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Spherically symmetric dust shell and the time problem in canonical relativity
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The dynamics of a self-gravitating spherical dust shell is analyzed within the Hamiltonian formulation.
Given any time variable on the shell, a complete reduction with respect to the momentum constraints is
obtained and the true degrees of freedom of the composed “mattgavity” system are found. The transi-
tion between two such formulations, corresponding to two different time parametrizations, is described as a
canonical transformation in the reduced phase space. Explicit formulas for such a transformation are given.
Implications for quantum gravity are discussed.
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[. INTRODUCTION cently [7] that the spherically symmetric dust-shell model
may be effectively reduced using a particular gauge fixing
Field dynamics in general relativity may be formulated infor the time variable(i.e., with respect to the Hamiltonian

terms of a constrained Hamiltonian system in the symplecti€onstraint, whereas the reduction with respect to remaining
space of Cauchy data for Einstein equatiphl The sym- _(momentun)n constraints may already be performed accord-
plectic form is degenerate when restricted to constraints. Fdng to the “royal way.” In the present paper we analyze the
many purposes, we would like to reduce the system witifole of this particular gauge fixing and prove that the com-
respect to this degeneracy, i.e., to pass to the quotient spabete reduction may be carried out in any other time gauge.
whose points are equivalence classes of Cauchy data. Tworeover, we find _epr|C|_tIy the canonical variables corre-
such sets of data belong to the same equivalence lass SPonding to an arbitrary time gauge and prove that the tran-
represent the same point of the reduced spiitieey may be ~ Sition between two gauges is a canonical transformanon. of
connected by a one-parameter family of data, such that itf1e reduced phase space. It seems, however, that the time-
tangent vectofi.e., the derivative with respect to the param- 9auge fixing is necessary and that we are not able to perform
ete is symplectically “orthogonal” to the whole constraint the entire reduction according to the “royal way.” We prove
subspace. Physically, equivalent data are those which giv#at transformations of the reduced phase space, which are
isometric solutions of Einstein equations. The explicit reduc-generated by different time gauges exhaust the entire sym-
tion of the theory enables us, if possible, to pass from dleéctomorphism group. As was recently explairi&d this
gauge-dependent parametrization of dynamics to the gaug@l'ght imply a strong I|m|_tat|o_n to quantization procedures
independent description, in terms of “true degrees of freePased on complete Hamiltonian reductire., on true de-

dom” of the gravitational field. grees of freedopof general relativity.
There are, roughly, two ways to reduce a constrained
Hamiltonian system. The first way consists in providing a Il. TRUE DEGREES OF FREEDOM OF THE

complete system of gauge-invariants parametrizing the quo- SPHERICALLY SYMMETRIC DUST SHELL MODEL

:Ic?r?i;prae%ic-{izlr? T'%h:nt;iﬁggteld the rc?yal rqadt to(';.at‘m:l' The nonreduced phase space of the “shellgravity”
o . y gauge-invariant and | as.osystem is described by the following space of functions:

leads to a gauge-invariant quantum theory. Another way is

based on gauge fixing in the sense that we §ing|e out a rep- P ={(gu P y5po)}

resentative in each equivalence cl§® Experience shows

that the “royal road” is very often too difficult for explicit whereg,, is an (asymptotically flat Riemannian metric on

calculations. On the other hand, global gauge fixing is ofterthe Cauchy surfac& and P*' describe its Armowitt-Deser-

prevented by the Gribov problem; it leads, moreover, necesMisner (ADM) momentum. The remaining objegt§ andp,

sarily to a gauge-dependent quantum the(hjs has been describe the position and the momentum assigned to all the

shown[3] for very general casgsA relation between gauge points of the material. This phase space carries the symplec-

fixing and the “royal way” has been thoroughly discussedtic form

by the present authofd].

To test these theoretical concepts, models with especially QO ::i [SPMI(X) A\ gy (x)}d3x
simple matter field and with high symmetry are especially 167 Js
useful. In particular, a self-gravitating two dimensional mat-
ter shell is an important laboratory of canonical grayiy +j Sou(2) N\ VK2V d2z 21
and (possibly its quantized versiofi6]. It was shown re- z{ P2\ Oy (2)}d72, @
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where byZ we denote the two dimensional “material space” equations” system. We may say that E@2.2) and (2.3

(an abstract collection of the idealized points of the materiatontain the complete, gauge-independent description of the

forming our shell. This means that without constraints, the physical system in question.

Poisson brackets betwee®' and g,,, and the Poisson The HamiltonianH(w,p) can be also obtained from the

brackets betweep, andy, are § like, whereas remaining super-Hamiltonian that has been derived independently

Poisson brackets vanish. Taking into account constraints, tH8—10]: one has to choose the Schwarzschild titrees the

above quantities are no longer independent, which gives riseme variable and solve the super-Hamiltonian constraint

to the degeneracy dd’. equation for the conjugate momentum. The Schwarzschild
Any solution of the spherically symmetric matter shell time, of course, diverges where the shell crosses the horizon.

model is composed of an external piece of the Schwarzschil&till, one can construct a complete shell dynamics from

space and an internal piece of the Minkowski space. ThesH («,p) by carefully matching the trajectories from both

pieces are stitched together along the shell's history. Theides of the horizon. Rather, we are going to discuss in the

results may be summarized as folloW&. Take any time sequel how to pass to an arbitra@gnd everywhere regular

foliation which coincides with the Schwarzschild fixed time time gauge.

{t=cons} outside of the shellinside of the shell it may be

arbitrary). At each instant the true degrees of freedom of the

above “matter+ gravity” system may be described by two lll. TRANSITION BETWEEN DIFFERENT TIME
(mutually conjugatequantities;p = R?:=(1/47)s, wheresis VARIABLES AS A CANONICAL TRANSFORMATION OF
the surface of the shell, and the hyperbolic angleetween THE REDUCED PHASE SPACE

the Schwarzschild fixed time surface outside of the shell and e '
In our approach, a gauge condition is necessary to fix

the Minkowski fixed time surface inside of the shell. More . ; .
Ainiquely the surfaceft = cons} and to rewrite the dynamics

precisely: at each point of the shell we take a normalize » e . oo
vectoru, orthogonal to the Schwarzshild constant time sur-Of 0ur “shell + gravity” system in terms of the Hamiltonian

face and a normalized vecter orthogonal to the Minkowski dynamics. Any gauge conditiog is a choice of a one-
constant time surface. The angle between these surfacesRarameter family of such surfaces, which we may &l
defined by the scalar productl|{) between these vectors, W& want to respect the asymptotic flatness at infinity. Hence,

according to the formula we assume that eacl{ tends asymptotically to an
asymptotic time surface. The labtlrefers to the prefixed
coshu:=(u|v). Schwarzschild time at spatial infinity, which we choase

priori. The results described in the previous section were
It was proved[7] that, after solving the constraints, all the gbtained in a particular gauge. Suppose now that we change
gauge degrees of freedom in Eg.1) drop out and the above the gauge condition in such a way, that the intersection of the
symplectic form reduces to shell with the new surfaceSy is the same as before. Due to
QimlsuNs 2.2 §tand§1rd gauge-invariance arguments of general relativity, it
2 OH72Op- ' is obvious that the reduced phase space does not change and
Moreover, the total Hamiltonian of the systemumerically ~ that(p(t),«(t)) remain canonical variables. This shows that,

equal to the ADM mass at infiniymay be expressed explic- 1N fact, our final results do not depend upon the entite
itly in terms of the above canonical variables by the follow- but only on the time parametrization which they introduce on
ing formula the moving shell.

Let nowG be another gauge condition. Let us now denote

1 MZ 2 by (p9(t),n9(t)) the value of the same geometric quantities,
H(M,P):E\/F—) 1-| coshu~— 7+Sln|"FM : but taken on the newt{ surface. We shall use these vari-
2.3 ables to parametrize the reduced phase space. As will be

obvious, (p¥(t),u9(t)) are no longer canonical variables.
where the constanM denotes the total mechanic@lest We will show how to describe explicitly the reduced phase-

frame mass of the shell. space structure in terms of them.
Hamiltonian (2.3) generates the dynamics of our system For this purpose let us denote byw™ the retardation
by the standard Hamiltonian equations (Verspaung) of the new time coordinate on the shell with
respect to the previous one. This means that the suif4ce
}- _ ﬁ (2.4) intersects the shell at the Schwarzschildian timeé *“
2P o’ ' +uv(p,u).” We allow the value of this retardation to depend
upon the particular dynamical situation, i.e., upon the phase-
1. oH space point. But we assume that both gauge conditions are
M= ap’ (2.9 “intrinsic,” i.e., may be formulated in terms of initial data

only (as e.g., is true for the so-callg®l gaugeq11]). This
Suppose now that we have any explicit soluti@it), x(t) ] excludes an explicit dependence of the retardation function
of these equations. It was showi| how to reconstruct upon the time variable.
(uniguely, up to an isometjythe entire spacetime, whichisa  The functionv=v(p,x) contains the entire information
solution of the combined “Einstein equations matter about the transformation between the old variables
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(p(1), (1)) and the new onegp9(t),u9(t)). Indeed, once 1 ) )
wet know(p(t), (1)), we solve the dynamical equations and V=35 Oou/\S6p— SEN ST+ SE/ SEET W Sp
pu

1 dv
pd(t):=plt+uv(p(t), w(t)], (3.1 =3 5/L+2%5E)/\5p—5E/\5T. (3.6)
p(t):=ult+v(p(t), w(t)]. (3.2 If we now define the function
For a generic, nonconstant function such a transformation v
is not, in general, canonical. We are going to show in the V(E,P)==2f %(E.P) dE+a(p)
sequel how to calculate the canonical structure of our re-
duced phase space in terms of these new variables. In par- 1 v
ticular, we will show how to find the momentum canonically = J rorE:R) dE+alp) 3.7

conjugate to the new variabje(t).

It is convenient to use for this purpose the language ofan additive constard(p) is arbitrary}, then the variable
contact manifoldsLet us observe that the entire information
about dynamics may be retrieved from the three-dimensional wi=p+V[H(p,u).pl, (3.9
contact space, defined as a surf@Ee=H(p,u)} in the four

dimensional spacé(t,E,p,«)}, equipped with the standard i the momentum canonically conjugate(t) because of
form the following formula:

Wi=18u/\Sp— SENGt. (3.3 W =16u/\Sp— SE/\ST. (3.9

The form (once symplectic on the four-dimensional phaseln this way we obtain immediately the canonical structure of
spacg¢ becomes degenerate when restricted to fiie the reduced phase space in terms of any gauge, as soon as we
=H(p,u)} subspace. The system’s trajectories are uniqueljnow its retardation functiom with respect to any gauge
defined as those, whose tangent vector belongs to this degewhich we already know. This allows us to consider the dy-
eracy. To prove this statement it is sufficient to parametrizénamics of our system with respect to different times, not only
the subspace with three variablesp( ) and rewrite the  Wwith respect to the Schwarzschildian one. Once we construct
form as the corresponding momentup¥(T) :=u(t) with t=T+uv,

and express the Hamiltonian in terms of the variables
ﬂgwrﬁgp)/\gt_ 3.4 (1909, we may even forget about the foliatidi{’ which
du ap has led us to this result: we may simply treat it as a Hamil-

. . - tonian system which describes the evolution of the quantities
Now, it is easy to see that any vector which annihilates the ~ . . . .
m,p), with respect to the new time variable The relations

above form must be proportional to the following vector: (
prop g (3.5, (3.8 enable us, however, to identify solutions of these

1
4 =5 Su/\Sp—

9 .9 .9 two, apparently different, Hamiltonian systems as represent-
==E+Pa— +,u&—, ing the same solutions of Einstein’s equations with the dust-
P H shell matter.

Let us observe that if the retardation function depends
only upon the energ¥ (i.e., if its derivative with respect to
p vanisheg the quantityV may be put equal zero. This
means that £9p% are still canonical variables and the
transformation between them and the previous variables
Ti=t—v (3.5 (m,p) is a canonical transformatiaithere is still a possibil-
ity of adding a functiona(p) to the momentum, but this is
as a new time parameter. Indeed, for a given spacetime eve@twaysa canonical transformatipnBecauseE is constant on
(t,p,;) in spacetime, wheret is our previous (e.g., €ach trajectory, we conclude that this happens when the re-
Schwarzschildiantime, we want to choose, among all the tardation remains constant during the evolution. In such a
new surfacesE?, the only one which passes through this case, even if the surfaﬁ intersects the shell at a different
particular event. Due to our previous considerations, it is théime T, the difference between the two timeandT, remains
one which corresponds t6:=t—v. In our new gauge we constant during the evolution. Such two times differ, there-
will label our event by this particular value of tin¢his is ~ fore, only by an additive gauge, but they both define the
why we callv aretardationand not aracceleration. same notion of the “time lapse.” We conclude that the entire
Let us, therefore, rewrite our fornlf in terms of the new Hamiltonian description does not change if we move be-
time T. At this point it is convenient to choose the enefgy tween two-time parametrizatiortsand T which differ by
as one of the independent parameters, rather thaand to ~ such an additive gauge only.
treat the latter as the functign=u(E, p) obtained by solv- _ On the other hand, we may choose virtualyy variable
ing Eq. (2.3 with respect tou. In this way we obtain w (independent fronp) as a momentum canonically conju-

where the coefficientp and u are given by the Hamilton
equationg2.4) and(2.5).

We claim that choosing our new gauge conditi@nis
equivalent to choosing the variable
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gate top. Indeed, given such a variable we may always find B 2E 1
a gauge(i.e., a time parametrizatigrihat the transformation w=sinhu\/1- == Q\/(%MZJF ER)—M?R?,

from (u,p) to (upY% is canonical. For this purpose it is

~ 3.1

sufficient to express both andw in terms ofE andp and to (313
treat formula(3.7) as the definition of the necessary retarda- q |
tion v between the two gauges: the old one and the new on@nd consequently,
which we are going to define. Differentiating.8) with re-
spect to energy we obtain P ER+1M?2

J -~ v 1 v RV(3:M2+ER)—M?R?

E(M—M)—-Z%(E,P)—ﬁm(E,R)- (3.10

o ) ) Finally, formula(3.10 gives us
The left hand side is known. Once we find the functioby
integrating the above equation with respectptor R, it is
straightforward to define a gaugewhich has this value of I M?R-2E(:M?+ER)
the retardation with respect to our previous gauge. ﬁ: (3.19
The fact, thatany variable z may arise as a momentum (R—ZE)\/(%M2+ ER)*-R?°M?

canonically conjugate tp, if we only allow all possible time

gauges, proves that insisting on quantization respecting, prove that the above quantity describes the retardation
gauge invariance of the model, we must allow the entirgyetyeen the Minkowski timd inside the shell and the old,

group of all symplectomorphisms of our two-dimensional gxteral Schwarzschild timewe differentiate formulg3.5)
reduced phase space as the symmetry group of the quantygih respect ta:
I

version of the theory. At the moment, no genera

symplectomorphism-invariant quantization procedure is

available and this may imply strong limitation to quantiza- . dv .

tion procedures based on complete Hamiltonian reduction. T=1- ﬁR (3.16
As an example of the above results take the funcjion

which was used to describe the motion of the shell with

respect to the Minkowski timgl2], calculated on the inter-

nal face of the shell:

using E=0. The derivativeR may be calculated from Eq.
(2.4), where the Hamiltonian is given by EQ.3) (we re-

member thap=2RR). This way we obtain
2E

w=sinh 1— —
pesT R ov. M2—(2E/R)(!M?+ER) sinh

—R= : .
z IR e
=sinh,u(cosh,u— \ (% +sinhz,u). (3.11) V(EMZ+ER)Z-R2M2  V(M/R) +S'”hzg .

Solving Eq.(2.3) with respect tou gives us

Using our previous results we are able to rewrite this quan-
tity in the following form[12]:

R2—(3iM?+ER)
coshu=

R?J1-2E/R ov. (2E/IR)(:M2+ER)—M?2 (.18
—R= , A
JR IM2-ER
\/(%M2+ER)— M2R?
inhu= . . i .
sinhu R2\/1—2E/R which, finally leads to the following formula
Differentiating the first formula with respect #® and using ER+ M2
the second formula we obtain T—|1— E L
T=|1 . (3.19
R/ER-3M?
o ER-3M?
9E \/ T P (3.12 The explicit value of the retardation function between the
(R=2E) (z M +ER) -M“R Minkowski time T and the Schwarzschild time may be

_ _ immediately obtained by integrating the right hand side of
On the other hand, the expression for ginénables us to (3.15 with respect tR, using e.g., the Maple V packet. This
express easily. in terms ofE andR: way we obtain:
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1
v(E,R)= x{ In(2\Jc\Ja+ bR+ cR?+ 2cR+b)AJa+cC?—bC
(&R Jeya+cC?~bC [ ( :
_ y(ZcCR—bRerC—Za b ~ [2cCR-bR+bC-2a cAve
—arcsin c—arcsin ct,
(R+C)4ac—b? (R+C)4ac—b?
|
where A=M?—2E, C=2E, a=3iM? b=EM? andc The transformation between the Schwarzschild-tiraad
=E2-M2, Minkowski-time T that we have explicitly written down is an

Rewriting the canonical form in the following way: example of a general Bergmann-Komar type of transforma-
15u/\S6R?= 8(Ru)/\ SR, we obtainRx as the momentum tion: it is explicitly dependent on the dynamical degrees of
canonically conjugate to th@adial) positionR of the shell. freedom(here E and R) of the system. The two quantum

The following formula may be easily checkéd]: mechanics based on these two times cannot, therefore, be
unitarily equivalent. As was recently explainggl, the time
Ru=P B E parameters must always bewumbers, whereas the transfor-
R’ mation between them contairgs numbers, and these two

i L . facts are not compatible with the unitary equivalence.
whereP denotes the special relativistice., calculated with

respect to the internal Minkowskian mefriotal radial me-

chanical momentum of the shell. It is interesting to notice
that under the influence of gravitational interaction this mo-
mentum gets deformed to the total “mechaniealgravita- ) . )
tional” momentum and that this deformation consists in  1hiS work was supported in part by the Polish KBN Grant
multiplying P by the Schwarzschildian “potential factor” Nr- 2 PO3A 047 15, by the Swiss Nationalfonds, and by the
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