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Gravity of higher-dimensional global defects
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Solutions of Einstein’s equations are found for global defects in a higher-dimensional spacetime with a
nonzero cosmological constantL. The defect has a (p21)-dimensional core~brane! and a ‘‘hedgehog’’ scalar
field configuration in then extra dimensions. ForL50 andn.2, the solutions are characterized by a flat
brane worldsheet and a solid angle deficit in the extra dimensions. ForL.0, one class of solutions describes
spherical branes in an inflating higher-dimensional universe. Instantons obtained by a Euclidean continuation
of such solutions describe quantum nucleation of the entire inflating brane-world, or of a spherical brane in an
inflating higher-dimensional universe. ForL,0, one class of solutions exhibits an exponential warp factor. It
is similar to spacetimes previously discussed by Randall and Sundrum forn51 and by Gregory forn52.

PACS number~s!: 04.50.1h, 98.80.Cq
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I. INTRODUCTION

In recent years there has been renewed interest in ‘‘bra
world’’ models in which the universe is represented by
~311!-dimensional subspace~3-brane! embedded in a
higher-dimensional~bulk! spacetime@1,2#. In such models,
all the familiar matter fields are constrained to live on t
brane, while gravity is free to propagate in the extra dim
sions. Initially it was thought that realistic models requir
compact extra dimensions, but it has been shown by Ran
and Sundrum@2# ~see also@14#! that it is possible to have
infinite extra dimensions and still have gravity effective
localized on the brane. This is achieved by introducing
negative cosmological constant which has the effect
‘‘warping’’ the extra-dimensional space, so that most of t
physical volume is concentrated near the brane.

In most of the recent work, including that of Randall a
Sundrum, the brane is pictured as a domain wall propaga
in a 5-dimensional bulk spacetime. The case of two ex
dimensions has also been considered, when the brane
similar to strings and the bulk has 6 dimensions. For a ga
string, the metric outside the string core is flat with a coni
deficit angle, and Sundrum@3# suggested that the extra d
mensions can be compactified by introducing a suffici
number of branes, so that the total deficit angle is equa
2p. This was generalized by Chodos and Poppitz@4# to in-
clude a positive cosmological constant. Cohen and Kap
@5# considered the case of a global sting which has a cu
ture singularity at a finite distance from the string core. Th
argued that the singularity can provide an effective comp
tification of the extra dimensions. Gregory@6# has shown
that a non-singular global string solution exists in the pr
ence of a negative cosmological constant. In this solution
extra dimensions are infinite and strongly warped, as in
Randall-Sundrum model. Garriga and Sasaki@7# discussed a
Euclidean continuation of the Randall-Sundrum spacet
and interpreted the resulting instanton as describing quan
nucleation of a 5-dimensional brane-world from nothing.

In this paper, we shall explore a more general case
brane carrying a global charge in a higher-dimensio
spacetime with a nonzero cosmological constantL. We shall
0556-2821/2000/62~4!/044014~7!/$15.00 62 0440
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consider a (p21)-dimensional brane in a bulk spacetime
D5p1n dimensions. The physically interesting case isp
54, but we shall allow an arbitraryp for greater generality.
For n53 and L50, one can expect to recover the glob
monopole metric with a solid deficit angle@8#, but for n
.3 the defects do not have 3-dimensional analogues.

The paper is organized as follows. In the next section
introduce the scalar field and metricansatzand present the
corresponding Einstein’s equations. Our solutions forL>0
and L,0 are given, respectively, in Secs. III and IV. E
clidean instanton solutions are discussed in Sec. V, and
conclusions are summarized in Sec. VI.

II. EINSTEIN’S EQUATIONS

We shall use the notation$xm% with m50, . . . ,p21 for
the coordinates on the brane worldsheet,$ja% with a
51, . . . ,n for coordinates in the extra dimensions, and$XA%
with A50, . . . ,D21 for general coordinates in th
D-dimensional spacetime.

A global defect inn extra dimensions is described by
multiplet of n scalar fieldsfa with a Lagrangian

L5
1

2
]Afa]Afa1V~f!, ~1!

where the potentialV(f) has its minimum on then-sphere
fafa5h2. One can use, for example,

V~f!5
l

4
~fafa2h2!2. ~2!

The defect solution should havef50 at the center of the
defect and approach the radial ‘‘hedgehog’’ configurati
outside the core,

fa~j!5h
ja

j
~3!
©2000 The American Physical Society14-1



or

d

a

to

the

s to
es of
d

atz
a

-
ua-

ITSASO OLASAGASTI AND ALEXANDER VILENKIN PHYSICAL REVIEW D 62 044014
with j2[jaja. We shall be interested only in the exteri
solutions, whereV(f)'0 andf(j) is accurately approxi-
mated by Eq.~3!.

We shall adopt the followingansatzfor the metric:

ds25A~j!2dj21j2dVn21
2 1B~j!2ĝmndxmdxn, ~4!

wheredVm
2 stands for the metric on a unitm-sphere, and the

spherical coordinates in the extra dimensions are define
the usual relations,ja5$j cosu1, j sinu1cosu2, . . . %. ~A
different ansatzwill be considered in Secs. III C and IV C.!
The energy-momentum tensor for the field configuration~3!
is then given by

Tj
j52

1

2
~n21!

h2

j2 ,

Tub

ua52
1

2
~n23!

h2

j2db
a ,

Tm
n 52

1

2
~n21!

h2

j2 dm
n . ~5!

Our goal will be to solve Einstein’s equations inD dimen-
sions,

RAB2
1

2
GABR5k2TAB2LGAB , ~6!

whereGAB is theD-dimensional metric,L is the cosmologi-
cal constant andTAB is from Eq.~5!. The line element~4! is
a special case of the more general class of metrics,

ds25ds̃n
21B~ja!2dŝ2, ~7!

whereds̃n depends only on the transverse coordinates$ja%
anddŝ2 only on those on the brane$xm%. For such metrics,
the Ricci tensor splits in the following way:

Rmn5R̃mn2p
B;mn

B
, ~8!

Rmn5R̂mn2ĝmn@B¹̃2B1~p21!~¹̃B!2#. ~9!

SinceTmn}ĝmn , through Einstein’s equations we have th
Rmn}ĝmn and finally, from Eq.~9! above, thatR̂mn}ĝmn .
That is, R̂, the curvature associated with the metricĝmn ,
must be constant. Einstein’s field equations then reduce

1

A2Fp~p21!S B8

B D 2

12p
n21

j

B8

B
1

~n21!~n22!

j2 G
2

n21

j2 ~n222k2h2!12L2
R̂

B2
50, ~10!
04401
by

t

1

A2F2pS B9

B
2

A8

A

B8

B D1p~p21!S B8

B D 2

1
2~n22!

j S p
B8

B
2

A8

A D1
~n23!~n22!

j2 G
2

n23

j2 ~n222k2h2!12L2
R̂

B2
50, ~11!

1

A2F2~p21!S B9

B
2

A8

A

B8

B D1
2~n21!

j S ~p21!
B8

B
2

A8

A D
1~p21!~p22!S B8

B D 2

1
~n21!~n22!

j2 G
2

n21

j2 ~n222k2h2!12L1
22p

p

R̂

B2
50, ~12!

supplemented by the equation for the metric on
(p21)-brane,

R̂mn5
R̂

p
ĝmn . ~13!

It can be shown that only two of the three equations~10!–
~12! are independent.

We have been able to find several classes of solution
this set of equations. We shall discuss separately the cas
positive and negativeL and consider both Lorentzian an
Euclidean versions of the metric.

III. SOLUTIONS WITH LÐ0

A. Class I

The first class of solutions is obtained with the ans
A(j)5B(j)21, which is the same as the one used for
global monopole in@8#. With this ansatz, Einstein’s equa
tions are considerably simplified. The two independent eq
tions can be written as

~p11!
A8

A3
j2

n22

A2 1~n22!2k2h22
2L

n1p22
j250,

~14!

2
A9

A3
1~p12!S A8

A2D 2

2
~n21!

j

A8

A3
2

R̂

p
A21

2L

n1p22
50,

~15!

and we find the following solution:

A22~j!5B2~j!512
k2h2

n22
2

2L

~n1p22!~n1p21!
j2

~16!

R̂5
2Lp~p21!

~n1p21!~n1p22!S 12
k2h2

n22D . ~17!
4-2
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GRAVITY OF HIGHER-DIMENSIONAL GLOBAL DEFECTS PHYSICAL REVIEW D62 044014
The solution~16! is only valid for n.2. For n53 and
L50, the transverse to the brane part of the solution co
cides with the metric of a global monopole. In higher dime
sions,n.3, the form of the metric is quite similar: the defe
introduces a solid angle deficit in extra dimensions. This
remarkable, considering the fact that defect solutions
quite different forn51,2.

With an appropriate rescaling of the coordinates, theL
50, n>3 solution can be written as

ds25dj21S 12
k2h2

n22D j2dVn21
2 1hmndxmdxn, ~18!

wherehmn is the Minkowski metric. As the symmetry break
ing scaleh is increased, the solid angle deficit grows a
eventually consumes the entire solid angle at the crit
value

hc5~n22!1/2k21. ~19!

One expects that the transverse dimensions in this case
the geometry of an infinite cylinder whose cross sections
(n21)-spheres of a fixed radius. This expectation will
verified in Sec. III C.

We next consider solutions withL.0. Requiring that the
right-hand side of Eq.~16! is positive, we should have
k2h2/(n22),1, so thatR̂.0, andj should be constrained
to the interval 0,j,jm wherejm , defined by the condition
B(jm)50, is

jm
2 5

~n1p22!~n1p21!

2L S 12
k2h2

n22D . ~20!

Another form of the metric can be obtained using the tra
formation:

j5jmsinx, ~21!

which gives

ds25K@dx21a2sin2xdVn21
2 1cos2xdŝ1

2 #, ~22!

R̂5p~p21!, ~23!

where

K5~n1p21!~n1p22!/2uLu, ~24!

a25U12
k2h2

n22U, ~25!

and x varies in the interval 0,x,p. The absolute value
signs on the right-hand sides of Eqs.~24!,~25! are introduced
for later use.

The positive-curvature metricdŝ1
2 can be given by any

solution of Eq.~13! with R̂ from Eq. ~23!. In this paper we
shall assume it to be thep-dimensional de Sitter space,

dŝ1
2 5~2dt21cosh2 tdVp21

2 !. ~26!
04401
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This is the case of highest symmetry, when all points on
brane worldsheet are equivalent.

The transverse part of the solution~22! describes an
n-sphere with a solid angle deficit. This may create an i
pression that the extra dimensions are compactified wit
fixed compactification radius;AK. However, this impres-
sion is misleading. In the limith→0, the deficit angle van-
ishes, and the metric ~22!,~26! becomes that of
(p1n)-dimensional de Sitter space written in somewhat u
familiar coordinates@9#. With a more familiar form of de
Sitter metric,

ds25K~2dt21cosh2tdVp1n21
2 !, ~27!

it is clear that all dimensions are equally large and expa
ing. Spatial sections of the universe are (p1n21)-spheres,
and spatial sections of the brane are (p21)-spheres of the
same radius. So the brane is wrapped around the univ
along one of the ‘‘big circles.’’ Both the brane and the un
verse expand exponentially with time. A nonzeroh intro-
duces a deficit angle, but does not change the qualita
character of the spacetime.

We note that de Sitter space also appears to be stat
the coordinates

ds25K~2cos2c dt21dc21sin2c dVp1n22
2 !. ~28!

The reason for this is well known: this coordinate syste
does not cover the whole spacetime; it covers only the in
rior of a sphere of radius equal to the de Sitter horizon. O
solution ~22!,~26! uses a mixed representation in which t
metric has a static form like Eq.~28! in the transverse di-
mensions and an expanding form like Eq.~27! on the brane.
The coordinate system in Eq.~22! covers the region from
x50 to the horizon surfacex5p/2 where the determinan
of the metric vanishes, indicating a coordinate singularity

The metric~22! is somewhat similar to the dilatonic strin
solution found by Dando and Gregory@10#. They interpreted
their solution as describing a string-antistring pair in a u
verse with compact static transverse dimensions. Our in
pretation of Eq.~22! is quite different, and we believe
similar interpretation should also apply to the Dand
Gregory solution.

The induced metric on the brane isdsp
25Kdŝ2, and the

curvature of the brane worldsheet is

Rp5
2Lp~p21!

~n1p21!~n1p22!
. ~29!

This shows that the curvature of the brane is determined o
by the cosmological constantL, while the symmetry break-
ing scaleh affects only the deficit angle in the extra dime
sions.

The solution~22! has curvature singularities atx50,p
~sinceTA

B is singular there!, but these singularities are rathe
mild, and the metric coefficients are non-singular. O
should remember that Eq.~22! gives a solution only in the
exterior region outside the defect core. But since the me
is well behaved atx→0,p, one can expect that it gives
4-3
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reasonably accurate representation of the full spacetim
the limit when the defect thicknessd can be neglected,d
!jm .

B. Class II

We find another solution to Eqs.~10!–~12! by considering
a different ansatz:B(j)5j. Again the equations simplify
considerably and it is possible to find an analytic solution

A22~j!5
n222k2h2

n1p22
2

2L

~n1p22!~n1p21!
j2,

~30!
B~j!5j

R̂5p~n222k2h2!. ~31!

As in the previous case, forL.0 we have from the condi
tion A2.0 that n222k2h2.0, and thusR̂.0 and j is
constrained to the interval 0,j,jm with

jm
2 5

~n1p21!~n222k2h2!

2L
. ~32!

As before, we redefine the radial coordinate as

j5jmsinx, ~33!

and the metric takes the form

ds25K@dx21ã2sin2x~dVn21
2 1dŝ2!# ~34!

whereK is given by Eq.~24!,

ã25Un222k2h2

n1p22 U, ~35!

dŝ2 stands for ap-dimensional spacetime of constant curv
ture R̂5p(p21), andx takes values in the interval 0,x
,p.

An unphysical feature of the solution~34! is that the defi-
cit angle does not vanish even forh50, that is, in the ab-
sence of a defect. We have verified that the curvature inv
ant RmnstRmnst diverges at x50,p for h50. These
singularities appear to be unrelated to the defect, and
dismiss class-II solutions as unphysical.

C. Class III

As we mentioned in Sec. III A, the ‘‘conical’’ geometr
of the extra dimensions is expected to degenerate into a
inder at some critical value of the symmetry breaking sc
h. In order to verify this expectation, we introduce the fo
lowing ansatz:

ds25dj21C2dVn21
2 1B~j!2dŝ2, ~36!

whereC is a constant radius of the (n21)-spheres. This is
again of the form~7!, so Eqs.~8!, ~9! can be used, and w
obtain
04401
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2p
B9

B
2

2L

n1p22
50, ~37!

n222k2h2

C2 2
2L

n1p22
50, ~38!

1

p

R̂

B2
2

B9

B
2~p21!S B8

B D 2

2
2L

n1p22
50. ~39!

For L50, Eq. ~38! gives h5(n22)1/2k21, which agrees
with the critical value~19!. From Eq.~37!, B85const, and it
follows from Eq.~39! that the worldsheet curvatureR̂ can be
either positive or zero. ForR̂50, B5const, and the solution
is

ds25dj21C2dVn21
2 1hmndxmdxn. ~40!

The radius of the cylinderC is arbitrary; we expect it to be
determined by matching to an appropriate interior solution
the defect core, with the complete geometry being that o
‘‘cigar.’’

For R̂.0 and with a suitable normalization of the radi
coordinate, the solution can be written as

ds25C2dVn21
2 1dx21x2dŝ1

2 ~41!

with dŝ1
2 from Eq. ~26!. It can be shown that the last tw

terms in the metric~41! describe a (p11)-dimensional
Minkowski space in unfamiliar coordinates@11#. This metric
is therefore equivalent to Eq.~40!.

For L.0, Eq. ~38! gives

C25~n1p22!~n222k2h2!/2L, ~42!

and we find a solution of the form

ds25C2dVn21
2 1v22~dx21sin2xdŝ1

2 !, ~43!

where

v5A 2L

p~n1p22!
. ~44!

The last two terms in the metric~43! describe a
(p11)-dimensional de Sitter space. Note that, in contras
the L50 case, solutions now exist for all values ofh
,hc , while for h5hc the solution becomes singular, wit
C50. This shows that the flat cylindrical solution~40! with
h5hc is unstable with respect to the introduction of an a
bitrarily small cosmological constantL.

IV. SOLUTIONS WITH LË0

The solutions~16! and ~30! given in the previous section
also allow for negative values ofL. There are actually three
different possibilities, since nown222k2h2 can be either
positive, negative, or zero.
4-4
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A. Class I

For L,0 and depending on the sign ofn222k2h2, we
can define a new radial coordinatex as

j5AKa sinhx, AKex, AKa coshx ~45!

for n222k2h2 less, equal and greater than zero, resp
tively. The range for the new coordinate is 0<x,` in the
first case and2`,x,` in the other two. Then we can
write the metric as

R̂,0: ds25K@dx21a2sinh2xdVn21
2 1cosh2xdŝ2

2 #,
~46!

R̂50: ds25K@dx21e2x~dVn21
2 1dŝ0

2!#, ~47!

R̂.0: ds25K@dx21a2cosh2xdVn21
2 1sinh2xdŝ1

2 #.
~48!

Here, dŝ6
2 is the metric on a space of constant curvatu

satisfying Eq.~13! with R̂56p(p21), anddŝ0
2 is a Ricci-

flat metric. In the case of negative curvature, we can cho
for example, the anti–de Sitter space

dŝ2
2 5@2dt21sin2t~dc21sinh2cdVp22

2 !#. ~49!

Flat space metric can be used fordŝ0
2, and the de Sitter

metrics~26! can be used for the constant positive curvat
spacedŝ1

2 .

For R̂,0, the defect is located atx50. For R̂50 it is
removed tox52`, and forR̂.0 there is no defect at all. In
the latter case, there is a minimum radius for t
(n21)-spheres in the extra dimensions,r min5Ka. We thus
have a wormhole connecting a monopole configuration ax
.0 with an antimonopole configuration atx,0.

B. Class II

For the solutions defined by expressions~30! we find a
similar situation. With a new coordinatex defined as in Eq.
~45!, but with a replaced byã, we have

R̂.0: ds25K@dx21ã2sinh2x~dVn21
2 1dŝ1

2 !#
~50!

R̂50: ds25K@dx21e2x~dVn21
2 1dŝ0

2!# ~51!

R̂,0: ds25K@dx21ã2cosh2x~dVn21
2 1dŝ2

2 !#.
~52!

Once again, the metric~50! is singular atx50 even in the
absence of a defect (h50), and we dismiss this solution a
unphysical.

C. Class III

We finally consider the cylindrical metric ansatz~36!. The
solutions of Eqs.~37!–~39! for L,0 have the form
04401
-

e

e,

e

R̂.0: ds25C2dVn21
2 1v22~dx21sinh2xdŝ1

2 !,
~53!

R̂,0: ds25C2dVn21
2 1v22~dx21cosh2xdŝ2

2 !,
~54!

R̂50: ds25C2dVn21
2 1dx21e62vxdŝ0

2 , ~55!

where

v5A 22L

p~n1p22!
, ~56!

C252~n1p22!@k2h22~n22!#/2L. ~57!

Of greatest interest are the flat brane solutions~55! which
generalize the solutions considered by Gregory@6# in the n
52 case. The geometry of the extra dimensions in the me
~55! is that of a cylinder with a cross section being ann
21)-sphere of a fixed radiusC. It would be interesting if this
solution could be matched to an appropriate interior soluti
so that the complete geometry is that of a ‘‘cigar.’’ Grego
@6# has argued that this is possible forn52, but her analysis
does not directly apply ton>3.

Cigar-like defect solutions with an exponential warp fa
tor would be of interest, since they would have features si
lar to those of the Randall-Sundrum geometry. If the bran
located atx50 and the asymptotic metric is given by E
~55! with a negative sign in the exponential, then the volum
of the extra dimensions would be finite, despite their infin
extent in thex direction. As in the Randall-Sundrum cas
most of the volume would be concentrated near the bra
and one can expect that gravitons would be effectively c
fined to the brane.

The right-hand side of Eq.~57! should be positive, so we
must havek2h22(n22).0. While this does not give any
additional information forn52, this condition requires a
super-Planckian symmetry breaking scale,h.k21, for the
defects whenn.2.

V. INSTANTON SOLUTIONS

Euclidean continuations of brane-world solutions are
interest, since they can be interpreted as gravitational ins
tons describing quantum nucleation of a brane-world. T
nucleation probability is given by

P}e6uSu, ~58!

where S is the instanton action. The choice of sign in th
exponential is determined by the choice of boundary con
tions for the wave function of the universe. The lower sign
chosen for the tunneling and Linde boundary conditions, a
the upper sign for the Hartle-Hawking boundary conditi
@12#. For definiteness we shall adopt the tunneling bound
condition below.

For the instantons to give a nonvanishing contribution
the nucleation probability, they must have a finite actio
with instantons of the smallest absolute value of the act
4-5
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giving the dominant contribution. The action is typically e
tremized for solutions of the highest symmetry, so we sh
consider instantons withdŝ1

2 , dŝ2
2 anddŝ0

2 being maximally
symmetric spaces of positive, negative and zero curvat
that is, Euclidean de Sitter, anti–de Sitter, and flat spa
respectively.

The Euclidean action for our model is given by

S52
1

2k2E d(n1p)xA2g@R22L22k2L~f!#, ~59!

whereR is the D-dimensional scalar curvature andL(f) is
the scalar field Lagrangian. We can eliminateR by making
use of Einstein’s equations to obtain

R52k2L~f!1
2~n1p!

n1p22
L ~60!

and

S52
L

k2~n1p22!
E dn1pxA2g . ~61!

For class-I and class-II solutions withL,0, the volume
of the transverse space is infinite, anduSu5`. If cigar-like
class-III solutions exist, they may have a finite transve
volume, but the action is still infinite due to the divergen
of the p-dimensional volume of the flat brane worldshe
Hence, we only need to consider solutions withL.0. In this
case the curvature of the brane must be positive,R̂.0, and
thus the metricdŝ2 should be that of a Euclidean de Sitt
space, that is, ap-sphere:

dsE
25K@dx21a2sin2xdVn21

2

1cos2x~dc21sinc2dVp21
2 !#. ~62!

One can model the nucleation of a closed universe wit
brane by allowingc to vary in the interval@0,p/2# in the
Euclidean region and then continuing it in the imagina
direction in the Lorentzian region,c5p/21 i t . This turns
Eq. ~62! into the metric

ds25K@dx21a2sin2xdVn21
2

1cos2x~2dt21cosh2tdVp21
2 !# ~63!

describing an expanding braneworld.
We can easily calculate the action for the instanton so

tion ~62!:

S5
1

2k2

Vp

2
V(n21)K

(n1p)/2an21E
0

p

dxucosxup~sinx!(n21)

3
4L

n1p22
~64!

5
4

k2

Ap (n1p11)

G@~n1p21!/2#
K (n1p22)/2an21. ~65!
04401
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whereVk stands for the volume of a k-sphere of unit radiu
that is,Vk52p (k11)/2/G@(k11)/2#.

Apart from nucleation of the entire brane-world, the i
stanton~62! can also describe nucleation of spherical bran
in an inflating (n1p)-dimensional de Sitter space. The sit
ation here is very similar to the nucleation of circular loo
of string and of spherical domain walls in a~311!-
dimensional de Sitter space, as discussed by Basuet al. @13#.
The nucleation rate is given by

G}e2B ~66!

with

B5S2S0 , ~67!

whereS is the instanton action andS0 is the action for the
Euclidean de Sitter space without a brane. From Eq.~65! we
have

B5
4

k2

p (n1p11)/2

G@~n1p21!/2#
K (n1p22)/2~12an21!. ~68!

The initial radius of the brane isr 5AK. After nucleation,
it is stretched by the exponential expansion of the univer

VI. CONCLUSIONS

In this paper we have found a number of solutions d
scribing global defects in a higher-dimensional space.
assumed that the core of the defect is centered o
(p21)-dimensional brane and concentrated on the c
when the number of extra dimensions isn>3.

In the absence of a cosmological constant, we found
for all n>3 the defect solution is very similar to that for
global monopole@8#. The brane worldsheet is flat, and the
is a solid angle deficit in the extra dimensions. This is rat
surprising, considering the fact that solutions are very diff
ent for n51 andn52. The maximal solid angle deficit is
reached at the critical valuehc5(n22)1/2k21, when the
transverse metric becomes that of a cylinder.

For a positive cosmological constant,L.0, our solutions
describe spherical branes in an inflating higher-dimensio
universe. In the limith→0, when the gravitational effect o
the defect can be neglected, the universe can be picture
an expanding (p1n21)-dimensional sphere with a bran
wrapped around it in the form of a sphere of lower dime
sionality (p21). A nonzeroh introduces a deficit angle in
the dimensions orthogonal to the brane worldsheet. It is
teresting that the expansion rate of the universe~and of the
brane! is independent of the symmetry breaking scaleh and
is determined only byL, while the deficit angle is deter
mined byh and independent ofL. Gravitational instantons
obtained by a Euclidean continuation of this class of so
tions have the geometry of a (p1n)-sphere with the brane
represented by a maximalp-sphere and with a deficit solid
angle in the dimensions transverse to the brane. These
stantons can be interpreted as describing quantum nucle
either of the entire brane-world, or of a spherical brane in
inflating (p1n21)-dimensional universe.
4-6
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Another class of solutions has curvature singularities e
in the absence of a defect (h50), and we have dismisse
such solutions as unphysical.

The third class of solutions has the geometry of ap
11)-dimensional de Sitter space, with the remainingn
21) dimensions having the geometry of a cylinder.

We have also found 3 classes of solutions forL,0. The
first two are essentially analytic continuations of t
positive-L solutions. The third class is similar to Randa
Sundrum (n51) and Gregory (n52) solutions, exhibiting
an exponential warp factor. If solutions of the third class c
B

se

04401
n

n

be matched to appropriate interior solutions in the def
core, one may be able to use them as a basis for real
brane-world models.
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