T8 = i | To0? 2dude
9)pk 9tk F(Zk_l) ot gu '

(80)
where
L TR, 1+iw
B Taw)= \[— 2% Hw+i) 2f(z— —w
(81)
E-l: f(2)=2\/—0 (z—i)—ZK"f(w=1_iz) (82)
ko T'(2K) z—i |

The (unitary) transformatiorE, maps the basiéb5) of Hp
onto the basis

€ n(W)= %zmli“(w—i)“(w+i)-2k—n,

nNe NO y (83)

of He+i . One can, of course, discard the phase factor

On this Hilbert space the irreducible unitary representa-

tions T, of the positive discrete series of SLE3,are given
by

~ oz B1Wt A
. _ 2K L
[T7(91,K)f1(w)=(aiw+az) ~=f AN+ ag)’
(84)
an a12)
- e SL(2,R), (89
9 dy1 A

which is defined fork=1/2,1,3/2,2..., only. The sub-
groups

_ _( cog 0/2) sin(¢9/2))
Kit k= —sin(6/2) cog62))’ (86)
etl/Z 0
Ay alz( 0 etl/z)’ (87)
_ _(cosht2/2) sinr(t2/2))
Bii b= sin(t,/2)  coskit,/2) (88)

are associated with the following generators of their unitary
representationéve choose the sign &3 such that its spec-

trum is positive:

(89

~ 1
Kizik(wii)iz(wii)z—. (90)

dw

Their action on the basi@3) is given by

PHYSICAL REVIEW D 62 044026

K€ n=(k+n)eyn, (92)
K. en=i[(2k+n)(n+1)]1"%, 111, (92)
- 1

K_en=rl(2k+n=1)n)] %y ;. (93)

For the limiting cas&— 1/2 the Hilbert space with the scalar
product(80) now can be replaced by the “Hardy spzaleléi
of the upper half plane’T22-24, the elements of which are

the functionsf (u) which are limits for Imv)=v—0 of the

previous holomorphic functionTs(W) on the upper half plane
and the Hilbert space of which has the scalar product

(= | adfauityw). (o)

E. Hilbert space of the Fourier transformed holomorphic
functions on the upper half plane

We now pass to still another Hilbert spag.+i, by the
Fourier transform

R 1 (= : ~
F o f()=— f(w)e™"™du, f(w)eHc+iy, teR.

i
(95

Because of the analyticity properties f one has[29]
a,%(t)=0 andf(t)=0 fort<0 and the inversion is given by

1 (=,
F L of(w =—J' f(t)e'dt. 96
(w) 2alo (t) (96)
The scalar product induced d’i\ﬂ(ﬁi‘k is
(f,9)=(f,0)k= FOgmtt-2dt. (97

22k—l 0

The Fourier transform(95) maps the basi$83) of H iy
onto the basi$30]

ék,n(t) =i n—2k 4 [%(Zt)Zk—le—tLﬁk—l(Zt)

(98)

of H+i . Here L2 are Laguerre’s polynomials which
obey the equatioh31]
XLV (2k—x) L2 Y 4 nL2 =0, (99

Using the inverse Fourier transfort@6) the operatoK 5 can
be seen to take now the form

1 d? d t
t+k—+ = (100

K== s 2t kai T 2

044026-9



M. BOJOWALD, H. A. KASTRUP, F. SCHRAMM, AND T. STROBL

of which the basis function$§98) are eigenfunctions with

eigenvalu&k+n. It is important that oﬂ:l[;ﬂ,k the parameter
k can take any value-0, contrary toH+i  wherek can take
only the values 1/2,1,3/2,2. ..

F. Unitary representations on the Hilbert spaceL 2(R*,dt)

The measurelt/(2t)%*~* in the scalar product97) and
the form of the eigenfunction®8) strongly suggest to intro-
duce the unitary mapping
fo—fm=Fnr>*

Vi (101)

of LR",(2t)*2%dt] onto 7, ,, the standard Hilbert

spacelL?(R",dt) on the positive real line with the standard

orthonormal basis

2 1 .
fn(D) = \/F(éﬂ—in;(zwk1’2etLﬁk1<2t)=i2k"ek,n<t>.

(102
The operatoiK 3 here has the form
F<3=—E(td—2+i +lt+—(2k_1)2 (103
2\ g2 dt) 2 8t '
with the property
k3f|<,n(t):(k+ M fin(t). (104

G. Relationship to the radial wave functions
of the hydrogen atom

If we definefk,n=t1’2hk,n(t), then the eigenvalue equa-
tion (104 can be rewritten as

( k(k—=1) k+n
_l’_

ot

2t2 hk,n(t)

1
== Ehk,n(t)- (109

This is just the radial Schdinger equation for the hydrogen
atom in three space dimensions with mass 1, angular
momentumk=I1+1, fine structure constank=k+n and
bound state energlg, n = —1/2. As

_1 a?

© 2 (1+n,+1)2 (109

EI,n

PHYSICAL REVIEW B2 044026

bound states of the hydrogen atom. As in the gravitational
caseaxM?, we see that we are consistent here with the
relation (2).

H. Unitary representations on the Hardy spaces of the upper
half plane and the unit circle

Next we give the form of the eigenfunctions Kf in the
Hardy space$i?; andH? with the scalar product®94) and
(67), respectively. We have to apply the inverse Fourier
transformation(96) to the functionsfk,n(t) with realw=u
and in this context use the relatiof32]

r(2k+n(k+1/2) 11
~Tmrorel P 1/2F(_”’k+§’2k'5)
(107
T(k+n+12) N
—W(p—l) p vz (108

F k Ll k—n; P
TR T T )

p—g(l—lu),

where

F(a,b;c;z)

ab

a(a+1)b(b+1) 22
=14zt e o

c(c+1) 21
a(a+1)---(atv—1b(b+1) - (b+v—1)
+ cct1) - (ctv—1)

(109

is the hypergeometric serig¢33] which here is a polynomial
of degreen becausea= —n. Since[34]

:

we get the orthonormal system of eigenfunctiag,g(u) of

@ (2k)

= 110
2211 (k)| (110

F(k+

2 .
for the energy levels of the hydrogen atom, we see that oufs ONHY;:

guantum numben here is to be identified with the radial
guantum numben,=0,1, . ...
Thus, for k=1,2,..., we have related the quantum

theory of the Schwarzschild black hole to that of the hydro-

gen atom with varying fine structure constant. The irreduc-

ible representation wittk=1 corresponds to the s-wave

~ [T (2k+n)T(2k
fk,n(u)=27k+l/2 F((n—+1))r((—k))(1_iu)k1/2
1
xXF —n,k+§;2k;m), (111
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. e T
(1—iu)k=(1+u?)K2eike — ><¢=—arctarnu) <+ .

This set of orthonormal functions dfh?H =L2(R,du) can be
interpreted in the framework of orthogonal polynomig3s]
in the following manner. For ank>0 define the weight
function

~ I'2(2k)
Wi (u)=————(1+u?)k 12 11
(W)= g (09 (112)
and the polynomials of degree
5 e /F(2k+nF oo
W= Nt Tk )
(113
Then the scalar produ¢94) may written as
(fk,nla’fk,nz)ﬁ—i:Jl ‘duvvk(u)Bk,nl(u)Bk,nz(u):5n1n2-
(114

The operatoK; now is no longer a pure differential opera-

tor, but due to the terrxt ™! in Eq. (103, an integrodiffer-
ential operator orH?2 ;.
In order to get the eigenfunctiorig ,($) of K5 in HZ on

the unit circle we have to follow up the inverse Fourier trans-

formation(108 from above by the mapping—see E§2)—

Efleif<2>=25<z—i>‘ff(w:u= 12__Iiz

), |z|=1.
(115

PHYSICAL REVIEW D 62 044026

13 .
b n(d)= 7k,nF( —n,k+ E;E_k_”;el¢ (119

for all k>0 and can then write the scalar prod(g?) as

1 (2= —
(fk,nlv fk,n2)+ :Efo dpw( (b)bk,nl( d’)bk,nz( b)= 5nln2-
(120

We repeat the basic difference between the eigenfunctions
(70) and (117 of the self-adjoint generatdf, of the corre-
sponding unitary representations of the compact subgroup of
S0O/(1,2) both sets of which belong to the same vector space.
The set(70) belongs to the representations which are unitary
with respect to the scalar produ@9) whereas the sdtL17)

is associated with the scalar prod6f). Both representa-
tions are unitarily equivalent: this follows from the sequence
of mappings we have been using and which are all unitary.

I. Other unitary representations on the Hardy space
H?Z of the unit circle

One can implement the constituting relatiof&60)—
(A62) for a unitary representation on the Hardy spate
with the scalar produdi67) and the basis exjp(¢),ne Ny, by
chosing for the “ladder” operator& .. “nonlocal” expres-
sions[20]

Observing thatp/(p—1)=—1/(iz) and using the relations pecause

[33]

zZ 9F

1
a,a—c+1l;a—b+ 1;2) =F(a,b;c;z) (116
and Eq.(108), we then finally get fok=1/2

i 13 .
fin(P)= Vk,n(l—e'¢)k1/2F( —nk+ o ——k—n;e'¢),

2
(117
I'(n+k+1/2)
ﬂyk,n:I '
VI'(n+1)T'(2k+n)
where we have put-iz=exp(¢) becausdz|=1.
We now may proceed as before. As
(1—e?)(1—e '?)=2(1-cos¢)=4 sir( $/2)
we may define the weight
Wi () =221 sir?k"1(p/2) (118

and the orthogonal polynomials

. 1d
K3=k+i—@, (121)
. . d 1.d\]¥ . y
K+=e'¢(2k+|—@ 1+|—%” , Ko=(K)™,
(122
K., e"=[(2k+n)(n+1)]"% 1+ 1)e, (123

J. Unitary representations in the state space
of two harmonic oscillators

Finally we mention that all irreducible unitary representa-
tions of the positive discrete series of SU(1,1) wih
=1/2,1,3/2,2. .., arecontained in the tensor product of the
Hilbert spaces of two harmonic oscillator36—38, gener-
ated by creation and annihilation operators

[ai,a =6, [&.8]=0, [a ,a]=0, i,j=12.
(124

The operators

1
K3=§(afa1+a2+a2+ 1), K.,=aja,, K_=aja,
(129
obey the commutation relations

[K3,K+]:K+, [K3!K—]:_K— ) [K+ ,K_]:_2K3
(126)
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of the Lie algebra of SG{1,2) and its covering groups. The 32r .,
“ground state” |k;0) is defined by the property Ap-a(k;n)=(k+nap_», -2= 25 g) lpo”

alk:0)=0, j=12, (127) (132
and the other normalized states by VI. CONCLUSIONS

1 Our above results show that the original ansatz of R&f.
|k;n1,nz)=\/?|(a§)n2(al+)nl|k;0>- njeNo. to associate the Bekenstein spectriinor (2) with a finite
1Ny (128 time interval AxRg(M) which precedes the collaps of the
Schwarzschild system to a black hole can be put on more
Notice thatKj is just half the sum of the two Hamilton Solid grounds: Implementing the finite time interval by
operatorsHj=(aj+aj+1/2), j=1,2, of the two harmonic M-dependent periodic boundary conditions leads to a phase
oscillators. space with symplectic fornde/\dp which is globally dif-
The relation between the number pair;(n,) and the feomorphic to_SlxR*. Such a phase space can be quantized
pair (k,n),n  No, characterizing a state in an irreducible rep-9roup theoretically by means of the group '¥02) (or its

resentation is obtained as follows. First we have covering groupks _ . . _
The main advantage of this approach is that it provides a

1 Hilbert space and the basic self-adjoint operators for quan-
Kslking,np)= 5 (N1+ny+ Dlking,ng)=(k+nlkini,nz)  tized Schwarzschild black holes. The crucial point is that the
(129 classical variable is proportional to the areAy_, of the
black hole horizon in any space-time dimensidbe=4 and

fani 2 2 ~
and second we have for the Casimir opera@rKi+K5  that the self-adjoint operatqrhas a discrete spectrum in any

—K3=K,K_+K3(1-Ky): irreducible unitary representation of §Q@,2). As we want
1 the spectrum to be positive—because the #&&aa positive
QIK;N;,N2) =1 NyNp+=(1+n;+n,)(1—Ny—ny) qua_ntity—pnly the positive_ discrete series among the _irre-
4 ducible unitary representations has the required properties. It
[k:ny ) provides the spectrum
=k(1—k)|k;ny,n,). (130 Ap-o(kin)eck+n, nelNg. (133
Thus we have the two relations Here the numbek>0 mathematically characterizes the rep-

resentation and physically the “remnant” area of the ground
state. As the energy of theth level is given by—see Eq.
(10—

11
k=§+§|n1—n2|;

1 1 - (D-3)/(D-2)
n:E(nl+n2)—§|nl—n2|=min{nl,n2}. (131 Eicn=ap(k+n) Epp, nelo, (139

S ) . _ the numbek determines the ground state energy such as the
They show that in this construction only representations withy mper 1/2 in the case of the harmonic oscillator. The value
half !nteger or integer p03|.t|v.k are realizable and that the f | depends on the representation to be employed: For the
relations(131) are symmetric im; andn,. The latter Prop-  “true” representations of SQ1,2) themselvek can take
erty means that, except fére=1/2 wheren,;=n,, each irre- only the values 1,2 .. (corresponding to the-, p-, etc.,
ducible representation with fixddoccurs twice in the tensor  giates of the hydrogen atomFor the twofold covering
product 1 7>®H 3 [becausen; —n,= = (2k—1)] of the  groups SU(1,1) or SL(Z) k may assume the valuds
harmonic oscillator Hilbert space#(*‘,j=1,2, realized, =1/2,1,3/2,2... and for theuniversal covering group
e.g., by the orthogonal Hermite functions bA(R,dx). For m) k can be any real positive number. Physical argu-

k=1 we have the two possibilities, (x1) @€y, +1(X2) OF  ents will have to select the right value K& 1 the ground

en, (X)) ®en —1(Xz), where e, (x)) e H7* and e, (x;)  state area quanta have the same value as those of the excited
e HYC. levels which would leave us with only one kind of area
quanta, but this must not be so, as can be seen from the
harmonic oscillator where the energy of the ground state is

. __just half of the basic energy quantulw.

Up to now we have set =1. We restore it explicitly in |5 Ref. [20] arguments will be presented which suggest
the same way as in the case of the rotation group: We jughat the possible values &fshould be restricted to the inter-
multiply each operatoK; by 7. This corresponds to the fact va| (0,1]. As to the physics we see the following picture
that the operatop=Kj3 is canonically conjugate to the di- emerging: Thearea of the quantized Schwarzschild black
mensionless angle variable. According to Eq.(12) the  hole is built up additively and equidistantly from basic
guantization of the horizon area is then given by quanta whereas thenergy(134) behaves differently: the en-

K. Reintroducing Planck’s constant
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ergy of thenth level may be interpreteffl5,13,§ as the for our discussion above, where this group, its covering
surface energy of a “bubble” oh area quanta. groups, its Lie algebra and its irreducible unitary representa-
It is an interesting and supporting result that the eigenvaltions, especially those of the positive discrete series, have
ues of the area operator in the spherically symmetric sectdreen employed as the quantizing framework for Schwarzs-
of loop quantum gravitywithout mattey in 3+1 space-time child black holes. Practically all of this appendix is contained
dimensions for larg@ are proportional ta, too[39]. Asto  in a wealth of literature about this group which is the most
the degeneracies of the states one sees immediately from tefementary of noncompact semisimple Lie groups. Potential
formulas above that the eigenstatgs,, etc., are not degen- readers of this paper, however, will find it convenient to have
erate in an irreducible representation. the required properties assembled in one unit.
) One m|ght th|nk about paSSing to I’edUCib|e I’epresenta- The eSSentia| C|assica| paper on the grouﬁ(ﬁ@) and
tions, e.g., in terms of Fock spaces constructed from “oneis jrreducible unitary repesentations (till) that of Barg-
partlcle” wave functions discussed abogsecond quantiza- mann[49]. In the meantime there are a number of mono-
tion). The .op‘e:\.ratorK; then becomes a sum of the graphs which deal with the group $Q,2), its covering
corresponding “irreducible’K ;. The degeneracies of the as- roups and their representatiof®-57,3§. As these text-
sociated eigenvalues are then given by the possible partitio 0oks contain many references to the original literature we

of a positive numben into smaller ones. For large this mention onlv the most essential ones for our PUIDOSES
yields[40] d,~g'", g>1, in contrast ta" required to yield y purp '

the correct Bekenstein-Hawking entrofsee Eq(133)]. _ .

Yet one gets the desired thermodynamics, if, as one of us 1. The group and some of its covering groups
has proposeff], each area quantum is assigned two degrees |n order to see the homomorphism between @(®) and
of freedom corresponding to the two possible orientations ofts  mutually isomorphic  twofold covering groups
a(classical sphere. The energy spectrui84) together with  gy(1,1), SL(2R) and the symplectic group(1,R) in two
m:w?((iar?gyeTgﬁsgrztzfréh:n%tﬁhlgvgéIigflgttle?r?cl[ﬁ?/\’/%ntg (tahn?rop dimensions it is convenient to start from the action of the
of a Schwarzschild black hole. Thus, altogether a quite Coé:?huopcr?rtgzo{;)s tfgret\r/]vtgfogjm%o;/ egﬁ; 39)3%% olfwmﬁosvrglzer
herent picture of the quantum theory of Schwarzschild blackSpace M4 with the scalar produc,:tx~x=(x°)2—(x1)2
holes and their thermodynamics emerges. ~(x?)2— (x3)2. Define the Hermitean matrix

The groups SQ1,2), SL(2R), etc., and their Lie alge- '
bra have been playing a number of roles in the context of
recent attempts to quantize black holes. Hollmahh| has X =
analyzed the quantum theory of Schwarzsckifldub-NUT)
black holes in terms of the coset space SE(2SO(2)

X0+ x3 xl—ixz)

xI+ix2  x0—x3

which yields a continuous spectrum, whereas we use the detX=(x%)%— (x1)?~(x?)%~ (x*)2. (A1)
coset space SL(R)/N, whereN is the nilpotent group from .
an Ilwasawa decomposition. If CeSL(2(), deC=1, then
The group SL(Z) and its Lie algebra have a prominant - N -
role also in recent discussions of black holesin<2)- and X—X=C-X-C", detX=detX, (A2)

(D =3)-dimensional models of quantum gravity, eSpeCia“yinduces a proper orthochronous Lorentz transformation on
anti—de Sitter spaces Adand AdS (see Refs[42—44 and M4 H CE P he Hermi . £ th .
the literature quoted thexen the three-dimensional case the ¥ - HereC " means the Hermitean conjugate of the matrix
Lie algebralSL(2R) plays an essential role as the basic - , )
subalgebra of the associated Virasoro algeldds46. At Subgroups SQLZ) may be obtained by looking for
the moment it is an open question whether and how thesi10se transformationsA2) which leave one of the coordi-
approaches are related to ours above. See also the interestif@{esx’, j=1, 2, or 3 fixed. The transformations with the
application of the group SL(R) to black holes by Gibbons Property
and Townsend47].

Note addedAfter our paper was submitted as an e-print c (1 0 10 ) (A3)
we became aware of an earlier group theoretical quantization 0 -1 0 -1

of the symplectic manifoldS*xR* in terms of the group ) ) ]
SO'(1,2) by R. Loll[48] in a different context. leave the coordinates’ invariant and represent the subgroup

SU(1,1)={go}CSL(2():

+:
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o
APPENDIX A: PROPERTIES OF THE GROUP SOT(1,2), _ .
OF SOME OF ITS COVERING GROUPS AND a: com_plex conjugate ofx. If we let g, act on a two-
THEIR IRREDUCIBLE UNITARY REPRESENTATIONS dimensional complex vector space, then
OF THE POSITIVE DISCRETE SERIES
- . 1 Z ~ -
The purpose of the present appendix is to summarize the go( ): ( . ) 22— 2%=z1|?— |25 (AB)
main properties of the group $@,2) which are important Z Z
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If now |z,|>|z;| andz=2z,/z, then SU(1,1) maps the inte-
rior D={z;|z|<1} of the unit disc in the complex plane
(transitively) onto itself:

(AB)

If we write a=a;+iay,B=pB1+iB, then|a|?—|B|?=a?
+a§—,85—,8§=1. This means that the group manifold of

SU(1,1) is homeomorphic to the three-dimensional anti—de

Sitter spacég58] AdS;.
The subgroup of SL(2) with the property

0 —i 0 —i
c i 0 c i 0
leaves the coordinate€ invariant. It constitutes the group
SL(2R):

+_

(A7)

a;; ap
C_gl_ , ajKER, degl:l. (A8)
dp; A
As
0 1 T 0 1
gl _1 O glz _1 0 ’ (Ag)

the group SL(Z) is identical with the real symplectic group
Sp(1,R) in 2 dimensions.
1 /(1 i
_r~t
( i 1) “0

The unitary matrix
), deCo=1, C,l=—
(A10)

com | 2
TRl-i1 2

has the property

i 1 0
0)051=(0 _1) (A11)

and therefore implements an isomorphism between SU(1,1)

and SL(2R):

Co'9o-Co '=01. (A12)
It is obvious that the isomorphic groups SU(1,1), SIR)2,
andSp(1,R) are twofold covering groups of SCL,2).

The group SL(Z}) maps the complex upper half plane
CH'={z=x+iy, y>0} transitively onto itself:

y

" (agtayx)2+ay?’
22T Aoy’ 21Y
(A13)

Of special interest for our purposes is thmique lwasawa
decomposition59,56 of the groupsG;=SL(2,R) and G,
ESU(l,l) GlEKl.Al.Nli Go:Ko'Ao'No, WhereK |S

PHYSICAL REVIEW B2 044026

the maximal compact subgrouf a maximally abelian non-
compact subgroup and a nilpotent group. Fof5; this de-
composition is

b _( cog 6/2) sin(0/2)) el om io
v k=l gine) cogarz)) 0E(T2m 2Tl
(A14)
et/2 0
1- a]_: 0 et/z)’ tER, (A15)
1
Nl: n1=(0 i), gER (AlG)

Each elementg; has a unique decompositiorg,
=Kk;-a;-n;. The isomorphisn{12) gives the corresponding
decomposition of5,:

e—i0/2 0
KO: koz( 0 ei0/2>, 06(_277,“1‘277],
(A7)
_ _( cosh{t/2) —i sinr(t/Z))
Ao 0=\ ginnt2)  costitiz) |1 tER
(A18)
S ( 1-igl2 &2
Not Mo=| "y 1pjgp) &=t
(A19)

In addition to the above subgroups the following two ones
are of interest to us:

_ B ( cosh(s/2) sinh(s/2) )
Bi by= sinh(s/2) coshs/2)/’ seR, (A20)
. o _(cosf{s/Z) sinl‘(s/Z))
Bot Bo=Co™+b1-Co= sinh(s/2) coshs/2)]’
(A21)
L (1 o
Nl n1= g 1), gER, (A22)
(10 &
Not o=l 4 1—i§/2>' (A23)

Two more decompositions of SL(2) or SU(1,1) are impor-
tant for the construction of their unitary representations.
Cartan(or “polar” ) decompositiof59,56: Each element
of SL(2,R) can be written as
g1=k(62)a;(t)k(6y), (A24)
wherea,(t) is determined uniquely ankl 6,),k(6,) up to a

relative sign, that is up to the centés of SL(2R).
Bruhat decompositiof59,52,53: From
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co(0/2)e>+sirf(012)e 2 sin(6/2)coq 6/2) (e 2—e'?)

k(6)-a1(t)-k(—

one sees that
k(0)-ai(t)-k(—60)=ay(t) for 6=0,27, (A26)
k(6)-a,(t)-k(—0)CA; for 6=0,x7,2m, (A27)

which means that the centralizéI‘Kl(Al) and normalizer
Ni, (A1) of Ay in K, are given by

10
CKl(Al):[ + ( 0 1) ] =17, (A28)
10 0 1
R R L | e
The quotient group
10 0 1
(A30)

is called the Weyl group of SL(R). Its associated Bruhat
decomposition of SL(R) is

0 1
Gl:ZZ'Al'NlUNl.W'ZZ.Al'Nll W= )

-1 o)
(A31)

HereZ,-A; is the group

Cc
Dl:ZZ'Al: 0

Cfl

, CER—{O}] . (A32)

The relation(A31) means that each element of SLI{2,may

6)= sin(#/2)cog 6/2)(e""2—e'?)  cog(6/2)e Y2+ sir?( 6/2)e"? (A25)
|
Then
SUL,)={go=(w,y), we(—m,m], |7|<1}1(A35)
G=SU1,)=SLZR)
={g=(0,7), weR, [y|<1}. (A36)

The group composition law fogs=g,g; is given by

Ya=(y1+y26 291)(1+y 7,6 291) 7L, (A37)
— i _ —2iwg — 2iwgy—1
w3= 01T Wyt o IN[(1+ y1v.€ Y1+ y1y.67°1) " .
(A38)

2. Lie algebra

As the structure of the three-dimensional Lie algebra
£S0(1,2)={I} of SO(1,2) is the same as that of all its
covering groups we may calculate it by using any of them.
For SL(2R) we get from the subgroup$Al4)—(A16),
(A20), and(A22)

I101I 110|101
Kim2l—-1 o/ M 2lo0 —-1)" B 2(1 o)

(A39)
0 1 0 0
'le(o o)’ lNl:(l o)’

which are not independeriin the following we skip the
indices “1” or “2,” because the structure relations are in-
dependent of thejn

(A40)

be decomposed uniquely either as an element of the “para-

bolic” subgroupP;=D;N; or as an element dfl;wP;.

The Bruhat decomposition of SL(2), plays a central role
in Sally’s constructior{51] of the irreducible unitary repre-
sentations of the universal covering group SIR)2,

As the compact subgroui§;, or Ko, =S, is infinitely
connected, the groups SL{), and SU(1,1) have an infi-

nitely sheeted universal covering group which, according to

Bargmann, may be parametrized as follows. Starting from

SU(1,1) define

y=Bla, |a|®*~|Bl*=1 (=]y|<1); w=arga),
(A33)

a=e'*(1=]y)"% |yI<1, p=e"y(1-[y*) '~
(A34)

Intv=2lg, Iy—Iy=2lk. (A41)

We have the commutation relations
[ lal==1g, [k.lel=la, [la.le]=lk, (A42)
[ Ind=ta, [k INT=1A, (A43)
[aInI=In, [TasIn]=—1N, (A44)
[e.In]=—1a, [lg.IN]=1A, (A45)
[ In]=2l 4. (A46)

The relationgA42) show that the algebra is semisimple, the
first of the Egs.(A44) that A and N combined form a two-
dimensional subgroup and thatis a normalizer oiN.
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3. Irreducible unitary representations
of the positive discrete series

As the group S®1,2) is noncompact, its irreducible uni-

tary representations are infinite dimensional. Their structure

PHYSICAL REVIEW B2 044026

In the following we assume that we have an irreducible rep-
resentation for which the functiorgs, are eigenfunctions of
the Casimir operato®, t00: Qg,,=q9 -

The relations(A52)—(A54) show that the eigenvalues of

can be seen already from its Lie algebra: In unitary represerSs in Principle can be any real number, where, however,

tations the elements-il,—ilo,—ilg of the Lie algebra
correspond to self-adjoint operatafs,K,,K, which obey
die commutation relations

[K3,Ki]=iKy, [K3,Ka]=—iKy, [Ky,Kz]==iK3,
(A47)

or, with the definitions

K, =K +iK,, K =K;—iKy, (A48)
[K31K+]=K+v [K37K7]=_K71 [K+1K7]=_2K3'
(A49)

The relations(A47) are invariant under the replacemegy
——K;,K;— =K, and the relationgA49) invariant under

K,—wK, ,K_—wK_, where|o|=1. These relations are
in addition invariant under the
K+HK, ,K3—>_K3.

In irreducible unitary representations the operdfar is
the adjoint operator ofK, :(f,,K, f,)=(K_f{,f,5), and
vice versa, where it is assumed tHatf, belong to the do-
mains of definition ofK, andK _ . The Casimir operato®
of a representation is defined by

Q=Ki+K35—Kj (A50)

and we have the relations

K K =Q+Ks(Ka—1), K_K,=Q+Ks(Ks+1).
(A51)

All unitary representations make use of the fact tais the

generator of a compact group and that its eigenfunctgpns

are normalizable elements of the associated Hilbert space
The relationg A49) imply

K3gm=mMgn, (A52)
K3Kigm=(mMm+ 1)K, gp, (A53)
K3K_gmn=(Mm-1)K_gp, (A54)

which, combined with Eq9A51), lead to

(Im K+ K_gp)=(K_gn,K_gn)=q+m(m—1)=0,

(A55)
(Om.K-Kigm)=q+m(m+1)=0, q=(gm,Qm),
(A56)
implying
(Kygm Kigm) =2m+(K_gm,K_gmn=0. (A57)

transformations

different eigenvalues differ by an integer. For the “prin-
ciple” and the “complementary” series the spectrumiof
is unbounded from below and above .

The positive discrete seri€s, of irreducible unitary rep-
resentations is characterized by the property that there exists
a lowest eigenvaluen=k such that

K_g,=0. (A58)
Then the relation$A55)—(A57) imply
g=k(1-k), k>0, m=k+n, n=0,12....
(A59)
The relationgA52)—(A54) now take the form
KaGkn=(k+n)Qxn, (AG0)

K Okn=@n[ (2k+n)(n+1)1Y2gy ni1, @ =1,
(AB1)

K_g _ b [(2k+n—1)n]"?
—-Jk,n wn_1 Ok,n-1-

(AB2)

The phasew, guarantee thatfg ,K, f,)=(K_fq,f,).

Up to now we have allowed for any value &f>0. It
turns out[26,51] that this is so for the irreducible represen-
tations of the universal covering group §@,2). These rep-
resentations may be realized foe 1/2 in the Hilbert space
of holomorphic functions on the unit disP={z,|z|]<1}
with the scalar product

2k—1( —
(f.9h=— fo(z)g(z)(l—|z|2)2k*2dxdy,
(A63)
as
(UG F1(2) =e2 (1|21 + 72) 24| 2L
Bz+ «a
(A64)
~ a pB -
9=(w,7), (— —)=h(g)eSU(1,1).
B «
(AB5)

Becausd yz|<1, the function (& yz) % is, for k>0, de-
fined in terms of a series expansion.

For SU(1,1) we havew € R mod 277. Uniqueness of the
phase factor then requirds=1/2,1,3/2. ... For SO(1,2)
itself we havew € R mod# which impliesk=1,2, ... .More
about the unitary representations can be found in Sec. V of
the main text.
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APPENDIX B: REDUCED PHASE SPACE d5-2=ez’3[—0'2dt2+(dr+ Ldt)z] (B8)
OF D-DIMENSIONAL SCHWARZSCHILD
GRAVITATIONAL SYSTEMS and the canonical variables arp,P,;#,P4;L,P_;0,P,)
1. Symplectic reduction subject to the constraints
We start from the spherically symmetrxom line ele- P, ~0, (B9)
ment
P,~0, (B10)

ds?=—N2dt?+ P2(dr+N,dt)?+Q%d0?,  (Bl1)
wherer is the radial coordinate ami)? the line element of E=p'P,+¢'Py—P,~0, (B11)
a unit sphereSP 2, embedded in D — 1)-dimensional flat
space. The functiong, Q, N, andN, depend only om andt. Gi=2¢"—2¢'p' — EP P,+e 20\ ()~ (B12)
The line element of the two-dimensional radial manifold ¢

with coordinates X°,x*)=(t,r) will be denoted by ) ) o ]
A prime denotes differentiation with respectrtowhereas a

dazzgijdx‘dxj = —N2dt?+P2(dr+N,dt)2. (B2 dot will denote differentiation with respect to
The first two constraints eliminate the variablesnd o,

The line elements? is conformally equivalent to whereas the remaining two are equivalent&te0 andC’
~0 with
ds?’=do?+dQ?, do?=Q 2do?, (B3)
PR ,
QZ:gAdeAdyB, 2<A, B<D-1, C:=e ZP(ZP,Z)_(¢) ) J(d’) ¢_V(¢) (B13)

where dQ? is the line element of al{—2)-dimensional C is a physical observable, which is forced by the constraints

space of constant positive curvature 1. Its Ricci curvatureo be spatially constant. It represents the only physical de-

tensor is given byR{% 2 =Ag,g. A direct calculation us- gree of freedom.

ing, e.g., the special form The last step consists in connecting the results of the two
guoted papergl0,60 by the transformation of variables

o coyy” oven
dQf=———F p—>P=erp(~D)(2D-4) (B14)
(1+ 3 0a8Y"Y®)?

— 4+1/(D-2) B1
shows thatA =D — 3. $—Q=¢ ' (B15)
. In order to perforr_n a symp]ectiq reduction we havg to L—N,=L (B16)
insert the metrigqB1) into the Einstein-Hilbert action. This
has already been done, for a different purpose, in F&fl o>N=ger p3-D)(@D-4), (B17)
with the result that the spherically symmetric theory is de-
scribed by a two-dimensional dilaton action For the momenta we get

s=f dtdr/|def@,|[ sR—V()]. (B4) Pn=0, (B1g)
_ Py, =0, (B19)
The metricg;; is obtained fromg;; by the conformal trans-
formation 1 3D 1D-3_ .,
_— Py=p2Q" "Po=5p53PQ "Pe. (B20)
do?=g;;dx'dx =QP 3do? (B5)
and the dilaton field is introduced by P,=PPp=2(D—2)PQ° 3N "1(-Q+N,Q").
(B21)
$=Q°%, (B6)

Using ourV(¢) we have
with potential
i(¢)=—(D—2)2¢(P~3/O=2 1, (B22)

V(¢)=—(D-2)A¢p P~ "
(4) ( JAS Herek is a constant of integration. Inserting all these formu-

=—(D-2)(D—-3)¢ P2, (87) las in Eq.(B13) we obtain
Now that we have arrived at a two-dimensional dilaton ac- _ } D=3p2 (M _ 5\ 2~D-3r (/' D-12_ 17
tion we can adopt results of the symplectic reduction of Ref. €= 4Q Pp=(D=2)"Q" "L(Q'P )"~ 1]~k.
[10]. There the line element is parametrized as (B23)
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In order to reveal its relation to the Schwarzschild mes However, due toP,,C}#0, we have to replac®, by a

we compare it with the Schwarzschild line elementDn  new momentunP , conjugate toj:=¢. As in Ref.[9] it can

space-time dimensiod4]: Q=r, N,=0, and be calculated by equating the generators of diffeomorphisms
in both sets of variables

_ 16mGM
P 2=N?=F:=1— ,  (B29)
(D-2)wp_or°®

p'P,+¢'P,~P/=C'Pc+¢'P, (B33)

where Gp is the Newton constantM the Schwarzschild ging the fact that bote and ¢ are scalars. The last equation
(ADM) mass. Due t@Q=N,=0 we havePp,=0 (outside the yjelds
horizon and the resulting expression
167GpM(D —2) L P P¢+4¢>’P;—¢"Pp_ZeZPPPV(qﬁ)
wp 2 P2-4(¢')?  Pi-4(¢')?

B25
(829 =-2[P}-4(¢")7] H(P,G+24'8) (B34

C=—(D-2)%P3(F-1)—k=

shows the relation o€ to the Schwarzschild mass.

o which shows thaP,, is constrained to be zero.
2. Reduced Hamiltonian Now we will show that the transformation

In order to determine the Hamiltonian associated with the(p,P,,®,P4)—(C,Pc,¢,P,) is canonical by showing that
observableC we have to add an appropriate surface termthe difference of the corresponding Liouville forms is exact.
which renders the action functionally differentiable. For ourFirst, we have
functions ,P,,¢,P,,L,0) we choose fall-off conditions
which are prescribed by asymptotic flatness of the Schwarzsp ,0p+P,6¢p—PcSC—P ¢
child space time. The remaining formulas remain, however,

true for arbitrary dilaton potential¥(¢). For the functions B . |2¢'=P, 2¢'+P, ’
(P,Pp,Q,Pq,N,N,) the fall-off conditions at — * (r is =9| P,+2¢'log 20 5P, +2| o¢log 20 —p ||
the radial coordinate of an asymptotically cartesian coordi- p P
nate systemare (B39
Q=[r|+O(|r[79), (B26)  As a consequence of the fall-off conditions the integral over
3-D 3-D-c the last derivative term vanishéat the horizon, i.e., at the
P=1+M_(t)r] +O(]r| ), (B27) singular points of the logarithm, the integral has to be inter-
PQ=O(|r|‘1‘E), (B29) preted as principal valjeTherefore, the difference
Pp=0(|r["9), (B29) f dr(P,8p+ P 48¢—PcoC—P,5¢)
N,=O(|r|79), (B30
ol ) 5fd P+ 24log 22— "r (B36)
e = r og|————
N=N.(t)+0(|r| 9. (B31) p 20 Y20+p,

From these conditions follow the fall-off conditions for the . ) . .
functionsp, P,, &, P,, L, o by using the transforma- of the Liouville forms is exact, and the transformation to the
1 p! t 1 1

tion (B14)—(B17). variables C,Pc,¢,P,) is canonical. Assuminge’+0,
In order to extract the surface term we first perform fol-Which will be fulfilled for Schwarzschild systems, the con-

lowing Ref. [9], an appropriate canonical transformation Straintsé~0 andg~0 are equivalent t€'~0 andP,~0.
which replaces the variabje by the observabl€. The mo- We use these constraints together with the new canonical

mentum conjugate t€ is (locally) variables and obtain the action

2p . .
= ﬂ (B32) S=Jdtdr(PCC+P¢,¢>—NCC’—N‘/’P¢), (B37)

PZ-4(¢)?

The relation(B32) becomes singular on the horizon. One canwhereN® andN are new Lagrange multipliers. Because of

avoid this by defining a variable conjugate @which is  the asymptotic relatio€’ ~ + (D — 2)G, which follows from

nowhere singular, e.g., in the framework of Poissomod- the fall-off conditions, the asymptotic valuesif andN are

els [61,62, that is the singularity in Eq(B32) causes no related byN®~ = (D —2)"IN. The only spatial derivative in

problems here. the new action appears in the terrN“C’, and, therefore,
BecauseC and Pc do not depend onP, we have the action can be made functionally differentiable by adding

{C,¢}=0={P;, ¢} and we can use as a second variable. the surface term

Pc
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c c spherically symmetric black hole is given by its mésses
f dt(N7C,—Nz=C_) the lapse functionafter imposing the constraints: Rescaling
S by (167Gp) 'wp_, to obtain the physical action iD

_ _f dt(D—2)"XN.C,+N_C_). dimensions, and setting=0 in Eq. (B25), we finally obtain

wp— C
(B39 H_ —_—>2
red 16 GD(N+ N*)D 2 (N+ N*)M

C.(t), NS(t), andN_(t) are the values of, N¢, andN at (B39
r— *oo, This surface action and the formu25) show that
in any space-time dimension the reduced Hamiltonian of avith C:=C, =C_ (due toC’=0).
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