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Spherically symmetric dust shell and the time problem in canonical relativity

Petr Hájı́ček
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The dynamics of a self-gravitating spherical dust shell is analyzed within the Hamiltonian formulation.
Given any time variable on the shell, a complete reduction with respect to the momentum constraints is
obtained and the true degrees of freedom of the composed ‘‘matter1 gravity’’ system are found. The transi-
tion between two such formulations, corresponding to two different time parametrizations, is described as a
canonical transformation in the reduced phase space. Explicit formulas for such a transformation are given.
Implications for quantum gravity are discussed.

PACS number~s!: 04.60.Ds, 04.20.Fy
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I. INTRODUCTION

Field dynamics in general relativity may be formulated
terms of a constrained Hamiltonian system in the symple
space of Cauchy data for Einstein equations@1#. The sym-
plectic form is degenerate when restricted to constraints.
many purposes, we would like to reduce the system w
respect to this degeneracy, i.e., to pass to the quotient s
whose points are equivalence classes of Cauchy data.
such sets of data belong to the same equivalence class~i.e.,
represent the same point of the reduced space! if they may be
connected by a one-parameter family of data, such tha
tangent vector~i.e., the derivative with respect to the param
eter! is symplectically ‘‘orthogonal’’ to the whole constrain
subspace. Physically, equivalent data are those which
isometric solutions of Einstein equations. The explicit red
tion of the theory enables us, if possible, to pass from
gauge-dependent parametrization of dynamics to the ga
independent description, in terms of ‘‘true degrees of fr
dom’’ of the gravitational field.

There are, roughly, two ways to reduce a constrain
Hamiltonian system. The first way consists in providing
complete system of gauge-invariants parametrizing the q
tient space. This might be called the ‘‘royal road’’ to Ham
tonian reduction. It is manifestly gauge-invariant and it a
leads to a gauge-invariant quantum theory. Another wa
based on gauge fixing in the sense that we single out a
resentative in each equivalence class@2#. Experience shows
that the ‘‘royal road’’ is very often too difficult for explicit
calculations. On the other hand, global gauge fixing is of
prevented by the Gribov problem; it leads, moreover, nec
sarily to a gauge-dependent quantum theory~this has been
shown@3# for very general cases!. A relation between gauge
fixing and the ‘‘royal way’’ has been thoroughly discuss
by the present authors@4#.

To test these theoretical concepts, models with espec
simple matter field and with high symmetry are especia
useful. In particular, a self-gravitating two dimensional m
ter shell is an important laboratory of canonical gravity@5#
and ~possibly! its quantized version@6#. It was shown re-
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cently @7# that the spherically symmetric dust-shell mod
may be effectively reduced using a particular gauge fix
for the time variable~i.e., with respect to the Hamiltonian
constraint!, whereas the reduction with respect to remaini
~momentum! constraints may already be performed acco
ing to the ‘‘royal way.’’ In the present paper we analyze t
role of this particular gauge fixing and prove that the co
plete reduction may be carried out in any other time gau
Moreover, we find explicitly the canonical variables corr
sponding to an arbitrary time gauge and prove that the tr
sition between two gauges is a canonical transformation
the reduced phase space. It seems, however, that the
gauge fixing is necessary and that we are not able to perf
the entire reduction according to the ‘‘royal way.’’ We prov
that transformations of the reduced phase space, which
generated by different time gauges exhaust the entire s
plectomorphism group. As was recently explained@3#, this
might imply a strong limitation to quantization procedur
based on complete Hamiltonian reduction~i.e., on true de-
grees of freedom! of general relativity.

II. TRUE DEGREES OF FREEDOM OF THE
SPHERICALLY SYMMETRIC DUST SHELL MODEL

The nonreduced phase space of the ‘‘shell1 gravity’’
system is described by the following space of functions:

P8ª$~gkl ,P
kl,yk,pk!%,

wheregkl is an ~asymptotically flat! Riemannian metric on
the Cauchy surfaceS and Pkl describe its Arnowitt-Deser-
Misner ~ADM ! momentum. The remaining objectsyk andpk
describe the position and the momentum assigned to all
points of the material. This phase space carries the symp
tic form

V8ª
1

16pES
$dPkl~x!`dgkl~x!%d3x

1E
Z
$dpk~z!`dyk~z!%d2z, ~2.1!
©2000 The American Physical Society25-1
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where byZ we denote the two dimensional ‘‘material space
~an abstract collection of the idealized points of the mate
forming our shell!. This means that without constraints, th
Poisson brackets betweenPkl and gkl , and the Poisson
brackets betweenpk and yk, ared like, whereas remaining
Poisson brackets vanish. Taking into account constraints
above quantities are no longer independent, which gives
to the degeneracy ofV8.

Any solution of the spherically symmetric matter sh
model is composed of an external piece of the Schwarzsc
space and an internal piece of the Minkowski space. Th
pieces are stitched together along the shell’s history.
results may be summarized as follows@7#. Take any time
foliation which coincides with the Schwarzschild fixed tim
$t5const% outside of the shell~inside of the shell it may be
arbitrary!. At each instantt the true degrees of freedom of th
above ‘‘matter1 gravity’’ system may be described by tw
~mutually conjugate! quantities:r5R2

ª(1/4p)s, wheres is
the surface of the shell, and the hyperbolic anglem between
the Schwarzschild fixed time surface outside of the shell
the Minkowski fixed time surface inside of the shell. Mo
precisely: at each point of the shell we take a normaliz
vectoru, orthogonal to the Schwarzshild constant time s
face and a normalized vectorv, orthogonal to the Minkowski
constant time surface. The angle between these surfac
defined by the scalar product (uuv) between these vectors
according to the formula

coshmª~uuv!.

It was proved@7# that, after solving the constraints, all th
gauge degrees of freedom in Eq.~2.1! drop out and the above
symplectic form reduces to

Vª

1
2 dm`dr. ~2.2!

Moreover, the total Hamiltonian of the system~numerically
equal to the ADM mass at infinity! may be expressed explic
itly in terms of the above canonical variables by the follo
ing formula

H~m,r!5
1

2
ArH 12S coshm2AM2

r
1sinh2m D 2J ,

~2.3!

where the constantM denotes the total mechanical~rest
frame! mass of the shell.

Hamiltonian ~2.3! generates the dynamics of our syste
by the standard Hamiltonian equations

1

2
ṙ5

]H

]m
, ~2.4!

1

2
ṁ52

]H

]r
. ~2.5!

Suppose now that we have any explicit solution@r(t),m(t)#
of these equations. It was shown@7# how to reconstruct
~uniquely, up to an isometry! the entire spacetime, which is
solution of the combined ‘‘Einstein equations1 matter
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l

he
se

ild
se
e

d

d
-

is

equations’’ system. We may say that Eqs.~2.2! and ~2.3!
contain the complete, gauge-independent description of
physical system in question.

The HamiltonianH(m,r) can be also obtained from th
super-Hamiltonian that has been derived independe
@8–10#: one has to choose the Schwarzschild timet as the
time variable and solve the super-Hamiltonian constra
equation for the conjugate momentum. The Schwarzsc
time, of course, diverges where the shell crosses the hori
Still, one can construct a complete shell dynamics fro
H(m,r) by carefully matching the trajectories from bo
sides of the horizon. Rather, we are going to discuss in
sequel how to pass to an arbitrary~and everywhere regular!
time gauge.

III. TRANSITION BETWEEN DIFFERENT TIME
VARIABLES AS A CANONICAL TRANSFORMATION OF

THE REDUCED PHASE SPACE

In our approach, a gauge condition is necessary to
uniquely the surfaces$t5const% and to rewrite the dynamics
of our ‘‘shell 1 gravity’’ system in terms of the Hamiltonian
dynamics. Any gauge conditionG is a choice of a one-
parameter family of such surfaces, which we may callS t

G .
We want to respect the asymptotic flatness at infinity. Hen
we assume that eachS t

G tends asymptotically to an
asymptotic time surface. The labelt refers to the prefixed
Schwarzschild time at spatial infinity, which we choosea
priori . The results described in the previous section w
obtained in a particular gauge. Suppose now that we cha
the gauge condition in such a way, that the intersection of
shell with the new surfacesS t

G is the same as before. Due t
standard gauge-invariance arguments of general relativit
is obvious that the reduced phase space does not chang
that„r(t),m(t)… remain canonical variables. This shows th
in fact, our final results do not depend upon the entireS ’s
but only on the time parametrization which they introduce
the moving shell.

Let nowG be another gauge condition. Let us now deno
by „rG(t),mG(t)… the value of the same geometric quantitie
but taken on the newS t

G surface. We shall use these var
ables to parametrize the reduced phase space. As wil
obvious, „rG(t),mG(t)… are no longer canonical variable
We will show how to describe explicitly the reduced phas
space structure in terms of them.

For this purpose let us denote by ‘‘v ’’ the retardation
~Verspätung! of the new time coordinate on the shell wit
respect to the previous one. This means that the surfaceS t

G

intersects the shell at the Schwarzschildian timet
1v(r,m). ’’ We allow the value of this retardation to depen
upon the particular dynamical situation, i.e., upon the pha
space point. But we assume that both gauge conditions
‘‘intrinsic,’’ i.e., may be formulated in terms of initial data
only ~as e.g., is true for the so-calledb gauges@11#!. This
excludes an explicit dependence of the retardation func
upon the time variable.

The functionv5v(r,m) contains the entire information
about the transformation between the old variab
5-2
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„r(t),m(t)… and the new ones„rG(t),mG(t)…. Indeed, once
we know„r(t),m(t)…, we solve the dynamical equations an
put

rG~ t !:5r@ t1v„r~ t !,m~ t !…#, ~3.1!

mG~ t !:5m@ t1v„r~ t !,m~ t !…#. ~3.2!

For a generic, nonconstant functionv, such a transformation
is not, in general, canonical. We are going to show in t
sequel how to calculate the canonical structure of our
duced phase space in terms of these new variables. In
ticular, we will show how to find the momentum canonica
conjugate to the new variablerG(t).

It is convenient to use for this purpose the language
contact manifolds. Let us observe that the entire informatio
about dynamics may be retrieved from the three-dimensio
contact space, defined as a surface$E5H(r,m)% in the four
dimensional space$(t,E,r,m)%, equipped with the standar
form

Cª

1
2 dm`dr2dE`dt. ~3.3!

The form ~once symplectic on the four-dimensional pha
space! becomes degenerate when restricted to the$E
5H(r,m)% subspace. The system’s trajectories are uniqu
defined as those, whose tangent vector belongs to this de
eracy. To prove this statement it is sufficient to parametr
the subspace with three variables (t,r,m) and rewrite the
form as

Cª

1

2
dm`dr2S ]H

]m
dm1

]H

]r
dr D`dt. ~3.4!

Now, it is easy to see that any vector which annihilates
above form must be proportional to the following vector:

Xª
]

]t
1 ṙ

]

]r
1ṁ

]

]m
,

where the coefficientsṙ and ṁ are given by the Hamilton
equations~2.4! and ~2.5!.

We claim that choosing our new gauge conditionG is
equivalent to choosing the variable

Tªt2v ~3.5!

as a new time parameter. Indeed, for a given spacetime e
(t,r,m) in spacetime, wheret is our previous ~e.g.,
Schwarzschildian! time, we want to choose, among all th
new surfacesST

G , the only one which passes through th
particular event. Due to our previous considerations, it is
one which corresponds toTªt2v. In our new gauge we
will label our event by this particular value of time~this is
why we callv a retardationand not anacceleration!.

Let us, therefore, rewrite our formC in terms of the new
time T. At this point it is convenient to choose the energyE
as one of the independent parameters, rather thanm, and to
treat the latter as the functionm5m(E,r) obtained by solv-
ing Eq. ~2.3! with respect tom. In this way we obtain
04402
-
ar-

f

al

ly
en-
e

e

nt

e

C5
1

2
dm`dr2dE`dT1dE`S ]v

]E
dE1

]v
]r

dr D
5

1

2 S dm12
]v
]r

dED`dr2dE`dT. ~3.6!

If we now define the function

V~E,r!ª2E ]v
]r

~E,r! dE1a~r!

5E 1

R

]v
]R

~E,R! dE1a~r! ~3.7!

@an additive constanta(r) is arbitrary#, then the variable

m̃ªm1V@H~r,m!,r#, ~3.8!

is the momentum canonically conjugate torG(t) because of
the following formula:

C5 1
2 dm̃`dr2dE`dT. ~3.9!

In this way we obtain immediately the canonical structure
the reduced phase space in terms of any gauge, as soon
know its retardation functionv with respect to any gauge
which we already know. This allows us to consider the d
namics of our system with respect to different times, not o
with respect to the Schwarzschildian one. Once we const
the corresponding momentumm̃G(T)ªm̃(t) with t5T1v,
and express the Hamiltonian in terms of the variab
(m̃G,rG), we may even forget about the foliationS t

G which
has led us to this result: we may simply treat it as a Ham
tonian system which describes the evolution of the quanti
(m̃,r), with respect to the new time variableT. The relations
~3.5!, ~3.8! enable us, however, to identify solutions of the
two, apparently different, Hamiltonian systems as repres
ing the same solutions of Einstein’s equations with the du
shell matter.

Let us observe that if the retardation function depen
only upon the energyE ~i.e., if its derivative with respect to
r vanishes! the quantityV may be put equal zero. Thi
means that (mG,rG) are still canonical variables and th
transformation between them and the previous variab
(m,r) is a canonical transformation~there is still a possibil-
ity of adding a functiona(r) to the momentum, but this is
alwaysa canonical transformation!. BecauseE is constant on
each trajectory, we conclude that this happens when the
tardation remains constant during the evolution. In suc
case, even if the surfaceS t

G intersects the shell at a differen
time T, the difference between the two timest andT, remains
constant during the evolution. Such two times differ, the
fore, only by an additive gauge, but they both define
same notion of the ‘‘time lapse.’’ We conclude that the ent
Hamiltonian description does not change if we move b
tween two-time parametrizationst and T which differ by
such an additive gauge only.

On the other hand, we may choose virtuallyany variable
m̃ ~independent fromr) as a momentum canonically conju
5-3
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gate tor. Indeed, given such a variable we may always fi
a gauge~i.e., a time parametrization! that the transformation
from (m,r) to (m̃G,rG) is canonical. For this purpose it i
sufficient to express bothm̃ andm in terms ofE andr and to
treat formula~3.7! as the definition of the necessary retard
tion v between the two gauges: the old one and the new
which we are going to define. Differentiating~3.8! with re-
spect to energy we obtain

]

]E
~m̃2m!5:2

]v
]r

~E,r!5
1

R

]v
]R

~E,R!. ~3.10!

The left hand side is known. Once we find the functionv by
integrating the above equation with respect tor or R, it is
straightforward to define a gaugeG which has this value of
the retardation with respect to our previous gauge.

The fact, thatany variablem̃ may arise as a momentum
canonically conjugate tor, if we only allow all possible time
gauges, proves that insisting on quantization respec
gauge invariance of the model, we must allow the en
group of all symplectomorphisms of our two-dimension
reduced phase space as the symmetry group of the qua
version of the theory. At the moment, no gene
symplectomorphism-invariant quantization procedure
available and this may imply strong limitation to quantiz
tion procedures based on complete Hamiltonian reductio

As an example of the above results take the functionm̃
which was used to describe the motion of the shell w
respect to the Minkowski time@12#, calculated on the inter
nal face of the shell:

m̃5sinhm A12
2E

R

5sinhmS coshm2AS M

R D 2

1sinh2m D . ~3.11!

Solving Eq.~2.3! with respect tom gives us

coshm5
R22~ 1

2 M21ER!

R2A122E/R
,

sinhm5

A~ 1
2 M21ER!2M2R2

R2A122E/R
.

Differentiating the first formula with respect toE and using
the second formula we obtain

]m

]E
5

ER2 1
2 M2

~R22E!A~ 1
2 M21ER!2M2R2

. ~3.12!

On the other hand, the expression for sinhm enables us to
express easilym̃ in terms ofE andR:
04402
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m̃5sinhmA12
2E

R
5

1

R2
A~ 1

2 M21ER!2M2R2,

~3.13!

and consequently,

]m̃

]E
5

ER1 1
2 M2

RA~ 1
2 M21ER!2M2R2

. ~3.14!

Finally, formula~3.10! gives us

]v

]R
5

M2R22E~ 1
2 M21ER!

~R22E!A~ 1
2 M21ER!22R2M2

. ~3.15!

To prove that the above quantity describes the retardatiov
between the Minkowski timeT inside the shell and the old
external Schwarzschild timet we differentiate formula~3.5!
with respect tot:

Ṫ512
]v
]R

Ṙ ~3.16!

using Ė[0. The derivativeṘ may be calculated from Eq
~2.4!, where the Hamiltonian is given by Eq.~2.3! ~we re-
member thatṙ52RṘ). This way we obtain

]v

]R
Ṙ5

M22~2E/R!~ 1
2 M21ER!

A~ 1
2 M21ER!22R2M2

•

sinhm

A~M /R!21sinh2 m
.

~3.17!

Using our previous results we are able to rewrite this qu
tity in the following form @12#:

]v
]R

Ṙ5
~2E/R!~ 1

2 M21ER!2M2

1
2 M22ER

, ~3.18!

which, finally leads to the following formula

Ṫ5S 12
2E

R DER1 1
2 M2

ER2 1
2 M2

. ~3.19!

The explicit value of the retardation function between t
Minkowski time T and the Schwarzschild timet may be
immediately obtained by integrating the right hand side
~3.15! with respect toR, using e.g., the Maple V packet. Thi
way we obtain:
5-4
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v~E,R!5
1

AcAa1cC22bC
3H ln~2AcAa1bR1cR212cR1b!AAa1cC22bC

2arcsinhS 2cCR2bR1bC22a

~R1C!A4ac2b2 D bAc2arcsinhS 2cCR2bR1bC22a

~R1C!A4ac2b2 D CAAcJ ,
:

ice
o

in
’

a-
of

, be
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where A5M222E, C52E, a5 1
2 M2, b5EM2, and c

5E22M2.
Rewriting the canonical form in the following way

1
2 dm̃`dR25d(Rm̃)`dR, we obtainRm̃ as the momentum
canonically conjugate to the~radial! positionR of the shell.
The following formula may be easily checked@7#:

Rm̃5PA12
2E

R
,

whereP denotes the special relativistic~i.e., calculated with
respect to the internal Minkowskian metric! total radial me-
chanical momentum of the shell. It is interesting to not
that under the influence of gravitational interaction this m
mentum gets deformed to the total ‘‘mechanical1 gravita-
tional’’ momentum and that this deformation consists
multiplying P by the Schwarzschildian ‘‘potential factor’
A122E/R only.
7

o
9

04402
-

The transformation between the Schwarzschild-timet and
Minkowski-timeT that we have explicitly written down is an
example of a general Bergmann-Komar type of transform
tion: it is explicitly dependent on the dynamical degrees
freedom ~here E and R) of the system. The two quantum
mechanics based on these two times cannot, therefore
unitarily equivalent. As was recently explained@3#, the time
parameters must always bec numbers, whereas the transfo
mation between them containsq numbers, and these tw
facts are not compatible with the unitary equivalence.
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@5# P. Hájı́ček and J. Kijowski, Phys. Rev. D57, 914 ~1998!.
@6# W. Israel, Nuovo Cimento B44, 1 ~1966!; 48, 463 ~1967!; P.
f
,
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