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Thick domain walls and singular spaces
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We discuss thick domain walls interpolating between spaces with naked singularities and give arguments
based on the AdS/CFT correspondence why such singularities may be physically meaningful. Our examples
include thick domain walls with Minkowski, de Sitter, and anti—de Sitter geometries on the four-dimensional
slice. In all of these cases we can solve the equivalent quantum mechanics problem exactly, which provides the
spectrum of graviton states on these spaces. In one of the examples we discuss, the continuum states have a
mass gap. We compare the graviton spectra with expectations from the AdS/CFT correspondence and find
qualitative agreement. We also discuss unitary boundary conditions and show that they project out all con-
tinuum states.

PACS numbd(s): 04.50+h

I. INTRODUCTION class of thick domain walls in gravity coupled to scalars that
interpolate between spaces with naked singularities instead
Domain walls have recently attracted renewed attentiorof regular AdS horizons. Normally such spaces would be
after it was pointed out in Ref.1] that four-dimensional discarded as unphysical, but in this context there are reasons
gravity can be realized on a thin wall connecting two slicesto believe that considering these spaces may be meaningful.
of AdS space. From the point of view of a four-dimensional  One reason for thinking so comes from the recent pro-
observer on the domain wall the spectrum of gravity consistposal[15] (see als¢16,17]) that five-dimensional bulk grav-
of a massless graviton and a tower of Kaluza-KIgiK) ity in the thin domain wall cas¢l] has an equivalent de-
modes with continuous masses. It was showfilinthat the  scription in terms of a cutoff four-dimensional conformal
KK modes give a subleading correction to the gravitationalffield theory (CFT) on the domain wall, very much in the
interaction between two test masses on the domain wall. Igpirit of the AdS/CFT corresponden¢#8]. The details of
the thin wall setup there is only gravity in the bulk, and thethis correspondence are rather unclear at present. For in-
only five-dimensional space that can appear is A€ the  stance, it is not clear how to identify the CFT in the non-
other hand, in supergravity or string theory one expects tgupersymmetric purely five-dimensional setud bf or how
have other bulk fields including scalars. to match operators and KK modes. It is also unclear how to
The original proposal of1] has been generalized in sev- impose a sharp cutoff on the CFT that preserves four-
eral directions. One generalization involves turning on a cosdimensional Poincarénvariance. However, leaving these
mological constant on the domain wg#,3], which results in  considerations aside, we can freely borrow results from the
time-dependent cosmological scenarios. Other extensions ilkdS/CFT literature on renormalization gro@RG) flows in
clude higher dimensional embedding#], models with a five-dimensional supergravity19]. In RG flows to non-
mass gap for the continuum modés6], and realizations of conformal theoriegsee e.g[20,21]) the AdS horizon gets
domain walls in gravity coupled to scaldrg—10. There is  replaced with a naked singularity. This singularity is physical
also an extensive literature on supergravity domain wallsn the sense that the singular behavior corresponds to strong
[11-13, but so far the construction ¢f] has not been re- coupling effects such as confinement or screening in the
alized in supergravity. In fact it was shown to be impossibleboundary theory. Since the non-conformal boundary theory
in any of the known five-dimensional supergravities makes sense in the infrared, the singular behavior of the
[11,13,14. metric must be resolved either by lifting to ten dimensions
The thin wall construction df1] has the disadvantage that [22] or via string theory. Unfortunately we are not aware of
the curvature is singular at the location of the wall. Thisany criterion that tells us exactly which type of naked singu-
problem can be avoided if gravity is coupled to a scalar fieldlarity has a physical interpretation. We will simply assume
By choosing a suitable potential for the scalar, we carthat the singularities in the space we consider can appear in
readily generate smooth domain wall solutigBs-10] that RG flows to non-conformal theories. In the last section we
interpolate between two AdS spaces. However, once we hawgill discuss the validity of this assumption. If our singulari-
a scalar in the bulk, other space-times besides AdS, dS, anis are physical, we can think of our five-dimensional space-
Minkowski space can appear. In this paper we will studytimes as four-dimensional gravity coupled to a non-
some examples of such spaces. Specifically, we consider conformal field theory. Such theories are well defined, which
provides a justification for considering this type of singular
space. We will give a more detailed discussion of these ideas
*On leave of absence from MIT, Cambridge, MA 02139. Email in the last section.

address: gremm@feynman.princeton.edu A second argument for considering spaces that end in
Of course one can also consider slices of dS or Minkowski spacesingularities comes from analyzing the spectrum of gravity
but they do not yield a four-dimensional graviton. from a four-dimensional point of view. In the original setup
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[1] there was a single massless graviton and a continuoufuctuations by studying the equivalent quantum mechanics
tower of KK states. The KK states couple to matter on theproblem with and without imposing unitary boundary condi-
thin domain wall and cause small violations of four- tions. In Sec. IV we discuss possible implications of our
dimensional energy and momentum conservation. This viotesults, including various speculations on the role of thick
lation of conservation laws also occurs in the presence of gomain walls and singular spaces in the light of the AdS/
naked singularity. The traditional point of vief23] posits ~CFT correspondence.

that spaces with naked singularities are physically acceptable

only if one imposes boundary conditions that guarantee four- Il. GRAVITY COUPLED TO SCALARS

dimensional energy and momentum conservation. These Th tion for five-di ional it led t
boundary conditions are usually referred to as unitary bound-. € action for five-dimensional gravity coupled 1o a
ary conditions. Note that this point of view is rather different single real scalar reads

than the AdS/CFT inspired approach described above. In the 1 1

latter case we want energy and momentum to leak out into s:f d4xdr\/§< - R+ —(a¢)2—v(¢)>_ (2.2
either the AdS horizon in the setup [df] or into the naked 4 2

singularities we discuss here. This leakage corresponds to . . .
four-dimensional gravitation exciting the degrees of freedom/V€ Will consider metrics of the form
of the non-conformal field theory. Nonetheless, we can im- 3

pose unitary boundary conditions and analyze the spectrum _ 2280 42 a2VAxg 2| _ 4.2

of the KK modes in that case. It turns out that these boundary ds=e (dxo € 2’1 ax ) ar 23
conditions remove the continuum part of the KK spectrum

for the models discussed here and ir9]. The theory of the or

discrete part of the spectrum is unitary, because these modes

die off rapidly enough as we approach the singularity. d32=eZA(‘)[e*Z‘K@(dxﬁ—dxﬁ—dxg)—dxg]—drz,

The discussion so far has involved only flat domain walls (2.3
with four-dimensional Poincarmvariance. Some of the so-
lutions we study in this paper can accommodate a constanthere the four-dimensional slices are de Sitter and anti—de
curvature on the four-dimensional slice, turning it into four- Sitter respectively. The equations of motion following from
dimensional de Sitter or anti—de Sitter space. Such bent dahe action and the ansatz for the metric are
main walls have appeared previously in cosmological thin
wall solutions[2] and similar thick domain walls in four N ()
dimensions were discussed [24]. Our solution can be P"+AA @' = 90
viewed as a non-singular analogue of the cosmological thin
wall solutions. The ambient space of bent domain walls ge- o 2
nerically has horizons or singularities. We analyze a domain A"+ Ae h=—_¢'?
wall interpolating between two singular spaces in some de- 3
tail and also give an example of a thick domain wall which
interpolates between spaces with regular horizons. The pur- A2_Ne A= _ EV(¢)+ ld),g
pose of the second example is merely to show that such 3 6"
solutions exist. Unfortunately it is too complicated for an (2.9
analytical treatment.

Apart from their relevance for cosmology, bent domainThe prime denotes differentiation with respectrtaand we
walls are interesting because they are generic solutions d¢fave assumed that bothandA are functions of only. The
five-dimensional gravity coupled to scalars. By generic weequations of motion above were obtained using the metric
mean that the supersymmetry inspired first order formalisnig. (2.2). Reversing the sign oA yields the corresponding
of [25,26,9 cannot be used to generate a solution. Inequations of motion for E¢2.3).

[11,13,14 it was shown that even for flat domain walls |t A =0, the four-dimensional slices in Eq&.2),(2.3) are
where this “superpotential” formalism is applicable, there is \inkowski, space, and we can use the first order formalism

no simple supersymmetric extension of the AdS domain walbf [26 ] to generate solutions. The fields and the potential
solutions. Since the bent domain wall solutions cannot b@an he parametrized by a single functivi{$) as

obtained from any known first order formalism, they are

probably non-supersymmetric and therefore, in a sense, ge- 1 dW( o)

neric. =5 ab A'=—3W(e),
This paper is organized as follows. In Sec. Il we briefly

review gravity coupled to a scalar, and discuss a class of 1

solutions for both flat and bent domain walls. These domain V()= _(

walls interpolate between spaces with naked singularities. 8

Our solutions are simple enough that we can solve the quan- o

tum mechanics problem exactly, both for flat and bent do- For A #0 there is no known first order formalism, so we

main walls. In Sec. lll we analyze the spectrum of metricneed to solve the equations of motion directly. In general it is

IW(P)\2 1
W) —§W(¢)2- (2.5
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difficult to find tractable solutions, because highly non-linearcurvature of the four dimensional slice imposes the con-
combinations oA(r) and its derivatives appear in the equa- straintr* < #/2y/A on the location of the horizon.

tions of motion. By changing the sign of\ we obtain a solution for a

theFZr Sgtrirc])ilg (\;\;alrlﬁo\t';gt:: f?g;ggnggiznﬂoddeelsi'sgé Sé'ﬁg;}gomain wall with AdS slices. In that case there is no con-
d P P traint on the location of the horizons or, conversely, the

information. Assuming we have a reflection symmetric do- —
main wall we can choosa(0)=1 andA’(0)=0. The sec- Valueé ofA. . . .
ond equation in Eqs(2.4) then implies thaid” is negative Finally we should point out that t'he first ordgr formalism
. — - of [26,8] does not apply here. For instance, using EX5)
and A(r) diverges to—« faster than forA=0. ForA=0 we can comput&Vi(4) from the expression for. The po-

such symmetric domain wall_s mte_rpc_)lgte between AOIStential computed fronW has the same form as the potential
spaces which have regular horizons infinitely far away from

= : i : above, but the coefficients do not agree. It would be very
r=0. For A#0 Wi expect a h(_)rlzon or a S'“gu'a”t_y at a interesting to either find a first order formalism far=0 or
finite distancer=r*. For domain walls with Adg slices show that it does not exist
there does not seem to be a similar argument. We discuss an The solution above has. the virtue that we can solve the
. ) . .
eximrile W't? a ?a;ked sm&ular:ﬁy dat:_r f:rst.;{' . b equations of motion analytically, but as we pointed out, it
class ol solutions with naked sSINguiarties 1S given by paq nayeq singularities at a finite distance from the center of
A(r)=q|og[d cosgr)). Unfo'rtunately the expressions for the the domain wall. This behavior is not generic. It is easy to
scalar field and the potential are simple onlyii 1, so we pick A(r) such that we get regular horizons instead of sin-

will focus on that case. Other ch0|ce_s foare equally valid, gularities. One such example with three free parameters is
but there is no closed form expression fprand the poten-

tial. Nevertheless, these cases can be analyzed numerically. \/X
By picking suitable units for\ we can setl=1. The com- eMD=(r2—r*?)| — <1+ *Z(rz—r*z))
plete solution to the equations of motion is then given by r 4r
A(r)=log[coscr)] +C(r2_r*2)2], .
1 /3 , — 1+tan(cr/2)
#(r)= ° E(C —A)log 1—tancr/2) but the solutions forp(r) and the potential have to be ob-

tained numerically. We simply mention this example to show
that such solutions exist, but we will not investigate it further
in this paper.

In the limit A =0 four-dimensional Poincare invariance is
restored and we can write down the solution forrall

co

NEICES

3A+c%— 4c2tank?(

V(¢)= %osﬁ(

Ce

V3(c?=A)

X A(r)=nlog[cogcr)]

3
29 B(1) =\ 10g

This solution has only two adjustable parameteu:s/,\_,

1+tan(cr/2)
1—tan(cr/2)

which determine the location of the singularities, the curva- 3nc? 2

ture of the four-dimensional slice, and the thickness of the V(g)= 2 COSH( \ %¢)

wall. The metric with this choice oA(r) has a naked singu-

larity at r* = = 7r/2c. However, the singularity is very simi- 2

lar to the one encountered in the AdS flowNo=1 super —4n sinhz( \/ﬁ(ﬁ”- (2.8

Yang-Mills (SYM) theory[21]. This may indicate that it can

be resolved either by lifting the five-dimensional geometry tonote that in this case the solution can be parametrized by
ten dimensions or by string theory. The scalar diverges at thy( ), so we could have found it using the first order for-
singularity. If we think of it as a modulus from some com- majism of[26,8]. Since the form ofA(r) is the same as in

pactification manifold, this divergence can indicate that thepe previous example, this solution also has naked singulari-
compactification manifold shrinks to zero size or becomesjes atr* = + #/2¢. but unlike in the previous example there

infinitely large, so that the five dimensional truncation be-is no limit in which they disappear. ti=1/4, the potential is
comes invalid. There are some examples where singulariti€§)nsitant and near the singularity w;a hag,= e2*
in five dimensions actually correspond to non-singular ten~m This is the behavior found ifiL9] for general

dimensional geometrieg®2. . flows assuming that the potential can be neglected near the
In the limit c2=A our solution simplifies dramatically. singularity.

The scalar vanishes and the potential becomes constant. In Since this solution has four-dimensional Poiﬁcmmri-
fact, this limit of our solution is d§written in unusual co- ance, we expect to find a massless graviton and a tower of
ordinates. Note that our solution is valid only f==A. The KK excitations. This solution is simple enough that we can
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give a complete solution of the equivalent quantum mechanslices can be obtained by the analytic continuation

ics problem fom=1. Then=2 case is also tractable at the _,jx. x. .ix,, and VA —iVA. We are now ready to turn
level of the example if9]. We will comment on the differ- g specific examples.
ences between these two examples in Sec. IV. The metric for the solution in Eq(2.6) can be trans-
formed to the conformally flat form, Eq3.2), with A(z)
Ill. GRAVITON FLUCTUATIONS = —log[cosh€2)]. Using Eq.(3.5), we find for the potential

The solutions in the previous section provide backgrounds 9(c2—A) 15c2
in which the fluctuations of the metric exhibit interesting Vom= 7 ) . (3.6)
behavior. It is difficult to analyze the metric fluctuations in costt(cz)
general, since they couple to fluctuations of the scalar fiel
However, it was shown i8] that there is a sector of the
metric fluctuations that decouples from the scalar and sati
fies a simple wave equation.

A general metric fluctuation takes the form

d'I'he shape of this potential is rather different than the one
J_ound in[9] for a thick domain wall interpolating between
AdS spaces. The most important differences are that our po-
tential asymptotes to a non-zero constant Zes =0 and
that there is no potential barrier separating the asymptotic
d52=e2A(r)(gij " hij)dx‘dxj —dr?, (3.1) region from the interior of the domain wall. Since the poten-
tial asymptotes to a constant, we will find plane wave solu-
tions for sufficiently largek?, but these solutions are sepa-
rated from the discrete modes by a mass gap. These general
observations can be made precise. The Stihger equation

is taken to be small, so the linearized Einstein equation - . . .
with this potential has a general solution

where we have made a gauge choice, gpdis the four-
dimensional dS, AdS or Minkowski metric. The fluctuation
prlovides the equation of motion for it. As shown[i8] the
transverse traceless part of the metric fluctuatiop, satis-
fies the same equation of motion as a five-dimensional sca- #=azF1
lar. It turns out that transforming to conformally flat coordi-

3 1 3 1 1 1 1 2\—¢€l2
€ E; 6+§1 615( X) ( X)

nates simplifies this wave equation considerably. In terms of 3 3 1 oo
z=[dre A the metric takes the form +byF; e-5.ltet 5,1+€,§(1—X) (1—x%)¢%,
ds?=e?A?)(g;dx'dx —dZ?), (3.2 3.7

wherex=tanh¢2) and e2= —k?/c2+9(c2— A)/4c2. To find
the discrete part of the spectrum we aet0 to ensure thafs
is regular ag=c (x=1). If e-3/2=—neZ; , the solution

and if the four-dimensional slices are gShe transverse
traceless parts of the metric fluctuation satisfy

_ _ 3 - is also finite ag— — (x=—1), so the discrete part of the
a§+3A’(z)az—a§0—3\/Xaxo+e‘”AX02 dy_|hij=0. spectrum is given by,=3/2—n, n=0,1, or
a=1 @
3.3 9(c?— A 3\
ﬁ=¥—c2(§—n) s (3.8)
This equation can be simplified further by rewriting the met-
ric fluctuation as hj;=e 3" Y402y, (x)¢;;(2), where  and the corresponding wave functions are
pk(x) satisfiesg" d;9;p(x) = —k?py(x). Dropping the indi-
ces ony we finally find 1 sinh(cz)
vol2)~ cost’{cz)’ Vi)~ cost{cz) (39
(— 5+ Vou—k>)y=0 (3.9

For A=0 we find the expected massless graviton with

=0 and an excited state witk’=2c2. For A>0 the four-
— dimensional slice is dS and at least the lowksis negative.
VQM:_%_,_ gA’Z(z)+ EA”(z). (3.5 If the four-dimensional metric is AdSA<O0), all k? are
4 4 2 positive. These results may appear surprising at first sight.
. However, we should keep in mind that the notion of mass is
Note that forA#0 there is an extra constant piece in thesomewhat murky in AdS and dS spaces. In both of these
potential. This implies that the quantum mechanics problentasesk? is a constant that appears in the separation of vari-
does not factorize as if8]. The argument given there now ables. It should not be confused with a four-dimensional
constrainsk?+9A/4 to be positive. We will come back to Mass. If we putyo andp for the lowestk® into the expres-
this point when we analyze the solutions of this Sclimger  sion for hij, we find that the metric fluctuation always sat-
equation. isfies the four-dimensional wave equatide'hij:O, I
These equations were written assuming that the four=0,1,2,3. There are several definitions of mass in dS and
dimensional slice is dS The analogous equation for AgS AdS, so it is not clear if these fields are massless, but fields

with
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that satisfy this wave equation never signal an instability. Iterms of this scalar because that simplifies the argument
is worth mentioning that the negative valueskdfare pos- somewhat. Since the metric fluctuations and the scalar satisfy
sible because the factorization argumeng8ifconstrains the the same equation of motion, the results should carry over to

combinationk?+9A /4 to be positive. metric ﬂjctuations. ) -

The solutions of the Schdinger equation, E¢(3.4), also For A=0 the metric, Eq(2.2), has a number of Killing
<0 that asymptote to plane waves as> =. Formally the ones generating four-dimensional translations. These
these solutions can be obtained from B17) by substituting  Killing vectors are given byéf*= 6", wherei is a four-
e—ik. Forx—1 (z—) we find the asymptotic behavior dimensional index. To construct currents from these Killing

W(2)~ae °*2+ be ? plane waves as expected. It is easyVECIOrS We need the stress tensor for a massless scalar:

to show that Eq(3.7) also asymptotes to a plane wave for 1 1
Xx——1. To summarize, the solutions to the Satinger T,=53,00,9- >4,
equation, Eq(3.4), consist of two normalizable states with 2 2
discrete eigenvalues and a continuum of states that asqu.—he currentsJt—
tote to plane waves at infinity.

To proceed in our discussion, we will now specialize to

1
E&“¢ﬁa¢)' (3.10

THv¢ satisfy conservation laws of the
form

the case\ =0, so we can interprék? as a four-dimensional 1
mass. In this limit our solution describes a thick domain wall —=3d,( \/§J“)=O, (3.1
interpolating between two spaces with naked singularities. \/5

As mentioned in the Introduction, we can appeal to the AdS/ . _ ) )
CFT correspondence and think of modes propagating in thwhich express the conservation of four-dlmens_l_onal energy
fifth direction as excitations of some non-conformal field@"d momentum. To ensure that these quantities are con-
theory, which should render the four-dimensional theory uni-S€"ved in the presence of a singularity, we demand that the
tary. We will comment on this relation in the last section. U into the singularity vanish:
This is in harmony with the approach ff], which is to 1
a_ccept _small v!olatlons of unitarity in th_e theory on the_four- lim \/an: lim \/agzz_
dimensional slice at=0. In our case this theory contains a 7o 7 2
massless graviton, one massive state, and a continuum of
modes with a mass gap of sizey,,=3c/2. At very low  The solutions ford take the same form as the solutions for
energies, none of these massive modes can be excited, andﬁijn, i.e., d~e 3A@72y(7) with  given in Eq.(3.7). Using
observer atz=0 sees pure four-dimensional gravity. At the asymptotic formy(z)~a sin(ckz)+bcosexz), we find
higher energies the massive state can be excited, giving SOM§; the flux
corrections to Newton’s law, and finally at energies larger
than the gap the whole continuum of modes can be excited. |jm e3A@D12(7)3,[ 3D 2y 7)]
Since there is a mass gap in the theory, the corrections toz -«
Newton’s law will always be negligible at sufficiently long )
distances. Violations of unitarity occur only if modes that ~ ~ #(2)[(3b+2ax)codckz) +(3a—2bk)sin(ckz)],
can travel out to the singularities can be excited, i.e. only at (3.13
energies above the mass of the lightest continuum mode.
Both the corrections to Newton’s law and the way unitaritywhich does not vanish for any choice afb,«x excepta
is violated are rather different in the thin wall scenarigbf =~ =b=0. This implies that the unitary boundary conditions
There the contribution of the KK modes is suppressed beeliminate all continuum modes from the spectrum. It is easy
cause in the quantum mechanics description they need to check that the two discrete modes do not generate any flux
tunnel through a potential barrier. The resulting suppressiointo the singularity, so the unitary spectrum consists of these
of these modes &= 0 turns out to be sufficient to make the two modes. We expect similar results if we impose unitary
violations of unitarity too small to detect in present day ex-boundary conditions in either the thin wall setud bf or the
periments. thick wall versions in[8—10]. In those cases only the four-
Another way of dealing with the violations of various dimensional massless graviton survives, and the continuum
conservation laws in the four-dimensional theory is to im-of KK states are projected out.
pose unitary boundary conditiof3]. These boundary con- This situation should be contrasted with the example en-
ditions ensure that no supposedly conserved quantities disapeuntered in27]. In that case the potential in the quantum
pear into the singularity. This approach was use@2fj to  mechanics problem diverges near the singularity. This results
render a specific naked singularity harmless. in an infinite tower of eigenfunctions with discrete eigenval-
We will simplify our discussion by introducing a new ues. The potential in our example asymptotes to a constant
massless scalar field, which satisfies the same equation of near the singularity, so we get a continuum of plane wave
motion as the metric fluctuation. This scalar field should notstates. It turns out to be impossible to satisfy the no-flux
be confused with the scalar in the solutions in the previougondition with these solutions, which implies that all of these
section. We will discuss the unitary boundary conditions instates are projected out.

5P a,d=0. (3.12
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We close this section with a brief comment on the solu-dence is expected to work in the scenari¢df The setup in
tions with A=0 andn>1. Forn=2 the transformation to [1] consists of a thin domain wall separating the horizon
conformally flat coordinates is given g=tan(cr)/c and  parts of two AdS spaces. Usually tfflg symmetry of this
the conformal factor read&(z) = —log(1+¢?Z). The poten-  space-time is gauged, so that the two slices of AdS are iden-

tial in the quantum mechanics problem is given by tified. The location of the domain wall cuts off the AdS
space at some finite radial distance. Gravity in the slice of
, 1-4c?Z AdS space is expected to have a dual description as a
Vom=—3¢ m (3.14 strongly coupled cutoff CFT on the domain wall.

We can adopt these arguments and apply them to thick
This potential appeared previously [ih0] and a similar po- domain walls. Let us first consider the domain wall discussed
tential was discussed in detail [8]. Unlike then=1 poten- in [9]. It can be viewed as a non-singular version of the setup
tial, this potential asymptotes to zero for larg&here is one in [1], since it interpolates between the horizon parts of two
discrete bound state at threshold and a continuum of statésdS spaces. Unlike in the thin wall case, one usually does
that asymptote to plane waveszas + . We can repeat the not mod out by th&, symmetry of the geometry, so we have
analysis above for this potential with essentially the samewo independent physical AdS spaces. Since the thick do-
result. Imposing unitary boundary conditions eliminates themain wall smoothly connects the two slices of AdS space,
continuous spectrum, leaving only the four-dimensionakhere is no sharp cutoff as in the thin wall case. A possible
graviton, while invoking the AdS/CFT correspondence al-interpretation of this is that a smooth domain wall corre-
Iqws us to retain t.he continuum. In that case the gnt|re f'fthsponds to a sofor softej cutoff in the field theory. From
dimension gets reinterpreted as a non-conformal field theonf,s fielq theory perspective this is more desirable than the
on the four-d|men3|onall S'_'Ce' and any bulk exCItat'Onssharp cutoff imposed by a thin wall. While there is no known
should be viewed as excitations of this field theory. regularization scheme with a sharp cutoff that preserves four-
dimensional Poincare invariance, we have a candidate for a
IV. DISCUSSION AND SPECULATIONS soft cutoff. Dimensional regularization preserves the desired
In this paper we worked out an example of a thick domaininvariance.s and co'rresponds to a soft cutoff in_ momentum
wall that interpolates between two spaces with naked singuSPace. Thick domain walls may be more appealing from the
larities. Our example is simple enough that we can computd€ld theory point of view, but in gravity they pose additional

the spectrum of the graviton KK modes exactly. It is possiblechallenges. For instance, it is not clear where the four-
to extend this solution to domain walls with cosmological dimensional field theory is supposed to reside, since the

constants in the four-dimensional slices. These domain wall§P2c€ does not have a boundary. This problem could poten-
can be viewed as non-singular analogues of the bent thiﬁally be cured by orbifolding the thick domain wall, which
domain walls that appeared in the literature as cosmologicattroduces a boundary at=0. The geometry already has a
extensions of the setup [i1]. 7, symmetry, so orbifolding it simply identifies the two AdS
There are other reasons for considering this type of thicikPaces, but the derivative of the scalar does not vanigh at
wall. Thick walls with four-dimensional Minkowski slices =0, SO we need to put a source for it on the orbifold fixed
can be obtained from a first order “superpotential” formal- POINt. Orbifolding the space should not affect our speculation
ism, but to find bent solutions one needs to solve the nonthat the thick domain wall corresponds to a soft cutoff in the

linear equations of motion directly. In this sense the benCFT. . ]

The traditional approach to rendering naked singularitieéjifference is that we are considering thick domqin walls that
harmless consists of imposing unitary boundary conditiondntérpolate between singular spaces. As mentioned before,
on modes propagating in the bulk. If we take this approack?UCh _smgular spaces appear in AdS flows to non-com_‘ormal
for our solution or for solutions of the type studied[lhg],  theories, so we speculate that we can replace our singular
we project out all continuum modes, leaving only the four-five-dimensional geometry by a non-conformal four-
dimensional graviton and other discrete modes if any exist dimensional field theory with a soft cutoff. This speculation

The AdS/CFT correspondence offers another point ofS €ven harder to make precise than the previous one, be-
view. Most of this section will be devoted to comments andcause five-dimensional gravity fails near the singularity and
speculations about this correspondence in domain wall sefligher dimensional gravity or string theory has to come to
tings of the type studied here and[ib,9]. We would like to the rescue. Nonethelt_ass, we W|Il_forge ahegd and offer_some
emphasize that unlike in the original AdS/CFT correspon-Sp?Fma“OnS on the field theory interpretations of the singu-
dence[18,28, there is at present no precise recipe for relatlarities we studied here.
ing five-dimensional gravity to a boundary field theory in  We will discuss the\ =0 solutions given in Eq.2.8). For
domain wall space-times of the type studied 1n. Without = n=1 the spectrum consist of the massless four-dimensional
such a recipe, our comments are necessarily of a very specgraviton, an excited state witm= \2c, and a continuum of
lative nature, but we hope that some of them may lead to atates with massesi=m,,,=3c/2. If we assume that our
firmer understanding of this correspondence in time. singular space corresponds to a non-conformal theory such

Before discussing the thick domain walls studied here ands SYM theory or QCD, we can attempt to interpret this KK
in [9], let us briefly review how the AdS/CFT correspon- spectrum. A confining theory will have a strong coupling
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scale,Aqcp, Which sets the mass scale for the light states irmakes it unlikely that the singularity fan=2 can be re-
the theory. We can interpret the mass gap found in the Kksolved by lifting to ten dimensions. The dual description
modes as the energy needed to produce the lightest particiould require string theory on some highly curved manifold.
in the non-conformal field theory. The presence of the mass Unfortunately all of our speculations follow from the as-
gap in our solution at least does not automatically rule it outsumption that we can use the AdS/CFT correspondence to
Unfortunately we do not have a good interpretation for thegain some intuition about the domain wall space-times we
single massive resonance in the spectrum. This state shoustudied here. To make any of our statements more precise we
not have a field theory counterpart, since it is localized onwould need a formulation of the AAS/CFT correspondence
the domain wall and does not propagate out to the singularlong the lines of28]. This is clearly a necessary ingredient
ity. Luckily we can eliminate this state by imposing the or- if we want to study domain walls in singular space-times in
bifold projection discussed above for the AdS domain wall.a more reliable and systematic way.
This provides us with a boundary and eliminates this un- As this paper was nearing completion, R¢29] and[30]
wanted state. If a version of the AAS/CFT correspondencappeared. These papers have no direct overlap with the re-
can be formulated at all, it is likely to be in the orbifolded sults here, but they provide another motivation for studying
case. singular spaces. These papers discuss an intrinsically higher
We also briefly discuss the solution for=2. The equiva- dimensional approach to solving the cosmological constant
lent quantum mechanics problem in that case cannot bproblem. In their analysis they naturally encounter spaces
solved completely, but we can obtain enough information tawith singularities at finite distances. While it is not clear if
discuss this case in the light of the AdS/CFT corresponthe spaces we discussed here can be used in that context,
dence. The spectrum in this case is very much like that fountheir results provide another piece of evidence that singular
in [9]. We find a single massless graviton and a continuum ofpaces may play an important role in domain wall universe
plane wave states with masses starting at zero. Unlike thgcenarios.
case studied if9] this space has naked singularities at a After this paper was submitted a first order formalism for
finite distance from the domain wall. These singularities im-bent thick domain walls appeared in the newest version of
ply that, if this space has a field theory interpretation, it[8].
should be in terms of a non-conformal theory. We have al-
ready discussed the confining case above. Since there is no
mass gap in the=2 case, we suggest that this space may
correspond to a theory that is free in the infrared. Such a It is a pleasure to thank Miguel Costa, Josh Erlich, Igor
theory would have excitations with masses that are continuKlebanov, Lisa Randall, Yuri Shirman, and Kostas Skenderis
ous from zero. From the original form of the AdS/CFT cor- for comments and helpful conversations. This work was sup-
respondence we expect the gravity description to break dowported in part by DOE grants DF-FC02-94ER40818 and DE-
completely if the field theory becomes weakly coupled. ThisFC-02-91ER40671.
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