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Classification of spherically symmetric self-similar dust models
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We classify all spherically symmetric dust solutions of Einstein’s equations which are self-similar in the
sense that all dimensionless variables depend only aparit. We show that the equations can be reduced to
a special case of the general perfect fluid models with an equation ofstatew. The most general dust
solution can be written down explicitly and is described by two parameters. The firEpoerresponds to the
asymptotic energy at large|, while the second onéD) specifies the value of at the singularity which
characterizes such models. TlBe D=0 solution is just the flat Friedmann model. The 1-parameter family of
solutions withz>0 and D=0 are inhomogeneous cosmological models which expand from a big bang
singularity att=0 and are asymptotically Friedmann at lagyenodels withE>0 are everywhere underdense
relative to Friedmann and expand forever, while those &ithO are everywhere overdense and recollapse to
a black hole containing another singularity. The black hole always has an apparent horizon but need not have
an event horizon. ThB =0 solutions withz<0 are just the time reverse of tke-0 ones, having a big crunch
att=0. The 2-parameter solutions wih™>0 again represent inhomogeneous cosmological models but the big
bang singularity is at=— 1/D, the big crunch singularity is @&= +1/D, and any particular solution neces-
sarily spans bottz<<0 and z>0. While there is no static model in the dust case, all these solutions are
asymptotically “quasi-static” at largéz|. As in the D=0 case, the ones witkE=0 expand or contract
monotonically but the latter may now contain a naked singularity. The ones EvitB expand from or
recollapse to a second singularity, the latter containing a black hole. The 2-parameter solutioBs<\ith
models either collapse to a shell-crossing singularity and become unphysical or expand from such a state.

PACS numbgs): 04.20.Jb, 95.30.Sf, 98.80.Hw

[. INTRODUCTION cations entailed, we will find that many of the features of the
a=0 (dus) solutions carry over to the+ 0 case, at least in

Spherically symmetric self-similar solutions to Einstein’s the supersonic regime. In particular, maittyough not all of
equations have the feature that every dimensionless variabiBe types of solutions with pressure have direct analogues in
is a function of some dimensionless combination of the costhe dust case. Our aim is therefore to use the exact analytic
mic time coordinaté and the comoving radial coordinate ~ dust solutions to derive qualitative features of self-similar
In the simplest situation, a self-similar solution is invariantsolutions which will also turn out to pertain when there is
under the transformation—at,t—at for any constang, so  Pressure but which can then only be demonstrated numeri-
the S|m||ar|ty variable isz=r/t. Geometrica”y this corre- Ca”y. On the other hand, it should be stressed that the intro-
sponds to the existence of a homothetic Killing vector. Suctfluction of pressure is also associated with many new
solutions have been the focus of much attention in generdfatures—especially in the subsonic regime—which cannot
relativity because the field equations simplify to ordinaryPe understood in this way.
differential equation$1]. The plan of the paper is as follows: In Sec. Il we will

Even greater simplification is afforded if one focuses onshow how the dust equations can be regarded as a special
the situation in which the source of the gravitational field iscase of the equations with pressure providing one adopts a
pressureless dust since, in this case, the solutions can oftsfecific prescription in taking the limi¢z—0. In Sec. Il we
be expressed analytically and are just a special subclass @fscuss the general family of dust self-similar solutions,
the more general spherically symmetric Tolman-Bondi solushowing that they can be conveniently categorized as asymp-
tions [2]. A number of people have studied such solutionstotically Friedmann and what we term asymptotically quasi-
[3—6] and these papers are described in some detail by Kratatic. In each case, we will focus on the important physical
sinski [7] and Carr and Coley8]. Of particular physical features of the solutions, such as the presence of apparent
interest has been the use of self-similar dust solutions iffiorizons, event horizons and singularities. We will also
studying naked singularitig®] and modeling cosmic voids clarify the connection between models with positive and
[10,11]. negativez. We will specify the sense in which our classifi-

In this paper we will present a classification of sphericallycation is “complete” in Sec. IV.
symmetric homothetic dust models which is “complete”
subjept to certain specified restri_ctions. This serves as a first Il. SPHERICALLY SYMMETRIC SIMILARITY
step in the more general analysis, presented in an accompa- SOLUTIONS
nying papeir{12], of spherically symmetric self-similar per-
fect fluid models with pressure, the equation of state then In the spherically symmetric situation one can introduce a
necessarily being of the forpm=au. Despite the simplifi- time coordinate such that surfaces of constdrare orthogo-
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nal to fluid flow lines and comoving coordinates, ¢, ¢) which represents the velocity of the surfaces of constant
which are constant along each flow line. The metric can themelative to the fluid. These surfaces have the equatiert

be written in the form and therefore represent a family of spheres moving through
the fluid. The spheres contract relative to the fluid Zer0

and expand forz>0. This is to be distinguished from the

— A2V 42 _ A2\ 2_p2 2 2— 2 H 2
ds=e®’dt*~e™ dr*~R*dQ?,  dQ*=d¢*+sirede velocity of the spheres of constaRtrelative to the fluid:

(2.9
IR/ gt
dR/ar

Veg=— —==—e"" . 2.9

where v, A and R are functions ofr andt. The Einstein
equations have a first integral
This is positive if the fluid is collapsing and negative if it is
) 5 expanding. Special significance is attached to valuesforf
1+ezy( @) _ez>\<£> } 2.2 which |[V|=1 and |Vg|=1. The first corresponds to a
at ar ) |’ ' Cauchy horizor(either a black hole event horizon or a cos-
mological particle horizonand the second to a black hole or
. . - . . _cosmological apparent horizon. One can sh@lthat the
This can be interpreted as the mass within comoving radius gyistence of an apparent horizon is also equivalent to the
at umet: conditionM = 1/2.
Although our main focus in this paper ipressureless
; IR dust solutions, it is elucidating to start by considering the
m(r):477j uRZ—dr’ (2.3 equations for a fluid with pressure. We will follow the for-
0 ar’ malism of Carr and Yahi[5]. The only barotropic equation
of state compatible with the similarity ansatz is one of the
where u(r,t) is the energy density and we choose units inform p=au (—1<a=<1). If one introduces a dimension-
whichc=G=1. This is constant ip=0. Equation(2.2) can  |ess functionx(z) defined by
be written as an equation for the energy per unit mass of the

m(r)=3R

shell with comoving coordinate X(2)=(4mur?) - dta), (2.9
1 1 m then the conservation equatiofi$” .,=0 can be integrated
E=5(I?-1)=5U- =, to give '
(2.9 g'= Bxz2/(1+a) 2.1
U _[ R e R A (2.19
=€ 0w T ) e M= yx Vag? (2.19)

This can be interpreted as the sum of the kinetic and poterwhereB andy are integration constants. The remaining field
tial energies per unit masg.andI" are conserved along fluid equations reduce to a set of ordinary differential equations in
flow lines in thep=0 case. xandS

By a spherically symmetric similarity solution we shall

mean one in which the spacetime admits a homothetic Kill- . S 1x .
ing vector that satisfies StS+|{ 17,5 o x/ ST (1+a)SI=0, (212
Euvt &0 =20, (2.9 2 ' [ \/2
. e (Zay n 2 §X(2—2a)/az(2—2a)/(1+a) _ 72845(\/_ _ 1)
This means that the solution is unchanged by a transformal 1t+a g% S X\ a
tion of the formt—at, r—ar for any constant. Solutions . (1-a)la
of this sort were first investigated by Cahill and Taul, =(1+a)x ' (213
who showed that by a suitable coordinate transformation s
they can be put into a form in which all dimensionless quan-, _ 2, - (1+a)/a (1t
tities such ag, A, E and M=Sx 1+(1+a) S|’ 219
R m 11 1 5\
= =_ =pR2 = R2 _ —2,2(1-a)/(1+a) Q2 2., (2la) o6
- M=g, P=pR, W=uR® (2.6 M=+ ——x 72 )(+)S—§'yx( IS 1+3) .
. . : . . (2.15
are functions only of the dimensionless variapter/t. This
means that the field equations reduce to a set of ordinanyhere the velocity function is given by
differential equations irz. Another important quantity is the
function V=(By) x1-aeg-2;(1-a)l(1+a) (2.16
V(z)=¢e""z, (2.7  and an overdot denotesl/dz. The other velocity function is
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VS where we have taken the positive square roofifdo ensure
Ve=—— (2.17  that the mass if positivéWe discuss the negative mass case
S+S later) Puttingx=1 in Eq. (2.10 also givese’= 3, so Eq.

(2.4) can be rewritten as
and, from Eqs(2.4) and(2.15), the energy function is

2 2
1 S 1 1 ds V1+2E
— 2 A2y (2a) b E=—27—| — ) 2.2
E=3 7 X 1+3) -3 (2.18 YAKE 7S (2.23

which necessarily exceedsl1/2.
We can best envisage how these equations generate solance this equation has been integrated to @®), all the
tions by working in the 3-dimensionak(S,S) space5]. At other functions can be obtained, so one has solved the prob-

any point in this space, for a fixed value®fEqs.(2.14 and €M completely.
(2.19 give the value of z; Eq2.13 then gives the value of W€ now show that Eqs2.10 to (2.16 are all formally

X unIess|V|=\/Z and Eq.(2.12) gives the value of. Thus satisfied if one uses the prescription given by E219.

i R ] * Equation(2.14) can be written as

the equations generate a vector fieldg,S) and this speci-
fies an integral curve at each point of the 3-dimensional
space. Each curve is parametrized 2gnd represents one . IR
particular similarity solution. This shows that, for a given MS=m/R=S*(47ur?)(S+ S)=477,uR2(9— (2.24
equation of state parametet there is a 2-parameter family '
of spherically symmetric self-similar solutions. In general
there would be a sonic point, with possible associated dlsand this is just equivalent to Eq2.20. Since Eq.(2.21
continuities, at|V|=\/a. This corresponds to crossing a |m lies
2-dimensional surface in the solution space but we need no P
discuss this complication here.

Henceforth we focus on the dust solutions. Although Egs. el 2 .
(2.10 to (2.16 break down wherv=0, in that some of the (dmpr®) "=yS(S+ 9T, (229
terms disappear or diverge, we will show that the equations
are still formally applicable providing the functiondefined
by Eq.(2.9) is set to 1 whenever it does not appear with the'V€ also have
exponent 14. Otherwise one must make the substitution

din(ur?) 28 S+8

1 x dIn(wr? et
(D) 219 dinz TS

- 7
a X dinz

Xl/aH(47T,udr2)—l (22@

as suggested by E€R.9). In fact, the relevant equations are
most simply obtained by noting that both the energy an
mass within comoving radiusare conserved, so thetand ~ (2-23, formally corresponds t&=0. Finally we can substi-

m/r=MS are constant. If we puim/r=r«, then Eq.(2.3  tute for thex terms in Eq.(2.13, using Egs.(2.19 and
implies (2.25), to obtain

OEquatlon(Z 12 is then automatically satisfied and, from Eq.

477,&223R dm =k (2.20 r
o dr S+S——@ (2.27

and this can be combined with Eq2.9) and(2.11) to give

and this can be integrated to give Eg.23.

el= 7,71(47-,“252)*1:,(1771&_ (2.20) It is now convenient to scale theandt coordinates so
ar that 8= y=1. Equation(2.23 then implies

On the other hand, E@2.4) impliese*=T""1(gR/ar) where

I'=+%41+2E and so the constant is justI'/y. The mass ds V2E+2T'/S

function is therefore P E— (2.28

z
M= ' J1+2E 22
yS 9SS 2.22 and this can be integrated to give
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(ES+Ts 2r . [ES
- 3/25|nh — (E>0),
V2E (2B) r
1 2
DF—= £s3/2 (E=0), (2.29
z 3
2T —ES JES+TS
—sinfl\/ t\/ (—1/2<E<0),
| (—2E)%? r \2E

whereD is an integration constant and siis taken to lie

between 0 andr. In the first two cases, the upper and lower

signs on the left-hand-side apply fatfS/dz positive and

negative, respectively, this sign being constant for any pa
ticular solution. In the third case, the sign on the left is fixed

for a particular solution, even thougthS'dz may switch
sign, but the sign of the last term is plus if Sirlies between
0 andw/2 and minus if it lies between/2 and . If we took
the negative square root in E.22, corresponding tdv

andI'" being negative, there would be another solution for

E>0 given by
1 JES—|I'|S 2| _, [ES
D¥—-= + cosh = (E>0).
z J2E (2E)3?2 T

(2.30

r_

Ill. CLASSIFICATION OF SOLUTIONS

Equation(2.29 implies that there is a 2-parameter family
of similarity solutions(as in the generak case. In this
section we will provide a complete description of these so-
lutions. We will start by considering the simplest one: the flat
Friedmann solution wittD=E=0. We will then consider
the one-parameter family of solutions witw0, D=0. Fi-
nally we will consider the full two-parameter family of so-
lutions with E#0, D#0. In each case, we will show the
form of the physically interesting quantiti& V and ut? as
functions ofz. In obtaining the full family of solutions, it is
crucial that we allowz to be either positive or negative. Our
analysis will also cover thépresumably unphysicalsolu-
tions with negative mass because they relate to some of the
solutions with pressure.

This solution is unphysical, since the mass is negative, but it

is of interest for comparison with the solutions with pressure.

Equationg2.16), (2.17), (2.19, (2.25 and(2.28 give the
velocity functions as

o SZEN2EF2ITS
———

(2.3)
and
V2E+2T/S
Vg= t#, (2.32

while Eqgs.(2.16 and(2.31) imply that the density is given
by

r

V2E+2T7S)’

where the upper and lower signs again correspordiSal z
being positive and negative, respectively. Note tWats
negative(corresponding to tachyonic modgl®r the solu-
tion given by Eq.(2.30 and u is also negative. In all cases
the metric can be written as

A pt?= (2.33

1
729V z2(Sz+

(S+9)2
1+2E

ds’=dt>*— dr2—r2s2dQ?, (2.39

A. E=D=0 solution
In this case Eqs(2.29), (2.31) and(2.33 give

S=(\22/3)"B=M"1, Vv=(z/6)3, p=(6mt?)"L.

(3.0

This corresponds to the standard dust Friedmann model with
zero curvature constant. The metric can be put in the usual

form by making the substitution=(9r/2)"3 which gives

ds?=dt?—t¥Jdr2+r2dQ?]. (3.2

Note that the curvature constant must be zero because other-
wise there would be an intrinsic scale, which would contra-
dict the similarity assumption.

B. D=0 solutions

Solutions withD=0 are asymptotically Friedmann as
|z| — and are specified entirely by the energy paramgter
These were originally studied by Carr and Hawk{dg and
Carr and Yahil[5]. The form ofS(z) in these solutions is
shown in Fig. 1a), the arrows always corresponding to the
direction of increasing time. The solutions with>0 corre-
spond to initially expanding big bang models: they start from
a big bang singularity$=0) att=0 (z=«) and then either

which is the standard Tolman-Bondi form with constant en-expand indefinitely $—«) ast—~ (z—0) for E=0 or

ergy functionE(r).

recollapse to a black hole singularit$€0) at
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sinceR=rS=0 there. The form ol/(z) in the z>0 solu-
tions is shown in Fig. ). In the E=0 case,V decreases
monotonically fromee to 0. In theE<O case, it reaches a
minimum before rising tor at zg. One can show that the
values ofz and V at the minimum both decrease Bsin-
creases; the minimum will exceedih which case the whole

<0, E>0
Universe is inside the black hglef E is less than some
E:g critical negative valu&, and it will be less than lin which
Ex<E<0 case there is a black hole event horizon and a cosmological
E<E« z particle horizon if E exceedsE, . The solutions withe<0
are the time-reverse of tte>0 ones and the sign &fis also
v reversed: ag increases from—c to O (i.e. asz decreases

from 0 to —«), the E=0 models collapse from an infinitely
dispersed stateS=) to a big crunch singularity §=0);

R o the E<0 models also collapse to a big crunch singularity but
x E>0 they emerge from a white hole and are never infinitely dis-
N persed.

N Both S and V have the same-dependence as in the

~ =0 Friedmann solution agg|— c°:

S~[9V1+2E/2]Y¥2|"28, V~[6(1+2E)] Y311
. (3.4

(b) v E<Ex
AN 14+ Ex<E<0

%, However, theE+ 0 solutions deviate from the=0 solution
. ‘ at small values oflz|]. The E<O0 solutions never reach

ﬂ + 1 =0 at all, while theE>0 ones have

6nut2

T<0, E>0

S~(2E)"47 1,

3.
V~—(1+2E)YE~1zIn[(2E)¥% 1+ 2E)1’2|z|]( 9

(% . . . . .
© as|z]—0. The first relation implies that the circumference

function R(r,t) =Sr is non-zero in limitr—0 unlessE=0

_

E<0

N

E=

— = -
-,

,

~

o -
~ - -

since

R(0t)=+2E t.

This means that the “coordinate” originr €0) is an ex-

(3.6

and does not arise if there is pressprehis has a natural
physical interpretation, since the forms®&ndV are similar
to those in the Kantowski-Sachs solutifit8], in which all

panding 2-sphereg(This feature is specific to the dust case

the matter is localized on a shédf. Egs.(3.19 and(3.23 in
Ref. [12]], although there is noexact self-similar

FIG. 1. This shows the form dB) the scale factoB(z), (b) the  Kantowski-Sachs solution in the dust case. To obtain a com-
velocity functionV(z) and (c) the density functionut®(z) for the  plete solution, one must therefore match the self-similar so-
asymptotically Friedmann dust models, the arrows indicating thution onto a(non-self-similay part insideR(t,0). In the E
direction of increasing time. The solutions are described by a single- case, we have seen that the physical origin is the black
parameterE, whereE=0 in the exact Friedmann case: the-0 hole singularityzs, so only for E=0 can one identifyz
solutions are overdense and collapse to black hole& {00 (with =0 with the physical origin.
an event horizon foE>E, sinceV,,;,<1) but they are underdense The form of the density functioptz can be derived from
and expand forever fdE>0. Thez< 0 solutions are just the time ﬁq (2.33 and is shown in Fig. (t). For a given fluid ele-

reverse of these. The dotted curve corresponds to a solution wit ti.e fixedr). thi ifies the d it functi f
negative mass; it is probably unphysical but relates to thénen (i.e. fixedr), this specifies the density as a function o

Kantowski-Sachs solution which arises when there is pressure. M€ wu(t). For a given time, it also specifies the density
profile «(r) and this illustrates that a non-zero value Bf

necessarily introduces an inhomogeneity into the model. So-

_ 32
Zszﬂ (3.3 lutions withE>O0 are everywhere underdense relative to the
271+ 2E Friedmann model, with Eqg2.33 and (3.5 implying that

ut? goes to 0 as (lg) "t asz—0. (This suggests that the
for E<O0. Note thatzg corresponds to the physical origin interior non-self-similar region should be a vacuur8olu-
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tions withE<O0 are everywhere overdense relative to Fried-
mann, with u diverging at the singularity. Note that Egs.
(2.33 and (3.4) imply that ut? is independent of to 1st
order aslz|— .

The form of the mass functioM(z) in the D=0 solu-
tions is not shown explicitly but can be immediately deduced
from the expression fag since Eq.(2.22 givesM =T'/S. In
the E=0 case, there is always a single point whévie
=1/2 and this corresponds to the cosmological apparent ho
rizon. In theE<O case, Eq(2.29 implies thatShas a maxi-
mum of I'/|E| and so Eq(2.22 shows thatM has a mini- v
mum of | E|. Since this is less than 1/2, there are always two o) } o
points whereM =1/2, one corresponding to the black hole ‘\ \
apparent horizon and the other to the cosmological apparen 1T A \ —
horizon. Note that a black hole’s apparent horizon always !
lies within or coincides with its event horizdd 4], which is
why the first can exist without the second. Equati¢222)
and(3.3) imply that the mass associated with this singularity LA
is \

ms=(MS2¢t=(—2E)%%/(27). (3.7

It therefore starts off zero when the singularity first forms at //:// !
t=0 but then grows as The mass of the black hole is given =2 D<0
by a similar formula but wittz having the value appropriate =
for the event horizon or apparent horizon. Since the former
may not exist, it is more appropriate to use the latter.

Finally, we consider theE>0 negative-mass solutions
given by EQ.(2.30. Their form is indicated by the dotted
curves in Fig. 1.5 V and x have the same form as in the
positive mass solutions for small values|ef except that V
and u reverse their signs. However, the solutions are very
different at large values df| since Eq.(2.30 shows thatS
must always exceefd’|/E. Indeed it tends to this value as-
ymptotically, so we have

S~VJ1+2E/E, V~-Z/E, ur’~—E3\1+2E

(3.9

as|z|—c. The form of this solution is closely related to that  F|G. 2. This shows the form ah) the scale factoB(z), (b) the

of the a<1 static solution[cf. Eq. (3.29 of Ref. [12]],  velocity functionV(z) and(c) the density functionut?(z) for dust

although there is no static solution in the=0 case itself. models withE=0. Two different values ob are shown ina) and

(b) but only one in(c). These solutions necessarily span both posi-

tive and negative values af For D>0 they represent monotoni-

cally expanding(solid) or collapsing (broken solutions and the
We now putE=0 and consider the effect of introducing a latter contain a naked singularity/,;,<1) if D exceeds some

non-zero value for the constabt [In this case, Eq(2.28  valueD, (as assumed hereThe D<0 models(dotted undergo

does not permif’<0, so there are no negative-mass solu-shell-crossing before encountering the singularity and are probably

tions] Some of these solutions were also considered brieflynphysical sinc&/ and » go negative.

by Ori and Pirar(6]. The form ofS(z) for the D>0 solu- _ . .

tions is shown in Fig. @). There are two types of solutions AS't further increases fro_m 0 te (i.e. aszjumps to+x

in this case, one expanding and the other collapsing. For thénd then decreases tp Gincreases monotonically to. For

expanding solutiongsolid liney, S=0 atz=—1/D and so the contracting solution@roken line$, S starts infinite at

C. E=0 solutions

the big bang occurs befote=0 (i.e. it is “advanced’). Ast =~ (z=0) and then decreases $(D) ast increases to
increases to @i.e. asz decreases to-«), Stends to the O (z——=). Ast further increasesi.e. asz jumps to +
finite value and then decreasg$ continues to decrease until it reaches 0
at the big crunch singularity a=1/D. Both types of solu-
S.(D)=(3D/2)%3, (3.9  tions are characterized by the fact that they have just one
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singularity and span both positive and negative values of
Note that for each value &., the two asymptotic solutions

PHYSICAL REVIEW D 62 044022

just correspond to the plus and minus signs in 8.
The form ofV(z) in the D>0 solutions is shown in Fig.
2(b). For the expanding solutior{solid lines, it starts off at

—o at the big bang = —1/D), reaches a negative maxi-

mum and then, from E¢2.31), tends to

V=S,(D)z=(3D/+2)¥3%, (3.10

asz— —». Whenz jumps +«, V becomes positive but Eqg.

(3.10 still applies. Asz decreases from+o to 0, V de-
creases monotonically to 0. For the contracting modeis-
ken lineg, V starts from 0 az=0 and monotonically de-
creases ag goes to—x, being again given by Eq3.10
asymptotically. Wherz jumps to+<, V jumps to+e and

then decreases to a minimum before rising to infinity at the N

big crunch singularity. A simple calculatidsee later shows

that the values ofz| and|V| at the stationary point are given

by

2+43

26+ 15(3
3D

) |V|min: 3D

|Z|min:

1/3
)

so the stationary point moves towards the origin and the
value of|V| i, decreases &3 increases. Note that the maxi-

mum value ofV for the expanding solutions will exceed

—1 and the minimum value for the contracting ones will be

less than+1 if D exceeds some critical value_ =26/3
+5\3~17. ForD>D, , the condition|V|=1 will be sat-
isfied atthree values ofz. As illustrated by Fig. 14 of Ref.

[6], this means that the contracting solutions will form a
black hole in which the central singularity is naked for a

while. This applies for both the solutions shown in Figo)2

The crucial feature of these solutions is that, while the

form of V(2) is like that in theD=0 case for smallz|, V
scales ag rather tharz*®[cf. Eq.(3.4)] for large|z|. This is
because any solution with finit& at infinity must be
“nearly” static in the sense thalS/dz tends to zero. How-
ever, the solutions are not asymptotic toexactstatic solu-
tion (indeed this does not exist in the=0 case because Eq.
(2.32 implies thatVy tends to a non-zero value:

(3.12

4 1/3
ﬁ)

V‘;’:t(

(b)

I'<0 E>0

z

FIG. 3. This shows the form dB) the scale facto8(z), (b) the
velocity functionV(z) and (c) the density functionut?(z) for the
asymptotically quasi-static dust solutions. These are described by
two parameters andE) but we assume thd is fixed and not all
the solutions ina) and(b) are shown inc). For E>0 the solutions
resemble those in Fig. 2, with both monotonically expandsadid)
and collapsingbroken solutions. The collapse singularity is naked

We therefore term these solutions asymptotically “quasi-(v,..<1) if E is less than a valuE_ (D). ForE<O there are also

static.” If V is positive, the fluid is collapsing at infinity; if
Vg is negative, it is expanding. Note that Hg.28 implies
that bothdS'dz and zdSdz tend to zero at largéz| but
z2dSdz [which directly relates t&/ from Egs.(2.28 and
(2.32] tends to a non-zero value except in the limit- .

The form of the density functiomt? in the D>0 solu-
tions is also interesting and is illustrated in Figc)3 From
Eq. (2.33 the density parameter is given by

1
Q=6mut’=

~ (1¥3Dz)(1¥Dz) (313

solutions which recollapse to a black hd#®lid) or emerge from a
white hole(broken, as in the asymptotically Friedmann case.Rs
decreases, the last solution is the symmetrical one, for which
=Egymandzs=1/D, so that the solid and broken curves coincide.
The curves labelleE=0" andE=0" show the qualitative transi-
tion as E passes through 0. The dotted curves correspond to an
(unphysical negative mass solution.

where the upper and lower signs apply for positive and nega-
tive values ofd §/dz, respectively[The inverse of the factor
67t? corresponds to the density in a flat Friedmann dust
universe, as indicated by E¢3.1).] For a given fluid ele-
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ment, this describes how the density evolves as a function of D. D#0,E#0 solutions
time and it has the expected form. However, at a given time 114 forms ofS(2) for the (D>0,E+0) solutions are in-

it also prescribes the density profile and one sees immedjjicated in Fig. ). The figure assumes thax is fixed but
ately that a non-zero value &f (like a non-zero value o) 65 E to vary. The D>0,E>0) solutions are qualita-
introduces an inhomogeneity. This inhomogeneity has a parﬁvely similar to the D>0,E=0) ones in that they are

ticularly interesting form. In the<<0 regime, the profile for monotonically expanding or collapsing and span both posi-
the collapsing solutions is homogeneous|ijr<1/D buthas e and negativez, as illustrated by the upper solid and
p~r= = for |z|>1/D (i.e. it resembles an isothermal sphere pqren curves, respectively. They are also asymptotically
with a uniform core. In the z>0 regime, the collapsing g 5s; static, in the sense thatends to a finite value ag|
solutions again have.~r~2 for |z|>1/D but the density .o, even though/g is non-zero there from Ed2.32). The
diverges az=1/D (i.e. one has a density singularity at the form of the solutions near=0 is still given by Eqs(3.5) for
center of an isothermal spheré&or the expanding solutions, E>0, so the behavior is like that in th&€E0,D=0) case
the signs ofz are reverseq. These f_eatqres are illgstrated irhere. In particularz=0 no longer corresponds to the physi-
Fig. 2(c) and have an obvious physical interpretation. cal origin, so one again has to attach the solution to a non-
Although the asymptotically quasi-static solutions have 3self-similar central region.

natural cosmological interpretation whers allowed to span The (D>0E<0) solutions are qualitatively different
both positive and negative values, we see thatzth® and ’

tially isothermal distribution. It is interesting that the isother- Note that there is no exact static solution since that would be
mal model(whi_ch is us_ually associ_ated with a_static solujion incompatible with Eq(2.13), the term on the right-hand side
featur_es promlnently_m bOth. regimes, despite the fact thaBeing non-zero fore=0. Figure 3a) shows that there are
there is no exact static solution in the dust case. two types of O>0,E<0) solutions. One typéllustrated by

. - _ 71 - .
The mass function i#4=S "~ in this case and therefore o gyer solid curvesexpands from the big bang singularity
decreases or increases monotonically. There is just one vaILél

f{z=—1/D and th I to a black hole singularit
of zat whichM = 1/2 (corresponding to a black hole or cos- z and then recollapses fo a black hole singuiarty
mological apparent horizgrbut this may be in either the

positive or negative region. Equation(3.9) implies that the 21+ 2E -1
asymptotic value ofM as |z|—« is less than 1/2 foD Z5=|———=; ~ (3.15
>4/3. In this case, the collapsing solutions have their appar- (—2E)

ent horizon inz>0, whereas the expanding ones have it in

z<0. The mass of thépossibly nakeglsingularity in these This reduces to the value given by E@.3) if D=0. The

other type(illustrated by the lower broken curvesexpands

solutions is from a white hole singularity at-zg and then recollapses to
a big crunch singularity at=1/D.
me=(MS2gt=t/D (3.14 _ Equation(B_.lS) _implies thatzg=1/D, so that the solution
is symmetric inz, if D has the value
; ; ; ; mV1+2E
from Eq.(2.22. As in the asymptotically Friedmann case, it Deyn= (3.16

starts off zero at=0 but then grows as. In the limit D (—2E)%2

—o0, one gets a naked singularity of zero mass at the origin
(cf. the static solution in thee#0 casg. One can invert this condition to obtain the associated value

Finally, we consider theD<0 solutions. The form of Of Ein terms ofD:
S(z) in this case is shown by the dotted curves in Fi@g).2
Such solutions are confined fg < —1/D, with S either de- E. —_ —sin)-{lsinhl(g\/gD” (3.17

. i ) : sym= .

creasing monotonically for<0 (i.e. ast increases from Y J3D 3 8
— ) or increasing monotonically fa>0 (i.e. ast increases
to + ). However, these solutions break down wifis too  and this specifies a 1-parameter family of solutions with
small. This is because E(®.31) implies that]V| increasesto Vgr=0. If one considers the limit of the symmetric solution
some maximum value and then falls to zero |ai= asD—0, one findsEgy— —1/2 andzg—o. On the other
—1/(3D); this is indicated by the dotted curves in Figbp  hand, if one considers the limit d&3—c, one findsEgyn,
From Eq.(2.33 this means that the density diverges there, as—0 andzs— 0, so that both singularities go the origin. This
shown by the dotted curves in Fig(c2 This divergence is is the closest one can get to a static solution in the dust case.
associated with the formation of a shell-crossing singularityNote also thazs— 0 in the limitE— 0~ whatever the value
since the model resembles the Kantowski-Sachs solutioof D; the sudden transition as one goes fr&tw 0~ to E
[13] at this point. For—1/D>|z|>—1/(3D), the density =0" is illustrated in Fig. 8a).
and velocity functions become negative but this is presum- This value ofE given by Eq.(3.17) has a special physical
ably unphysical. significance in that it prescribes thminimumvalue of E
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E z=1/D. Also as in the P>0,E=0) case, this minimum will
fall below 1, corresponding to a naked singularity, providing
D exceeds some valug, (E). We derive an implicit expres-
sion for D, (E) later but, for the present, note that it in-
creases with increasirfgand reduces to the vallz, which
arose in Sec. llIC whefce=0. The condition for a naked
singularity can also be expressed as the requiremenEtbat
less than some critical value, (D).

For (D>0,E<0) the form ofV is similar to that in the
(D=0,E<0) case, except that the curves are no longer sym-
metric. Asz decreases from-1/D, V rises from—c until
some maximum for the first type of solution and then falls to
— o quasi-statically ag— — . It then jumps t@= +« and
falls to a minimum before rising tee at zg. As in the O
=0,E>0) case, there will be a black hole event horizon if
the minimum value oW is less than 1; this requires th&t
exceed some valug, (D), which must reduce to the value
E, given in Sec. IlIB whenD=0. We derive an implicit
expression foiE, (D) below. It should be stressed that the
valueE, (D) is associated with the minimum #| near the
singularity at|z| =zg and is different from the valug, (D)
associated with the minimum nelaf=1/D. The relationship

FIG. 4. This shows the permitted regime for the parameers Petween the valueg, (D) andE, (D) is discussed below.
and D. The curve labelledEs,, indicates the symmetric solution In order to understand the form of the curves in Figs) 3
and all physical solutions must lie above this. The upper broken lin@nd 3b) more precisely, it is useful to specify their
gives the transition between different asymptotic formsSprand ~ asymptotic behavior. Az|—, Egs.(2.29 and(2.31) with
V... The collapsing solutions have a naked singularity in the verti-E>0 imply that S(z) and V(z) have the following
cally shaded region below the line labelled and the black hole asymptotic forms:
solutions have an event horizon and a particle horizon in the hori-

-1/2

zontally shaded region above the line labelled. These lines \/— 2E |2

intersect on the lower boundary. S.~DV2E, V.= 1+2E Dz (3.19

allowed for givenD, as indicated by the lower boundary in for D>[(1+ 2E)/E®]*? and

Fig. 4. The proof of this is as follows. If one takes the limit

of Egs. (2.14 and (2.195 with a_=0 asz—x, using Egs. N ue 30125 v~ (3D)?3%z

(2.19 and(2.32 and the fact tha&— 0 from Eq.(2.28, one S~ 4 (D)™ Vau~ 21831+ 2E)13

obtains (3.20
22S=(1+2E)(Vp)2=(4mur?)2S3 + (87ur?), 2 -1 for D<[(1+2E)/E®]*2 The transition value foD between

(3.18 these two regimes is just an extrapolation of the expression

) ) for Dgymgiven by Eq.(3.16 into theE>0 regime; it scales

where one can regard uf )., and_ S. as independent 55E-Ifor E>1 andE 32 for E<1. Note that Eq(3.20

asymptotic parameters. If one now f|xq§r(2)w and assumes agrees with Egs(3.9) and (3.10 in the limit E=0. ForE

that it is positive, _then the_ rlght-hand_ side of £§.18 de- <0, Eq.(3.20 still applies ifD<Dy,, but one has

creases monotonically with decreasify. One therefore

gets areal solution forVg only if S, exceeds a certain value S.~V1+2E/|E|, V.~7/|E| (3.20)

and—by monotonicity—this must be the value associated

with the symmetric solution. Thus a real solutimith posi-  for D~Dg,, (i.e. S, tends to the value associated with the

tive density exists only forE>Eg, or, equivalently,D symmetric solutiop

<Dgym- This means thats is always positive and less than ~ These equations prescribe the asymptotic formsSpr

1/D and that the maximum o8 will always occur at the andV.,, in the different €,D) regimes of Fig. 4. For fixe®,

opposite sign of as the|z|=1/D singularity. These features Eqgs.(3.19 to (3.21) show thatS, always increases witk

are illustrated by the curves in Fig(e. but is roughly constant foE|<1. This feature is illustrated
The form ofV(z) in these solutions is shown in Fig(l3. in Fig. 3(@. The behavior oiV,, is more complicated. For

For (D>0,E>0) it is similar to that in the D>0E=0) D<1, it decreases with increasiigbut eventually flattens

case. Asz decreases from 0 te oo, V decreases monotoni- off; this is the case shown in Fig(l3. ForD>1, it is con-

cally from 0 to —« for the collapsing solutions; it then stant and then increases wikhbefore flattening off. Note

jumps toz= 4+ and, asz continues to decrease, it falls to a that all these solutions are quasi-static and not exactly static

minimum and rises to infinity at the big crunch singularity at asymptotically since Eq2.32 gives
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2|E|
1+2E

00

VR

00_
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~(3D) (14 26) 1"
(3.22

for D>[(1+2E)/E®]Y? and D<[(1+ 2E)/|E|®]*? respec-
tively. The sign is positive for collapsing solutions and nega

tive for expanding ones. Note that the first expression agree

with Eq. (3.12 in the limit E=0.

We now derive implicit expressions for the functions
E, (D) and E, (D), which are related to the existence of
event horizons or naked singularities. Differentiating Eq.
(2.31) shows that whemV/dz=0 one always has

V=1/(Sz) (3.23
and Eq.(2.31) then gives
VI —1/(VS) ==+ 2E+2T/S, (3.24

PHYSICAL REVIEW D 62 044022

Note that the constant part of this expression gives the same
limiting value of D as implied by Eq(3.11). The lower sign
in Eq. (3.28 givesI'<<1/S and requiresd§¥dz<0, which
does not lead to a consistent solution. Finally we note that
Egs.(3.295 and(2.29 lead to unique values d& andD for
which the symmetric solution hag,,;,=1; this necessarily
%orresponds to a point on the lower boundary in Fig. 4.
These limiting behaviors allow one to infer the rough
form of the functionsg, (D) and E, (D), as indicated in
Fig. 4. Here we have used the fact thid, /dD is positive
asE—0, as follows from Eq(3.29. The form of the func-
tions in theE<O regime can be inferred from the fact that
E, (D) must reach the valu&, mentioned in Sec. IlIB
whenD =0 (although this value has not been calculated ex-
plicitly). Also E, (D) and E, (D) must reach the line&e
=Egyn(D) at the same value oE and this must clearly
exceed— 3/8 from EQq.(3.25. We note that, for sufficiently
large values oD, there may béoth an event horizon and a
naked singularity.

where the positive and minus signs corresponds to the sign The form of «t? in these solutions is shown in Fig(c3,

of dS/dz. If one also require$V|=1 at the stationary point,
Eq. (3.29 gives two roots

S=2I'+AI'?~1, |z|=8T2-1F4I\4T?-1,
(3.25

where the plus and minus signs are distinct from the one
appearing in Eq(3.24). These roots can be real providing
I'>1/2, corresponding t&> — 3/8. However, one needs to

although this gives only some of the solutions shown in Figs.
3(a) and 3b). It can be understood as a composite of the
curves shown in Fig. (t) for E<0 and Fig. Zc) for E>O0.
From Egs(2.33 and(3.19 to (3.21), the asymptotic form of
the density profile density is given by

S
4 ’ v1+2E 2 (3.30
mur == , .
M D3(2E)3l2 9D2

check whether both of these solutions satisfy condition

(3.29.

Inserting the solution§3.25 into Eq.(2.29 gives an ex-
pression foD in terms ofE. This expression is complicated
in general but it simplifies in certain regimes. FBe1,
which impliesT'~2E>1, one obtains two possible solu-
tions:

S~4I', |z]~1/16I'?), D~32E (3.26
and
1(13
S~1/(4T"), |z|~16I2, D~E(3—2—|nﬁ)~o.oez—l.
(3.27

The first hasl'>1/S and therefore requiredSdz>0 from
Eqg. (3.24), which leads to a consistent solution. However,
the second ha¥k'<1/S and requiresdSdz<0, which does
not. In the limitE— 0, which impliesI’~1, one obtains

S~(2%\3)(1£2E/\3), |z|~(7+4\3)(174E/\/3).
(3.28

The upper sign give$'>1/S and therefore requiresSdz
>0, which leads to a consistent solutionEatends to O from
either above or below. Equatiq2.29 then gives

)+

26+ 1513
3

109+ 633
6

) ~17+ 36E.
(3.29

for D>[(1+2E)/E®]Y2 and D <[ (1+2E)/|E|®]¥? [cf. Eq.
(3.13.] TheE>0 solutions are everywhere underdense rela-
tive to the E=0 solutions, going to 0 as (i) ! at the
origin, whereas theE<0 solutions are everywhere over-
dense and have a second density singularity. There is a uni-
form core region only in th&&=0 case, although this also
applies forE<O if there is pressurgl?2].

The form of M(z)=T1"/S(z) can be deduced immediately
from Fig. 3a). In the E>0 case it rises or falls monotoni-
cally, as in theD=0 case, so there is just one valuezdbr
which M=1/2. As|z|—», M tends to a limiting value

V1+2E

S.(D.E) (3.3)

[

and the apparent horizon will be >0 or z<0 according
to whether this is greater or less than 1/2. In Bxe0 case,
M will have a minimum wheres has a maximum. This oc-
curs at

J1+2E -t

(—2E)32 N

7 (3.32

and, since the minimum value |g|, this is necessarily less
than 1/2. One therefore has at least two points whdre
=1/2, one of which is the apparent horizon for the black hole
associated with the singularity at. Therefore, as in the
D=0 case, there will always be a black hole apparent hori-
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zon but not necessarily an event horizon. This emphasizes an0 solutions. Any particular asymptotically Friedmann solu-
important difference between the collapse singularitieg at tion is confined to one sign afbut any asymptotically quasi-
=1/D andz=zg: only the latter is associated with an appar- static solution necessarily spans both signs.
ent horizon, which is why only the former can be naked. In an accompanying papgt2] it is shown that the spheri-
The D<O0 solutions have the same form as in the0  cally symmetric self-similar solutions with pressure share
case, except that tHe<0 ones have a second singularity at many of the qualitative features of the dust ones, especially
the valuezg given by Eq.(3.15 with D<<0. In this case, as in the supersonic regime. In particular, all of the properties
z goes from—1/D to zg, Sfirst increases to some maximum (1) to (4) above still pertain. However, it should be empha-
value and then decreases, whifemonotonically increases sized that new types of solution arise when there is pressure.
from —« to +». As in the E=0 case, such models are For example, there is an exact static solution and an exact
probably physically unrealistic since the density diverges dudéantowski-Sachs solution, as well as families of solutions
to shell crossing. They are therefore not shown explicitly.asymptotic to these. There are also asymptotically
The form of the(unphysical negative-mass solutions, which Minkowski solutions fora>1/5, some of which asymptote
only exist forE>0, is indicated by the dotted curve in Fig. to a finite value ofz. The inclusion of pressure obviously
3. This is similar to theE=0 case shown in Fig. 2 except introduces qualitatively new features in the subsonic regime,

that asymptotically Eq(3.19 applies rather than Eq3.8). in particular the possible presence of a sonic point.
In claiming that our classification is ‘“complete,” it
IV. CONCLUSION should be emphasized that our considerations have been con-

fined to similarity solutions of the simplest kirde. homo-
We may briefly summarize the results of our analysis aghetic solutions in which the similarity variable &=r/t).

follows. (1) There are two families of spherically symmetric However, it should be noted that this is not the only type of
self-similar dust models: asymptotica”y flat Friedmann SOIU'Sim"arity_ For examp|e' Carter and Hennkiérs] have gen-
tions and what we have termed asymptotically quasi-statigralized the concept to include what they term “kinematic”
solutions. These all represent inhomogeneous cosmologicakit-similarity. In this context the similarity variable is of the
models in which the energy functioB is constant. They form z=r/t? for a#1 and the solution may contain some
either expand from a big bang or collapse to a big crunch bugimensional constant. Ponce de Lefd®] has also intro-
the singularity is only at=0 for the asymptotically Fried- qyced the closely related notion of “partial homothety.” It is
mann family. (2) Some of the asymptotically Friedmann not yet clear how easily the analysis of this paper can be
models represent overdensities in a Friedmann backgrounsktended to these cases. Finally it should also be emphasized
which recollapse to a second Singularity and contain a blach']at we have On|y been Studying Solutions Wh|Ch are homo_
hole which grows as fast as the Universe. The black holgnhetic everywhereThe sort of models considered by Tomita
always has an apparent horizon but not necessarily an evepto] in which one patches a self-similar transition region

horizon. Other asymptotically Friedmann models represenetween other non-self-similar regions, is clearly not covered
underdensities in a Friedmann background which grow agere.

fast as the Universe(3) The asymptotically quasi-static
models can be interpreted as representing inhomogenenous
cosmological solutiongwith one or two singularitiesif one
allows both signs of, with a uniform density core in one
regime and a central black hole or naked singularity in the The author thanks Alan Coley for useful discussions and
other. If one confines attention to solutions with just one signs grateful to the Yukawa Institute for Theoretical Physics at
of z, these represent self-similar collapse from an initiallyKyoto University and the Department of Mathematics and
isothermal distibution or the time reverse of thid) We  Statistics at Dalhousie University for hospitality received
have emphasized the relationship betweenzh® andz  during this work.
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