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Classification of spherically symmetric self-similar dust models
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~Received 23 December 1999; published 24 July 2000!

We classify all spherically symmetric dust solutions of Einstein’s equations which are self-similar in the
sense that all dimensionless variables depend only uponz[r /t. We show that the equations can be reduced to
a special case of the general perfect fluid models with an equation of statep5am. The most general dust
solution can be written down explicitly and is described by two parameters. The first one~E! corresponds to the
asymptotic energy at largeuzu, while the second one~D! specifies the value ofz at the singularity which
characterizes such models. TheE5D50 solution is just the flat Friedmann model. The 1-parameter family of
solutions with z.0 and D50 are inhomogeneous cosmological models which expand from a big bang
singularity att50 and are asymptotically Friedmann at largez; models withE.0 are everywhere underdense
relative to Friedmann and expand forever, while those withE,0 are everywhere overdense and recollapse to
a black hole containing another singularity. The black hole always has an apparent horizon but need not have
an event horizon. TheD50 solutions withz,0 are just the time reverse of thez.0 ones, having a big crunch
at t50. The 2-parameter solutions withD.0 again represent inhomogeneous cosmological models but the big
bang singularity is atz521/D, the big crunch singularity is atz511/D, and any particular solution neces-
sarily spans bothz,0 and z.0. While there is no static model in the dust case, all these solutions are
asymptotically ‘‘quasi-static’’ at largeuzu. As in the D50 case, the ones withE>0 expand or contract
monotonically but the latter may now contain a naked singularity. The ones withE,0 expand from or
recollapse to a second singularity, the latter containing a black hole. The 2-parameter solutions withD,0
models either collapse to a shell-crossing singularity and become unphysical or expand from such a state.

PACS number~s!: 04.20.Jb, 95.30.Sf, 98.80.Hw
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I. INTRODUCTION

Spherically symmetric self-similar solutions to Einstein
equations have the feature that every dimensionless var
is a function of some dimensionless combination of the c
mic time coordinatet and the comoving radial coordinater.
In the simplest situation, a self-similar solution is invaria
under the transformationr→at,t→at for any constanta, so
the similarity variable isz5r /t. Geometrically this corre-
sponds to the existence of a homothetic Killing vector. Su
solutions have been the focus of much attention in gen
relativity because the field equations simplify to ordina
differential equations@1#.

Even greater simplification is afforded if one focuses
the situation in which the source of the gravitational field
pressureless dust since, in this case, the solutions can
be expressed analytically and are just a special subclas
the more general spherically symmetric Tolman-Bondi so
tions @2#. A number of people have studied such solutio
@3–6# and these papers are described in some detail by
sinski @7# and Carr and Coley@8#. Of particular physical
interest has been the use of self-similar dust solutions
studying naked singularities@9# and modeling cosmic voids
@10,11#.

In this paper we will present a classification of spherica
symmetric homothetic dust models which is ‘‘complete
subject to certain specified restrictions. This serves as a
step in the more general analysis, presented in an accom
nying paper@12#, of spherically symmetric self-similar per
fect fluid models with pressure, the equation of state th
necessarily being of the formp5am. Despite the simplifi-
0556-2821/2000/62~4!/044022~12!/$15.00 62 0440
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cations entailed, we will find that many of the features of t
a50 ~dust! solutions carry over to theaÞ0 case, at least in
the supersonic regime. In particular, many~though not all! of
the types of solutions with pressure have direct analogue
the dust case. Our aim is therefore to use the exact ana
dust solutions to derive qualitative features of self-simi
solutions which will also turn out to pertain when there
pressure but which can then only be demonstrated num
cally. On the other hand, it should be stressed that the in
duction of pressure is also associated with many n
features—especially in the subsonic regime—which can
be understood in this way.

The plan of the paper is as follows: In Sec. II we w
show how the dust equations can be regarded as a sp
case of the equations with pressure providing one adop
specific prescription in taking the limita→0. In Sec. III we
discuss the general family of dust self-similar solution
showing that they can be conveniently categorized as asy
totically Friedmann and what we term asymptotically qua
static. In each case, we will focus on the important physi
features of the solutions, such as the presence of appa
horizons, event horizons and singularities. We will al
clarify the connection between models with positive a
negativez. We will specify the sense in which our classifi
cation is ‘‘complete’’ in Sec. IV.

II. SPHERICALLY SYMMETRIC SIMILARITY
SOLUTIONS

In the spherically symmetric situation one can introduc
time coordinatet such that surfaces of constantt are orthogo-
©2000 The American Physical Society22-1
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nal to fluid flow lines and comoving coordinates (r ,u,f)
which are constant along each flow line. The metric can t
be written in the form

ds25e2n dt22e2l dr22R2 dV2, dV2[du21sin2u df2

~2.1!

where n, l and R are functions ofr and t. The Einstein
equations have a first integral

m~r !5 1
2 RF11e22nS ]R

]t D 2

2e22lS ]R

]r D 2G . ~2.2!

This can be interpreted as the mass within comoving radir
at time t:

m~r !54pE
0

r

mR2
]R

]r 8
dr8 ~2.3!

wherem(r ,t) is the energy density and we choose units
which c5G51. This is constant ifp50. Equation~2.2! can
be written as an equation for the energy per unit mass of
shell with comoving coordinater:

E[
1

2
~G221!5

1

2
U22

m

R
,

~2.4!

U[e2nS ]R

]t D , G[e2lS ]R

]r D .

This can be interpreted as the sum of the kinetic and po
tial energies per unit mass.E andG are conserved along fluid
flow lines in thep50 case.

By a spherically symmetric similarity solution we sha
mean one in which the spacetime admits a homothetic K
ing vectorj that satisfies

jm;n1jn;m52gmn . ~2.5!

This means that the solution is unchanged by a transfor
tion of the formt→at, r→ar for any constanta. Solutions
of this sort were first investigated by Cahill and Taub@1#,
who showed that by a suitable coordinate transforma
they can be put into a form in which all dimensionless qu
tities such asn, l, E and

S[
R

r
, M[

m

R
, P[pR2, W[mR2 ~2.6!

are functions only of the dimensionless variablez[r /t. This
means that the field equations reduce to a set of ordin
differential equations inz. Another important quantity is the
function

V~z!5el2nz, ~2.7!
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which represents the velocity of the surfaces of constanz
relative to the fluid. These surfaces have the equationr 5zt
and therefore represent a family of spheres moving thro
the fluid. The spheres contract relative to the fluid forz,0
and expand forz.0. This is to be distinguished from th
velocity of the spheres of constantR relative to the fluid:

VR52
U

G
52el2nS ]R/]t

]R/]r D . ~2.8!

This is positive if the fluid is collapsing and negative if it
expanding. Special significance is attached to values ofz for
which uVu51 and uVRu51. The first corresponds to
Cauchy horizon~either a black hole event horizon or a co
mological particle horizon! and the second to a black hole o
cosmological apparent horizon. One can show@4# that the
existence of an apparent horizon is also equivalent to
conditionM51/2.

Although our main focus in this paper is~pressureless!
dust solutions, it is elucidating to start by considering t
equations for a fluid with pressure. We will follow the fo
malism of Carr and Yahil@5#. The only barotropic equation
of state compatible with the similarity ansatz is one of t
form p5am (21<a<1). If one introduces a dimension
less functionx(z) defined by

x~z![~4pmr 2!2a/(11a), ~2.9!

then the conservation equationsT ;n
mn 50 can be integrated

to give

en5bxz2a/(11a) ~2.10!

e2l5gx21/aS2 ~2.11!

whereb andg are integration constants. The remaining fie
equations reduce to a set of ordinary differential equation
x andS:

S̈1Ṡ1S 2

11a

Ṡ

S
2

1

a

ẋ

x
D @S1~11a!Ṡ#50, ~2.12!

S 2ag2

11a DS41
2

b2

Ṡ

S
x(222a)/az(222a)/(11a)2g2S4

ẋ

x S V2

a
21D

5~11a!x(12a)/a, ~2.13!

M5S2x2(11a)/aF11~11a!
Ṡ

S
G , ~2.14!

M5
1

2
1

1

2b2
x22z2(12a)/(11a)Ṡ22

1

2
g2x2(2/a)S6S 11

Ṡ

S
D 2

,

~2.15!

where the velocity function is given by

V5~bg!21x(12a)/aS22z(12a)/(11a) ~2.16!

and an overdot denoteszd/dz. The other velocity function is
2-2
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VR5
VṠ

S1Ṡ
~2.17!

and, from Eqs.~2.4! and ~2.15!, the energy function is

E5
1

2
g2x2(2/a)S6S 11

Ṡ

S
D 2

2
1

2
, ~2.18!

which necessarily exceeds21/2.
We can best envisage how these equations generate

tions by working in the 3-dimensional (x,S,Ṡ) space@5#. At
any point in this space, for a fixed value ofa, Eqs.~2.14! and
~2.15! give the value of z; Eq.~2.13! then gives the value o
ẋ unlessuVu5Aa and Eq.~2.12! gives the value ofS̈. Thus
the equations generate a vector field (ẋ,Ṡ,S̈) and this speci-
fies an integral curve at each point of the 3-dimensio
space. Each curve is parametrized byz and represents on
particular similarity solution. This shows that, for a give
equation of state parametera, there is a 2-parameter famil
of spherically symmetric self-similar solutions. In gene
there would be a sonic point, with possible associated
continuities, at uVu5Aa. This corresponds to crossing
2-dimensional surface in the solution space but we need
discuss this complication here.

Henceforth we focus on the dust solutions. Although E
~2.10! to ~2.16! break down whena50, in that some of the
terms disappear or diverge, we will show that the equati
are still formally applicable providing the functionx defined
by Eq. ~2.9! is set to 1 whenever it does not appear with t
exponent 1/a. Otherwise one must make the substitution

x1/a→~4pmr 2!21,
1

a

ẋ

x
→2

d ln~mr 2!

d ln z
, ~2.19!

as suggested by Eq.~2.9!. In fact, the relevant equations a
most simply obtained by noting that both the energy a
mass within comoving radiusr are conserved, so thatE and
m/r 5MS are constant. If we putm/r 5k, then Eq.~2.3!
implies

4pmR2
]R

]r
5

dm

dr
5k ~2.20!

and this can be combined with Eqs.~2.9! and ~2.11! to give

el5g21~4pmr 2S2!215k21g21
]R

]r
. ~2.21!

On the other hand, Eq.~2.4! impliesel5G21(]R/]r ) where
G56A112E and so the constantk is just G/g. The mass
function is therefore

M5
G

gS
5

A112E

gS
, ~2.22!
04402
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where we have taken the positive square root forG to ensure
that the mass if positive.~We discuss the negative mass ca
later.! Putting x51 in Eq. ~2.10! also givesen5b, so Eq.
~2.4! can be rewritten as

E5
1

2b2
z4FdS

dzG
2

2
A112E

gS
. ~2.23!

Once this equation has been integrated to giveS(z), all the
other functions can be obtained, so one has solved the p
lem completely.

We now show that Eqs.~2.10! to ~2.16! are all formally
satisfied if one uses the prescription given by Eq.~2.19!.
Equation~2.14! can be written as

MS5m/R5S2~4pmr 2!~S1Ṡ!54pmR2
]R

]r
~2.24!

and this is just equivalent to Eq.~2.20!. Since Eq.~2.21!
implies

~4pmr 2!215gS2~S1Ṡ!/G, ~2.25!

we also have

d ln~mr 2!

d ln z
52

2Ṡ

S
2

Ṡ1S̈

S1Ṡ
. ~2.26!

Equation~2.12! is then automatically satisfied and, from E
~2.23!, formally corresponds toĖ50. Finally we can substi-
tute for the x terms in Eq.~2.13!, using Eqs.~2.19! and
~2.25!, to obtain

S̈1Ṡ52
G

S2z2
~2.27!

and this can be integrated to give Eq.~2.23!.
It is now convenient to scale ther and t coordinates so

that b5g51. Equation~2.23! then implies

dS

dz
56

A2E12G/S

z2
~2.28!

and this can be integrated to give
2-3
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D7
1

z
55

AES21GS

A2E
2

2G

~2E!3/2
sinh21AES

G
~E.0!,

A2

3
S3/2 ~E50!,

2G

~22E!3/2
sin21A2ES

G
6

AES21GS

A2E
~21/2,E,0!,

~2.29!
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whereD is an integration constant and sin21 is taken to lie
between 0 andp. In the first two cases, the upper and low
signs on the left-hand-side apply fordS/dz positive and
negative, respectively, this sign being constant for any p
ticular solution. In the third case, the sign on the left is fix
for a particular solution, even thoughdS/dz may switch
sign, but the sign of the last term is plus if sin21 lies between
0 andp/2 and minus if it lies betweenp/2 andp. If we took
the negative square root in Eq.~2.22!, corresponding toM
and G being negative, there would be another solution
E.0 given by

D7
1

z
5

AES22uGuS

A2E
1

2uGu

~2E!3/2
cosh21AES

uGu ~E.0!.

~2.30!

This solution is unphysical, since the mass is negative, b
is of interest for comparison with the solutions with pressu

Equations~2.16!, ~2.17!, ~2.19!, ~2.25! and~2.28! give the
velocity functions as

V5
Sz6A2E12G/S

G
~2.31!

and

VR56
A2E12G/S

G
, ~2.32!

while Eqs.~2.16! and ~2.31! imply that the density is given
by

4pmt25
1

zS2V
5

G

zS2~Sz6A2E12G/S!
, ~2.33!

where the upper and lower signs again correspond todS/dz
being positive and negative, respectively. Note thatV is
negative~corresponding to tachyonic models! for the solu-
tion given by Eq.~2.30! andm is also negative. In all case
the metric can be written as

ds25dt22
~S1Ṡ!2

112E
dr22r 2S2dV2, ~2.34!

which is the standard Tolman-Bondi form with constant e
ergy functionE(r ).
04402
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III. CLASSIFICATION OF SOLUTIONS

Equation~2.29! implies that there is a 2-parameter fami
of similarity solutions ~as in the generala case!. In this
section we will provide a complete description of these
lutions. We will start by considering the simplest one: the fl
Friedmann solution withD5E50. We will then consider
the one-parameter family of solutions withEÞ0, D50. Fi-
nally we will consider the full two-parameter family of so
lutions with EÞ0, DÞ0. In each case, we will show th
form of the physically interesting quantitiesS, V andmt2 as
functions ofz. In obtaining the full family of solutions, it is
crucial that we allowz to be either positive or negative. Ou
analysis will also cover the~presumably unphysical! solu-
tions with negative mass because they relate to some o
solutions with pressure.

A. EÄDÄ0 solution

In this case Eqs.~2.29!, ~2.31! and ~2.33! give

S5~A2z/3!22/35M 21, V5~z/6!1/3, m5~6pt2!21.
~3.1!

This corresponds to the standard dust Friedmann model
zero curvature constant. The metric can be put in the us
form by making the substitutionr̂ 5(9r /2)1/3, which gives

ds25dt22t4/3@dr̂21 r̂ 2dV2#. ~3.2!

Note that the curvature constant must be zero because o
wise there would be an intrinsic scale, which would cont
dict the similarity assumption.

B. DÄ0 solutions

Solutions with D50 are asymptotically Friedmann a
uzu→` and are specified entirely by the energy parameteE.
These were originally studied by Carr and Hawking@4# and
Carr and Yahil@5#. The form of S(z) in these solutions is
shown in Fig. 1~a!, the arrows always corresponding to th
direction of increasing time. The solutions withz.0 corre-
spond to initially expanding big bang models: they start fro
a big bang singularity (S50) at t50 (z5`) and then either
expand indefinitely (S→`) as t→` (z→0) for E>0 or
recollapse to a black hole singularity (S50) at
2-4
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zS5
~22E!3/2

2pA112E
~3.3!

for E,0. Note thatzS corresponds to the physical origi

FIG. 1. This shows the form of~a! the scale factorS(z), ~b! the
velocity functionV(z) and ~c! the density functionmt2(z) for the
asymptotically Friedmann dust models, the arrows indicating
direction of increasing time. The solutions are described by a sin
parameterE, whereE50 in the exact Friedmann case: thez.0
solutions are overdense and collapse to black holes forE,0 ~with
an event horizon forE.E* sinceVmin,1) but they are underdens
and expand forever forE.0. Thez,0 solutions are just the time
reverse of these. The dotted curve corresponds to a solution
negative mass; it is probably unphysical but relates to
Kantowski-Sachs solution which arises when there is pressure
04402
sinceR5rS50 there. The form ofV(z) in the z.0 solu-
tions is shown in Fig. 1~b!. In the E>0 case,V decreases
monotonically from` to 0. In theE,0 case, it reaches a
minimum before rising tò at zS . One can show that the
values ofz and V at the minimum both decrease asE in-
creases; the minimum will exceed 1~in which case the whole
Universe is inside the black hole! if E is less than some
critical negative valueE* and it will be less than 1~in which
case there is a black hole event horizon and a cosmolog
particle horizon! if E exceedsE* . The solutions withz,0
are the time-reverse of thez.0 ones and the sign ofV is also
reversed: ast increases from2` to 0 ~i.e. asz decreases
from 0 to2`), theE>0 models collapse from an infinitely
dispersed state (S5`) to a big crunch singularity (S50);
theE,0 models also collapse to a big crunch singularity b
they emerge from a white hole and are never infinitely d
persed.

Both S and V have the samez-dependence as in theE
50 Friedmann solution asuzu→`:

S'@9A112E/2#1/3uzu22/3, V'@6~112E!#21/3z1/3.
~3.4!

However, theEÞ0 solutions deviate from theE50 solution
at small values ofuzu. The E,0 solutions never reachz
50 at all, while theE.0 ones have

S'~2E!1/2uzu21,
~3.5!

V'2~112E!1/2E21zln@~2E!3/2~112E!1/2uzu#

as uzu→0. The first relation implies that the circumferenc
function R(r ,t)5Sr is non-zero in limitr→0 unlessE50
since

R~0,t !5A2E t. ~3.6!

This means that the ‘‘coordinate’’ origin (r 50) is an ex-
panding 2-sphere.~This feature is specific to the dust ca
and does not arise if there is pressure.! This has a natura
physical interpretation, since the forms ofSandV are similar
to those in the Kantowski-Sachs solution@13#, in which all
the matter is localized on a shell@cf. Eqs.~3.19! and~3.23! in
Ref. @12# #, although there is noexact self-similar
Kantowski-Sachs solution in the dust case. To obtain a co
plete solution, one must therefore match the self-similar
lution onto a~non-self-similar! part insideR(t,0). In theE
,0 case, we have seen that the physical origin is the bl
hole singularityzS , so only for E50 can one identifyz
50 with the physical origin.

The form of the density functionmt2 can be derived from
Eq. ~2.33! and is shown in Fig. 1~c!. For a given fluid ele-
ment~i.e. fixedr ), this specifies the density as a function
time m(t). For a given time, it also specifies the dens
profile m(r ) and this illustrates that a non-zero value ofE
necessarily introduces an inhomogeneity into the model.
lutions with E.0 are everywhere underdense relative to
Friedmann model, with Eqs.~2.33! and ~3.5! implying that
mt2 goes to 0 as (lnuzu)21 as z→0. ~This suggests that the
interior non-self-similar region should be a vacuum.! Solu-

e
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tions with E,0 are everywhere overdense relative to Frie
mann, with m diverging at the singularity. Note that Eq
~2.33! and ~3.4! imply that mt2 is independent ofE to 1st
order asuzu→`.

The form of the mass functionM (z) in the D50 solu-
tions is not shown explicitly but can be immediately deduc
from the expression forSsince Eq.~2.22! givesM5G/S. In
the E>0 case, there is always a single point whereM
51/2 and this corresponds to the cosmological apparent
rizon. In theE,0 case, Eq.~2.29! implies thatShas a maxi-
mum of G/uEu and so Eq.~2.22! shows thatM has a mini-
mum of uEu. Since this is less than 1/2, there are always t
points whereM51/2, one corresponding to the black ho
apparent horizon and the other to the cosmological appa
horizon. Note that a black hole’s apparent horizon alwa
lies within or coincides with its event horizon@14#, which is
why the first can exist without the second. Equations~2.22!
and~3.3! imply that the mass associated with this singular
is

mS5~MSz!St5~22E!3/2t/~2p!. ~3.7!

It therefore starts off zero when the singularity first forms
t50 but then grows ast. The mass of the black hole is give
by a similar formula but withz having the value appropriat
for the event horizon or apparent horizon. Since the form
may not exist, it is more appropriate to use the latter.

Finally, we consider theE.0 negative-mass solution
given by Eq.~2.30!. Their form is indicated by the dotte
curves in Fig. 1.S, V and m have the same form as in th
positive mass solutions for small values ofuzu except that V
and m reverse their signs. However, the solutions are v
different at large values ofuzu since Eq.~2.30! shows thatS
must always exceeduGu/E. Indeed it tends to this value as
ymptotically, so we have

S'A112E/E, V'2z/E, mr 2'2E3/A112E
~3.8!

asuzu→`. The form of this solution is closely related to th
of the a!1 static solution@cf. Eq. ~3.29! of Ref. @12# #,
although there is no static solution in thea50 case itself.

C. EÄ0 solutions

We now putE50 and consider the effect of introducing
non-zero value for the constantD. @In this case, Eq.~2.28!
does not permitG,0, so there are no negative-mass so
tions.# Some of these solutions were also considered bri
by Ori and Piran@6#. The form ofS(z) for the D.0 solu-
tions is shown in Fig. 2~a!. There are two types of solution
in this case, one expanding and the other collapsing. For
expanding solutions~solid lines!, S50 at z521/D and so
the big bang occurs beforet50 ~i.e. it is ‘‘advanced’’!. As t
increases to 0~i.e. asz decreases to2`), S tends to the
finite value

S`~D !5~3D/A2!2/3. ~3.9!
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As t further increases from 0 to1` ~i.e. asz jumps to1`
and then decreases to 0!, S increases monotonically tò. For
the contracting solutions~broken lines!, S starts infinite att
52` (z50) and then decreases toS`(D) as t increases to
0 (z→2`). As t further increases~i.e. asz jumps to1`
and then decreases!, Scontinues to decrease until it reaches
at the big crunch singularity atz51/D. Both types of solu-
tions are characterized by the fact that they have just

FIG. 2. This shows the form of~a! the scale factorS(z), ~b! the
velocity functionV(z) and~c! the density functionmt2(z) for dust
models withE50. Two different values ofD are shown in~a! and
~b! but only one in~c!. These solutions necessarily span both po
tive and negative values ofz. For D.0 they represent monotoni
cally expanding~solid! or collapsing ~broken! solutions and the
latter contain a naked singularity (Vmin,1) if D exceeds some
value D1 ~as assumed here!. The D,0 models~dotted! undergo
shell-crossing before encountering the singularity and are prob
unphysical sinceV andm go negative.
2-6
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singularity and span both positive and negative values oz.
Note that for each value ofS` the two asymptotic solutions
just correspond to the plus and minus signs in Eq.~2.28!.

The form ofV(z) in the D.0 solutions is shown in Fig
2~b!. For the expanding solutions~solid lines!, it starts off at
2` at the big bang (z521/D), reaches a negative max
mum and then, from Eq.~2.31!, tends to

V5S`~D !z5~3D/A2!2/3z ~3.10!

asz→2`. Whenz jumps1`, V becomes positive but Eq
~3.10! still applies. Asz decreases from1` to 0, V de-
creases monotonically to 0. For the contracting models~bro-
ken lines!, V starts from 0 atz50 and monotonically de-
creases asz goes to2`, being again given by Eq.~3.10!
asymptotically. Whenz jumps to1`, V jumps to1` and
then decreases to a minimum before rising to infinity at
big crunch singularity. A simple calculation~see later! shows
that the values ofuzu anduVu at the stationary point are give
by

uzumin5S 21A3

3D D , uVumin5S 26115A3

3D D 1/3

, ~3.11!

so the stationary point moves towards the origin and
value ofuVumin decreases asD increases. Note that the max
mum value ofV for the expanding solutions will exceed
21 and the minimum value for the contracting ones will
less than11 if D exceeds some critical valueD1526/3
15A3'17. ForD.D1 , the conditionuVu51 will be sat-
isfied at three values ofz. As illustrated by Fig. 14 of Ref.
@6#, this means that the contracting solutions will form
black hole in which the central singularity is naked for
while. This applies for both the solutions shown in Fig. 2~b!.

The crucial feature of these solutions is that, while t
form of V(z) is like that in theD50 case for smalluzu, V
scales asz rather thanz1/3 @cf. Eq. ~3.4!# for largeuzu. This is
because any solution with finiteS at infinity must be
‘‘nearly’’ static in the sense thatdS/dz tends to zero. How-
ever, the solutions are not asymptotic to anexactstatic solu-
tion ~indeed this does not exist in thea50 case! because Eq.
~2.32! implies thatVR tends to a non-zero value:

VR
`56S 4

3D D 1/3

. ~3.12!

We therefore term these solutions asymptotically ‘‘qua
static.’’ If VR

` is positive, the fluid is collapsing at infinity; i
VR

` is negative, it is expanding. Note that Eq.~2.28! implies
that bothdS/dz and zdS/dz tend to zero at largeuzu but
z2dS/dz @which directly relates toVR

` from Eqs.~2.28! and
~2.32!# tends to a non-zero value except in the limitD→`.

The form of the density functionmt2 in the D.0 solu-
tions is also interesting and is illustrated in Fig. 3~c!. From
Eq. ~2.33! the density parameter is given by

V[6pmt25
1

~173Dz!~17Dz!
~3.13!
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where the upper and lower signs apply for positive and ne
tive values ofdS/dz, respectively.@The inverse of the factor
6pt2 corresponds to the density in a flat Friedmann d
universe, as indicated by Eq.~3.1!.# For a given fluid ele-

FIG. 3. This shows the form of~a! the scale factorS(z), ~b! the
velocity functionV(z) and ~c! the density functionmt2(z) for the
asymptotically quasi-static dust solutions. These are describe
two parameters (D andE) but we assume thatD is fixed and not all
the solutions in~a! and~b! are shown in~c!. For E.0 the solutions
resemble those in Fig. 2, with both monotonically expanding~solid!
and collapsing~broken! solutions. The collapse singularity is nake
(Vmin,1) if E is less than a valueE1(D). For E,0 there are also
solutions which recollapse to a black hole~solid! or emerge from a
white hole~broken!, as in the asymptotically Friedmann case. AsE
decreases, the last solution is the symmetrical one, for whicE
5Esym andzS51/D, so that the solid and broken curves coincid
The curves labelledE501 andE502 show the qualitative transi-
tion as E passes through 0. The dotted curves correspond to
~unphysical! negative mass solution.
2-7
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ment, this describes how the density evolves as a functio
time and it has the expected form. However, at a given t
it also prescribes the density profile and one sees imm
ately that a non-zero value ofD ~like a non-zero value ofE)
introduces an inhomogeneity. This inhomogeneity has a
ticularly interesting form. In thez,0 regime, the profile for
the collapsing solutions is homogeneous foruzu!1/D but has
m;r 22 for uzu@1/D ~i.e. it resembles an isothermal sphe
with a uniform core!. In the z.0 regime, the collapsing
solutions again havem;r 22 for uzu@1/D but the density
diverges atz51/D ~i.e. one has a density singularity at th
center of an isothermal sphere!. For the expanding solutions
the signs ofz are reversed. These features are illustrated
Fig. 2~c! and have an obvious physical interpretation.

Although the asymptotically quasi-static solutions hav
natural cosmological interpretation whenz is allowed to span
both positive and negative values, we see that thez.0 and
z,0 solutions also have a non-cosmological interpretat
when considered separately: they just represent collap
and expanding self-similar models which evolve from an i
tially isothermal distribution. It is interesting that the isothe
mal model~which is usually associated with a static solutio!
features prominently in both regimes, despite the fact t
there is no exact static solution in the dust case.

The mass function isM5S21 in this case and therefor
decreases or increases monotonically. There is just one v
of z at whichM51/2 ~corresponding to a black hole or co
mological apparent horizon! but this may be in either the
positive or negativez region. Equation~3.9! implies that the
asymptotic value ofM as uzu→` is less than 1/2 forD
.4/3. In this case, the collapsing solutions have their app
ent horizon inz.0, whereas the expanding ones have it
z,0. The mass of the~possibly naked! singularity in these
solutions is

mS5~MSz!St5t/D ~3.14!

from Eq. ~2.22!. As in the asymptotically Friedmann case,
starts off zero att50 but then grows ast. In the limit D
→`, one gets a naked singularity of zero mass at the or
~cf. the static solution in theaÞ0 case!.

Finally, we consider theD,0 solutions. The form of
S(z) in this case is shown by the dotted curves in Fig. 2~a!.
Such solutions are confined touzu,21/D, with S either de-
creasing monotonically forz,0 ~i.e. as t increases from
2`) or increasing monotonically forz.0 ~i.e. ast increases
to 1`). However, these solutions break down whenS is too
small. This is because Eq.~2.31! implies thatuVu increases to
some maximum value and then falls to zero atuzu5
21/(3D); this is indicated by the dotted curves in Fig. 2~b!.
From Eq.~2.33! this means that the density diverges there
shown by the dotted curves in Fig. 2~c!. This divergence is
associated with the formation of a shell-crossing singula
since the model resembles the Kantowski-Sachs solu
@13# at this point. For21/D.uzu.21/(3D), the density
and velocity functions become negative but this is presu
ably unphysical.
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D. DÅ0,EÅ0 solutions

The forms ofS(z) for the (D.0,EÞ0) solutions are in-
dicated in Fig. 3~a!. The figure assumes thatD is fixed but
allows E to vary. The (D.0,E.0) solutions are qualita-
tively similar to the (D.0,E50) ones in that they are
monotonically expanding or collapsing and span both po
tive and negativez, as illustrated by the upper solid an
broken curves, respectively. They are also asymptotic
quasi-static, in the sense thatS tends to a finite value asuzu
→`, even thoughVR is non-zero there from Eq.~2.32!. The
form of the solutions nearz50 is still given by Eqs.~3.5! for
E.0, so the behavior is like that in the (E.0,D50) case
here. In particular,z50 no longer corresponds to the phys
cal origin, so one again has to attach the solution to a n
self-similar central region.

The (D.0,E,0) solutions are qualitatively differen
from the (D.0,E50) ones in that the models no longe
collapse from or expand to infinity. This is clear from E
~2.28!, which implies thatS has a maximum value ofG/uEu,
so all the solutions start off expanding and then recollap
Note that there is no exact static solution since that would
incompatible with Eq.~2.13!, the term on the right-hand sid
being non-zero fora50. Figure 3~a! shows that there are
two types of (D.0,E,0) solutions. One type~illustrated by
the lower solid curves! expands from the big bang singularit
at z521/D and then recollapses to a black hole singular
at

zS5F2pA112E

~22E!3/2
2DG21

. ~3.15!

This reduces to the value given by Eq.~3.3! if D50. The
other type~illustrated by the lower broken curves! expands
from a white hole singularity at2zS and then recollapses t
a big crunch singularity atz51/D.

Equation~3.15! implies thatzS51/D, so that the solution
is symmetric inz, if D has the value

Dsym[
pA112E

~22E!3/2
. ~3.16!

One can invert this condition to obtain the associated va
of E in terms ofD:

Esym[2
4p

A3D
sinhF1

3
sinh21S 3A3D

8p D G ~3.17!

and this specifies a 1-parameter family of solutions w
VR

`50. If one considers the limit of the symmetric solutio
as D→0, one findsEsym→21/2 andzS→`. On the other
hand, if one considers the limit asD→`, one findsEsym
→0 andzS→0, so that both singularities go the origin. Th
is the closest one can get to a static solution in the dust c
Note also thatzS→0 in the limit E→02 whatever the value
of D; the sudden transition as one goes fromE502 to E
501 is illustrated in Fig. 3~a!.

This value ofE given by Eq.~3.17! has a special physica
significance in that it prescribes theminimum value of E
2-8
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allowed for givenD, as indicated by the lower boundary
Fig. 4. The proof of this is as follows. If one takes the lim
of Eqs. ~2.14! and ~2.15! with a50 as z→`, using Eqs.
~2.19! and~2.32! and the fact thatṠ→0 from Eq.~2.28!, one
obtains

z2Ṡ25~112E!~VR
`!25~4pmr 2!`

2 S`
6 1~8pmr 2!`S`

2 21
~3.18!

where one can regard (mr 2)` and S` as independen
asymptotic parameters. If one now fixes (mr 2)` and assumes
that it is positive, then the right-hand side of Eq.~3.18! de-
creases monotonically with decreasingS` . One therefore
gets areal solution forVR

` only if S` exceeds a certain valu
and—by monotonicity—this must be the value associa
with the symmetric solution. Thus a real solution~with posi-
tive density! exists only for E.Esym or, equivalently,D
,Dsym. This means thatzS is always positive and less tha
1/D and that the maximum ofS will always occur at the
opposite sign ofz as theuzu51/D singularity. These feature
are illustrated by the curves in Fig. 3~a!.

The form ofV(z) in these solutions is shown in Fig. 3~b!.
For (D.0,E.0) it is similar to that in the (D.0,E50)
case. Asz decreases from 0 to2`, V decreases monoton
cally from 0 to 2` for the collapsing solutions; it then
jumps toz51` and, asz continues to decrease, it falls to
minimum and rises to infinity at the big crunch singularity

FIG. 4. This shows the permitted regime for the parameterE
and D. The curve labelledEsym indicates the symmetric solutio
and all physical solutions must lie above this. The upper broken
gives the transition between different asymptotic forms forS` and
V` . The collapsing solutions have a naked singularity in the ve
cally shaded region below the line labelledE1 and the black hole
solutions have an event horizon and a particle horizon in the h
zontally shaded region above the line labelledE* . These lines
intersect on the lower boundary.
04402
d

t

z51/D. Also as in the (D.0,E50) case, this minimum will
fall below 1, corresponding to a naked singularity, providi
D exceeds some valueD1(E). We derive an implicit expres-
sion for D1(E) later but, for the present, note that it in
creases with increasingE and reduces to the valueD1 which
arose in Sec. III C whenE50. The condition for a naked
singularity can also be expressed as the requirement thatE be
less than some critical valueE1(D).

For (D.0,E,0) the form ofV is similar to that in the
(D50,E,0) case, except that the curves are no longer sy
metric. Asz decreases from21/D, V rises from2` until
some maximum for the first type of solution and then falls
2` quasi-statically asz→2`. It then jumps toz51` and
falls to a minimum before rising tò at zS . As in the (D
50,E.0) case, there will be a black hole event horizon
the minimum value ofV is less than 1; this requires thatE
exceed some valueE* (D), which must reduce to the valu
E* given in Sec. III B whenD50. We derive an implicit
expression forE* (D) below. It should be stressed that th
valueE* (D) is associated with the minimum ofuVu near the
singularity atuzu5zS and is different from the valueE1(D)
associated with the minimum nearuzu51/D. The relationship
between the valuesE1(D) andE* (D) is discussed below.

In order to understand the form of the curves in Figs. 3~a!
and 3~b! more precisely, it is useful to specify the
asymptotic behavior. Asuzu→`, Eqs.~2.29! and~2.31! with
E.0 imply that S(z) and V(z) have the following
asymptotic forms:

S`'DA2E, V`'S 2E

112ED 1/2

Dz ~3.19!

for D@@(112E)/E3#1/2 and

S`'S 112E

4 D 1/6

~3D !2/3, V`'
~3D !2/3z

21/3~112E!1/3

~3.20!

for D!@(112E)/E3#1/2. The transition value forD between
these two regimes is just an extrapolation of the express
for Dsym given by Eq.~3.16! into theE.0 regime; it scales
as E21 for E@1 andE23/2 for E!1. Note that Eq.~3.20!
agrees with Eqs.~3.9! and ~3.10! in the limit E50. For E
,0, Eq. ~3.20! still applies if D!Dsym but one has

S`'A112E/uEu, V`'z/uEu ~3.21!

for D'Dsym ~i.e. S` tends to the value associated with th
symmetric solution!.

These equations prescribe the asymptotic forms forS`

andV` in the different (E,D) regimes of Fig. 4. For fixedD,
Eqs. ~3.19! to ~3.21! show thatS` always increases withE
but is roughly constant foruEu!1. This feature is illustrated
in Fig. 3~a!. The behavior ofV` is more complicated. For
D!1, it decreases with increasingE but eventually flattens
off; this is the case shown in Fig. 3~b!. For D@1, it is con-
stant and then increases withE before flattening off. Note
that all these solutions are quasi-static and not exactly s
asymptotically since Eq.~2.32! gives

e

i-

i-
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VR
`'6

41/3

~3D !1/3~112E!1/3
, VR

`56S 2uEu
112ED 1/2

~3.22!

for D@@(112E)/E3#1/2 and D!@(112E)/uEu3#1/2 respec-
tively. The sign is positive for collapsing solutions and neg
tive for expanding ones. Note that the first expression ag
with Eq. ~3.12! in the limit E50.

We now derive implicit expressions for the function
E* (D) and E1(D), which are related to the existence
event horizons or naked singularities. Differentiating E
~2.31! shows that whendV/dz50 one always has

V51/~S2z! ~3.23!

and Eq.~2.31! then gives

VG21/~VS!56A2E12G/S, ~3.24!

where the positive and minus signs corresponds to the
of dS/dz. If one also requiresuVu51 at the stationary point
Eq. ~3.24! gives two roots

S52G6A4G221, uzu58G22174GA4G221,
~3.25!

where the plus and minus signs are distinct from the o
appearing in Eq.~3.24!. These roots can be real providin
G.1/2, corresponding toE.23/8. However, one needs t
check whether both of these solutions satisfy condit
~3.24!.

Inserting the solutions~3.25! into Eq. ~2.29! gives an ex-
pression forD in terms ofE. This expression is complicate
in general but it simplifies in certain regimes. ForE@1,
which impliesG'A2E@1, one obtains two possible solu
tions:

S'4G, uzu'1/~16G2!, D'32E ~3.26!

and

S'1/~4G!, uzu'16G2, D'
1

E S 13

32
2 lnA2D'0.06E21.

~3.27!

The first hasG.1/S and therefore requiresdS/dz.0 from
Eq. ~3.24!, which leads to a consistent solution. Howev
the second hasG,1/S and requiresdS/dz,0, which does
not. In the limitE→0, which impliesG'1, one obtains

S'~26A3!~162E/A3!, uzu'~774A3!~174E/A3!.
~3.28!

The upper sign givesG.1/S and therefore requiresdS/dz
.0, which leads to a consistent solution asE tends to 0 from
either above or below. Equation~2.29! then gives

D'S 26115A3

3 D 1ES 109163A3

6 D'17136E.

~3.29!
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Note that the constant part of this expression gives the s
limiting value ofD as implied by Eq.~3.11!. The lower sign
in Eq. ~3.28! gives G,1/S and requiresdS/dz,0, which
does not lead to a consistent solution. Finally we note t
Eqs.~3.25! and ~2.29! lead to unique values ofE andD for
which the symmetric solution hasVmin51; this necessarily
corresponds to a point on the lower boundary in Fig. 4.

These limiting behaviors allow one to infer the roug
form of the functionsE* (D) and E1(D), as indicated in
Fig. 4. Here we have used the fact thatdE1 /dD is positive
asE→0, as follows from Eq.~3.29!. The form of the func-
tions in theE,0 regime can be inferred from the fact th
E* (D) must reach the valueE* mentioned in Sec. III B
whenD50 ~although this value has not been calculated
plicitly !. Also E* (D) and E1(D) must reach the lineE
5Esym(D) at the same value ofE and this must clearly
exceed23/8 from Eq.~3.25!. We note that, for sufficiently
large values ofD, there may beboth an event horizon and a
naked singularity.

The form ofmt2 in these solutions is shown in Fig. 3~c!,
although this gives only some of the solutions shown in Fi
3~a! and 3~b!. It can be understood as a composite of t
curves shown in Fig. 1~c! for E,0 and Fig. 2~c! for E.0.
From Eqs.~2.33! and~3.19! to ~3.21!, the asymptotic form of
the density profile density is given by

4pmr 2'F A112E

D3~2E!3/2
,

2

9D2G ~3.30!

for D@@(112E)/E3#1/2 andD!@(112E)/uEu3#1/2 @cf. Eq.
~3.13!.# TheE.0 solutions are everywhere underdense re
tive to the E50 solutions, going to 0 as (lnuzu)21 at the
origin, whereas theE,0 solutions are everywhere ove
dense and have a second density singularity. There is a
form core region only in theE50 case, although this als
applies forE,0 if there is pressure@12#.

The form ofM (z)5G/S(z) can be deduced immediatel
from Fig. 3~a!. In the E.0 case it rises or falls monotoni
cally, as in theD50 case, so there is just one value ofz for
which M51/2. As uzu→`, M tends to a limiting value

M`5
A112E

S`~D,E!
~3.31!

and the apparent horizon will be inz.0 or z,0 according
to whether this is greater or less than 1/2. In theE,0 case,
M will have a minimum whereS has a maximum. This oc
curs at

uzu5FpA112E

~22E!3/2
2DG21

~3.32!

and, since the minimum value isuEu, this is necessarily less
than 1/2. One therefore has at least two points whereM
51/2, one of which is the apparent horizon for the black h
associated with the singularity atzS . Therefore, as in the
D50 case, there will always be a black hole apparent h
2-10
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zon but not necessarily an event horizon. This emphasize
important difference between the collapse singularities az
51/D andz5zS : only the latter is associated with an appa
ent horizon, which is why only the former can be naked.

The D,0 solutions have the same form as in theE50
case, except that theE,0 ones have a second singularity
the valuezS given by Eq.~3.15! with D,0. In this case, as
z goes from21/D to zS , Sfirst increases to some maximu
value and then decreases, whileV monotonically increases
from 2` to 1`. As in the E50 case, such models ar
probably physically unrealistic since the density diverges
to shell crossing. They are therefore not shown explici
The form of the~unphysical! negative-mass solutions, whic
only exist forE.0, is indicated by the dotted curve in Fig
3. This is similar to theE50 case shown in Fig. 2 excep
that asymptotically Eq.~3.19! applies rather than Eq.~3.8!.

IV. CONCLUSION

We may briefly summarize the results of our analysis
follows. ~1! There are two families of spherically symmetr
self-similar dust models: asymptotically flat Friedmann so
tions and what we have termed asymptotically quasi-st
solutions. These all represent inhomogeneous cosmolog
models in which the energy functionE is constant. They
either expand from a big bang or collapse to a big crunch
the singularity is only att50 for the asymptotically Fried-
mann family. ~2! Some of the asymptotically Friedman
models represent overdensities in a Friedmann backgro
which recollapse to a second singularity and contain a bl
hole which grows as fast as the Universe. The black h
always has an apparent horizon but not necessarily an e
horizon. Other asymptotically Friedmann models repres
underdensities in a Friedmann background which grow
fast as the Universe.~3! The asymptotically quasi-stati
models can be interpreted as representing inhomogene
cosmological solutions~with one or two singularities! if one
allows both signs ofz, with a uniform density core in one
regime and a central black hole or naked singularity in
other. If one confines attention to solutions with just one s
of z, these represent self-similar collapse from an initia
isothermal distibution or the time reverse of this.~4! We
have emphasized the relationship between thez.0 and z
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,0 solutions. Any particular asymptotically Friedmann so
tion is confined to one sign ofz but any asymptotically quasi
static solution necessarily spans both signs.

In an accompanying paper@12# it is shown that the spheri
cally symmetric self-similar solutions with pressure sha
many of the qualitative features of the dust ones, especi
in the supersonic regime. In particular, all of the propert
~1! to ~4! above still pertain. However, it should be emph
sized that new types of solution arise when there is press
For example, there is an exact static solution and an e
Kantowski-Sachs solution, as well as families of solutio
asymptotic to these. There are also asymptotica
Minkowski solutions fora.1/5, some of which asymptote
to a finite value ofz. The inclusion of pressure obviousl
introduces qualitatively new features in the subsonic regim
in particular the possible presence of a sonic point.

In claiming that our classification is ‘‘complete,’’ i
should be emphasized that our considerations have been
fined to similarity solutions of the simplest kind~i.e. homo-
thetic solutions in which the similarity variable isz[r /t).
However, it should be noted that this is not the only type
similarity. For example, Carter and Henriksen@15# have gen-
eralized the concept to include what they term ‘‘kinemati
self-similarity. In this context the similarity variable is of th
form z5r /ta for aÞ1 and the solution may contain som
dimensional constant. Ponce de Leon@16# has also intro-
duced the closely related notion of ‘‘partial homothety.’’ It
not yet clear how easily the analysis of this paper can
extended to these cases. Finally it should also be emphas
that we have only been studying solutions which are hom
thetic everywhere. The sort of models considered by Tomi
@10# in which one patches a self-similar transition regi
between other non-self-similar regions, is clearly not cove
here.
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