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Thick domain walls and singular spaces

Martin Gremm*
Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544

~Received 13 March 2000; published 20 July 2000!

We discuss thick domain walls interpolating between spaces with naked singularities and give arguments
based on the AdS/CFT correspondence why such singularities may be physically meaningful. Our examples
include thick domain walls with Minkowski, de Sitter, and anti–de Sitter geometries on the four-dimensional
slice. In all of these cases we can solve the equivalent quantum mechanics problem exactly, which provides the
spectrum of graviton states on these spaces. In one of the examples we discuss, the continuum states have a
mass gap. We compare the graviton spectra with expectations from the AdS/CFT correspondence and find
qualitative agreement. We also discuss unitary boundary conditions and show that they project out all con-
tinuum states.

PACS number~s!: 04.50.1h
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I. INTRODUCTION

Domain walls have recently attracted renewed atten
after it was pointed out in Ref.@1# that four-dimensional
gravity can be realized on a thin wall connecting two slic
of AdS space. From the point of view of a four-dimension
observer on the domain wall the spectrum of gravity cons
of a massless graviton and a tower of Kaluza-Klein~KK !
modes with continuous masses. It was shown in@1# that the
KK modes give a subleading correction to the gravitatio
interaction between two test masses on the domain wal
the thin wall setup there is only gravity in the bulk, and t
only five-dimensional space that can appear is AdS.1 On the
other hand, in supergravity or string theory one expects
have other bulk fields including scalars.

The original proposal of@1# has been generalized in se
eral directions. One generalization involves turning on a c
mological constant on the domain wall@2,3#, which results in
time-dependent cosmological scenarios. Other extension
clude higher dimensional embeddings@4#, models with a
mass gap for the continuum modes@5,6#, and realizations of
domain walls in gravity coupled to scalars@7–10#. There is
also an extensive literature on supergravity domain w
@11–13#, but so far the construction of@1# has not been re
alized in supergravity. In fact it was shown to be impossi
in any of the known five-dimensional supergraviti
@11,13,14#.

The thin wall construction of@1# has the disadvantage th
the curvature is singular at the location of the wall. Th
problem can be avoided if gravity is coupled to a scalar fie
By choosing a suitable potential for the scalar, we c
readily generate smooth domain wall solutions@8–10# that
interpolate between two AdS spaces. However, once we h
a scalar in the bulk, other space-times besides AdS, dS,
Minkowski space can appear. In this paper we will stu
some examples of such spaces. Specifically, we consid

*On leave of absence from MIT, Cambridge, MA 02139. Em
address: gremm@feynman.princeton.edu

1Of course one can also consider slices of dS or Minkowski sp
but they do not yield a four-dimensional graviton.
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class of thick domain walls in gravity coupled to scalars th
interpolate between spaces with naked singularities ins
of regular AdS horizons. Normally such spaces would
discarded as unphysical, but in this context there are rea
to believe that considering these spaces may be meanin

One reason for thinking so comes from the recent p
posal@15# ~see also@16,17#! that five-dimensional bulk grav
ity in the thin domain wall case@1# has an equivalent de
scription in terms of a cutoff four-dimensional conform
field theory ~CFT! on the domain wall, very much in the
spirit of the AdS/CFT correspondence@18#. The details of
this correspondence are rather unclear at present. Fo
stance, it is not clear how to identify the CFT in the no
supersymmetric purely five-dimensional setup of@1# or how
to match operators and KK modes. It is also unclear how
impose a sharp cutoff on the CFT that preserves fo
dimensional Poincare´ invariance. However, leaving thes
considerations aside, we can freely borrow results from
AdS/CFT literature on renormalization group~RG! flows in
five-dimensional supergravity@19#. In RG flows to non-
conformal theories~see e.g.@20,21#! the AdS horizon gets
replaced with a naked singularity. This singularity is physic
in the sense that the singular behavior corresponds to st
coupling effects such as confinement or screening in
boundary theory. Since the non-conformal boundary the
makes sense in the infrared, the singular behavior of
metric must be resolved either by lifting to ten dimensio
@22# or via string theory. Unfortunately we are not aware
any criterion that tells us exactly which type of naked sing
larity has a physical interpretation. We will simply assum
that the singularities in the space we consider can appea
RG flows to non-conformal theories. In the last section
will discuss the validity of this assumption. If our singular
ties are physical, we can think of our five-dimensional spa
times as four-dimensional gravity coupled to a no
conformal field theory. Such theories are well defined, wh
provides a justification for considering this type of singu
space. We will give a more detailed discussion of these id
in the last section.

A second argument for considering spaces that end
singularities comes from analyzing the spectrum of grav
from a four-dimensional point of view. In the original setu

l
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MARTIN GREMM PHYSICAL REVIEW D 62 044017
@1# there was a single massless graviton and a continu
tower of KK states. The KK states couple to matter on
thin domain wall and cause small violations of fou
dimensional energy and momentum conservation. This
lation of conservation laws also occurs in the presence
naked singularity. The traditional point of view@23# posits
that spaces with naked singularities are physically accept
only if one imposes boundary conditions that guarantee fo
dimensional energy and momentum conservation. Th
boundary conditions are usually referred to as unitary bou
ary conditions. Note that this point of view is rather differe
than the AdS/CFT inspired approach described above. In
latter case we want energy and momentum to leak out
either the AdS horizon in the setup of@1# or into the naked
singularities we discuss here. This leakage correspond
four-dimensional gravitation exciting the degrees of freed
of the non-conformal field theory. Nonetheless, we can
pose unitary boundary conditions and analyze the spect
of the KK modes in that case. It turns out that these bound
conditions remove the continuum part of the KK spectru
for the models discussed here and in@1,9#. The theory of the
discrete part of the spectrum is unitary, because these m
die off rapidly enough as we approach the singularity.

The discussion so far has involved only flat domain wa
with four-dimensional Poincare´ invariance. Some of the so
lutions we study in this paper can accommodate a cons
curvature on the four-dimensional slice, turning it into fou
dimensional de Sitter or anti–de Sitter space. Such bent
main walls have appeared previously in cosmological t
wall solutions @2# and similar thick domain walls in fou
dimensions were discussed in@24#. Our solution can be
viewed as a non-singular analogue of the cosmological
wall solutions. The ambient space of bent domain walls
nerically has horizons or singularities. We analyze a dom
wall interpolating between two singular spaces in some
tail and also give an example of a thick domain wall whi
interpolates between spaces with regular horizons. The
pose of the second example is merely to show that s
solutions exist. Unfortunately it is too complicated for a
analytical treatment.

Apart from their relevance for cosmology, bent doma
walls are interesting because they are generic solution
five-dimensional gravity coupled to scalars. By generic
mean that the supersymmetry inspired first order formal
of @25,26,8# cannot be used to generate a solution.
@11,13,14# it was shown that even for flat domain wal
where this ‘‘superpotential’’ formalism is applicable, there
no simple supersymmetric extension of the AdS domain w
solutions. Since the bent domain wall solutions cannot
obtained from any known first order formalism, they a
probably non-supersymmetric and therefore, in a sense,
neric.

This paper is organized as follows. In Sec. II we brie
review gravity coupled to a scalar, and discuss a class
solutions for both flat and bent domain walls. These dom
walls interpolate between spaces with naked singularit
Our solutions are simple enough that we can solve the qu
tum mechanics problem exactly, both for flat and bent
main walls. In Sec. III we analyze the spectrum of met
04401
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fluctuations by studying the equivalent quantum mechan
problem with and without imposing unitary boundary cond
tions. In Sec. IV we discuss possible implications of o
results, including various speculations on the role of th
domain walls and singular spaces in the light of the Ad
CFT correspondence.

II. GRAVITY COUPLED TO SCALARS

The action for five-dimensional gravity coupled to
single real scalar reads

S5E d4xdrAgS 2
1

4
R1

1

2
~]f!22V~f! D . ~2.1!

We will consider metrics of the form

ds25e2A(r )S dx0
22e2AL̄x0(

i 51

3

dxi
2D 2dr2 ~2.2!

or

ds25e2A(r )@e22AL̄x3~dx0
22dx1

22dx2
2!2dx3

2#2dr2,
~2.3!

where the four-dimensional slices are de Sitter and anti
Sitter respectively. The equations of motion following fro
the action and the ansatz for the metric are

f914A8f85
]V~f!

]f

A91L̄e22A52
2

3
f82

A822L̄e22A52
1

3
V~f!1

1

6
f82.

~2.4!

The prime denotes differentiation with respect tor, and we
have assumed that bothf andA are functions ofr only. The
equations of motion above were obtained using the me
Eq. ~2.2!. Reversing the sign ofL̄ yields the corresponding
equations of motion for Eq.~2.3!.

If L̄50, the four-dimensional slices in Eqs.~2.2!,~2.3! are
Minkowski, space, and we can use the first order formali
of @26,8# to generate solutions. The fields and the poten
can be parametrized by a single functionW(f) as

f85
1

2

]W~f!

]f
, A852

1

3
W~f!,

V~f!5
1

8 S ]W~f!

]f D 2

2
1

3
W~f!2. ~2.5!

For L̄Þ0 there is no known first order formalism, so w
need to solve the equations of motion directly. In general i
7-2
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THICK DOMAIN WALLS AND SINGULAR SPACES PHYSICAL REVIEW D62 044017
difficult to find tractable solutions, because highly non-line
combinations ofA(r ) and its derivatives appear in the equ
tions of motion.

For domain walls with four-dimensional de Sitter slice
the equations of motion provide some model independ
information. Assuming we have a reflection symmetric d
main wall we can chooseA(0)51 andA8(0)50. The sec-
ond equation in Eqs.~2.4! then implies thatA9 is negative
and A(r ) diverges to2` faster than forL̄50. For L̄50
such symmetric domain walls interpolate between A
spaces which have regular horizons infinitely far away fr
r 50. For L̄Þ0 we expect a horizon or a singularity at
finite distancer 5r * . For domain walls with AdS4 slices
there does not seem to be a similar argument. We discus
example with a naked singularity atr 5r * first.

A class of solutions with naked singularities is given
A(r )5n log@dcos(cr)#. Unfortunately the expressions for th
scalar field and the potential are simple only ifn51, so we
will focus on that case. Other choices forn are equally valid,
but there is no closed form expression forf and the poten-
tial. Nevertheless, these cases can be analyzed numeric
By picking suitable units forL̄ we can setd51. The com-
plete solution to the equations of motion is then given by

A~r !5 log@cos~cr !#

f~r !5
1

c
A3

2
~c22L̄ !logS 11tan~cr/2!

12tan~cr/2! D
V~f!5

3

4
cosh2S cf

A 3
2

~c22L̄ !
D

3F3L̄1c224c2tanh2S cf

A 3
2

~c22L̄ !
D G .

~2.6!

This solution has only two adjustable parameters,c,L̄,
which determine the location of the singularities, the cur
ture of the four-dimensional slice, and the thickness of
wall. The metric with this choice ofA(r ) has a naked singu
larity at r * 56p/2c. However, the singularity is very simi
lar to the one encountered in the AdS flow toN51 super
Yang-Mills ~SYM! theory@21#. This may indicate that it can
be resolved either by lifting the five-dimensional geometry
ten dimensions or by string theory. The scalar diverges at
singularity. If we think of it as a modulus from some com
pactification manifold, this divergence can indicate that
compactification manifold shrinks to zero size or becom
infinitely large, so that the five dimensional truncation b
comes invalid. There are some examples where singular
in five dimensions actually correspond to non-singular
dimensional geometries@22#.

In the limit c25L̄ our solution simplifies dramatically
The scalar vanishes and the potential becomes constan
fact, this limit of our solution is dS5 written in unusual co-
ordinates. Note that our solution is valid only forc2>L̄. The
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curvature of the four dimensional slice imposes the c

straint r * <p/2AL̄ on the location of the horizon.
By changing the sign ofL̄ we obtain a solution for a

domain wall with AdS4 slices. In that case there is no co
straint on the location of the horizons or, conversely,
value ofL̄.

Finally we should point out that the first order formalis
of @26,8# does not apply here. For instance, using Eq.~2.5!
we can computeW(f) from the expression forf. The po-
tential computed fromW has the same form as the potent
above, but the coefficients do not agree. It would be v
interesting to either find a first order formalism forL̄Þ0 or
show that it does not exist.

The solution above has the virtue that we can solve
equations of motion analytically, but as we pointed out,
has naked singularities at a finite distance from the cente
the domain wall. This behavior is not generic. It is easy
pick A(r ) such that we get regular horizons instead of s
gularities. One such example with three free parameters

eA(r )5~r 22r * 2!FAL̄

2r *
S 11

1

4r * 2
~r 22r * 2!D

1c~r 22r * 2!2G , ~2.7!

but the solutions forf(r ) and the potential have to be ob
tained numerically. We simply mention this example to sh
that such solutions exist, but we will not investigate it furth
in this paper.

In the limit L̄50 four-dimensional Poincare invariance
restored and we can write down the solution for alln:

A~r !5n log@cos~cr !#

f~r !5A3n

2
logS 11tan~cr/2!

12tan~cr/2! D
V~f!5

3nc2

4 Fcosh2SA 2

3n
f D

24n sinh2SA 2

3n
f D G . ~2.8!

Note that in this case the solution can be parametrized
W(f), so we could have found it using the first order fo
malism of @26,8#. Since the form ofA(r ) is the same as in
the previous example, this solution also has naked singu
ties atr * 56p/2c, but unlike in the previous example ther
is no limit in which they disappear. Ifn51/4, the potential is
constant and near the singularity we haveg005e2A

;Ar * 2r . This is the behavior found in@19# for general
flows assuming that the potential can be neglected near
singularity.

Since this solution has four-dimensional Poincare´ invari-
ance, we expect to find a massless graviton and a towe
KK excitations. This solution is simple enough that we c
7-3
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MARTIN GREMM PHYSICAL REVIEW D 62 044017
give a complete solution of the equivalent quantum mech
ics problem forn51. Then52 case is also tractable at th
level of the example in@9#. We will comment on the differ-
ences between these two examples in Sec. IV.

III. GRAVITON FLUCTUATIONS

The solutions in the previous section provide backgrou
in which the fluctuations of the metric exhibit interestin
behavior. It is difficult to analyze the metric fluctuations
general, since they couple to fluctuations of the scalar fi
However, it was shown in@8# that there is a sector of th
metric fluctuations that decouples from the scalar and sa
fies a simple wave equation.

A general metric fluctuation takes the form

ds25e2A(r )~gi j 1hi j !dxidxj2dr2, ~3.1!

where we have made a gauge choice, andgi j is the four-
dimensional dS, AdS or Minkowski metric. The fluctuatio
hi j is taken to be small, so the linearized Einstein equat
provides the equation of motion for it. As shown in@8# the
transverse traceless part of the metric fluctuation,h̄i j , satis-
fies the same equation of motion as a five-dimensional
lar. It turns out that transforming to conformally flat coord
nates simplifies this wave equation considerably. In term
z5*dre2A(r ) the metric takes the form

ds25e2A(z)~gi j dxidxj2dz2!, ~3.2!

and if the four-dimensional slices are dS4, the transverse
traceless parts of the metric fluctuation satisfy

S ]z
213A8~z!]z2]x0

2 23AL̄]x0
1e22AL̄x0(

a51

3

]xaD h̄i j 50.

~3.3!

This equation can be simplified further by rewriting the m

ric fluctuation as h̄i j 5e23(A1AL̄x0)/2rk(x)c i j (z), where
rk(x) satisfiesgi j ] i] jrk(x)52k2rk(x). Dropping the indi-
ces onc we finally find

~2]z
21VQM2k2!c50 ~3.4!

with

VQM52
9L̄

4
1

9

4
A82~z!1

3

2
A9~z!. ~3.5!

Note that forL̄Þ0 there is an extra constant piece in t
potential. This implies that the quantum mechanics prob
does not factorize as in@8#. The argument given there now
constrainsk219L̄/4 to be positive. We will come back to
this point when we analyze the solutions of this Schro¨dinger
equation.

These equations were written assuming that the fo
dimensional slice is dS4. The analogous equation for AdS4
04401
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slices can be obtained by the analytic continuationx0

→ ix3 , x3→ ix0, andAL̄→ iAL̄. We are now ready to turn
to specific examples.

The metric for the solution in Eq.~2.6! can be trans-
formed to the conformally flat form, Eq.~3.2!, with A(z)
52 log@cosh(cz)#. Using Eq.~3.5!, we find for the potential

VQM5
9~c22L̄ !

4
2

15c2

4

1

cosh2~cz!
. ~3.6!

The shape of this potential is rather different than the o
found in @9# for a thick domain wall interpolating betwee
AdS spaces. The most important differences are that our
tential asymptotes to a non-zero constant forz→6` and
that there is no potential barrier separating the asympt
region from the interior of the domain wall. Since the pote
tial asymptotes to a constant, we will find plane wave so
tions for sufficiently largek2, but these solutions are sep
rated from the discrete modes by a mass gap. These ge
observations can be made precise. The Schro¨dinger equation
with this potential has a general solution

c5a2F1S 2e2
3

2
,12e1

3

2
,12e,

1

2
~12x! D ~12x2!2e/2

1b2F1S e2
3

2
,11e1

3

2
,11e,

1

2
~12x! D ~12x2!e/2,

~3.7!

wherex5tanh(cz) ande252k2/c219(c22L̄)/4c2. To find
the discrete part of the spectrum we seta50 to ensure thatc
is regular atz5` (x51). If e23/252nPZ0

1 , the solution
is also finite asz→2` (x521), so the discrete part of th
spectrum is given byen53/22n, n50,1, or

kn
25

9~c22L̄ !

4
2c2S 3

2
2nD 2

, ~3.8!

and the corresponding wave functions are

c0~z!;
1

cosh3/2~cz!
, c1~z!;

sinh~cz!

cosh3/2~cz!
. ~3.9!

For L̄50 we find the expected massless graviton withk2

50 and an excited state withk252c2. For L̄.0 the four-
dimensional slice is dS and at least the lowestk2 is negative.
If the four-dimensional metric is AdS (L̄,0), all k2 are
positive. These results may appear surprising at first si
However, we should keep in mind that the notion of mass
somewhat murky in AdS and dS spaces. In both of th
cases,k2 is a constant that appears in the separation of v
ables. It should not be confused with a four-dimensio
mass. If we putc0 andrk for the lowestk2 into the expres-
sion for h̄i j , we find that the metric fluctuation always sa
isfies the four-dimensional wave equationDlD

lhi j 50, l
50,1,2,3. There are several definitions of mass in dS
AdS, so it is not clear if these fields are massless, but fie
7-4
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THICK DOMAIN WALLS AND SINGULAR SPACES PHYSICAL REVIEW D62 044017
that satisfy this wave equation never signal an instability
is worth mentioning that the negative values ofk2 are pos-
sible because the factorization argument of@8# constrains the

combinationk219L̄/4 to be positive.
The solutions of the Schro¨dinger equation, Eq.~3.4!, also

include a continuous spectrum of eigenfunctions withe2

<0 that asymptote to plane waves asz→6`. Formally
these solutions can be obtained from Eq.~3.7! by substituting
e→ ik. For x→1 (z→`) we find the asymptotic behavio
c(z);ae2 ickz1beickz, plane waves as expected. It is ea
to show that Eq.~3.7! also asymptotes to a plane wave f
x→21. To summarize, the solutions to the Schro¨dinger
equation, Eq.~3.4!, consist of two normalizable states wit
discrete eigenvalues and a continuum of states that asy
tote to plane waves at infinity.

To proceed in our discussion, we will now specialize

the caseL̄50, so we can interpretk2 as a four-dimensiona
mass. In this limit our solution describes a thick domain w
interpolating between two spaces with naked singularit
As mentioned in the Introduction, we can appeal to the A
CFT correspondence and think of modes propagating in
fifth direction as excitations of some non-conformal fie
theory, which should render the four-dimensional theory u
tary. We will comment on this relation in the last section

This is in harmony with the approach of@1#, which is to
accept small violations of unitarity in the theory on the fou
dimensional slice atz50. In our case this theory contains
massless graviton, one massive state, and a continuum
modes with a mass gap of sizemgap53c/2. At very low
energies, none of these massive modes can be excited, a
observer atz50 sees pure four-dimensional gravity. A
higher energies the massive state can be excited, giving s
corrections to Newton’s law, and finally at energies larg
than the gap the whole continuum of modes can be exci
Since there is a mass gap in the theory, the correction
Newton’s law will always be negligible at sufficiently lon
distances. Violations of unitarity occur only if modes th
can travel out to the singularities can be excited, i.e. only
energies above the mass of the lightest continuum mo
Both the corrections to Newton’s law and the way unitar
is violated are rather different in the thin wall scenario of@1#.
There the contribution of the KK modes is suppressed
cause in the quantum mechanics description they nee
tunnel through a potential barrier. The resulting suppress
of these modes atz50 turns out to be sufficient to make th
violations of unitarity too small to detect in present day e
periments.

Another way of dealing with the violations of variou
conservation laws in the four-dimensional theory is to i
pose unitary boundary conditions@23#. These boundary con
ditions ensure that no supposedly conserved quantities d
pear into the singularity. This approach was used in@27# to
render a specific naked singularity harmless.

We will simplify our discussion by introducing a new
massless scalar field,F, which satisfies the same equation
motion as the metric fluctuation. This scalar field should
be confused with the scalar in the solutions in the previ
section. We will discuss the unitary boundary conditions
04401
It
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terms of this scalar because that simplifies the argum
somewhat. Since the metric fluctuations and the scalar sa
the same equation of motion, the results should carry ove
metric fluctuations.

For L̄50 the metric, Eq.~2.2!, has a number of Killing
vectors. It will be sufficient for our purposes to consider on
the ones generating four-dimensional translations. Th
Killing vectors are given byj i

m5d i
m , where i is a four-

dimensional index. To construct currents from these Killi
vectors we need the stress tensor for a massless scalar:

Tmn5
1

2
]mF]nF2

1

2
gmnS 1

2
]aF]aF D . ~3.10!

The currentsJm5Tmnjn
i satisfy conservation laws of th

form

1

Ag
]m~AgJm!50, ~3.11!

which express the conservation of four-dimensional ene
and momentum. To ensure that these quantities are
served in the presence of a singularity, we demand that
flux into the singularity vanish:

lim
z→`

AgJz5 lim
z→`

Aggzz
1

2
] iF]zF50. ~3.12!

The solutions forF take the same form as the solutions f
h̄i j , i.e., F;e23A(z)/2c(z) with c given in Eq.~3.7!. Using
the asymptotic formc(z);a sin(ckz)1bcos(ckz), we find
for the flux

lim
z→`

e3A(z)/2c~z!]z@e3A(z)/2c~z!#

;c~z!@~3b12ak!cos~ckz!1~3a22bk!sin~ckz!#,

~3.13!

which does not vanish for any choice ofa,b,k excepta
5b50. This implies that the unitary boundary condition
eliminate all continuum modes from the spectrum. It is ea
to check that the two discrete modes do not generate any
into the singularity, so the unitary spectrum consists of th
two modes. We expect similar results if we impose unita
boundary conditions in either the thin wall setup of@1# or the
thick wall versions in@8–10#. In those cases only the four
dimensional massless graviton survives, and the continu
of KK states are projected out.

This situation should be contrasted with the example
countered in@27#. In that case the potential in the quantu
mechanics problem diverges near the singularity. This res
in an infinite tower of eigenfunctions with discrete eigenv
ues. The potential in our example asymptotes to a cons
near the singularity, so we get a continuum of plane wa
states. It turns out to be impossible to satisfy the no-fl
condition with these solutions, which implies that all of the
states are projected out.
7-5
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We close this section with a brief comment on the so
tions with L̄50 andn.1. For n52 the transformation to
conformally flat coordinates is given byz5tan(cr)/c and
the conformal factor readsA(z)52 log(11c2z2). The poten-
tial in the quantum mechanics problem is given by

VQM523c2
124c2z2

~11c2z2!2
. ~3.14!

This potential appeared previously in@10# and a similar po-
tential was discussed in detail in@9#. Unlike then51 poten-
tial, this potential asymptotes to zero for largez. There is one
discrete bound state at threshold and a continuum of st
that asymptote to plane waves asz→6`. We can repeat the
analysis above for this potential with essentially the sa
result. Imposing unitary boundary conditions eliminates
continuous spectrum, leaving only the four-dimensio
graviton, while invoking the AdS/CFT correspondence
lows us to retain the continuum. In that case the entire fi
dimension gets reinterpreted as a non-conformal field the
on the four-dimensional slice, and any bulk excitatio
should be viewed as excitations of this field theory.

IV. DISCUSSION AND SPECULATIONS

In this paper we worked out an example of a thick dom
wall that interpolates between two spaces with naked sin
larities. Our example is simple enough that we can comp
the spectrum of the graviton KK modes exactly. It is possi
to extend this solution to domain walls with cosmologic
constants in the four-dimensional slices. These domain w
can be viewed as non-singular analogues of the bent
domain walls that appeared in the literature as cosmolog
extensions of the setup in@1#.

There are other reasons for considering this type of th
wall. Thick walls with four-dimensional Minkowski slice
can be obtained from a first order ‘‘superpotential’’ forma
ism, but to find bent solutions one needs to solve the n
linear equations of motion directly. In this sense the b
walls are more generic than the flat examples.

The traditional approach to rendering naked singulari
harmless consists of imposing unitary boundary conditi
on modes propagating in the bulk. If we take this approa
for our solution or for solutions of the type studied in@1,9#,
we project out all continuum modes, leaving only the fou
dimensional graviton and other discrete modes if any ex

The AdS/CFT correspondence offers another point
view. Most of this section will be devoted to comments a
speculations about this correspondence in domain wall
tings of the type studied here and in@1,9#. We would like to
emphasize that unlike in the original AdS/CFT correspo
dence@18,28#, there is at present no precise recipe for rel
ing five-dimensional gravity to a boundary field theory
domain wall space-times of the type studied in@1#. Without
such a recipe, our comments are necessarily of a very sp
lative nature, but we hope that some of them may lead
firmer understanding of this correspondence in time.

Before discussing the thick domain walls studied here
in @9#, let us briefly review how the AdS/CFT correspo
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dence is expected to work in the scenario of@1#. The setup in
@1# consists of a thin domain wall separating the horiz
parts of two AdS spaces. Usually theZ2 symmetry of this
space-time is gauged, so that the two slices of AdS are id
tified. The location of the domain wall cuts off the Ad
space at some finite radial distance. Gravity in the slice
AdS space is expected to have a dual description a
strongly coupled cutoff CFT on the domain wall.

We can adopt these arguments and apply them to th
domain walls. Let us first consider the domain wall discuss
in @9#. It can be viewed as a non-singular version of the se
in @1#, since it interpolates between the horizon parts of t
AdS spaces. Unlike in the thin wall case, one usually d
not mod out by theZ2 symmetry of the geometry, so we hav
two independent physical AdS spaces. Since the thick
main wall smoothly connects the two slices of AdS spa
there is no sharp cutoff as in the thin wall case. A possi
interpretation of this is that a smooth domain wall corr
sponds to a soft~or softer! cutoff in the field theory. From
the field theory perspective this is more desirable than
sharp cutoff imposed by a thin wall. While there is no know
regularization scheme with a sharp cutoff that preserves fo
dimensional Poincare invariance, we have a candidate f
soft cutoff. Dimensional regularization preserves the desi
invariances and corresponds to a soft cutoff in moment
space. Thick domain walls may be more appealing from
field theory point of view, but in gravity they pose addition
challenges. For instance, it is not clear where the fo
dimensional field theory is supposed to reside, since
space does not have a boundary. This problem could po
tially be cured by orbifolding the thick domain wall, whic
introduces a boundary atz50. The geometry already has
Z2 symmetry, so orbifolding it simply identifies the two Ad
spaces, but the derivative of the scalar does not vanishz
50, so we need to put a source for it on the orbifold fix
point. Orbifolding the space should not affect our speculat
that the thick domain wall corresponds to a soft cutoff in t
CFT.

We now turn to the examples studied here. The m
difference is that we are considering thick domain walls t
interpolate between singular spaces. As mentioned bef
such singular spaces appear in AdS flows to non-confor
theories, so we speculate that we can replace our sing
five-dimensional geometry by a non-conformal fou
dimensional field theory with a soft cutoff. This speculatio
is even harder to make precise than the previous one,
cause five-dimensional gravity fails near the singularity a
higher dimensional gravity or string theory has to come
the rescue. Nonetheless, we will forge ahead and offer s
speculations on the field theory interpretations of the sin
larities we studied here.

We will discuss theL̄50 solutions given in Eq.~2.8!. For
n51 the spectrum consist of the massless four-dimensio
graviton, an excited state withm5A2c, and a continuum of
states with massesm>mgap53c/2. If we assume that ou
singular space corresponds to a non-conformal theory s
as SYM theory or QCD, we can attempt to interpret this K
spectrum. A confining theory will have a strong couplin
7-6
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THICK DOMAIN WALLS AND SINGULAR SPACES PHYSICAL REVIEW D62 044017
scale,LQCD , which sets the mass scale for the light states
the theory. We can interpret the mass gap found in the
modes as the energy needed to produce the lightest pa
in the non-conformal field theory. The presence of the m
gap in our solution at least does not automatically rule it o
Unfortunately we do not have a good interpretation for
single massive resonance in the spectrum. This state sh
not have a field theory counterpart, since it is localized
the domain wall and does not propagate out to the singu
ity. Luckily we can eliminate this state by imposing the o
bifold projection discussed above for the AdS domain w
This provides us with a boundary and eliminates this
wanted state. If a version of the AdS/CFT corresponde
can be formulated at all, it is likely to be in the orbifolde
case.

We also briefly discuss the solution forn52. The equiva-
lent quantum mechanics problem in that case cannot
solved completely, but we can obtain enough information
discuss this case in the light of the AdS/CFT corresp
dence. The spectrum in this case is very much like that fo
in @9#. We find a single massless graviton and a continuum
plane wave states with masses starting at zero. Unlike
case studied in@9# this space has naked singularities at
finite distance from the domain wall. These singularities i
ply that, if this space has a field theory interpretation,
should be in terms of a non-conformal theory. We have
ready discussed the confining case above. Since there
mass gap in then52 case, we suggest that this space m
correspond to a theory that is free in the infrared. Suc
theory would have excitations with masses that are cont
ous from zero. From the original form of the AdS/CFT co
respondence we expect the gravity description to break d
completely if the field theory becomes weakly coupled. T
.
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makes it unlikely that the singularity forn52 can be re-
solved by lifting to ten dimensions. The dual descripti
should require string theory on some highly curved manifo

Unfortunately all of our speculations follow from the a
sumption that we can use the AdS/CFT correspondenc
gain some intuition about the domain wall space-times
studied here. To make any of our statements more precis
would need a formulation of the AdS/CFT corresponden
along the lines of@28#. This is clearly a necessary ingredie
if we want to study domain walls in singular space-times
a more reliable and systematic way.

As this paper was nearing completion, Refs.@29# and@30#
appeared. These papers have no direct overlap with the
sults here, but they provide another motivation for study
singular spaces. These papers discuss an intrinsically hi
dimensional approach to solving the cosmological cons
problem. In their analysis they naturally encounter spa
with singularities at finite distances. While it is not clear
the spaces we discussed here can be used in that con
their results provide another piece of evidence that sing
spaces may play an important role in domain wall unive
scenarios.

After this paper was submitted a first order formalism f
bent thick domain walls appeared in the newest version
@8#.
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