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Plane-fronted waves in metric-affine gravity
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We study plane-fronted electrovacuum waves in metric-affine gravity theories with a cosmological constant.
Their field strengths are, on the gravitational side, curvatureRa

b, nonmetricityQab , torsionTa and, on the
matter side, the electromagnetic field strengthF. Our starting point is the work by Ozsva´th, Robinson, and
Rózga on typeN gravitational fields in general relativity as coupled to null electromagnetic fields.

PACS number~s!: 04.50.1h, 03.50.Kk, 04.20.Jb
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I. INTRODUCTION

Even though Einstein’s general relativity appears alm
fully corroborated experimentally, there are several reas
to believe that the validity of such a description is limited
macroscopic structures and to the present cosmological
The only available finite perturbative treatment of quant
gravity, namely the theory of the quantum superstring@1#,
suggests thatnon-Riemannianfeatures are present on th
scale of the Planck length. On the other hand, recent
vances in the study of the early universe, as represente
the inflationary model, involve, in addition to the metric te
sor, at the very least ascalar dilaton@2# induced by a Weyl
geometry, i.e. again an essential departure from Rieman
metricity @3#. Even at the classical cosmological level, a di
tonic field has recently been used to describe the presen
dark matter in the universe as well as to explain certain c
mological observations which contradict the fundaments
the standard cosmological model@4#.

There is good experimental evidence that, at the pre
state of the universe, the geometrical structure of space
corresponds to a metric-compatible geometry in which n
metricity, but not necessarily the torsion, vanishes. Con
quently, the full metric-affine geometry~MAG! is irrelevant
for the geometrical description of the universe today. Ho
ever, during the early universe, when the energies of
cosmic matter were much higher than today, we expect s
invariance to prevail and, according to MAG, the canoni
dilation ~or scale! current of matter; i.e., the trace of th
hypermomentum currentDg

g becomes coupled to the Wey
covector Qª

1
4 gabQab . Here Qabª2Dgab is the non-

metricity of spacetime. Moreover, shear type excitations
the material multispinors~Regge trajectory type of con
structs! are expected to arise, thereby liberating the~metric-
compatible! Riemann-Cartan spacetime from its constraint

*Email address: aagarcia@fis.cinvestav.mx
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vanishing nonmetricityQab50. It is therefore important to
derive and investigate exact solutions of these theories w
contain information about the new geometric objects such
torsion and nonmetricity~for a survey of these theories se
@5#!.

For restricted irreducible pieces of torsion and nonmet
ity, there are similarities between the Einstein-Maxwell sy
tem and the vacuum MAG field equations@6,7#. This obser-
vation encourages us to find new solutions for MAG theor
@8#. However, the coupling of the post-Riemannian structu
of a metric-affine spacetime to matter is still under inves
gation.

The search for plane-fronted wave solutions in MAG w
first restricted to its Einstein-Cartan sector@9–12#. Later,
plane wave solutions with non-vanishing nonmetricity we
found by Tucker and Wang@13#. Colliding waves with the
appropriate metric and an excited post-Riemannian triplet
studied in@14#, the corresponding generalization to the ele
trovac case can be found in@15#.

In this paper we study plane-fronted gravitational a
electromagnetic waves in metric-affine gravity theories w
nonzero cosmological constant in theirtriplet ansatzsector.
The plane-fronted electrovacuum-MAG waves comprise c
vature, nonmetricity, torsion, and an electromagnetic field

The plan of the paper is as follows: In Sec. II, we revie
the plane-fronted gravitational and electromagnetic wave
Einstein-Maxwell theory. In Sec. III, we present the plan
fronted gravitational and electromagnetic waves in MAG.
Sec. IV, we specialize to particular wave solutions. In S
V, we discuss the results, and in Sec. VI we give an outlo
for the theory.

II. PLANE-FRONTED GRAVITATIONAL
AND ELECTROMAGNETIC WAVES
IN EINSTEIN-MAXWELL THEORY

In this section we summarize the main results of R
@16#: Using the null tetrad formalism, in a coordinate syste
(r,s,z,z̄) ~the overbar denotes complex conjugation!, the
metric reads

ds252~q 0̂
^ q 1̂1q 2̂

^ q 3̂!, ~2.1!
©2000 The American Physical Society21-1
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with the coframe

q 0̂5
1

p
dz, q 1̂5

1

p
dz̄, q 2̂52ds, q 3̂5S q

pD 2

~s ds1dr!,

~2.2!

where the structural functionsp, q, and s are given as fol-
lows:

p~z,z̄ !511
lcosm

6
zz̄, ~2.3!

q~s,z,z̄ !5S 12
lcosm

6
zz̄ Da~s!1zb̄~s!1 z̄b~s!,

~2.4!

s~r,s,z,z̄ !52
lcosm

6
r2a2~s!2r2b~s!b̄~s!

1r ]s~ lnuqu!1
p

2q
H~s,z,z̄ !. ~2.5!

Herea, b, andH are arbitrary functions.
Let R̃ab denote the Riemannian part of the curvatu

2-form. Then we can subtract out the irreducible scalar c
vature piece

(6)R̃abª2
1

12
~encemcR̃nm! qa`qb ~2.6!

~see@17#! and can define the 2-form

SabªR̃ab2 (6)R̃ab5 (1)R̃ab1 (4)R̃ab5Cab1 (4)R̃ab .
~2.7!

Hereea denotes the~vector! frame dual to the coframeqa.
If the Einstein vacuum field equations~with or without a
cosmological constant! are satisfied—in this specific cas
(4)R̃ab50—thenSab becomes the Weyl conformal curva
ture 2-formCabª

(1)R̃ab . Moreover, we will introduce the
propagation 1-formkªkm qm which inherits the properties
of the geodesic, shear-free, expansion-free and twistless
vector field km representing the propagation vector of
plane-fronted wave.

The gravitational and null electromagnetic fields are s
ject to the radiation conditions

Sab`k50, ~eack!Sab50, ~2.8!

and

F`k50, ~eack! eacF50. ~2.9!

In the following we will solve the Einstein-Maxwell equa
tions ~for the notion compare@8#!
04402
r-

ull

-

1

2
habg`R̃bg1lcosmha5kSa

Max ,

dF50,

d * F50, ~2.10!

whereSa
Max represents the energy-momentum 3-form of t

Maxwell field given by

Sa
Max

ª

1

2
@~eacF !` * F2~eac * F !` F#. ~2.11!

Writing the electromagnetic field as

F5
1

2
Fab dxa`dxb5 f ~z,s! dz`ds1 f̄ ~ z̄,s! dz̄`ds,

~2.12!

with f (z,s) an arbitrary function of its arguments, one find
for the energy-momentum 3-form of the electromagne
field as a nonvanishing component,

S 2̂
Max

522 p2f f̄ q 0̂`q 1̂`q 2̂, ~2.13!

in agreement with the result forTab mentioned in Ref.@16#,
Eq. ~3.7!.

The surfaces of constants are the wave fronts of the
electromagnetic waves. The above conditions~2.8!,~2.9! re-
strict the functiona(s) to the real domain whereasb(s)
can be complex valued.

The functionH, for a combined gravitational and electro
magnetic wave, has to satisfy the equation

H ,zz̄1
lcosm

3p2
H5

2kp

q
f f̄ . ~2.14!

In order to solve this non-homogeneous equation, one
serves that a complex combination of an arbitrary holom
phic function F5F(z,s) of the form F ,z2(lcosm/
3)(z̄/p)F is the general complex solution to the correspon
ing homogeneous equation~2.14!. Thus, the realHh solution
to the homogeneous equation is given by

Hh5F ,z2
lcosm

3

z̄

p
F1F̄ ,z̄2

lcosm

3

z

p
F̄. ~2.15!

This structure sheds light on how to find the general
lution of the non-homogeneous equation. Let us look fo
particular solutionHp of the form

Hp5m ,z2
lcosm

3

z̄

p
m1m̄ ,z̄2

lcosm

3

z

p
m̄, ~2.16!

wherem5m(s,z,z̄), such that the function

H (1)ªm ,z2
lcosm

3

z̄

p
m ~2.17!
1-2
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satisfies the equation

H (1),zz̄1
lcosm

3

H (1)

p2
5

kp

q
f f̄ . ~2.18!

Then it follows thatm itself is subject to

~m ,z̄ ! ,zz2
lcosm

3
S z̄

p
m ,z̄D

,z

5
kp

q
f f̄ , ~2.19!

with the general solution

m5kE z̄
dz̄p2E z dz8

p2 E z8
dz9

p

q
f f̄ . ~2.20!

For any given functionf one integrates form and, by using
Eq. ~2.16!, one obtainsHp . The generalH is constructed
simply by adding the homogeneous solutionHh to Hp:

H5Hh1Hp . ~2.21!

The general solutionH is characterized by the self-dua
part of the conformal Weyl 2-form

1Cabª
1

2
~Cab1 i * Cab!, ~2.22!

the trace-free Ricci 1-form

R̃↗aªebcR̃a
b2

1

4
R̃qa , ~2.23!

the Ricci scalar

R̃ªeacebcR̃ab, ~2.24!

and the electromagnetic 2-formF. The ansatz~2.1!–~2.5!
yields

1C2̂0̂52 1C0̂2̂ 5
12 i

4
p qS H ,zz1

lcosm

3

z̄

p
H ,zDq 0̂`q 2̂,

~2.25!

1C2̂1̂52 1C1̂2̂ 5
11 i

4
p qS H ,z̄ z̄1

lcosm

3

z

p
H ,z̄Dq 1̂`q 2̂,

~2.26!

R̃↗ 2̂5p qS H ,zz̄1
lcosm

3p2
H D q 2̂52k p2f f̄ q 2̂, ~2.27!

R̃54lcosm, ~2.28!

F5dA52dF S E z

f ~z8,s!dz81E z̄
f̄ ~ z̄8,s!dz̄8 Dq 2̂G .

~2.29!

The Weyl 2-form could be written still a bit more compact
according to
04402
p qS H ,zz1
lcosm

3

z̄

p
H ,zD 5]zFq2 ]zS p

q
H D G , ~2.30!

but the form given above is more practical if a certain fun
tion H is explicitly given and calculations need to be don

It is worthwhile to mention the existence of a conforma
flat solution given by

H5
1

p
~u1 v̄z1v z̄1wzz̄ !, ~2.31!

whereu, v, w are arbitrary andu, w real functions ofs. The
subbranch of the studied metric with constant curvat
arises form the above expression by settingw5
2(lcosm/6)u.

If the electromagnetic field is switched off, one arrives
the non-twisting typeN solutions of Garcı´a and Pleban´ski
@18#.

III. PLANE-FRONTED GRAVITATIONAL AND
ELECTROMAGNETIC WAVES IN MAG

In this section we generalize the typeN gravitational and
electromagnetic waves to the metric-affine gravity theori
We will present exact solutions of the field equations belo
ing to the Lagrangian

L5VMAG1VMax , ~3.1!

whereVMax52(1/2)F` * F is the Lagrangian of the Max
well field andF5dA is the electromagnetic field strength
The MAG Lagrangian considered here reads~a more general
MAG Lagrangian can be found in@8#!

VMAG5
1

2k F2a0 Rab`hab22lcosmh

1Ta` * S (
I 51

3

aI
(I )TaD

12S (
I 52

4

cI
(I )QabD `qa` * Tb

1Qab` * S (
I 51

4

bI
(I )QabD

1b5~ (3)Qag` qa!`* ~ (4)Qbg`qb!G
2

1

2r
Rab` * ~z4

(4)Zab!, ~3.2!

where

a0 , . . . ,a3 ,b1 , . . . ,b5 ,c2 ,c3 ,c4 ,z4 ~3.3!

are dimensionless coupling constants, andk is the weak and
r the strong gravitational coupling constant. The cosmolo
1-3
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cal constant is denoted bylcosm. The signature of spacetim
is (2111), the volume 4-formhª * 1, the 2-formhab
ª * (qa`qb).

The two MAG field equations for electromagnetic mat
are given by@5#

DHa2Ea5Sa
Max , ~3.4!

DHa
b2Ea

b50, ~3.5!

with Sa
Max as defined in Eq.~2.11!. It can be alternatively

written as

Sa
Max5eacVMax1~eacF !`H. ~3.6!

For the torsion and nonmetricity field configurations, w
concentrate on the simplest non-trivial casewith shear. Ac-
cording to its irreducible decomposition@5#, the nonmetricity
contains two covector pieces, namely the dilation piece

(4)Qab5Q gab ~3.7!

and the proper shear piece

(3)Qab5
4

9 S q (aeb)cL2
1

4
gabL D ,

with Lªqaebc Q↗ab . ~3.8!

Accordingly, our ansatz for the nonmetricity reads

Qab5 (3)Qab1 (4)Qab . ~3.9!

The torsion, in addition to its tensor piece, encompasse
covector and an axial covector piece. Let us choose only
covector piece as non-vanishing:

Ta5 (2)Ta5
1

3
qa`T, with TªeacTa. ~3.10!

Thus we are left with the three non-trivial 1-formsQ, L, and
T. We shall assume that this triplet of 1-forms shares spa
time symmetries; that is, its members are proportional
each other@19–24#. Our ansatz for the nonmetricity is ex
pected to require a nonvanishing post-Riemannian term q
dratic in the segmental curvature. This is the term in E
~3.2! carrying the coupling constantz4 ~note that the enu-
meration of the constants stems from the general Lagra
mentioned in@8#!.

We assume the following so-calledtriplet ansatzfor our
three 1-forms in Eqs.~3.9! and ~3.10!:

Q5k0v, L5k1v, T5k2v, ~3.11!

wherek0 , k1, andk2 are constants. The triplet ansatz~3.11!
reduces theelectrovacuumMAG field equations~3.4!,~3.5!
to an effective Einstein-Proca-Maxwell system:

a0

2
habg`R̃bg1lcosmha5k @Sa

(v)1Sa
Max#, ~3.12!
04402
r
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d * dv1m2 * v50, ~3.13!

dF50, d * F50. ~3.14!

These are partial differential equations in terms of t
coframeqa, the triplet 1-formv, and the electromagneti
potential 1-formA; here the tilde denotes again the Rieman
ian part of the curvature. The energy-momentum curren
the triplet fieldv reads

Sa
(v)

ª

z4k0
2

2r
$~eacdv!` * dv2~eac * dv!` dv

1m2 @~eacv!` * v1~eac * v!` v#%; ~3.15!

the effective ‘‘mass’’m depends, additionally, onk and the
strong gravitational coupling constantz4 /r see@7#.

Therefore, as mentioned above, in the framework of
triplet ansatz, the electrovacuum sector of MAG reduces
an effective Einstein-Proca-Maxwell system. Moreover,
setting m50, the system acquires the following constra
among the coupling constantsk0 , k1 , k2 of the triplet ansatz
~3.11! and the constants of the Lagrangian~3.2!:

24b41
3

2
a01

k1

2k0
~b52a0!1

k2

k0
~c41a0!50.

~3.16!

The coframe we will consider is of the form~2.2!; i.e., it is
the same as in the general relativistic case. Note that
changed the name of the functionH in s @cf. Eq.~2.5!# into H
in order to distinguish the general relativistic from the MA
case.

Now H, representing a combined gravitational MA
plane wave and an electromagnetic wave, has to satisfy
equation

H,zz̄1
lcosm

3
p22H5

2kp

q
@ f f̄ 1gḡ#, ~3.17!

where f 5 f (z,s) and g5g(z,s) are arbitrary functions of
their arguments.

The general solution of this equation is given byHh
1Hp with

Hh5F ,z2
lcosm

3

z̄

p
F1F̄ ,z̄2

lcosm

3

z

p
F̄ ~3.18!

and

Hp5M ,z2
lcosm

3

z̄

p
M1M̄ ,z̄2

lcosm

3

z

p
M̄ . ~3.19!

Here M5M (s,z,z̄) is a solution of the non-homogeneou
equation forH, which is given by

M5kE z̄
dz̄p2E zdz8

p2 E z8
dz9

p

q
@ f f̄ 1gḡ#. ~3.20!
1-4
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For given functionsf andg, one integrates Eq.~3.20! for M
and obtainsHp from Eq. ~3.19!. The general solution is ob
tained by adding the homogeneous solution~3.18!, whereF
is an arbitrary holomorphic function ofz ands. The 1-form
v entering the triplet ansatz~3.11! is given by

v52F E z

g~z8,s!dz81E z̄
ḡ~ z̄8,s!dz̄8Gq 2̂, ~3.21!

whereg5g(z,s) represents an arbitrary function of the c
ordinates. Moreover, the electromagnetic 2-form is given

F5dA52dF S E z

f ~z8,s!dz81E z̄
f̄ ~ z̄8,s!dz̄8 Dq 2̂G

~3.22!

in terms of the arbitrary functionf 5 f (z,s). Inserting this
ansatz into the field equations~3.12!–~3.14! yields the fol-
lowing additional constraints among the constants of
~3.2!:

a051, z45
r

2k0
. ~3.23!

IV. PARTICULAR SOLUTIONS

For better understanding, let us look for certain famil
of particular solutions of our dynamical system by integr
ing Eq.~3.17! restricted toa51 andb50. Now the coframe
in terms ofp(z,z̄),q(z,z̄) andH(s,z,z̄) reads

q 0̂5
1

p
dz, q 1̂5

1

p
dz̄, q 2̂52ds,

q 3̂5S q

pD 2F S p

2 q
H~s,z,z̄ !2

lcosm

6
r2D

3ds1drG . ~4.1!

Herep andq take the explicit form

p~z,z̄ !511
lcosm

6
zz̄ , q~z,z̄ !512

lcosm

6
zz̄. ~4.2!

Equation~3.17! is a linear equation, therefore, one can lo
independently for solutions of the non-homogeneous eq
tion for thef excitations~associated with the electromagne
field! and for theg excitations~associated with the post
Riemannian pieces!. Consequently, the addition of these s
lutions, corresponding tof and g, will be again a solution.
For simplicity, we shall restrict ourselves to the case wh
g(z,s) and f (z,s) are polynomial functions ofz and z21.
Let us try the cases

f ~z,s!5 f 0zn, n50,61,62,63, . . . . ~4.3!

Then one obtains the following branches of solutions
Hp :

~i! n,21:
04402
y

.

s
-

a-

e

r

Hp5
2kp f0

2

q
S ~zz̄ !11n

~11n!2
14S lcosm

6 D 2n21

3 lnu q u24S lcosm

6 D 2n21

lnu p21 u

14 (
r 51

2n21 S lcosm

6 D 2n2r 21

r ~zz̄ !r
D 1

8k f 0
2~zz̄ !n11

~11n! p
.

~4.4!

~ii ! n521:

Hp5
2k f 0

2

p
S 4 q lnu q u1

2lcosmzz̄

3
ln~zz̄ !1

q

2
ln2~zz̄ ! D .

~4.5!

~iii ! n.21:

Hp5
8k f 0

2q

p S lcosm

6 D 2n21S lnu q u1(
r 51

n
~ r

n!

r

3~@p22!r2~21!r # D 1
2k f 0

2~zz̄ !n11

p ~n11!2
@4~n11!1q#.

~4.6!

Similarily one can proceed with solutions forg:

g~z,s!5g0 z l , l 50,61,62,63, . . . . ~4.7!

The form of the different branches ofHp does not change
but the substitutionn→ l and f 0→g0 should be performed
Therefore, one can obtain different branches of solutions
combining thef branches with theg branches ofHp .

For these particular classes one can chooseHh as dis-
played in Eq.~3.18!. Giveng(z,s) and f (z,s) it is straight-
forward to evaluate the 1-formv of Eq. ~3.21! and the elec-
tromagnetic 2-form of Eq.~3.22!.

This solution was checked by means of the computer
gebra systemREDUCE @25# by applying itsEXCALC package
@26# for treating exterior differential forms@27#.

V. DISCUSSION

We investigated plane-fronted electrovacuum-MA
waves with cosmological constant in the triplet ansatz se
of the theory. These waves carry curvature, nonmetric
torsion, and an electromagnetic field. Apart from the cosm
logical constant, the solutions contain four wave paramet
given by the functions a(s), b(s), b̄(s) and
]s lnuq(s,z,z̄)u. Our plane-fronted wave solutions are give
in terms of three arbitrary complex functions, i.e.F(s,z)
associated with the Riemannian part,g(s,z) related to the
non-Riemannian triplet, andf (s,z) corresponding to the
Maxwell field. In this way, we generalize the plane-front
1-5
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TABLE I. Ozsváth-Robinson-Ro´zga waves in MAG.

Ansatz for coframeq 0̂,q 1̂,q 2̂,q 3̂ Eq. ~2.2!

Arbitrary functions in coframe a(s), b(s)
MAG LagrangianVMAG and non-vanishing coupling constants Eqs.~3.2!,~3.3! with Eqs.~3.16!,~3.23!
Triplet ansatz for nonmetricity and torsion Q;T;L;v; ~cf. Eq. ~3.11!
Energy-momentum current of the Maxwell field Eq.~2.11! resp. Eq.~2.13!
Energy-momentum current of the triplet field Eq.~3.15!
Field equations Eqs.~3.12!–~3.14!
Arbitrary function governing the vacuum solutionHh F(s,z); cf. Eq. ~3.18!
Arbitrary function in the electromagnetic 2 formF f (s,z); cf. Eq. ~3.22!
Arbitrary function in the triplet 1 formv g(s,z); cf. Eq. ~3.21!
Solution for the electromagnetic 2 formF F;2d(* f dz1 f̄ dz̄) q 2̂

Solution for the triplet 1-formv v;2(*g dz1ḡ dz̄) q 2̂

Solution for functionH(s,z,z̄) entering coframe Eqs.~3.18!–~3.20!
a

th
ua
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he
n
n
a
,

n
G
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d
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to
are

at
hat
ca-
electrovacuum Ozsva´th-Robinson-Ro´zga waves. In brief, the
solution reads as in Table I.

The final form ofTa andQab in terms ofg(z8,s) reads

Ta52
k2

3 F E z

g~z8,s!dz81E z̄
ḡ~ z̄8,s!dz̄8Gqa`q 2̂,

~5.1!

Qab52
4k1

9
q (aeb)cF E z

g~z8,s!dz81E z̄
ḡ~ z̄8,s!dz̄8Gq 2̂

1gabS k1

9
2k0D F E z

g~z8,s!dz8

1E z̄
ḡ~ z̄8,s!dz̄8Gq 2̂. ~5.2!

The electromagnetic potential 1-form is given by

A52S E z

f ~z8,s!dz81E z̄
f̄ ~ z̄8,s!dz̄8 Dq 2̂. ~5.3!

It is straightforward to perform a detailed classification@28#
of the plane-fronted waves in MAG by carrying through
similar analysis as the one done by Sippel and Goenner@10#.
We leave this, however, for future work.

VI. OUTLOOK

The theories of modern physics generally involve a ma
ematical model, defined by a certain set of differential eq
tions and supplemented by a set of rules for translating
mathematical results into meaningful statements about
physical world. In the case of gravity theories, because t
deal with the most universal of the physical interactions, o
has an additional class of problems concerning the influe
of the gravitational field on other fields and matter. These
often studied by working within a fixed gravitational field
usually an exact solution@28#. In this context our plane-
fronted wave solutions contribute to enhance our understa
ing of some of these questions in the framework of MA
theories, in particular the ones concerned with the grav
tional radiation.
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Gravitational waves@29# have traveled almost unimpede
through the universe since they were generated at time
early as 10224 sec after the big bang. This radiation carri
information that no electromagnetic radiation can give to
because the electromagnetic radiation is scattered coun
times by the dense material surrounding the explosion, los
in the process most of the detailed information it might ca
about the explosion. Beyond this, we can be virtually cert
that the gravitational wave spectrum has surprises for
clues to phenomena we never suspected. Therefore, it is
surprising, that considerable effort is nowadays being
voted to the development of sufficiently sensitive gravi
tional wave antennas. Moreover, observing them would p
vide important constraints on theories of inflation and hig
energy physics.

Even though Einstein’s treatment of spacetime as a R
mannian manifold appears almost fully corroborated exp
mentally, there are several reasons to believe that the val
of such a description is limited to macroscopic structures
to the present cosmological era. The only available fin
perturbative treatment of quantum gravity, namely the the
of the quantum superstring@1#, suggests that non
Riemannian features are present on the scale of the Pl
length. On the other hand, recent advances in the study o
early universe, as represented by the inflationary model,
volve, in addition to the metric tensor, at the very leas
scalar dilaton@2# induced by a Weyl geometry, i.e. again a
essential departure from Riemannian metricity@3#. Even at
the classical cosmological level, a dilatonic field has recen
been used to describe the presence of dark matter in
universe, as well as to explain certain cosmological obse
tions which contradicted the fundaments of the standard c
mological model@4#.

Inflation is an attractive scenario for the early univer
because it makes the large scale homogeneity of the univ
easy to understand. It also provides a mechanism for prod
ing initial density perturbations large enough to evolve in
galaxies as the universe expands. These perturbations
accompanied by perturbation of the gravitational field th
travel through the universe, redshifting in the same way t
photons do. The perturbations arise by parametric amplifi
1-6
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tion of quantum fluctuations in the gravitational wave fie
that existed before the inflation began. The huge expan
associated with inflation puts energy into these fluctuatio
converting them into real gravitational waves with classi
amplitudes. Even if inflation did not occur, the perturbatio
that lead to galaxies must have arisen in some othe way,
it is possible that this alternative mechanism also produ
gravitational waves.

It is worthwhile stressing@5# the fact that we do not be
lieve that at the present state of the universe the geomet
spacetime is described by a metric-affine one. We ra
think, and there is good experimental evidence, that
present-day geometry is metric compatible; i.e., its n
metricity vanishes. In earlier epochs of the universe, ho
ever, when the energies of the cosmic ‘‘fluid’’ were mu
higher than today, we expect scale invariance to preva
and the canonical dilation or scale current of matter, the tr
of the hypermomentum currentDg

g , is coupled, according
to MAG, to the Weyl covectorQg

g . By the same token
shear type excitations of the material multispinors~Regge
trajectory type of constructs! are expected to arise, thereb
c

s.
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liberating the ~metric-compatible! Riemann-Cartan space
time from its constraint of vanishing nonmetricityQab50 .
Tresguerres@30# has proposed a simple cosmological mod
of Friedmann type which carries a metric-affine geometry
the beginning of the universe, the nonmetricity of which d
out exponentially in time. That is the kind of thing we e
pect.

In full, exact solutions of the type obtained may ser
well as starting point for the upcoming analysis of gravi
tional wave astronomy data. In this sense it might contrib
to our understanding of light and gravitational wave prop
gation in early stages of the universe. Moreover, plane w
solutions contribute to resolving some of the controvers
about the existence of such gravitational radiation.
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