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Gravity of higher-dimensional global defects
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Solutions of Einstein’s equations are found for global defects in a higher-dimensional spacetime with a
nonzero cosmological constafit The defect has g(— 1)-dimensional cor¢brang and a “hedgehog” scalar
field configuration in then extra dimensions. FoA =0 andn>2, the solutions are characterized by a flat
brane worldsheet and a solid angle deficit in the extra dimensions\ Bdr, one class of solutions describes
spherical branes in an inflating higher-dimensional universe. Instantons obtained by a Euclidean continuation
of such solutions describe quantum nucleation of the entire inflating brane-world, or of a spherical brane in an
inflating higher-dimensional universe. FA<0, one class of solutions exhibits an exponential warp factor. It
is similar to spacetimes previously discussed by Randall and Sundrum=fttrand by Gregory fon=2.

PACS numbd(s): 04.50:+h, 98.80.Cq

[. INTRODUCTION consider a p— 1)-dimensional brane in a bulk spacetime of
D=p+n dimensions. The physically interesting casepis
In recent years there has been renewed interest in “brane=4, but we shall allow an arbitrany for greater generality.
world” models in which the universe is represented by aFor n=3 and A =0, one can expect to recover the global
(3+1)-dimensional subspacg3-brangé embedded in a monopole metric with a solid deficit anglé], but for n
higher-dimensionalbulk) spacetimg1,2]. In such models, >3 the defects do not have 3-dimensional analogues.
all the familiar matter fields are constrained to live on the The paper is organized as follows. In the next section we
brane, while gravity is free to propagate in the extra dimenintroduce the scalar field and met@msatzand present the
sions. Initially it was thought that realistic models requiredcorresponding Einstein’s equations. Our solutionsfcr 0
compact extra dimensions, but it has been shown by Randatind A<0 are given, respectively, in Secs. Ill and IV. Eu-
and Sundruni2] (see alsd14]) that it is possible to have clidean instanton solutions are discussed in Sec. V, and our
infinite extra dimensions and still have gravity effectively conclusions are summarized in Sec. VI.
localized on the brane. This is achieved by introducing a
negative cosmological constant which has the effect of
“warping” the extra-dimensional space, so that most of the
physical volume is concentrated near the brane.
In most of the recent work, including that of Randall and  We shall use the notatiojx*} with ©=0, ... p—1 for
Sundrum, the brane is pictured as a domain wall propagatingthe coordinates on the brane worldsheg?®} with a
in a 5-dimensional bulk spacetime. The case of two extra=1, ... n for coordinates in the extra dimensions, a[n’d\}
dimensions has also been considered, when the branes a#h A=0,...D—1 for general coordinates in the
similar to strings and the bulk has 6 dimensions. For a gaugp-dimensional spacetime.
string, the metric outside the string core is flat with a conical A global defect inn extra dimensions is described by a
deficit angle, and Sundruif8] suggested that the extra di- multiplet of n scalar fields$® with a Lagrangian
mensions can be compactified by introducing a sufficient
number of branes, so that the total deficit angle is equal to 1
2. This was generalized by Chodos and Poppitzto in- L= = a2 $2+V(¢), (1)
clude a positive cosmological constant. Cohen and Kaplan 2
[5] considered the case of a global sting which has a curva-
ture singularity at a finite distance from the string core. Theywhere the potential/($) has its minimum on the-sphere
argued that the singularity can provide an effective compac$®#*= 7. One can use, for example,
tification of the extra dimensions. Gregof§] has shown
that a non-singular global string solution exists in the pres- N e o
ence of a negative cosmological constant. In this solution the V(¢)= 7 (7%= 77" 2
extra dimensions are infinite and strongly warped, as in the

RanQaII-Sundrqm mpdel. Garriga and Sagalidiscussed & The defect solution should hawe=0 at the center of the
Euclidean continuation of the Randall-Sundrum spacetime L 9’ . :

. o o defect and approach the radial “hedgehog” configuration
and interpreted the resulting instanton as describing quantum, ~.

: : . : outside the core,
nucleation of a 5-dimensional brane-world from nothing.
In this paper, we shall explore a more general case of a a

brane carrying a global charge in a higher-dimensional H3(E) = 7]5 3)

spacetime with a nonzero cosmological constantVe shall

II. EINSTEIN'S EQUATIONS

3
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with £2=¢3¢2. We shall be interested only in the exterior

solutions, where/(¢)~0 and ¢(¢) is accurately approxi-
mated by Eq(3).
We shall adopt the followingnsatzfor the metric:

ds?=A(§)2dE2+ £2d02 1 +B(£)%g,,dx*dx”,  (4)

whered()2 stands for the metric on a unit-sphere, and the
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spherical coordinates in the extra dimensions are defined by

the usual relations£?={¢cosé,, &sinéicosh,, ...} . (A
different ansatzwill be considered in Secs. IIIC and IVLC.
The energy-momentum tensor for the field configurati®n
is then given by

1 7?
. _ “(n—
=50,

2

1 ]
03_
Toy=- E(n—3)gz5ﬁ,

2
7w
20, 5

L1
Ti=-3(0-D3

Our goal will be to solve Einstein’s equations [n dimen-
sions,

1
Rag— EGABR: k*Tpg—AGag, (6)

whereG g is the D-dimensional metricA is the cosmologi-
cal constant and 5 is from Eq.(5). The line element4) is
a special case of the more general class of metrics,

d?=ds’+B(£2)%d, 7)

whereds, depends only on the transverse coordindi&s

andds® only on those on the brafe”}. For such metrics,
the Ricci tensor splits in the following way:

B;mn

Rmnzﬁmn_ p B '

)

R,,=R,,—0,.[BV?B+(p—1)(VB)?]. (9)

%

SinceTMocélw, through Einstein’s equations we have that

RWOCQWAand finally, from Eq.(9) above, thaﬂiwocgw.
That is, R, the curvature associated with the metgg,,

must be constant. Einstein’s field equations then reduce to

!

1
a2 p(p—l)(E

2 n—1B’

L2p (n—1)(n—2)

T BT 2

——z(n—Z—Kzﬁz)-FZA—E:O (10
3 B2

B’ A') (n—3)(n—2)
PR AT @
_ns —(n—2— K27]2)+2A—E:O (11
¢ B2
1 B” A'B'\ 2(n—-1) B A
?[Z(p_l)(E_X§+ E ((p_l)E_X)
B’\? (n—-1)(n—2)
+(p—1)<p—2>(§) +T}
_n1 (n—2— K2n2)+2A+2LE=o (12)
e p B2

supplemented by the equation for the metric on the
(p—1)-brane,

(13

It can be shown that only two of the three equatidh@)—
(12) are independent.

We have been able to find several classes of solutions to
this set of equations. We shall discuss separately the cases of
positive and negativé\ and consider both Lorentzian and
Euclidean versions of the metric.

IIl. SOLUTIONS WITH A=0
A. Class |

The first class of solutions is obtained with the ansatz
A(&)=B(&) 1, which is the same as the one used for a
global monopole in8]. With this ansatz, Einstein’s equa-
tions are considerably simplified. The two independent equa-
tions can be written as

A’ n—-2 2A

A oy 2.2 2_
(p+1)A3§ —az t(n=2)=«"y Nt p— 5¢=0,
(14)
" o[~ ® (n-1)A R, 2A .
Ta P T e e e
(15
and we find the following solution:
K> P 2A
-2 _R2 _1_ 2
A (O=BYO=1" (n+p—2)(n+p—l)g
(16)
. 2Ap(p—1 2n?
B p(p—1) [, «n) a
(n+p—1)(n+p—2)\ = n-2

044014-2



GRAVITY OF HIGHER-DIMENSIONAL GLOBAL DEFECTS PHYSICAL REVIEW D62 044014

The solution(16) is only valid forn>2. Forn=3 and This is the case of highest symmetry, when all points on the
A =0, the transverse to the brane part of the solution coinbrane worldsheet are equivalent.
cides with the metric of a global monopole. In higher dimen- The transverse part of the solutidi22) describes an
sions,n>3, the form of the metric is quite similar: the defect n-sphere with a solid angle deficit. This may create an im-
introduces a solid angle deficit in extra dimensions. This igpression that the extra dimensions are compactified with a
remarkable, considering the fact that defect solutions aréixed compactification radius- K. However, this impres-

quite different forn=1,2. sion is misleading. In the limiy— 0, the deficit angle van-
With an appropriate rescaling of the coordinates, the ishes, and the metric(22),(26) becomes that of
=0, n=3 solution can be written as (p+n)-dimensional de Sitter space written in somewhat un-

familiar coordinated9]. With a more familiar form of de

2 . .
2 Sitter metric,

K-n
n—2

d32:d§2+(1— )gZdQﬁ_ﬁanxﬂdxﬂ (18

ds’=K(—dt?+cosftdQj, . ,), (27)
wherey,,, is the Minkowski metric. As the symmetry break-
ing scaley is increased, the solid angle deficit grows andit is clear that all dimensions are equally large and expand-
eventually consumes the entire solid angle at the criticaing. Spatial sections of the universe apHn—1)-spheres,
value and spatial sections of the brane ape—(1)-spheres of the

same radius. So the brane is wrapped around the universe
nc=(n—2)"%"1. (19 along one of the “big circles.” Both the brane and the uni-

verse expand exponentially with time. A nonzesointro-

One expects that the transverse dimensions in this case ha&ﬁces a deficit angle, but does not change the qualitative

the geometry of an infi_nite cylinder Wh_ose Cross s_ectiops arharacter of the spacetime.
(n—1)-spheres of a fixed radius. This expectation will bé "~ \ye note that de Sitter space also appears to be static in
verified in Sec. Il C. the coordinates
We next consider solutions with>0. Requiring that the
rlgzjhtz-hand side of Eq(16) is positive, we should have d=K(—cody dt2+d¢2+sin2¢d9,2)+n_2). (28)
k“np7/(n—2)<1, so thatR>0, and¢ should be constrained
to the interval G<é<¢,, whereé,,, defined by the condition The reason for this is well known: this coordinate system
B(¢n) =0, is does not cover the whole spacetime; it covers only the inte-
rior of a sphere of radius equal to the de Sitter horizon. Our
, (n+p=2)(n+p—1) 1 K20’ solution (22),(26) uses a mixed representation in which the
m- 2A n—-2/° metric has a static form like Eq28) in the transverse di-
mensions and an expanding form like Eg7) on the brane.
Another form of the metric can be obtained using the transThe coordinate system in E¢22) covers the region from

(20

formation: x=0 to the horizon surfacg = 7/2 where the determinant
) of the metric vanishes, indicating a coordinate singularity.
E=&msiny, (21) The metric(22) is somewhat similar to the dilatonic string
solution found by Dando and Gre . They interpreted
which gives - . y 9030} yi P

their solution as describing a string-antistring pair in a uni-
verse with compact static transverse dimensions. Our inter-
pretation of Eq.(22) is quite different, and we believe a

. similar interpretation should also apply to the Dando-
R=p(p—1), (23 Gregory solution.

The induced metric on the brane d$§:Kd§2, and the

ds?=K[dy?+ a®sifxdQ2_,+cofxds:], (22

where curvature of the brane worldsheet is
K=(n+p—1)(n+p—2)/2|A], 24
(n+p—1)(n+p—2)/2/A| (24 _ 20ppen) 2
K2772 p_(n+p—1)(n+p—2)'
a2=‘1— 5| (25)

This shows that the curvature of the brane is determined only
by the cosmological constark, while the symmetry break-
ing scaleyn affects only the deficit angle in the extra dimen-
sions.

and y varies in the interval & y<<w. The absolute value
signs on the right-hand sides of E¢24),(25) are introduced

for later use. . . -
Th i ¢ tid2 be ai b The solution(22) has curvature singularities gt=0,7
'€ positive-curvature metrids, can be given by any  since T8 is singular therg but these singularities are rather
solution of Eq.(13) with R from Eq. (23). In this paper we mjid, and the metric coefficients are non-singular. One

shall assume it to be thedimensional de Sitter space, should remember that Eq22) gives a solution only in the
- 5 ) exterior region outside the defect core. But since the metric
ds?=(—dt*+cosiftdQ}_,). (26)  is well behaved afy— 0,7, one can expect that it gives a
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reasonably accurate representation of the full spacetime in B” 2A
the limit when the defect thickness can be neglecteds PE T hipo2 0, (37
<¢.
n—2—«?7n? 2A 0 38
B. Class II cz i (38)
We find another solution to Eq&L0)—(12) by considering
a dif_fgren;c)lansa;z_tB_(g):§._Qge:inf_th§ equati(l)r:_s sinI]ptl_ify_ 1R B . B'\2 2\ L o
considerably and it is possible to find an analytic solution: BE_E_(p_ ) B Tnep=z2 % (39
s n—2—«29? 2A )
A= ntp—2 (n+p—2)(n+p—1)§ , For A=0, Eq. (38 gives n=(n—2)Y?«"1, which agrees
(30 with the critical valug(19). From Eq.(37), B’ =const, and it
B(¢)=¢ follows from Eq.(39) that the worldsheet curvatufecan be
R either positive or zero. FdR=0, B=const, and the solution
R=p(n—2—«k27?). (31) is
As in the previous case, fok>0 we have from the condi- ds?=d&?+C2d02_, + 7,,dxdX”. (40)
tion A>>0 thatn—2—«?%%>0, and thusR>0 and ¢ is
constrained to the interval<9£< &, with The radius of the cylinde€ is arbitrary; we expect it to be
determined by matching to an appropriate interior solution in
, (n+p=1)(n—2- K2>n?) the defect core, with the complete geometry being that of a
m= oA : (32 “cigar.”
For R>0 and with a suitable normalization of the radial
As before, we redefine the radial coordinate as coordinate, the solution can be written as
&= E&msiny, (33 ds?=C2d02_,+dy?+ x?ds2 (41)

and the metric takes the form with dAsi from Eg. (26). It can be shown that the last two

_ 24 T2 2 s terms in the metric(41) describe a (f+ 1)-dimensional
ds'=K[dx*+ a”six(dQ;_, +ds")] 39 Minkowski space in unfamiliar coordinatg$l]. This metric
whereK is given by Eq.(24) is therefore equivalent to E¢40).
’ For A>0, Eq.(38) gives
n—2-—«? 772
n+p—2

2= , (35 C?=(n+p—2)(n—2—«?7?)I2A, (42

o

A . : . and we find a solution of the form
ds? stands for g-dimensional spacetime of constant curva-

ture R=p(p—1), and y takes values in the interval<Oy dsz=C2dQﬁ_1+w*Z(dX2+sin2XdAsi), (43)
<.

An unphysical feature of the solutidB4) is that the defi- \yhere
cit angle does not vanish even fg=0, that is, in the ab-
sence of a defect. We have verified that the curvature invari- [ 2A
ant R“""R,,,,, diverges at y=0,m for 7=0. These ©=\ ST o2 (44
singularities appear to be unrelated to the defect, and we p(n+p=2)

dismiss class-Il solutions as unphysical. The last two terms in the metriq43) describe a

(p+1)-dimensional de Sitter space. Note that, in contrast to
C. Class i the A=0 case, solutions now exist for all values of
As we mentioned in Sec. Il A, the “conical” geometry <., while for = 7. the solution becomes singular, with
of the extra dimensions is expected to degenerate into a cye=0. This shows that the flat cylindrical soluti¢40) with
inder at some critical value of the symmetry breaking scalen= 7. is unstable with respect to the introduction of an ar-
n. In order to verify this expectation, we introduce the fol- bitrarily small cosmological constar.
lowing ansatz:

“ IV. SOLUTIONS WITH A<O
ds’=d&?+C2d02_, +B(£)%ds?, (36)

The solutiong16) and(30) given in the previous section
whereC is a constant radius of then(-1)-spheres. This is also allow for negative values @. There are actually three
again of the form(7), so Egs.(8), (9) can be used, and we different possibilities, since now—2— x?%? can be either
obtain positive, negative, or zero.
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A Class | R>0: d?=C2d02 ,+w X(dy2+sinifyds),
For A<0 and depending on the sign pf-2— 27?2, we (53
can define a new radial coordinateas
R<0: ds?=C2d02% ,+w 2(dy?+costyds?),
é=\Kasinhy, Ke¥, Kacoshy (45 o (54)

for n—2—«?7? less, equal and greater than zero, respec- a 24002 2 Dy

. ’ : : o R=0: ds$’?=C2dQ;_,+dy*+e"?°xd 55
tively. The range for the new coordinate issq <« in the n-17EX 5(2) (55
first case and-c«<y< in the other two. Then we can \yhere

write the metric as

- . - [ —2A
R<0: ds?=K[dy?+ a’sintfxdQ2_,+costyds’], w= p(ntp—2)’ (56)

(46)
. - 2= —(n+p- 22— (n— .
R=0: d=K[dy?+e2X(d0? ,+d)], 47) C=-(rp=2lty—(n=2))2A. 57
R R Of greatest interest are the flat brane soluti@® which
R>0: ds?=K[dyx?+ a?cosifydQ2_,+sintPyds’]. generalize the solutions considered by Gred@lin the n
(48) =2 case. The geometry of the extra dimensions in the metric

R (55) is that of a cylinder with a cross section being an (
Here, ds: is the metric on a space of constant curvature— 1)-sphere of a fixed radiu@. It would be interesting if this
satisfying Eq.(13) with R=+ p(p—1), andd% is a Ricci-  solution could be matched to an appropriate interior solution,
flat metric. In the case of negative curvature, we can choos&0 that the complete geometry is that of a “cigar.” Gregory

for example, the anti—de Sitter space [6] has argued that this is possible for2, but her analysis
does not directly apply to=3.
ds” =[ —dt?+sirft(dy?+sintfydQ3 )] (49 Cigar-like defect solutions with an exponential warp fac-

tor would be of interest, since they would have features simi-
Flat space metric can be used fd&2, and the de Sitter lar to those of the Randall-Sundrum geometry. If the brane is

metrics(26) can be used for the constant positive curvaturdocated aty=0 and the asymptotic metric is given by Eq.
spaced<? (55) with a negative sign in the exponential, then the volume
2

- ) A o of the extra dimensions would be finite, despite their infinite
For R<0, the defect is located at=0. ForR=0itis  extent in they direction. As in the Randall-Sundrum case,

removed toy= —<, and forR>0 there is no defect at all. In  most of the volume would be concentrated near the brane,

the latter case, there is a minimum radius for theand one can expect that gravitons would be effectively con-

(n—1)-spheres in the extra dimensiong,,=Ka. We thus  fined to the brane.

have a wormhole connecting a monopole configuratiog at ~ The right-hand side of Eq57) should be positive, so we

>0 with an antimonopole configuration g 0. must havex?7?—(n—2)>0. While this does not give any
additional information forn=2, this condition requires a
B. Class Il super-Planckian symmetry breaking scale> 1, for the

For the solutions defined by expressidi3®) we find a defects whem=>2.

similar situation. With a new coordinajpe defined as in Eq.

(45), but with « replaced by, we have V- INSTANTON SOLUTIONS
~ _ . Euclidean continuations of brane-world solutions are of
R>0: ds’=K[dy?+a’sintPx(dQj_,+ds?)] interest, since they can be interpreted as gravitational instan-

(50 tons describing quantum nucleation of a brane-world. The
nucleation probability is given by
R=0: ds?=K[dy?+e*X(dQ2_,+dd)] (51)
Pre*ls (58)
R<0: ds?=K[dy?+a?cosify(dQ2_,+ds?)].

(52) where S is the instanton action. The choice of sign in the

exponential is determined by the choice of boundary condi-
tions for the wave function of the universe. The lower sign is
chosen for the tunneling and Linde boundary conditions, and
the upper sign for the Hartle-Hawking boundary condition
[12]. For definiteness we shall adopt the tunneling boundary
condition below.

For the instantons to give a nonvanishing contribution to

We finally consider the cylindrical metric ans#86). The  the nucleation probability, they must have a finite action,
solutions of Eqs(37)—(39) for A<0 have the form with instantons of the smallest absolute value of the action

Once again, the metris0) is singular aty=0 even in the
absence of a defecty=0), and we dismiss this solution as
unphysical.

C. Class Il
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giving the dominant contribution. The action is typically ex- whereV, stands for the volume of a k-sphere of unit radius,
tremized for solutions of the highest symmetry, so we shalthat is, V=27 D2 (k+1)/2].

consider instantons wittls? , ds> anddsa being maximally Apart from nucleation of the entire brane-world, the in-
symmetric spaces of positive, negative and zero curvaturétanton(62) can also describe nucleation of spherical branes
that is, Euclidean de Sitter, anti—de Sitter, and flat spaced an inflating 1+ p)-dimensional de Sitter space. The situ-
respectively. ation here is very similar to the nucleation of circular loops
The Euclidean action for our model is given by of string and of spherical domain walls in €+1)-
dimensional de Sitter space, as discussed by Baali[13].

1 The nucleation rate is given b
sz—ﬁf d"Px\—g[R—2A —2K%L(¢)], (59 g y

Fce B (66)
whereR is the D-dimensional scalar curvature abhd¢) is with
the scalar field Lagrangian. We can elimin&éy making
use of Einstein’s equations to obtain B=S-S, (67)
2(n+p) whereS is the instanton action ang, is the action for the
9,2
R=2k"L(#)+ n+p-— 2A (60 Euclidean de Sitter space without a brane. From(Ef). we
have
and
B 4 W(n+p+l)/2 K(n+ p72)/2(1 nfl) (68)
A = e —a .
=— | gntex/— k“ T'[(n+p—1)/2]
S K2(n+p—2)jd XN—3. (61)

The initial radius of the brane is= VK. After nucleation,
For class-I and class-II solutions with<0, the volume it is stretched by the exponential expansion of the universe.
of the transverse space is infinite, aj@l=c. If cigar-like
class-lll solutions exist, they may have a finite transverse VI. CONCLUSIONS
volume, but the action is still infinite due to the divergence
of the p-dimensional volume of the flat brane worldsheet. In this paper we have found a number of solutions de-
Hence, we only need to consider solutions with-0. In this  scribing global defects in a higher-dimensional space. We

case the curvature of the brane must be posifze0, and a@ssumed that the core of the defect is centered on a

thus the metricdds? should be that of a Euclidean de Sitter (p—1)-dimensional brane gnd cloncelntrated on the case
space, that is, p-sphere: when the number of extra dimensionsniz 3.

In the absence of a cosmological constant, we found that

ds2=K[dy2+ a?sir?xd0? for all n=3 the defect solution is very similar to that for a
nt global monopold8]. The brane worldsheet is flat, and there
+cogx(dy?+siny?dQs )], (62 s a solid angle deficit in the extra dimensions. This is rather

surprising, considering the fact that solutions are very differ-
One can model the nucleation of a closed universe with @&nt forn=1 andn=2. The maximal solid angle deficit is
brane by allowingy to vary in the interval0,7/2] in the  reached at the critical valug.=(n—2)"2«"*, when the
Euclidean region and then continuing it in the imaginarytransverse metric becomes that of a cylinder.

direction in the Lorentzian regiony=m/2+it. This turns For a positive cosmological constant;>0, our solutions
Eq. (62) into the metric describe spherical branes in an inflating higher-dimensional
universe. In the limitp)— 0, when the gravitational effect of
ds?=K[dx?+ a?sirfydQ}_, the defect can be neglected, the universe can be pictured as

an expanding §+n—1)-dimensional sphere with a brane
wrapped around it in the form of a sphere of lower dimen-
o ; sionality (p—1). A nonzeroy introduces a deficit angle in
describing an expanding braneworld, the dimensions orthogonal to the brane worldsheet. It is in-

We can easily calculate the action for the instanton solu- . ; ;
y teresting that the expansion rate of the univeesad of the

+cogx(—dt?+cosiftdQ? ;)] (63

tion (62): brang is independent of the symmetry breaking scaland
1V - is determined only byA, while the deficit angle is deter-
S=5 fv(n_l)K(“W)’Za”—lf dx|cosy|P(siny)"~ ) mined by » and independent of. Gravitational instantons
K 0 obtained by a Euclidean continuation of this class of solu-
4A tions have the geometry of a{ n)-sphere with the brane
xm (64) represented by a maximatsphere and with a deficit solid

angle in the dimensions transverse to the brane. These in-

(n+p+1) stantons can be interpreted as describing quantum nucleation

:i VT K (n+p=2)/2,n-1 (65) either of the entire brane-world, or of a spherical brane in an
k> T[(n+p—1)/2] ' inflating (p+n—1)-dimensional universe.
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Another class of solutions has curvature singularities evelbve matched to appropriate interior solutions in the defect
in the absence of a defecy&0), and we have dismissed core, one may be able to use them as a basis for realistic
such solutions as unphysical. brane-world models.

The third class of solutions has the geometry ofpa (
+1)-dimensional de Sitter space, with the remainimg (
—1) dimensions having the geometry of a cylinder.

We have also found 3 classes of solutions Ao 0. The We are grateful to Gia Dvali, Jaume Garriga and Ruth
first two are essentially analytic continuations of theGregory for useful discussions and comments on the manu-
positiveAA solutions. The third class is similar to Randall- script. This work was supported in part by the Basque Gov-
Sundrum =1) and Gregory 1f=2) solutions, exhibiting ernment under grant number BFI.99.890.) and by the
an exponential warp factor. If solutions of the third class carlNational Science Foundatigi.V.).
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