
PHYSICAL REVIEW D, VOLUME 62, 044010
Dirac-Kähler approach connected to quantum mechanics in Grassmann space
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We compare the way one of us obtained spinors from fields, which area priori antisymmetric tensor fields,
to the Dirac-Kähler rewriting. Since using our Grassmann formulation is simple it may be useful in describing
the Dirac-Kähler formulation of spinors and in generalizing it to vector internal degrees of freedom and to
charges. The ‘‘cheat’’ concerning the Lorentz transformations for spinors is the same in both cases and is put
forward in the Grassmann formulation. Also the generalizations are clearly pointed out. The discrete symme-
tries are discussed, in particular the appearance of two kinds of time-reversal operators as well as the unavoid-
ability of four families and the evenness and oddness of the Dirac matrices.

PACS number~s!: 04.50.1h, 11.10.Kk, 11.30.2j, 12.10.2g
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I. INTRODUCTION

Kähler @1# has shown how to pack the Dirac wave fun
tion into the language of differential forms, in the sense t
the Dirac equation is an equation in which a linear opera
acts on a linear combinationu of p forms (p50,1, . . . ,d;
hered5dimension54). This is the Dirac-Ka¨hler formalism.

One of us@2–4# developed long ago ana priori rather
different formalism in an attempt to unify spin and charg
In this approach the spin degrees of freedom come ou
canonically quantizing certain Grassmannian odd variab
ua ~position analogue in the sense of being on an analo
footing with xa) . These variables are denoted by a vec
index a, and there are at first no spinors at all to see.

One of the main purposes of the present article is to p
out the analogy and nice relations between the two differ
ways of achieving the—almost miraculous—appearance
spin-one-half degrees of freedom in spite of starting fr
pure vectors and tensors.

Of course it isa priori impossible that vectorial and ten
sorial fields~or degrees of freedom! can be converted into
spinorial ones without some ‘‘cheating.’’ The ‘‘cheat’’ con
sists really of exchanging one set of Lorentz transformat
generators for another set~which indeed means puttin
strongly to zero one type of Grassmann odd operators fu
ing the Clifford algebra and anticommuting with anoth
type of Grassmann odd operators, which also fulfill the C
ford algebra@2–4#!.

In fact, one finds on page 512 in Ka¨hler’s article @1#
that there are two sets of rotation generators: one set
which the u field ~in Kähler’s notation! transforms as a
spinor field and another one for which it transforms as
perpositions of vector and~antisymmetric! tensor fields.
Analogously, in the approach of one of us, thea priori

Lorentz transformation generatorsS ab5S̃ab1 S̃̃ab have the
wave function transform as vectors and antisymme

tensors, whileS̃ab (52 i 1
4 @ ãa,ãb#) or S̃̃ab (52 i 1

4 @ ã̃a,ã̃b#
0556-2821/2000/62~4!/044010~14!/$15.00 62 0440
t
r

.
of
s
e

r

t
nt
of

n

l-

-

or

-

c

and@ , # means the commutator! used alone are also possib
Lorentz generators for which the wave function now tran
forms as a spinor wave function. Puttingã̃a ~which has the
property that@S̃ab,ã̃c#50) equal strongly to zero is the sam
as replacingS ab by S̃ab.

In both approaches to obtain spinors from vectors a
antisymmetric tensors one starts by getting not only one
several copies, families, of Dirac fields. This is a fundame
tal feature insofar as these different families are connec
by the generator parts not used: if, for instance, one usesS̃ab

as the Lorentz generator to obtain spinors, then the unu

part S̃̃ab transforms the families~of the same Grassman
character! into each other.

It will be a major feature of the present article to create
dictionary relating the two formalisms so that one can en
the simplicity of one, which also is working on the oth
approach. We shall also generalize the Ka¨hler operators for
dÞ4, comment on the discrete symmetries, which in
approach of one of us, show up clearly and use thed24
dimensions to describe spins and charges@2–4#.

In the following section we shall put forward the sma
part of the formalism of the work of one of us needed for t
comparison with the Dirac-Ka¨hler formalism. In Sec. III we
shall then explain the~usual! Dirac-Kähler formalism as far
as it is relevant. The comparison, which should now
rather obvious, is performed in Sec. IV.1

In Sec. V we shall analyze in the two approaches in p
allel how the remarkable finding of the Dirac equation insi

1After submitting this paper to Phys. Rev. D, an interesting pa
@5# appeared, in which the author compares the Dirac-Ka¨hler ap-
proach to the symplectic geometry of phase spaces. Some o
author’s conclusions are similar to ours. However, while Reu
extends the Dirac-Ka¨hler approach to the space of anticommuti
coordinates, we use the approach of one of us to generalize
Kähler approach.
©2000 The American Physical Society10-1
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a purely tensorial-vectorial system of fields occurs. In S
VI we shall comment on the evenness of thega matrices,
which have to transform Grassmann odd wave functions
Grassmann odd wave functions, not changing the Grassm
character of wave functions. In Sec. VII we shall comme
on discrete symmetries, for either the Ka¨hler approach, or the
approach of one of us, also discussing the realization of
discrete symmetries pointed out clearly by Weinberg in
book @6# on pages 100–105. In Sec. VIII we want to inve
tigate how unavoidable the appearance of families is to
type of approach. In Sec. IX we shall look at how the ide
of one of us of extra dimensions generalizes the Ka¨hler ap-
proach. In Sec. X we discuss the Nielsen and Ninomija@7#
no go theorem for spinors on a lattice and a possible way
In Sec. XI we shall summarize, and deliver concluding
marks.

II. DIRAC EQUATIONS IN GRASSMANN SPACE

What we can call the Mankocˇ approach@2–4#, and which
is the work of one of us, is a rather ambitious model
going beyond the Standard model with, say, 10~or more!
extra dimensions, but what we need for the present con
tion with the Dirac-Kähler @1# formalism is only the way in
which the spin part of the Dirac particle fields comes abo
The total number of dimensions in the model is~most hope-
fully ! 1311 bosonic degrees of freedom, i.e., normal dime
sions, and the same number of fermionic ones.

Let us call the dimension of space-timed and then the
Dirac spinor degrees of freedom will come from the o
Grassmannian variablesua, aP$0,1,2,3,5, . . . ,d%.

In wanting to quantize or just to make Poisson brack
out of thed ua’s we have two choices, since we could eith
decide to make the differentua’s their own conjugate, so tha
one only hasd/2 degrees of freedom—this is the approach
Ravndal and DiVecchia@8#—or we could decide to conside
the ua’s configuration space variables only. In the latt
case—which is the Mankocˇ case—we have then from th
ua’s different conjugate variablespua.

In this latter case we are entitled to write wave functio
of the form

c~$ua%!5 (
i 50,1, . . . ,3,5, . . . ,d

(
$a1,a2,•••,ai %P$0,1, . . . ,3,5, . . . ,d%

3aa1 ,a2 , . . . ,ai
ua1ua2

•••uai. ~1!

This is the only form a function of the odd Grassmann
variablesua can take. Thus the wave function space here
dimension 2d. Completely analogously to usual quantum m
chanics we have the operator for the conjugate variableua as

pa
u
ª2 i

]W

]ua
ª2 i ]Wa . ~2!

The right arrow here just tells us, that the derivation has to
performed from the left-hand side. These operators then o
the odd Heisenberg algebra which, written by means of
generalized commutators
04401
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$A,B%ªAB2~21!nABBA, ~3!

where

nAB5H 11, if A andB have Grassmann odd character,

0 otherwise
~4!

takes the form

$pua,pub%505$ua,ub%, $pua,ub%52 ihab. ~5!

Herehab is the flat metrich5diag$1,21,21, . . .%.
For later use we shall define the operators

ãa
ª i ~pua2 iua!, ã̃a

ª2~pua1 iua!, ~6!

for which we can show that theãa’s among themselves fulfill
the Clifford algebra, as do also theã̃a’s, while they mutually
anticommute:

$ãa,ãb%52hab5$ ã̃ a,ã̃b%, $ãa,ã̃b%50. ~7!

Note that the linear combinations~6! presuppose a metric
tensor, since otherwise onlyua andp a

u but notua andpu a

are defined.
We could recognize formally

either ãapauc&50 or ã̃apauc&50 ~8!

as the Dirac-like equation, because of the above general
commutation relations. Applying either the operatorãapa or
ã̃apa on the two equations@Eqs. ~8!# we get the Klein-
Gordon equationpapauc&50. Here of course we defined

pa5 i
]

]xa
. ~9!

However, it is rather obvious that Eqs.~8! are not Dirac
equations in the sense of the wave function transforming
spinor, with respect to the generators for the Lorentz tra
formations, if taken as usual

S ab
ªuapub2ubpua. ~10!

However it is easily seen that we can write these genera
as the sum

S ab5S̃ab1 S̃̃ab, ~11!

where we have defined

S̃ab
ª2

i

4
@ ãa,ãb#, S̃̃ab

ª2
i

4
@ ã̃a,ã̃b#, ~12!

with @A,B#ªAB2BA. One can now easily see that the s
lutions of the two equations~8! now transform as spinors
with respect to eitherS̃ab or S̃̃ab.

It is of great importance for the ‘‘trick’’ of manipulating
what we shall consider to be the Lorentz transformatio
and thus to be able to make the ‘‘miraculous’’ shifts
0-2
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Lorentz representations that is the somewhat remark
characteristic of the Ka¨hler type of shift in formulation
interpretation, that—untilded, the single tilded and t
double tilded—S ab obey thed-dimensional Lorentz genera
tor algebra $Mab, Mcd%52 i (Madhbc1Mbchad2Machbd

2Mbdhac), when inserted forMab.
Really the ‘‘cheat’’ consists of replacing the Lorentz ge

erators by theS̃ab, say ~we shall return to this later!. This
‘‘cheat’’ means indeed that for this choice the operatorsã̃a

have to be put strongly to zero in the generators of the L
entz transformations@Eqs. ~10!–~12!# as well as in all the
other operators, representing the physical quantities.
shall present the approach of one of us, in further detai
Sec. IV, pointing out the similarities between this approa
and the Ka¨hler one, and generalizing the Ka¨hler approach.

III. KA¨ HLER FORMULATION OF SPINORS

The Kähler formulation@1# takes its starting point by con
sidering p forms in the d-dimensional space,d54. El-
egantly, the 1 forms say are defined as dual vectors to
~local! tangent spaces, and the higherp forms can then be
defined as antisymmetrized Cartesian~exterior! products of
the one-form spaces, and the 0 forms are the scalars; bu
can perhaps more concretely think about thep forms as for-
mal linear combinations of the differentials of the coord
natesdxa: a general linear combination of forms is then wr
ten

u5u01u11•••1ud , ~13!

where thep form is

up5
1

p! (
i 1 ,i 2 , . . . ,i p

ai 1 ,i 2 , . . . ,i p
dxi 1`dxi 2`dxi 3`•••`dxi p

5 (
i 1, i 2•••, i p

ai 1 ,i 2 , . . . ,i p
dxi 1`dxi 2`dxi 3`•••`dxi p.

~14!

Then one can define both the presumably most w
known exterior algebra denoted by the exterior product`
and the Clifford product~ among the forms. The wedg
product ` has the property of making the product of ap
form and aq form be a (p1q) form, if a p form and aq
form have no common differentials. The Clifford produ
dxa~ on ap form is either ap11 form, if ap form does not
include a one formdxa, or ap21 form, if a one formdxa is
included in ap form.

Actually Kähler found how the Dirac equation could b
written as an equation@1# @Eq. ~26.6! in Kähler’s paper#

2 idu5~m1e•v!~u, ~15!

where the symbolu stands for a linear combination ofp
forms @Eq. ~13!# and pP$0,1, . . .,3,5, . . . ,d% with d being
the dimension of space-time, namely,d54 for Kähler’s
04401
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case. Further in the notation of Ka¨hler the symbol2 d denotes
inner differentiation, which means the analogue of the ex
rior differentiald but with the use of the Clifford product~
instead of the exterior product̀

du5(
i 51

3

dxi~
]u

]xi
2dt~

]u

]t
5du1(

i 51

3

ei

]u

]xi
2e0

]u

]t
.

~16!

ev determines the coupling of the charge with the elect
magnetic fieldv5Aadxa, aP$0,1,2,3% and m means the
electron mass; the symbolei transforms ap form into (p
21) form, if thep form includesdxi , otherwise it gives zero

For a free massless particle living in ad-dimensional
space-time—this is what interests us in this paper since
mass term brings no new feature to the theory—Eq.~15! can
be rewritten in the form

dxa~pa u50, a50,1,2,3,5, . . . ,d, ~17!

where u again stands for a linear combination ofp forms
(p50,1,2,3,5, . . . ,d), that is to say that the wave functio
describing the state of the spin-one-half particle is pac
into the exterior algebra functionu. More about the Ka¨hler
approach will come in Sec. IV, giving the corresponden
between that and the one with the Grassmannua’s, where we
shall also give some generalizations.

IV. PARALLELISM BETWEEN THE TWO APPROACHES

We demonstrate the parallelism between the Ka¨hler ap-
proach@1# and that of one of us@2–4# in steps, paying atten
tion to the Becher-Joos@9# paper as well. First we shall trea
the spin-12 fields only, as Ka¨hler did. We shall use the simpl
and transparent definition of the exterior and interior pro
ucts in Grassmann space to generalize the Ka¨hler approach
to two kinds ofd @Eq. ~16!# operators on the space ofp forms
and then accordingly to three kinds of the generators of
Lorentz transformations, two of the spinorial and one of t
vectorial character, the first kind transforming spinor-1

2 fields,
the second one transforming the vector fields. We comm
on the Hodge star product for both approaches, define
scalar product of vectors in the vector space of eitherp forms
or of polynomials ofua’s and comment on four replication
of the Weyl bispinor. We also discuss briefly the vector re
resentations in both approaches.

A. Dirac-Kähler equation and Dirac equation
in Grassmann space for massless particles

We present here, side by side, the operators in the sp
of differential forms and in the space of polynomials ofua’s.
We present the exterior product

2The notation in the Becher and Joos@9# paper is slightly different
from the Kähler notation. The Becher and Joos paper usesd
5dxa(]/]xa), as Kähler does in his paper, butd of Kähler is in the
Becher and Joos paper replaced byd2d, which means that in their
paperd52ea(d/dxa).
0-3
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dxa `dxb `•••, ua ub
•••, ~18!

the operator of ‘‘differentiation’’

2 iea, pua52 i ]Wa52 i
]W

]ua
, ~19!

and the two superpositions of the above operators

dxa~̃ªdxa`1ea, ãa
ª i ~pua2 iua!,

dxa~̃̃ª2 i ~dxa`2ea!, ã̃a
ª2~pua1 iua!. ~20!

Here ~̃ stays instead of~ of Eq. ~15!, used by Ka¨hler.
Introducing the notation with (̃) and (̃̃ ) we not only point
out the similarities between the two approaches but also
two possibilities for the Clifford product—only one of them

used by Ka¨hler. Both ~̃ and ~̃̃ are Clifford products onp
forms, while ãa and ã̃a are the corresponding linear oper
tors operating on the space of polynomials ofua’s. One eas-
ily finds the commutation relations, if for both approach
the generalized form of commutators, presented in Eq.~4!,
are understood

$dxa~̃,dxb~̃%52hab, $ãa,ãb%52hab

$dxa~̃̃,dxb~̃̃%52hab, $ ã̃a,ã̃b%52hab. ~21!

Herehab is the metric of space-time.
The vacuum stateu & is defined as

dxa~̃u &5dxa`, ãau &5ua,

dxa~̃̃u &52 idxa`, ã̃au &52 iua. ~22!

Now we can define the Dirac-like equations for both a
proaches

dxa~̃pau50, ãapac~$ua%!50,

dxa~̃̃pau50, ã̃apac~$ua%!50. ~23!

Since $ea,dxb `%5hab and $ea,eb%505$dxa`,dxb`%
50, while $ ipua,ub%5hab and $ ipua,ipub%505$ua,ub%, it
is obvious that in thep form formalismea plays the role of
the derivative with respect to a differential one form, sim
larly as ipua does with respect to a Grassmann coordinat

Taking into account the above definitions, one easily fin
that
04401
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dxa~̃padxb~̃pbu5papau50,

ãapaãbpbc~$ub%!5papac~$ub%!50.

dxa~̃̃padxb~̃̃pbu5papau50,

ã̃apaã̃bpbc~$ub%!5papac~$ub%!50. ~24!

Both vectors, theu, which are the superpositions of dif
ferential p forms and thec(ua), which are polynomials in
ua’s, are defined in a similar way@Eqs.~1!,~14!#, as we shall
point out in the following subsection. We see that eith

dxa~̃pa50 or dxa~̃̃pa50, similarly as eitherãapa50 or
ã̃apa50 can represent the Dirac-like equation.

B. Vector space of two approaches

The superpositions ofp forms on which the Dirac-Ka¨hler
equation is defined and the superpositions of polynomial
Grassmann space, on which the Dirac-like equations are
fined, are

u5 (
i 50,1,2,3,5, . . . ,d

(
a1,a2,•••,aiP$0,1,2,3,5, . . . ,d%

3aa1 ,a2 , . . . ,ai
dxa1`dxa2`dxa3`•••`dxai,

c~ua!5 (
i 50,d

(
a1,a2,•••,aiP$0,1,2,3,5, . . . ,d%

3aa1 ,a2 , . . . ,ai
ua1ua2

•••uai. ~25!

The coefficientsaa1 ,a2 , . . . ,ai
depend on coordinatesxa in

both cases and are antisymmetric tensors of the ranki with
respect to indicesakP$a1 , . . . ,ai%. The vector space is fo
d54, used by Ka¨hler, in both cases 16 dimensional.

C. Dirac ga-like operators

Both dxa~̃ anddxa~̃̃ define the algebra of thega matri-
ces and so do bothãa and ã̃a. One would thus be tempted t
identify

gnaive
a

ªdxa~̃, or gnaive
a

ªãa. ~26!

But there is a large freedom in defining what to ident
with the gamma matrices, because except when usingg0 as a
parity operation you have an even number of gamma ma
ces occurring in the physical applications.3 Then you may
multiply all the gamma matrices by some factor provided

3There are currentsc̄gac which enter into calculations of physi
cal quantities. Currents have an even number ofga matrices:
c1g0gac. Also the Lagrange function contains, in addition to t

mass term, in whichg0 appears (mc̄c5mc1g0c), the even num-

ber of ga matrices:c̄gapa .
0-4
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does not disturb their algebra or their even products.
shall comment on this point in Sec. VI.

1. Problem of statistics of gamma matrices

This freedom might be used to solve what seems to b
problem. Having an odd Grassmann character, neitherãa nor
ã̃a should be recognized as the Diracga operators since
when operating on polynomials ofua, they would change
polynomials of an odd Grassmann character to polynom
of an even Grassmann character. One would, howe
expect—since Grassmann odd fields second-quantize to
mions, while Grassmann even fields second-quantize
bosons—that thega operators do not change the Grassma
character of wave functions. One can notice that, similarly
the Grassmann case, also the two types of the Clifford pr
ucts defined onp forms, change the oddness or the evenn
of the p forms: an evenp form, p52n, is changed by eithe

dxa~̃ or dxa~̃̃ to an oddq form, with eitherq5p11, if
dxa is not included in ap form, or q5p21, if dxa is in-
cluded in ap form, while an oddp form, p52n11, is
changed to an evenp11 form or p21 form.

2. First solution to gamma-matrix statistics problem

We shall later therefore propose that accordingly

either g̃a
ª idx0~̃̃dxa~̃ or g̃a5 i ã̃0ãa ~27!

are recognized as the Diracga operators operating on th
space ofp forms or polynomials ofua’s, respectively, since
they both have an even Grassmann character and they
fulfill the Clifford algebra

$g̃a,g̃b%52hab. ~28!

Of course, the roles of (˜) and (̃̃ ) can be exchanged in
either the Ka¨hler case or the case of polynomials in Gra
mann space.

Whether we define the gamma matrices by Eq.~27! or
~26! only makes a difference for an odd product of gam
matrices, but for applications~see the last footnote! such as
construction of currentsc̄gac or for the Lorentz generator

on the spinors2 i 1
4 @ga,gb# only products of even number

of gamma matrices occur, except for the parity represe
tion on the Dirac fields, where theg0 matrix is used alone
This g0 matrix has to simulate the parity reflection, which
either

dW x→2dW x or uW→2uW . ~29!

The ‘‘ugly’’ gamma-matrix identifications~27! indeed per-
form this operation. And as long as the physical applicatio
are the ones just mentioned—and that should be sufficie
the choice~27! is satisfactory: living in the Grassmann od
part of the Hilbert space, we do not move into the Gra
mann even part of it. The canonical quantization of Gra
mann odd fields, that is the procedure with the Hamilton
04401
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and the Poisson brackets, then automatically assures the
ticommuting relations between the operators of the fermio
fields.

3. Solution by redefinition of oddness

The simplest solution to the problem with the evenne
and oddness is to use the ‘‘naive’’ gamma matrix identific
tions ~26! and simply ignore that the even-odd-ness does
match. This is what Ka¨hler did, we can say, insofar as he d
not really identify the even-odd-ness of thep forms with the
statistics of Dirac fields. If, along the lines of the Becher a
Joos paper@9#, one makes a second-quantized theory ba
on the Kähler trick, one does not proceed by insisting o
taking p forms to be fermionic only whenp is odd. Becher
and Joos take all the forms as fermion fields and then ass
anticommuting relations for operators of fields. This simpl
solution can thus be claimed to be the one applied by Ka¨hler
and used by Becher and Joos: they simply do not dre
about postulating in advance that thep forms should neces
sarily be taken to be boson or fermion fields depending
whetherp is even or odd. It is only when one as one of us
her model has the requirement of canonical quantization s
ing that theua’s should be Grassmann odd objects, whi
indeed they are, that the problem occurs.

D. Generators of Lorentz transformations

Again we present the generators of the Lorentz trans
mations of spinors for both approaches

Mab5Lab1S ab, Lab5xapb2xbpa, ~30!

differing among themselves in the definition ofS ab only,
which define the generators of the Lorentz transformati
in the internal space, that is in the space ofp forms or poly-
nomials of ua’s, respectively. While Ka¨hler suggested the
definition

S ab5dxa`dxb,

S abu5
1

2
@~dxa`dxb!~u2u~~dxa`dxb!#, ~31!

in the Grassmann case@2# the operatorS ab is one of the two
generators defined above@Eq. ~12!#, that is,

eitherS ab5S̃ab52
i

4
@ ãa,ãb#52

i

4
@ g̃a,g̃b#

or S ab5 S̃̃ab52
i

4
@ ã̃a,ã̃b#. ~32!

One further finds
0-5
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@S̃ab,ãc#5 i ~hacãb2hbcãa!,

@ S̃̃ab,ã̃c#5 i ~hacã̃b2hbcã̃a!,

while @S̃ab,ã̃c#505@ S̃̃ab,ãc#. ~33!

In the Kähler case one can also define two kinds of Lo
entz generators, which operate on the internal spacep
forms, according to two kinds of Clifford products, present
above. Following the definitions in the approach of one of
@2#, one can write theS ab for the Kähler case: either

S̃ab52
i

4
@dxa`1ea,dxb`1eb#52

i

4
@ g̃a,g̃b#

or S̃̃ab5
i

4
@dxa`2ea,dxb`2eb#. ~34!

Not only in this case, are the similarities between the t
approaches more transparent, but also the definition of
generators of the Lorentz transformations in the spacep
forms is very much simplified.

One further finds for the spinorial case

@Mab,g̃apa#50 for Mab5Lab1S̃ab, ~35!

which demonstrates that the total angular momentum fo
free massless particle is conserved. The above equatio
true for both approaches and the generators of the Lor
transformationsMab fulfill the Lorentz algebra in both cases

In addition, the operators of the Lorentz transformatio
with the vectorial character can also be defined for both
proaches in an equivalent way, that is as a sum of the
operators of the spinorial character

S ab5S̃ab1 S̃̃ab52 i ~dxa`eb2dxb`ea!,

S ab5S̃ab1 S̃̃ab5uapub2ubpua, ~36!

which again fulfills the Lorentz algebra. The operatorSab

52 i (dxa`eb2dxb`ea), if applied on differentialp forms,
transforms vectors into vectors; correspondingly,S ab

5uapub2ubpua, if applied to polynomials ofua transforms
vectors into vectors@2#.

Elements of the Lorentz group can be written for bo
approaches, for either spinorial or vectorial kinds of gene
tors as

U5e2( i /2)vabMab
, ~37!

wherevab are parameters of the group. IfMab are equal to

eitherLab1S̃ab or Lab1 S̃̃ab, the period of transformation is
4p either in the space of differential forms or in the Gras
mann space, demonstrating the spinorial character of the

erator. IfMab is the sum ofLab andS̃ab1 S̃̃ab, the period of
transformation is 2p, manifesting the vectorial character o
the operator.
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E. Hodge star product

In the way in which we have defined the operators in
space ofp forms, the definition of the ‘‘Hodge star’’ opera
tor, defined by Ka¨hler working in the space ofp forms and
the space ofua polynomials, will be, respectively,

G̃5 i )
a50,1,2,3,5, . . . ,d

g̃a, ~38!

with g̃a equal to eitheridx0~̃̃dxa~̃ in the Kähler case, or to
i ã̃0ãa in the approach of one of us@2#. For an evend the

factors with double tildes can in both cases be omittedG̃

5either i )aãa or i )adxa~̃; again we could distinguish the

operatorsG̃ and G̃̃ in both cases, according to the elemen
which define the Casimir!. It follows that

1

2
~16G̃ ! ~39!

are the two operators, which when being applied on wa
functions defined either onp forms or on polynomials in
Grassmann space, project out the left- or right-handed c
ponent, respectively.

One easily recognizes that when being applied on

vacuum stateu &, the operatorG̃ behaves as a ‘‘Hodge star’
product, since one finds, ford even,

2 i G̃u &5dx0`dx1`•••`dxd, 2 i G̃u &5u0u1
•••ud.

~40!

F. Scalar product

In Mankoč’s approach@2#, the scalar product between th
two functionsc (1)($ua%) and c (2)($ua%) is defined as fol-
lows:

^c (1)uc (2)&5E ddu@vc (1)~$ua%!#* c (2)~$ua%!. ~41!

Herev is the weight function

v5 )
i 50,1,2,3,5, . . . ,d

S u i1
]W

]u i D ~42!

which operates on the first functionc (1) only, while

E dua50, E duaua51, a50,1,2,3,5, . . . ,d, ~43!

no summation over the repeated index is meant and

E dduu0u1u2u3u5
•••ud51,

ddu5dud
•••du5du3du2du1du0.

~44!

Sinceua* 5ua, an asterisk means the complex conjugati
and a plus means the Hermitian conjugation, then with
0-6
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spect to the scalar product defined above the operatorua1

5haa]Wa, ]Wa15uahaa, while ãa15haaãa and ã̃a15haaã̃a.
Again no summation over the repeated index is perform
Accordingly the operators of the Lorentz transformations
spinorial character are self-adjoint~if aÞ0 and bÞ0) or
anti-self-adjoint~if a50 or b50).

According to Eqs.~41!, ~25! the scalar product of two
functionsc (1)(ua) andc (2)(ua) can be written as follows:

^c (1)uc (2)&5(
0,d

(
a1,a2,•••,a i

aa1 ,a2 , . . . ,a i

(1)* aa1 ,a2 , . . . ,a i

(2)

~45!

in complete analogy with the usual definition of scalar pro
ucts in ordinary space. Ka¨hler @1# defined in Eq.~15.11! and
on page 519 the scalar product of two superpositions op
forms u(1) andu(2) as follows:

^u(1)uu(2)&5(
0,d

(
a1,a2,•••,a i

aa1 ,a2 , . . . ,a i

(1) aa1 ,a2 , . . . ,a i

(2) ,

~46!

which ~for real coefficientsaa1 ,a2 , . . . ,a i

(k) , k51,2) agrees

with Eq. ~45!.

G. Four families of solutions in the Kähler
or Grassmann space approach„of one of us…

We shall limit ourselves tod54 and to the spinorial cas
~as indeed Ka¨hler did!. The representations for higherd, ana-
lyzed with respect to the groups SO~1,3!3SU~3!3SU~2!
3U~1!, and some other groups in Grassmann space, are
Grassmann even and Grassmann odd parts of the sp
which belongs to the groups not including SO~1,3! presented
in Ref. @3# and Ref.@4#, respectively.

In the case ofd54 one may arrange the space ofd

vectors into four times two Weyl spinors, one left-hand

one (̂ G̃ (4)&521) and one right (̂G̃ (4)&51). We are pre-
senting these vectors, which are at the same time the ei
vectors of S̃12 and S̃03, as polynomials of um’s, m
P(0,1,2,3). The two Weyl vectors are connected by the
eration ofg̃m operators@Eq. ~27!#. Taking into account tha
ãau &5ua, whereu & is the vacuum state@Eq. ~22!#, we present
Table I.

Similarly also the Ka¨hler spinors can be arranged in
four copies. We find them by only replacingãa by dxa~̃
in Table I. We shall discuss this point also in the ne
section.

H. Vector representations of group SO„1,3…

Analyzing the irreducible representations of the gro
SO~1,3! in analogy with the spinor case but taking into a
count the generator of the Lorentz transformations of
vector type@Eqs. ~10!, ~36!# one finds@2–4# for d54, two
scalars~a scalar and a pseudoscalar!, two three-vectors@in
the SU~2!3SU~2! representation of SO~1,3! usually de-
noted by~1,0! and ~0,1! representations, respectively, wi
^G (4)& equal to 61# and two four vectors@in the SU~2!
04401
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3SU~2! representation of SO~1,3! both denoted by~1
2,

1
2!

and differing among themselves in the Grassmann charac#,
all of which are eigenvectors ofS (4)25 1

2 S abSab , G (4)

5 i @(22i )2/4!#eabcdS abS cd, S 12, andS 03. Using Eq. ~36!
and analyzing the vector space ofp forms in a way analo-
gous to the space of the Grassmann polynomials, one fi
the same kind of representations also in the Ka¨hler case.
Both in the spinor case and in the vector case one
24-dimensional vector space.

TABLE I. Irreducible representations of the two subgrou
SU~2!3SU~2! ~i.e., the complex version of! the group SO~1,3! as

defined by the generators of the spinorial characterS̃12, S̃03 and the

operator of handednessG̃ (4). The four copies of the Weyl bispinor
have either an odd or an even Grassmann character. The gene

S̃̃mn, m,nP(0,1,2,3), transform the two copies of the same Gra
mann character one into another.

a i ac̃ i($u%) S̃12 S̃03 G̃ (4)

1 1 1
2 (ã12 i ã2)(ã02ã3)

1

2
2

i

2
21

1 2 2
1
2 (11 i ã1ã2)(12ã0ã3) 2

1

2

i

2
21

2 1 1
2 (ã12 i ã2)(ã01ã3)

1

2

i

2
1

2 2 2
1
2 (11 i ã1ã2)(11ã0ã3) 2

1

2
2

i

2
1

3 1 1
2 (ã12 i ã2)(12ã0ã3)

1

2

i

2
1

3 2 2
1
2 (11 i ã1ã2)(ã02ã3) 2

1

2
2

i

2
1

4 1 1
2 (ã12 i ã2)(11ã0ã3)

1

2
2

i

2
21

4 2 2
1
2 (11 i ã1ã2)(ã01ã3) 2

1

2

i

2
21

5 1 1
2 (12 i ã1ã2)(ã01ã3)

1

2

i

2
1

5 2 2
1
2 (ã11 i ã2)(11ã0ã3) 2

1

2
2

i

2
1

6 1 1
2 (12 i ã1ã2)(ã02ã3)

1

2
2

i

2
21

6 2 2
1
2 (ã11 i ã2)(12ã0ã3) 2

1

2

i

2
21

7 1 1
2 (12 i ã1ã2)(11ã0ã3)

1

2
2

i

2
21

7 2 2
1
2 (ã11 i ã2)(ã01ã3) 2

1

2

i

2
21

8 1 1
2 (12 i ã1ã2)(12ã0ã3)

1

2

i

2
1

8 2 2
1
2 (ã11 i ã2)(ã02ã3) 2

1

2
2

i

2
1
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V. APPEARANCE OF SPINORS

One may wonder about how it is at all possible that
Dirac equation—usually which is an equation for aspinor
field—appears out of models with only scalar, vector, a
tensor objects. Immediately one would say that it is of cou
purely impossible to construct spinors such as Dirac fie
out of integer spin objects such as the differential one for
and their external products, or theua’s and their products
uaub

•••uc.
Let us also say immediately that it can only be done

‘‘cheating.’’ This cheating really consists ofreplacing the
Lorentz transformation concept~including rotation concept!

by exchanging the Lorentz generatorsS ab and S̃ab say ~or

the S̃̃ab if we choose them instead!, see Eqs.~32!, ~34!. This
indeed means that one of the two kinds of operators fulfill
the Clifford algebra and anticommuting with the oth

kind—a choice ofdxa~̃̃ was made in the Ka¨hler case andã̃a

in the approach of one of us—are put to zero in the opera
of Lorentz transformations as well as in all the operat

representing the physical quantities. The use ofdx0~̃̃ or ã̃0

in the operatorg̃0 is the exception, used only to simulate th
Grassmann even parity operationdW xa→2dW xa anduW→2uW ,
respectively. The assumption which we call ‘‘cheating’’ w
made in the Ka¨hler approach@1# and in its lattice version@9#,
as well as in the approach of one of us@2#.

In Ref. @2# the ã̃a’s are argued away on the grounds, th
with a certain single particle action

I 5E dtdj L~x,u,t,j! ~47!

~with xa being ordinary coordinates,ua Grassmann coordi
nates,aP$0,1, . . . ,d%, t an ordinary time parameter andj
an anticommuting time parameter and assumingXa5xa

1ejua as a supercoordinate4 and making a choice fore)
about which we shall not go into detail here, theã̃a appear to
be zero as one of the constraints. This constraint has b
used to putã̃a’s equal to zero in the further calculations
this reference and it was used as argument for dropping

S̃̃ab part of the Lorentz generatorS ab.5 Let us stress tha

once theã̃a or dxa~̃̃ is dropped and accordingly theS̃̃ab is
dropped—for whatever reason—one is no longer asking
the representation under the same Lorentz transformat
~including rotations! and one shall not expect to find sa
integer spin even if the field considered is purely construc
from scalars, vectors, and tensors.

4The supercoordinate, depending on ordinary (xa) and Grassmann
coordinates (ua) demonstrates the common Lorentz transform
tions.

5We point out in Ref.@2# that this constraint, once taken int
account by being put to zero in all the physical operators, was
further treated as a weak equation. Furthermore, such a w
equation—ã̃a is an odd Grassmann operator—cannot at all be
filled.
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Let us point out further that what happens is that eith
theua polynomials of in the one of us approach or the line
combinations ofp forms in the Kähler approach, can be for
mulated asdouble spinors, i.e., expressions with two~Dirac!
spinor indices,a andb say, and that the ‘‘cheat’’ consists o
dropping from the concept of Lorentz transformations th
transformations inone of these indices. In fact we can re-
write the following.

For the evend case one has either

cab~$ua%!ª(
i 50

d

~ga1
ga2

•••gai
!abua1ua2

•••uai

or

cab~$dxa%!ª(
i 50

d

~ga1
ga2

•••gai
!ab

3dxa1`dxa2`•••dxai`, ~48!

while for the oddd case one has either

cabG~$ua%!ª(
i 50

d

~g (G)a1
g (G)a2

•••g (G)ai
!abua1ua2

•••uai

or

cabG~$ua%!ª(
i 50

d

~g (G)a1
g (G)a2

•••g (G)ai
!ab

3dxa1`dxa2`•••dxai`, ~49!

with the conventiona1,a2,a3,•••,ai . Here the sums
run over the numberi of factors in the products ofdxa` or
ua coordinates, a number which is the same as the numbe
gamma-matrix factors. It should be remarked that we inclu
the possibilityi 50, which means no factors, and is taken
mean that the product of zerodxa` or ua factors is unity
and the product of zero gamma matrices is the unit mat
The indicesa, b are the spinor indices and taking the pro
uct of gamma matrices conceived of as matrices the sym
(•••)ab stands for an element in theath row and in thebth
column. There is an understood Einstein convention sum
tion over the contracted vector indicesak , k51,2, . . . ,i .
The gamma matrices are, in the even-dimension case, 2d/2 by
2d/2 matrices and in the odd-dimension case, 2(d21)/2 by
2(d21)/2 matrices. In the odd case we have worked with tw
~slightly! different gamma-matrix choices—and thus ha
written the gamma matrices as depending on the sign6 G as
g(G)ak

—namely gamma matrix choices obeying

G5g1g2•••gd . ~50!
-

ot
ak
l-

6We use the same symbol for the matrixG5g1g2•••gd and for
the sign, pointing out that theg matrices depend on the value ofG,
which is 61.
0-8
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The ga matrices should, of course, be constructed so
they obey the Clifford algebra

$ga ,gb%52hab ~51!

and we could, e.g., choose

g1ª is2
13s3

23s3
33•••3s3

n ,

g2ª2 is1
13s3

23s3
33•••3s3

n ,

g3ª i I 13s2
23s3

33•••3s3
n ,

g4ª i I 13~2 !s1
23s3

33•••3s3
n ,

g5ª i I 13I 23s2
33•••3s3

n ,

A A A A � A,

g2n21ª i I 13I 23I 33•••3s2
n ,

g2nª i I 13I 23I 33•••3~2 !s1
n ,

for an even dimensiond52n, while for an odd dimension
d52n11 the gamma matrixg2n11 has to be included:

g2n11ª iGs3
13s3

23s3
33•••3s3

n ,

from where it follows thatG5)a
2n11ga . ~The choice of

phases of Ref.@10# are achieved by using the minus signs
parentheses.! The above metric is supposed to be Euclide
with dab52hab. For the Minkowski metricg2n→2 ig2n
has to be taken, if the index 2n is recognized as the ‘‘time’’
index. We shall make use of the Minkowski metric, counti
the ga from 0,1,2,3,5, . . . ,d, and assuming the metrichab

5diag(1,21,21, . . . ,21).
In this notation we can see that for fixed values of t

index b we obtain one of the four bispinors in Table I, co
ceived of as a spinor in the indexa and with the understand
ing that theãa in the table lead to the correspondingua,
when acting on the vacuum state. The equivalent table
the Kähler approach follows by replacingua by dxa`.

It is our main point to show that the action by the ope

torsdxa~ or ãa anddxa~̃̃ or ã̃a in the representation base
on the basiscab($dxa%) or cab($ua%) with

a,bPS 1,2, . . . ,H 2(d21)/2 for d odd

2d/2 for d evenJ D ,

defined by Eq.~48! or ~49!, transforms the indexa and b,
respectively, of the basiscab($dxa%) or equivalently
cab($ua%) as follows:

either dxa~̃cab(G)~$dxa%!}gag
a cgb(G)~$dxa%!,

corresponding toãacab(G)~$u
a%!}gag

a cgb(G)~$u
a%!,

or dxa~̃̃cab(G)~$dxa%!}cag(2G)~$dxa%!ggb
a ,

corresponding toã̃acab(G)~$u
a%!}cag(2G)~$u

a%!ggb
a ,

~52!
04401
at

,

or
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which demonstrates the similarities between the spinors
the approach of one of us, and the Ka¨hler approach: the
operatorsdxa~̃ and ãa transform the left index of the basi
cab(G)($dxa%), or correspondingly of the basi
cab(G)($u

a%), while keeping the right index fixed and th

operatorsdxa~̃̃ andã̃a transform the right index of the basi
cab(G)($dxa%), or correspondingly of the basiscab(G)($u

a%)
and keep the left index fixed. Under the action of eith

dxa~̃ and ãa or dxa~̃̃ and ã̃a the basic functions transform
as spinors. The index in parentheses (G) is defined only for
odd d. We can count that the number of spinors is 2d in
either the Mankocˇ approach or in the Ka¨hler approach; the
d-dimensional Grassmann space or the space ofp forms has
2d basic functions.

We shall prove the above formulas for the action of theãa

and ã̃a. The proof is also valid for the Ka¨hler case ifãa is

replaced bydxa~̃ and ã̃a by dxa~̃̃.
Proof of our formula for the action of a˜ a and ã̃a. Let us

first introduce the notation

gA
ªgagb

•••gc, g Ā
ªgcgb

•••ga, ~53!

with a,b,•••,cPA. We recognize that

Tr~gAg B̄!5Tr~ I!dA
B , (

A
~gA!ab~g Ā!gd52ddagdbd ,

~54!

and

(
A

~gA!ab~gcg Ā!gd52d~gc!gadbd ,

(
A

~gA!ab~g Āgc!gd52d~gc!bddag , ~55!

with a1,a2 , . . . ,,aiPA in ascending order and withĀ in
descending order. The above formulas are true only for
Euclidean signature 4hab5(1,1,1, . . . ,1) and would be
modified in the Minkowski case.@The first of the formulas of
Eq. ~54! is trivially true. The second one might be proven b
noticing that its contraction withg B̄ in the indicesa andb

and withg C̄ in the indicesg andd simultaneously, would be
the same on both sides of the equation. By arguing tha
these ‘‘traces’’are sufficient to specify uniquely such fo
index objects, the equation is derived.# Using the first equa-
tion we find

uA5
1

2d
~g Ā!abcba(G)~$u

a%!. ~56!

The index (G) has meaning only for an oddd, which is why
we put it in parentheses. We may accordingly write

cab(G)~$u
a%!ª(

A

1

2d
~gA!ab~g Ā!gdcdg(G)~$u

a%!.

~57!
0-9
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Then we find, taking into account thatãau &5ua, ã̃au &
52 iua, where u & is a vacuum state@which means that
c($ua%)5u & for c($ua%)51#, and Eq.~7!

ãccab(G)~$u
a%!ª(

A
~gA!abãcuA5(

A
~gA!abãcãAu &

5(
A

1

2d
~gA!ab~gcg Ā!gdcdg(G)~$u

a%!.

Consequently using the above relations starting from
~55! we further find

ãccab(G)~$u
a%!ª~gc!agcgb(G)~$u

a%!. ~58!

We find in a similar way

ã̃ccab(G)~$u
a%!ª(

A
~gA!ab ã̃cãAu &5(

A
~gA!abãAã̃cu &

5(
A

~gA!abãAã̃cu &

5(
A

1

2d
~gA!ab~g Āgc!gdcdg(G)~$u

a%!,

which finally gives

ã̃ccab(G)~$u
a%!ªcag(2G)~$u

a%!~gc!gb . ~59!

We have therefore proved the two equations which de
mine the action of the operatorsãa and ã̃a on the basic
function cag(2G)($u

a%).

VI. GETTING AN EVEN GAMMA MATRIX

According to Eqs.~58!,~59! it is obvious that thega ma-
trices, entering into the Dirac-Ka¨hler approach or the ap
proach of one of us for spinors, have an odd Grassm

character since both,dxa~̃ and ãa as well asdxa~̃̃ and ã̃a

have an odd Grassmann character. They therefore trans
a Grassmann odd basic function into a Grassmann even b
function changing fermion fields into boson fields. It is cle
that suchga matrices are not appropriate to enter into t
equations of motion and Lagrangians for spinors.

There are several possible ways to avoid this trouble@2#.
One of them was presented in Sec. IV. If working wi

dxa~̃ or ãa alone, puttingdxa~̃̃ or ã̃a in the Hamiltonian,
Lagrangian and all the operators equal to zero, theg̃a matri-
ces of an even Grassmann character can be defined as

posed in Eq.~27!: g̃a
ª idx0~̃̃dxa~̃ or g̃a

ª i ã̃0ãa, which
fulfill the Clifford algebra$g̃a,g̃b%52hab, while, as we have
already saidS̃ab52 i /4@ g̃a,g̃b#. We then have

g̃acab(G)~$u
a%!5gag

a cgd(2G)~$u
a%!gdb

0 . ~60!
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One can check thatg̃a have all the properties of the Diracga

matrices.~Replacingdxa~̃ or ãa by dxa~̃̃ or ã̃a, respec-

tively, the gamma matrices defined asg̃̃a
ªeither idx0

~̃dxa~̃̃ or i ã0ã̃a again have all the properties of the Dira
ga matrices.!

VII. DISCRETE SYMMETRIES

We shall comment in this section on the discrete symm
tries of spinors and vectors in the Hilbert space spanned o
either the Grassmann coordinate space or the space of d
ential forms from the point of view of the one-particle stat
of massless Dirac~that is the Weyl! particles. In order to
define the discrete symmetries of the Lorentz group we
troduce the space inversionP and the time inversionT op-
erators in ordinary space-time in the usual way. We sh
assume the cased54:

PxaP215xa , TxaT2152xa ~61!

with the metrichab,xa5habxb already defined in Sec. II
Since one wants the time reversal operator to leavep0, that is
the zero component of the ordinary space-time momen
operator (pa), unchanged (p0→p0), while the space compo
nentpW should change sign (pW→2pW ), one also requires

TiT2152 i leading toTpaT215pa . ~62!

We shall first treat spinors. Having the representation
spinors expressed in terms of polynomials ofua’s in Table I,
which also represents the corresponding superpositionsp
forms if ua is accordingly substituted bydxa`, we expect
each of the four copies of Dirac massless spinors to tra
form under discrete symmetries of the Lorentz transform
tions in the usual way.

The parity operatorP should transform left-handed
spinors with ^G (4)&521 to right-handed spinors with
^G (4)&51, without changing the spin of the spinors. This
what g̃0 @Eq. ~27!# does for any of the four copies of th
Dirac massless spinors, which are the Weyl bispinors
Table I, separately.

The time reversal operatorT should transform left-handed
spinors with^G (4)&521 and spin1

2 to left-handed spinors
with ^G (4)&521 and spin21

2, and that is what the operato

T5 i t inttxK, t int5g̃1g̃3,

tx5diag~21,1,1,1!, andKiK 2152 i ~63!

~whereK does not effect the basic spin-states any longer
to the appropriate choice of the basis! does when applied to
any of the four copies of the Dirac spinors of Table I. Th
transformation involves only members of the same copy
the Dirac bispinor. The operatorsg̃a which are defined in Eq.
~27! have, due to the appropriate choice of phases of
spinors of Table I, the usual chiral matrix representation~for
both approaches—the Ka¨hler one and the Mankocˇ one!.
0-10
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One would, however, expect that the time and the sp
reversal operators should work in both spaces—that is, in
ordinary space-time and in the space of either Grassm
polynomials or in the space ofp forms—in an equivalent
way

P8xaP8215xa , T8xaT82152xa ,

P8uaP8215ua or correspondinglyP8dxa`P8215dxa`,

andT8uaT82152ua

or correspondinglyT8dxa`T82152dxa`,

T8iT82152 i leading toT8paT8215pa ~64!

and changing equivalently the momenta conjugate to coo
nates in either the Ka¨hler approach or that of one of us.
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Applying the transformationP8 of Eq. ~64! to any of the
four copies of the Dirac bispinors of Table I, one obtains t
same result as in the above, that is, the standard definitio
the space-reversal operation:P85P. Applying the transfor-
mationT8 of Eq. ~64! to, let us say, the first spinor of the firs

copy of the Dirac bispinors of Table I@that is, on1c̃1($u%)#,
one obtains the last spinor of the one before the last c

@that is, 7c̃2($u%)#. The left-handed spinor with spin12 trans-
formed to the left-handed spinor of spin21

2, just as it did
under the usual time-reversal transformation, except tha
this case the copy of spinors has been changed.

One can write down the matrix representation for th
second kind of the time-reversal transformation. If w
choose for the basis the first copy of bispinors of Tabl
and the fourth copy of bispinors of Table I, we obtain t
matrix
T85S 0 0 is2eiwKw 0

0 0 0 is2eiwKw

2 is2e2 iwKw 0 0 0

0 2 is2e2 iwKw 0 0

D , ~65!
ges
ion

ed

he
tors

e of

era-
tion
for

at

d

at
re-
whereeiw51, due to the choice of the phases of spinors
Table I, andKw means that the complex conjugation has
be performed on the phase coefficients only in an expan
on the basis of Table I. Polynomials of theta have been,
to the choice of the basis, replaced by real spinor state

tors. Let us point out that while the choice ofg̃0 @Eq. ~27!#

enables the two parity operators, theg̃0 one and theuW→
2uW , to become equivalent, it is no freedom left to do t
same with the two time operatorsT and T8. We can, how-

ever, express the time operatorT8 in terms ofK andg̃0, if K

transformsi into 2 i also in theu part of space:T85g̃0K.
This T8 is the time-reversal operation discussed by Weinb
@6# in Appendix C of his book.7

When vectors and scalars are treated in a similar way
either of the two approaches~the polynomial representation
in terms ofu ’s can be found in Refs.@2,3,15#!, it turns out
that the time-reversal operator of Eq.~64! does not transform
one copy into another one.

We pay attention in this section only to spin degrees
freedom. The complex conjugation affects, of course,

7The two kinds of time reversal operator have already been
cussed in Ref.@2#. The appearance of the second kind of time
versal operator in Weinberg’s book as well as in Wigner’s bo
@11# was pointed out@12# to the authors at the Workshop ‘‘Wha
Comes Beyond the Standard Model’’ at Bled~1999!, when it was
suggested that the second kind could generate states, which m
used to describe the sterile neutrinos.
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higher part of the internal space as well, affecting the char
of spinors, vectors and tensors, if one thinks of the extens
@2# as discussed in Sec. IX.

VIII. UNAVOIDABILITY OF FAMILIES

We want to look at the unusual shift of the spin compar
to thea priori spin for a field by replacinga priori genera-
tors Mab5Lab1S ab by another setM̃ab5Lab1S̃ab as a
general nice idea. A prerequisite for that working is that t
difference between the two proposals for Lorentz genera

M̃̃ ab
ªMab2M̃ab ~66!

is also a conserved set of quantities. In the notation abov
course we find

M̃̃ ab5 S̃̃ab. ~67!

Assuming that there are indeed such two Lorentz gen
tor symmetries in a model, we can ask for the representa
under both for a given set of fields, and we can even ask

representation under the difference algebraM̃̃ ab. In order to
shift from integer spin to half-integer spin in going fromMab

to M̃ab, the representation for the fields in question must

least be spin-1/2 forM̃̃ ab. Actually in the cases we discusse

the M̃̃ ab were in the Dirac spinor representation. But th
means that the representation of the fields which shift rep

sentation going fromMab to M̃ab have to belong underM̃̃ ab
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-
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N. MANKOČ BORŠTNIK AND H. B. NIELSEN PHYSICAL REVIEW D 62 044010
to at least a spin-1/2, i.e., at least the Weyl spin represe
tion of the Lorentz group, and that has 2(d/221) dimensions.
But that means then that a given representation of the fi
M̃ab Lorentz group must always occur in at least 2(d/221)

families ~whenever this trick of spin change is used!.

IX. GENERALIZATION TO EXTRA DIMENSIONS

We have discussed the connection between the Gr
mannua formulation and the Ka¨hler formalism for genera
dimensiond and thus we could apply it simply in thed54
case, or we could use it in extended models with extra
mensions. One should note that the connection between
spinor and the forms is such that for each extra two dim
sions the number of components of a Dirac spinor goes up
a factor of 2, and at the same time the number of fami
also doubles. This agrees with the fact that adding one e
ua doubles the number of terms in theua polynomials, and
thus adding two would make this number four times as b

Let us now study the application of the extra degrees
freedom, which consists of, let us suppose the Grassm
ua’s or the Kähler differential forms, to the case where th
d-dimensional space is used in a Kaluza-Klein type mod
that is to say, we look here at a Kaluza-Klein model e
tended withua’s or the forms, much more rich than usu
Kaluza-Klein. It has long been suggested@2# that special
kinds of rotations of the spins in the extra (d24) dimensions
manifest themselves as generators for charges observab
the end for the four-dimensional particles. It is the highlig
and main reason for Ref.@2# that since both the extra dimen
sion spin degrees of freedom and the ordinary spin deg
of freedom originate from theua’s or the forms we have a
unification of these internal degrees of freedom. We can
then that the generators rotating these degrees of freed
namely, the just mentioned charges acting as higher dim
sional spins~at high energy! and the four-dimensional spin
are unified.

Such rotations of the internal spin degrees of freedom
order to correspond to a Kaluza-Klein gauge field with ma
less gauge bosons, would have to represent full symme
of the vacuum state, i.e., they should correspond to Killin
vectors, as in usual Kaluza-Klein but with the further degre
of freedom also corresponding to symmetry for the latter.
at the end we may consider also the charges associated
the internal spin as ordinary Kaluza-Klein charges, of cou
in the sense of the very rich model considered here. Bu
course unless we have theua or forms degrees of freedom
one could risk that the gauge field from such symmetry co
be practically decoupled.

Let us now look at what the ‘‘families’’ found in the
Grassmann or Dirac-Ka¨hler approach will develop into in
case we use it for a Kaluza-Klein type model, as just p
posed. Usually the number of surviving massless fermion
the ~311! space consists only of those which are connec
with ‘‘zero-modes.’’ This is to be understood as follows: w
use the Atiyah-Singer theorem to ensure that
(d24)-dimensional space—the compactified part of
space—some modes are zero modes. Correspondingly,
such zero mode enables the existence of zero mass par
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in the ~311!-dimensional~flat! space-time.
If the model had a strength for the compact space Atiy

Singer~AS! theorem ‘‘AS strength’’ and if the dimension o
the full space, the number ofua’s, is d, so that the number o
families at thed-dimensional level becomes 2d/2, the total
number of ‘‘families’’ observable at low energy should be

No. families5 ‘‘AS strength’’32d/2. ~68!

As an example take the model@2,14# which hasd514
and at first—at the high-energy level—SO~1,13! Lorentz
group, but which should be broken~in two steps! first to
SO(1,7)3SO(6) and then to SO(1,3)3SU(3)3SU(2). For
this example the number of families would come in multipl
of 27.

X. DISCUSSION OF SPECIES DOUBLING PROBLEM

We may see the appearance of equally many~namely,
2d/221) right-handed and left-handed ‘‘flavors’’ in th
Kähler model as an expression for the no-go theorem@7# for
putting chiral charge-conserving fermions on the lattice,
sofar as we could make attempts to make lattice fermi
along the lines of Becher and Joos@9# it would of course
have been a counterexample to the no-go@7# theorem if there
had been a different number of right and of left Weyl partic
species in the Becher-Joos model, because in the free m
the number of particles functions as a conserved charge
is very well known the Becher-Joos model is really just t
Kogut-Susskind@13# lattice fermion model; it is also wel
known that it does not violate the no-go theorem@7# and this
is because there is this species doubling, which can be in
preted as the flavors. Becher and Joos show that the Ko
Susskind lattice description of Dirac fields is equivalent
the lattice approximation of the Dirac-Ka¨hler equation~see
page 344 in the Becher-Joos@9# article!.

This Kogut-Susskind model is one that gives us Dir
particles, but we can seek to get to Weyl particles in a na

G (4) ~or G̃ (4) or g5 in the usual notation! projecting way, but
of course now such a projection would have to be transla
into the language with the vector and scalar fields in Ka¨hler
formulation, and it is rather easy to see@15# that requiring
only oneG (4) projection implies that the coefficient to onep
form, saydxA, dxA5dxa1`dxa2`•••`dxai, should relate
~just by a sign3 i ) to that of the* dxA associated by the
Hodge star (* ). Actually, we easily see that requiring th
restriction that

~11G (4)!c50 ~69!

in the language of Ka¨hler becomes

~11 i * !u50. ~70!

If, as Joos and Becher did, we want to put the theory
the lattice there is a difficulty in just imposing this constrain
because the natural relation imposed by the Hodge sta
the lattice would go from the lattice to the dual lattice, a
0-12
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we could not identify without a somewhat ambiguous cho
the * dual of a given lattice element, so as to impose
‘‘self-duality’’ condition.

Could we possibly invent a way to circumvent the no-
theorem@7# for chirality conserving fermions on the lattic
by making the species doublers bosons instead of fermi
both having though spin-1/2? In the formulation by one of
which we have related to the Ka¨hler formulation there is
~naturally! a different Grassmaniann character assigned
different components of the wave function. In fact the wa
function with coefficients to monomial terms that are pro
ucts of different sets of~mutually different! ua variables—in
the sense, of course, that a polynomial is given by
coefficients—and thus the coefficients to the products w
an even number of factors have a different Grassman
character from those of the odd number of factors. That
tually is, in the theory of one of us, a somewhat embarrass
reason for a superselection rule which, though, may be o
come by taking into account the charges related to extra
mensions appearing in that model. But here we now wan
point out the hope that these very Grassmann character p
lems may be used as a new idea to circumvent the no
theorem. In fact we could hope that spin-1/2 and, say,
handed flavor appear with fermionic statistics~the Grass-
mann odd character! while spin-1/2 flavor with bosonic sta
tistics would appear as right handed, and that even on
lattice.

XI. CONCLUDING REMARKS

The way that Mankocˇ @2# chooses to quantize the system
that is a particle moving in ordinary and Grassmann coo
nate space, is to let the wave function be allowed to be
function of thed Grassmann variablesua, so that any such
function represents a state of the system. But in this qua
zation theã̃a’s cannot be put weakly to zero. In other word
that quantization turned out not to obey the equation
pected from the expression for the canonical momentumpua,
being proportional to the coordinateua as derived from the
Lagrangian. If, however, in the operators such as the Ha
tonian and the Lorentz transformation operatorsã̃a’s are just
put strongly to zero, so that all the operators only depend
ãa, while either ãa or ã̃b fulfill the Clifford algebra:
$ãa,ã̃b%50 and $ãa,ãb%52hab5$ ã̃a,ã̃b%, the expressions
obtained after having put theã̃a’s to zero describe spino
e
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degrees of freedom. In particular, only the operatorsS̃ab are
used as the Lorentz generator. One has accordingly the
Lorentz transformations instead of thea priori one used in
the wave function on Grassmann space quantization. In
case the argument for having only integer spin breaks do
what the calculations indeed confirm to happen.

We should now attempt to get an understanding of w
goes on here by using a basis inspired from the Dirac-Ka¨hler
construction, which is a way often used on lattices to imp
ment fermions on the lattice. The Dirac-Ka¨hler construction
starts from a field theory with a series of fields which a
zero form, one form, two form, . . . ,d form. They can be
thought of as being expanded on a basis of all the we
product combinations of the basisdx1,dx2, . . . ,dxd for the
one forms, including wedge products from zero factors tod
factors. In the Dirac-Ka¨hler construction one succeeds
constructing 2d/2 Dirac spinor fields out of these ‘‘all type
of forms.’’ This construction is impossible without
‘‘cheat’’ in much the same way as Mankocˇ’s approach ought
to be.

We have pointed out clearly in this paper how th
‘‘cheat’’ occurs in both approaches, showing up all the sim
larities of the two approaches and using the simple prese
tion of the quantum mechanics in Grassmann space, no
only simplify the Dirac-Kähler approach but also to genera
ize it. We have shown in particular that in both approache
addition to the~two kinds of! generators for the Lorentz
transformations for spinors also the generators for vec
and tensors exist. There are four copies of the Weyl b
pinors. One kind of the spinorial type of the Lorentz tran
formations defines the Weyl spinors, another kind transfor
one copy of Weyl spinors into another of the same Gra
mann character. We also have shown the two kinds of
time reversal operators, as well as the fact that in Grassm
space or space of differential forms ofd dimensions,d.4,
spins and charges unify. We pointed out the necessity
defining the gamma matrices of an even Grassmann cha
ter.
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