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We study plane-fronted electrovacuum waves in metric-affine gravity theories with a cosmological constant.
Their field strengths are, on the gravitational side, curvaRy? nonmetricityQ,, torsionT* and, on the
matter side, the electromagnetic field strengthOur starting point is the work by Ozs¥m Robinson, and
Rozga on typeN gravitational fields in general relativity as coupled to null electromagnetic fields.

PACS numbgs): 04.50:+h, 03.50.Kk, 04.20.Jb

[. INTRODUCTION vanishing nonmetricityQ,,;=0. It is therefore important to
derive and investigate exact solutions of these theories which

Even though Einstein’s general relativity appears almostontain information about the new geometric objects such as
fully corroborated experimentally, there are several reasontrsion and nonmetricityfor a survey of these theories see
to believe that the validity of such a description is limited to [5]).
macroscopic structures and to the present cosmological era. For restricted irreducible pieces of torsion and nonmetric-
The only available finite perturbative treatment of quantumity, there are similarities between the Einstein-Maxwell sys-
gravity, namely the theory of the quantum superstfiiyy ~ tem and the vacuum MAG field equatiof&7]. This obser-
suggests thahon-Riemanniarfeatures are present on the vation encourages us to find new solutions for MAG theories
scale of the Planck length. On the other hand, recent ad8]. However, the coupling of the post-Riemannian structures
vances in the study of the early universe, as represented I8f a metric-affine spacetime to matter is still under investi-
the inflationary model, involve, in addition to the metric ten- gation.
sor, at the very least scalar dilaton[2] induced by a Weyl The search for plane-fronted wave solutions in MAG was
geometry, i.e. again an essential departure from Riemanniditst restricted to its Einstein-Cartan sec{®&-12. Later,
metricity [3]. Even at the classical cosmological level, a dila-plane wave solutions with non-vanishing nonmetricity were
tonic field has recently been used to describe the presence tfund by Tucker and Wanfl3]. Colliding waves with the
dark matter in the universe as well as to explain certain cosappropriate metric and an excited post-Riemannian triplet are
mological observations which contradict the fundaments oftudied in[14], the corresponding generalization to the elec-
the standard cosmological modél]. trovac case can be found 5]

There is good experimental evidence that, at the present In this paper we study plane-fronted gravitational and
state of the universe, the geometrical structure of spacetimglectromagnetic waves in metric-affine gravity theories with
corresponds to a metric-compatible geometry in which nonhonzero cosmological constant in théiiplet ansatzsector.
metricity, but not necessarily the torsion, vanishes. Consefhe plane-fronted electrovacuum-MAG waves comprise cur-
quently, the full metric-affine geometyIAG) is irrelevant  vature, nonmetricity, torsion, and an electromagnetic field.
for the geometrical description of the universe today. How- The plan of the paper is as follows: In Sec. Il, we review
ever, during the early universe, when the energies of th&he plane-fronted gravitational and electromagnetic waves in
cosmic matter were much higher than today, we expect scaleinstein-Maxwell theory. In Sec. Ill, we present the plane-
invariance to prevail and, according to MAG, the canonicalfronted gravitational and electromagnetic waves in MAG. In
dilation (or scalé current of matter; i.e., the trace of the Sec. IV, we specialize to particular wave solutions. In Sec.
hypermomentum current?”,, becomes coupled to the Wey! V, we discuss the results, and in Sec. VI we give an outlook
covector Q:=39“#Q,z. Here Q,z:=—Dg,z is the non-  for the theory.
metricity of spacetime. Moreover, shear type excitations of

the material multispinordRegge trajectory type of con- II. PLANE-FRONTED GRAVITATIONAL
structg are expected to arise, thereby liberating thmeetric- AND ELECTROMAGNETIC WAVES
compatiblg¢ Riemann-Cartan spacetime from its constraint of IN EINSTEIN-MAXWELL THEORY

In this section we summarize the main results of Ref.
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with the coframe 1 - Mo

Enaﬁy/\Rﬁy_l—)\cosmna:KEa '

R .1 . . 2

90==d¢, 191=Bd§, 9%=—do, 03:<%) (sdo+dp),
(2.2

Tl

d*F=0, (2.10

where the structural functions, g, ands are given as fol- Max
lows: whereX ;% represents the energy-momentum 3-form of the

Maxwell field given by

)\cosm o

P(LO=1+—5 4L, (2.3 zan:Z%[(eaJF)/\*F—(eaJ*F)/\F]. (2.11

Writing the electromagnetic field as

T )\cosm _ -
q(a,g,§>=(1— T@ a(o)+{B(o)+{B(0),
1 . _
(2.4 F=5Fapdx*AdX°=f({,0) d¢Ado+T(¢,0) dEAdo,
(2.12

with f(Z,0) an arbitrary function of its arguments, one finds,
for the energy-momentum 3-form of the electromagnetic

p — . S
+p a,(Injg))+ EH(U,g,g). (2.5 field as a nonvanishing component,

PN )\cosm
S(p.0 0=~ ~g " p?a*(0) ~ p*B(0) B(0)

S¥= 2 p2fF9ON BN 92, (2.13
Here a, B, andH are arbitrary functions. _ _ _ _
Let ~Raﬁ denote the Riemannian part of the curvaturell agreement with the result fdr,, mentioned in Ref[16],

2-form. Then we can subtract out the irreducible scalar curEd: (3.7
vature piece The surfaces of constant are the wave fronts of the

electromagnetic waves. The above conditié28),(2.9) re-
1 strict the functiona(o) to the real domain wheregd(o)
(6)~Raﬁ’=_ —(evjeﬂjﬁ”“) ¥,/ \ g (2.6) can be complex valued.
12 The functionH, for a combined gravitational and electro-
magnetic wave, has to satisfy the equation
(see[17]) and can define the 2-form
A _
Sup=Raup— ORyp= DRyt DR, 5= Copt @R, Hat 5= (219
(2.7)
In order to solve this non-homogeneous equation, one ob-
Heree, denotes thdvecto) frame dual to the coframé“.  serves that a complex combination of an arbitrary holomor-
If the Einstein vacuum field equatioriith or without a  phic function ®=®({,0) of the form @~ (Ncosnd
coimologmal constantare satisfied—in this specific case 3)(ZIp)® is the general complex solution to the correspond-
*R,z=0—thenS,; becomes the Weyl conformal curva- ing homogeneous equatié®.14). Thus, the reaH, solution
ture 2-formC,z:= MR, 5. Moreover, we will introduce the to the homogeneous equation is given by
propagation 1-formk:=k, d* which inherits the properties -
of the geodesic, shear-free, expansion-free and twistless null Ncosm ¢ —  Neosm{ —
vector field k* representing the propagation vector of a Hh:q),g_TBq’Jr S (215
plane-fronted wave.
The gravitational and null electromagnetic fields are sub- This structure sheds light on how to find the general so-
ject to the radiation conditions lution of the non-homogeneous equation. Let us look for a
particular solutiorH, of the form

S/

vg Tp

S.s/\k=0, (e“]k)S,z=0, (2.9 _
)\cosm g - )\COSYT‘I g_
and Hp=M,§—TEM+M,g—TBM, (2.1
FAk=0, (e*lk)e,]F=0. (2.9 where u= ,u(a,gf), such that the function
In the following we will solve the Einstein-Maxwell equa Hoayi= i (;)smB 2.17)

tions (for the notion compargs])
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satisfies the equation

_ )\cosmH(l)_ Kp —
Then it follows thatu itself is subject to
A cosm z Kp —
——\ =7 =—ff, 2.1
(,Uv,p,gg 3 pM,g . q (2.19
with the general solution
T (edd (e —
szf{dgpz‘f izfg de 2f. (220
p q

For any given functiorf one integrates fop and, by using
Eqg. (2.16, one obtainsH,. The generaH is constructed
simply by adding the homogeneous solutigp to H:

H=Hy+H,. (2.20)

The general solutiond is characterized by the self-dual

part of the conformal Weyl 2-form

+Ca3=:%(caﬁ+i *Cup) (2.22
the trace-free Ricci 1-form
~ ~ 1.
R =€gR, P~ ZRﬁa, (2.23
the Ricci scalar
Ri=e,legR, (2.24

and the electromagnetic 2-forfA. The ansatz2.1)—(2.5
yields

1-i Neosm ¢ L

"Ch=— "Cor=—4 pq(Hﬂ—I— —°3°S““BH,§) 9N 92,
(2.25

1+i e R,

*Csi=— TCis = pq(H,ng zsmBHz)ﬁl/\ﬂz,
(2.26

S _ Acosm 2 2% Q2

Rs=pq| H ; _3p2 H|d°=2k p“ff 97, (2.27)
R=4\ cosms (2.29

F=dA= —d[( Jgf(g’,a)dgw Jgf_(?,o-)d?)ﬁé}
(2229
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N _
pq(H'“Jr%“éH,g , (2.30

P
=9 2(9(—H
g[q ‘g

but the form given above is more practical if a certain func-
tion H is explicitly given and calculations need to be done.

It is worthwhile to mention the existence of a conformally
flat solution given by

1 - _
HIB(U+U§+U§+W§§), (2.3

whereu, v, w are arbitrary andi, w real functions ofo. The
subbranch of the studied metric with constant curvature
arises form the above expression by setting=
_()\cosn{G)u-

If the electromagnetic field is switched off, one arrives at
the non-twisting typeN solutions of Gar@ and Plebaski
[18].

Ill. PLANE-FRONTED GRAVITATIONAL AND
ELECTROMAGNETIC WAVES IN MAG

In this section we generalize the typegravitational and
electromagnetic waves to the metric-affine gravity theories.
We will present exact solutions of the field equations belong-
ing to the Lagrangian

L=Vmact Vmax: 3.1
whereVy= — (1/2)F/A*F is the Lagrangian of the Max-
well field andF=dA is the electromagnetic field strength.
The MAG Lagrangian considered here reéasnore general
MAG Lagrangian can be found if8])

—Qap R/ Nap™— 2N cosm?

VMAG:Z
3
+TaN* ( > a (')Ta>
=1

4
+2| > ¢ ('>Qaﬁ)/\aa/\* TA
1=2

4
+Qup/\* ( 2, b “’Q“ﬁ>

+bs(PQa, N\ 9N N* (DQPYNG )

1
~3, RYA*(24MZ,p), (3.2

where

ag, .. .,a3,bq1, ...,b5,65,C3,C4,24 3.3

The Weyl 2-form could be written still a bit more compactly are dimensionless coupling constants, anid the weak and

according to

p the strong gravitational coupling constant. The cosmologi-
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cal constant is denoted by, The signature of spacetime d*do+m?*w=0, (3.13
is (—+++), the volume 4-formzn:=* 1, the 2-formz,,
=% (0, \Vp). dF=0, d*F=0. (3.19
The two MAG field equations for electromagnetic matter
are given by[5] These are partial differential equations in terms of the
coframe J¢, the triplet 1-formw, and the electromagnetic
DH,—E_, = E'L‘fax, (3.9 potential 1-formA; here the tilde denotes again the Riemann-
ian part of the curvature. The energy-momentum current of
DH® s—E®3=0, (3.5 the triplet fieldw reads
with M3 as defined in Eq(2.11). It can be alternatively 7,k3
written as E(aw):=${(eajdw)/\*dw_(eaj*dw)/\ do
SMX= e [Vyaxt (€4JF)/\H. (3.6) +m2[(e o)\ * o+ (e o)\ w]}; (3.19

For the torsion and nonmetricity field configurations, wethe effective “mass”’m depends, additionally, or and the
concentrate on the simplest non-trivial casiéh shear. Ac-  strong gravitational coupling constant/p see[7].
cording to its irreducible decompositi¢8], the nonmetricity Therefore, as mentioned above, in the framework of the
contains two covector pieces, namely the dilation piece  triplet ansatz, the electrovacuum sector of MAG reduces to
@) B an effective Einstein-Proca-Maxwell system. Moreover, by
Qup=Q Gup 3.7 settingm=0, the system acquires the following constraint
among the coupling constarkg, kq, k, of the triplet ansatz

and the proper shear piece (3.11) and the constants of the Lagrangi@n2):

(3)Q :i 19 e JA_Eg A 3 kl k2
apT g\ V(a=h) 4B | —4b,+ zap+ =—(bs—ag)+ —(c,+ay)=0.
2 2k, Ko

(3.16

The coframe we will consider is of the forf2.2); i.e., it is

the same as in the general relativistic case. Note that we
changed the name of the functibhin s[cf. Eq(2.5] into H

in order to distinguish the general relativistic from the MAG

with A:= ﬁ“eﬁjgaﬁ . (3.8
Accordingly, our ansatz for the nonmetricity reads

Qup= (S)Qaﬁ"” (A)Qaﬁ . (3.9

The torsion, in addition to its tensor piece, encompasses %S¢

covector and an axial covector piece. Let us choose only the NOW 7, representing a combined gravitational MAG
covector piece as hon-vanishing: plane wave and an electromagnetic wave, has to satisfy the

equation

1
a_ 2)Te__ qa i .= a [ —

T Te=39 AT, with T:=e, T (3.10 H’ﬁ@ 2H:¥[ff+gg], @17
Thus we are left with the three non-trivial 1-forr@s A, and ) )
T. We shall assume that this triplet of 1-forms shares spaceVheref="1({,0) andg=g(¢,0) are arbitrary functions of
time symmetries; that is, its members are proportional td"€ir arguments. _ _ L
each othef19—24. Our ansatz for the nonmetricity is ex- _1he general solution of this equation is given B,
pected to require a nonvanishing post-Riemannian term quat p With
dratic in the segmental curvature. This is the term in Eq. _
(3.2 carrying the coupling constar, (note that the enu- _ Acosm & — )\cosmga (3.18
meration of the constants stems from the general Lagragian '
mentioned in 8]).

We assume the following so-call¢dplet ansatzfor our ~ and
three 1-forms in Eqs3.9) and (3.10:

Q=kow, A=kyo, T=koo, (3.1 Hp=M = =5 “M+Mz=—=-M. (3.19
whereky, k;, andk, are constants. The triplet ans&a&11)
reduces theelectrovacuumMAG field equations(3.4),(3.5)
to an effective Einstein-Proca-Maxwell system:

Here M = M(o,g,f) is a solution of the non-homogeneous
equation forH, which is given by

Qo

- =, (e P~ —
?naﬁy/\R'By-I—)\cosmna:K[ng)-l—zlxlax], (3.12 M=Kf dépzf FJ d¢ a[ff+gg]- (3.20
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For given functions andg, one integrates Eq3.20 for M

and obtainsH, from Eq.(3.19. The general solution is ob- 2kpf2 (§Z)1+n N -n-1
tained by adding the homogeneous solutidri8, whered® o= 0 5 ( °°sm)
is an arbitrary holomorphic function @fando. The 1-form q (1+n) 6

w entering the triplet ansai8.11) is given by

)\ -n—1
=) il p-1]

) XIn|q|—4
92, (3.2))

w= -

Jggw.a)dwfa?,o)d?

)\COSm) et
whereg=g({,o) represents an arbitrary function of the co- 47§1 ( 6 8Kf§(§§)”+l
ordinates. Moreover, the electromagnetic 2-form is given by + “ r (é/z)r (1+n)p
¢ — —\ 4.4
F=dA=—d U f(g',o)dg'+ff(g',a)dg')#} @4
(3.22 (i) n=—1:
in terms of the arbitrary functioi=f({,o). Inserting this 2kf3 Pheosrl{ — _
ansatz into the field equatiori8.12—(3.14) yields the fol- Hy= 4qlin|q|+ T'”((@H 5"12({5) :
lowing additional constraints among the constants of Eq. 4.5
(3.2: '
p (i) n>—1:
aozl, Ip=57 - (323)
2ko 8ngq Neosm| " ! - ()
Hp= 0 6 In| g |+ 21 ra
IV. PARTICULAR SOLUTIONS .
. . - 2Kf2(§§)n+1
For better understanding, let us look for certain families X([p-2)"—(-1)7| + 0 [4(n+1)+q].
of particular solutions of our dynamical system by integrat- p(n+1)?

ing EqQ.(3.17) restricted too=1 andB=0. Now the coframe

e _ 4.6
in terms ofp(¢,¢),q(¢,¢) andH(o,¢,¢) reads 49
1 1 A Similarily one can proceed with solutions fgr
9= —d¢, 9t==d7, 92=—do, |
p p g({,0)=go ¢, 1=0,£1,+2,+3,.... 4.7
3_(49 2 17—(( - Ncosm 5 The form of the different branches @{, does not change,
lp 2q 7., 6 but the substitutiom—1 and fy—gq should be performed.
Therefore, one can obtain different branches of solutions by
<do+dpl. 4.1 combining thef brgnches with thg branches of,,. '
arep @ For these particular classes one can chobgeas dis-
o played in Eq.3.18. Giveng({,0) andf({,o) it is straight-
Herep andq take the explicit form forward to evaluate the 1-form of Eq. (3.21) and the elec-
N N tromagnetic 2-form of Eq(3.22.
(£, 0)=1+—20¢7, ) =1—- N7 (4.2 This solution was checked by means of the computer al-
P& 6 £, a6l 6 = gebra systenREDUCE [25] by applying itSEXCALC package

. . . . 26] for treating exterior differential formg27].
Equation(3.17) is a linear equation, therefore, one can Iook[ l g B27]

independently for solutions of the non-homogeneous equa-

tion for thef excitations(associated with the electromagnetic V. DISCUSSION

figld) anq for _theg excitations(associated' yvith the post- We investigated plane-fronted electrovacuum-MAG
Riemannian piecgsConsequently, the addition of these so-yayes with cosmological constant in the triplet ansatz sector
lutions, corresponding t6 and g, will be again a solution. ot the theory. These waves carry curvature, nonmetricity,
For simplicity, we shall restrict ourselves to the case whergqsion, and an electromagnetic field. Apart from the cosmo-

9(¢,0) andhf(l ,0) are polynomial functions of and¢{™*.  |ogical constant, the solutions contain four wave parameters,
Let us try the cases given by _the functions a(o), pB(o), B(o) and
f(¢,0)=fol", N=0,21,+2,+3,.... (4.3  d,In|q(o,¢,8)|. Our plane-fronted wave solutions are given

in terms of three arbitrary complex functions, i®(o,?)
Then one obtains the following branches of solutions forassociated with the Riemannian pag{o,{) related to the
Hy: non-Riemannian triplet, and(c,{) corresponding to the
(i) n<—1: Maxwell field. In this way, we generalize the plane-fronted
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TABLE |. Ozsvah-Robinson-Raga waves in MAG.

Ansatz for coframa‘}f’, ﬂi, ﬁé, 9°
Arbitrary functions in coframe

MAG LagrangianVyag and non-vanishing coupling constants

Triplet ansatz for nonmetricity and torsion
Energy-momentum current of the Maxwell field
Energy-momentum current of the triplet field
Field equations

Arbitrary function governing the vacuum solutid,
Arbitrary function in the electromagnetic 2 forf
Arbitrary function in the triplet 1 formw

Solution for the electromagnetic 2 fork

Solution for the triplet 1-formw

Solution for functionH(a,g,Z) entering coframe

Eq.(2.2
a(0), B(o)
E2),(3.3) with Eqgs.(3.16,(3.23
Q~T~A~w; (cf. Eq.(3.1)
E@.11) resp. Eq(2.13
E§.19
Eqg3.12-(3.19
®(0,0); cf. Eq.(3.19
f(0,¢); cf. Eq.(3.22
9(0,{); cf. Eq.(3.2D)
F~—d(Jf dZ+f do) 92
w~—(fgd{+gdy) 9
Egs.(3.18—(3.20

electrovacuum Ozsw#a-Robinson-Raga waves. In brief, the
solution reads as in Table I.
The final form of T* andQ, in terms ofg({’,0) reads

ka
3

14 o o .
f g(g',a>d§'+fg(g',o)dz'}ﬁ%az,
(5.1

To=—

4k, ¢ [ Y
Qup=— 5 uenl [ o mde+ ‘5T mdT |0

K ¢
+gaﬂ(31—ko)U g({",o)d’

+J§§(Z',a)d? 92, (5.2
The electromagnetic potential 1-form is given by
s — _\ .
A=— ff(g’,a)d§’+f§f(§’,o)d§’ 92, (5.3

It is straightforward to perform a detailed classificat{@8]

Gravitational wave$29] have traveled almost unimpeded
through the universe since they were generated at times as
early as 1024 sec after the big bang. This radiation carries
information that no electromagnetic radiation can give to us
because the electromagnetic radiation is scattered countless
times by the dense material surrounding the explosion, losing
in the process most of the detailed information it might carry
about the explosion. Beyond this, we can be virtually certain
that the gravitational wave spectrum has surprises for us,
clues to phenomena we never suspected. Therefore, it is not
surprising, that considerable effort is nowadays being de-
voted to the development of sufficiently sensitive gravita-
tional wave antennas. Moreover, observing them would pro-
vide important constraints on theories of inflation and high-
energy physics.

Even though Einstein’s treatment of spacetime as a Rie-
mannian manifold appears almost fully corroborated experi-
mentally, there are several reasons to believe that the validity
of such a description is limited to macroscopic structures and
to the present cosmological era. The only available finite
perturbative treatment of quantum gravity, namely the theory

of the plane-fronted waves in MAG by carrying through aof the quantum superstrind1], suggests that non-

similar analysis as the one done by Sippel and Goelir@r
We leave this, however, for future work.

VI. OUTLOOK

Riemannian features are present on the scale of the Planck
length. On the other hand, recent advances in the study of the
early universe, as represented by the inflationary model, in-
volve, in addition to the metric tensor, at the very least a
scalar dilator{2] induced by a Weyl geometry, i.e. again an

The theories of modern physics generally involve a mathessential departure from Riemannian metri¢i3}. Even at
ematical model, defined by a certain set of differential equathe classical cosmological level, a dilatonic field has recently
tions and supplemented by a set of rules for translating theeen used to describe the presence of dark matter in the
mathematical results into meaningful statements about theniverse, as well as to explain certain cosmological observa-
physical world. In the case of gravity theories, because theyions which contradicted the fundaments of the standard cos-
deal with the most universal of the physical interactions, onenological model4].
has an additional class of problems concerning the influence Inflation is an attractive scenario for the early universe
of the gravitational field on other fields and matter. These ardecause it makes the large scale homogeneity of the universe
often studied by working within a fixed gravitational field, easy to understand. It also provides a mechanism for produc-
usually an exact solutiof28]. In this context our plane- ing initial density perturbations large enough to evolve into
fronted wave solutions contribute to enhance our understandyalaxies as the universe expands. These perturbations are
ing of some of these questions in the framework of MAG accompanied by perturbation of the gravitational field that
theories, in particular the ones concerned with the gravitatravel through the universe, redshifting in the same way that
tional radiation. photons do. The perturbations arise by parametric amplifica-
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tion of quantum fluctuations in the gravitational wave field liberating the (metric-compatiblg Riemann-Cartan space-
that existed before the inflation began. The huge expansiotime from its constraint of vanishing nonmetrici€y, ;=0 .
associated with inflation puts energy into these fluctuationsTresguerre$30] has proposed a simple cosmological model
converting them into real gravitational waves with classicalof Friedmann type which carries a metric-affine geometry at
amplitudes. Even if inflation did not occur, the perturbationsthe beginning of the universe, the nonmetricity of which dies
that lead to galaxies must have arisen in some othe way, anglit exponentially in time. That is the kind of thing we ex-
it is possible that this alternative mechanism also producegect.
gravitational waves. In full, exact solutions of the type obtained may serve
It is worthwhile stressing5] the fact that we do not be- el| as starting point for the upcoming analysis of gravita-
lieve that at the present state of the universe the geometry gonal wave astronomy data. In this sense it might contribute
spacetime is described by a metric-affine one. We rathefp our understanding of light and gravitational wave propa-
think, and there is good experimental evidence, that thation in early stages of the universe. Moreover, plane wave
present-day geometry is metric compatible; i.e., its nonsojytions contribute to resolving some of the controversies

metricity vanishes. In .earlier epochs pf the. universe, howapout the existence of such gravitational radiation.
ever, when the energies of the cosmic “fluid” were much

higher than today, we expect scale invariance to prevail—

and the canonical dilation or scale cgrrent of matter, thr—; trace ACKNOWLEDGMENTS

of the hypermomentum curredt”,, is coupled, according

to MAG, to the Weyl covectoiQ?,. By the same token, We thank Friedrich W. Hehl for useful discussions and
shear type excitations of the material multispindRegge literature hints. This research was supported by CONACyYT
trajectory type of construcksare expected to arise, thereby grants 28339E and 32138E.

[1] E.S. Fradkin and A.A. Tseytlin, Phys. Left58B, 316(1985; [16] I. Ozsvah, I. Robinson, and K. Raga, J. Math. Phy6, 1755
C.G. Callan, D. Friedan, E.J. Martinec, and M.J. Perry, Nucl. (1985.
Phys.B262 593(1985; D. Gross, Phys. Rev. Let60, 1229  [17] J. Socorro, A. Ma@s, and F.W. Hehl, Comput. Phys. Com-

(1988; D. Gross and P.F. Mende, Nucl. PhyB303 407 mun. 115 264 (1998.
(1988; Phys. Lett. B197, 129(1987. [18] A. Garca and J. Plebaki, J. Math. Phys22, 2655(1981).

[2] A. Guth, Phys. Rev. 23, 347 (1981); Proc. Natl. Acad. Sci. [19] Yu.N. Obukhov, E.J. Vlachynsky, W. Esser, R. Tresguerres,
USA 90, 4871(1993; A. Linde, Phys. Lett108B, 389(1982); and F.W. Hehl, Phys. Lett. 220, 1 (1996.
Phys. Lett. B249, 18 (1990; D. La and P.J. Steinhardt, Phys. [20] R.D. Hecht, J.M. Nester, and V.V. Zhytnikov, Phys. Lett. A
Rev. Lett.62, 376(1989. 222, 37 (1996.

[3] Y. Ne'eman and F.W. Hehl, Class. Quantum Gra#, Suppl.  [21] R.A. Puntigam, C. Laamerzahl, and F.W. Hehl, Class. Quan-
A251 (1997). tum Grav.14, 1347(1997.

[4] H. Quevedo, M. Salgado, and D. Sudarsky, Astrorl88 14 [22] A. Maclas, E.W. Mielke, and J. Socorro, Class. Quantum
(1997). Grav. 15, 445(1998.

[5] F.W. Hehl, J.D. McCrea, E.W. Mielke, and Y. Ne’eman, Phys.[23] J. Socorro, C. Lmmerzahl, A. Maas, and E.W. Mielke,
Rep.258 1 (1995. Phys. Lett. A244, 317 (1998.

[6] R. Tucker and C. Wang, talk given at “Mathematical Aspects[24] A. Garca, F.W. Hehl, C. Lenmerzahl, A. Maas, and J. So-
of Theories of Gravitation,” Warsaw, Poland, 1996, Banach corro, Class. Quantum Gra%5, 1793(1998.
Centre Publications Vol. 41, Institute of Mathematics, Polish[25] A.C. Hearn REDUCE User’s Manual. Version 3.&and pub-

Academy of Sciences, Warsaw 199@r-qc/9608055. lication CP78(Rev. 7/95 (RAND, Santa Monica, 1995
[7] Yu.N. Obukhov, E.J. Vlachynsky, W. Esser, and F.W. Hehl,[26] E. Schrider, F.W. Hehl, and J.D. McCrea, Gen. Relativ.
Phys. Rev. D66, 7769(1997. Gravit. 19, 197 (1987).
[8] F.W. Hehl and A. Maas, Int. J. Mod. Phys. [B, 399(1999. [27] D. Stauffer, F.W. Hehl, N. Ito, V. Winkelmann, and J.G. Zabo-
[9] W. Adamowicz, Gen. Relativ. Gravil.2, 677 (1986. litzky: Computer Simulation and Computer Algebra—Lectures
[10] R. Sippel and H. Goenner, Gen. Relativ. Gradi8, 1229 for Beginners 3rd ed.(Springer, Berlin, 1998
(1986. [28] D. Kramer, H. Stephani, M. MacCallum, and E. Hefixact
[11] R.D. Hecht, J. Lemke, R.P. Wallner, Phys. Lett.1A1, 12 Solutions of the Einstein Field EquatiofBeutsche Verlag der
(1990. Wissenschaften, Berlin, 1980
[12] J. Lemke, Phys. Lett. A43 13(1990. [29] B.F. Schutz, inEncyclopedia of Astronomy and Astrophysics
[13] R.W. Tucker and C. Wang, Class. Quantum Gra®, 2587 (IOP, Bristol, and Macmillan, London, in press
(1995. gr-qc/003069.
[14] A. Garce, C. Lanmerzahl, A. Maas, E.W. Mielke, and J. [30] R. TresguerresProceedings of the Relativity Meeting 1993,
Socorro, Phys. Rev. 57, 3457(1998. Relativity in GeneralSalas, Asturias, Spain, 1993, edited by J.
[15] A. GarCa, A. Macas, and J. Socorro, Class. Quantum Grav. Diaz Alonso and M. Lorente Pamo(Editions Frontiees, Gif-
16, 93 (1999. sur-Yvette, 199% pp. 407-413.

044021-7



