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We compare the way one of us obtained spinors from fields, which ar@ri antisymmetric tensor fields,
to the Dirac-Kaler rewriting. Since using our Grassmann formulation is simple it may be useful in describing
the Dirac-Kéler formulation of spinors and in generalizing it to vector internal degrees of freedom and to
charges. The “cheat” concerning the Lorentz transformations for spinors is the same in both cases and is put
forward in the Grassmann formulation. Also the generalizations are clearly pointed out. The discrete symme-
tries are discussed, in particular the appearance of two kinds of time-reversal operators as well as the unavoid-
ability of four families and the evenness and oddness of the Dirac matrices.

PACS numbgs): 04.50:+h, 11.10.Kk, 11.30+j, 12.10—g

[. INTRODUCTION and[ , ] means the commutafoused alone are also possible
Lorentz generators for which the wave function now trans-
Kahler [1] has shown how to pack the Dirac wave func- forms as a spinor wave function. Puttia§ (which has the
tion into the language of differential forms, in the sense thaproperty thaf$2°,3°]=0) equal strongly to zero is the same
the Dirac equation is an equation in which a linear operatot,¢ replacings2® by 2.
acts on a linear combination of p forms (p=0,1,...d; In both approaches to obtain spinors from vectors and
hered=dimensior=4). This is the Dirac-Khler formalism.  antisymmetric tensors one starts by getting not only one but
One of us[2—4] developed long ago aa priori rather  several copies, families, of Dirac fields. This is a fundamen-
different formalism in an attempt to unify spin and charges.al feature insofar as these different families are connected
In this approach the spin degrees of freedom come out ofy the generator parts not used: if, for instance, one B&&s

canonically quantizing certain Grassmannian odd variablegg the Lorentz generator to obtain spinors, then the unused
6% (position analogue in the sense of being on an analogue

= b -
footing with x?) . These variables are denoted by a vectorgﬁgriteﬁg?;?;?hsOttrr]]eerfam'“es{c’f the same Grassmann
index a, and there are at first no spinors at all to see. . ) : .
One of the main purposes of the present article is to point. It will be a major feature of the present article to create a

out the analogy and nice relations between the two differeng_"cnonary relating the two formalisms so that one can enjoy

ways of achieving the—almost miraculous—appearance o e simplicity of one, which also is working on the other

spin-one-half degrees of freedom in spite of starting fromapproach. We shall also generalize thenkea operators for

pure vectors and tensors d#4, comment on the discrete symmetries, which in the
Of course it isa priori impossible that vectorial and ten- approach of one of us, show up clearly and use dhet

sorial fields(or degrees of freedonctan be converted into dimensions to Qescrlbe.splns and charigesA].

spinorial ones without some “cheating.” The “cheat” con- In the following section we shall put forward the small
sists really of exchanging one set of Lorentz transformatiorP®"t of t_he forr_nahsm Of the work of one of us needed for the
generators for another sétvhich indeed means putting €OMParnson with the Dwac—'lﬁer formalism. In Sec. Il we
strongly to zero one type of Grassmann odd operators fquiII-S'ha.II then explain theusua) Dwgc-quIer.formahsm as far
ing the Clifford algebra and anticommuting with another2S 1t 1 relevant. The comparison, which should now be

type of Grassmann odd operators, which also fulfill the CIif—rather obvious, is performed in sec. v. .
ford algebra2—4]). In Sec. V we shall analyze in the two approaches in par-

In fact, one finds on page 512 in Ker's article [1] allel how the remarkable finding of the Dirac equation inside

that there are two sets of rotation generators: one set for

which the u field (in Kahler's notation transforms as a

spinor field and another one for which it transforms as su- *After submitting this paper to Phys. Rev. D, an interesting paper
perpositions of vector andantisymmetri¢ tensor fields. [5] appeared, in which the author compares the Dirabkaap-
Analogously, in the approach of one of us, thepriori proach to the symplectic geometry of phase spaces. Some of the

. b_gab_ Gab author’'s conclusions are similar to ours. However, while Reuter
Lorentz transformation generato&’=S+S™ have the . extends the Dirac-Kaer approach to the space of anticommuting

wave function transform as vectors and ar"t'symmemC(:oordinates, we use the approach of one of us to generalize the

tensors, whileS®® (= —i1[&2a"]) or S°° (= —i1[B2&°]  Kahler approach.
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a purely tensorial-vectorial system of fields occurs. In Sec. {A,B}:=AB—(—1)"A8BA, 3
VI we shall comment on the evenness of th& matrices,

which have to transform Grassmann odd wave functions intavhere
Grassmann odd wave functions, not changing the Grassmann
character of wave functions. In Sec. VII we shall comment

on discrete symmetries, for either thetdar approach, or the otherwise

approach of one of us, also discussing the realization of the 4
discrete symmetries pointed out clearly by Weinberg in his

book [6] on pages 100—105. In Sec. ViIl we want to inves- {akes the form

tigate how unavoidable the appearance of families is to this fa 00\ __ fpa ab 6a pby_ _:_ab

type of approach. In Sec. IX we shall look at how the ideas P pTy=0={0% 6%, {p™,0%=—in" ®
of one of us of extra dimensions generalizes thélKaap- Here 720 is the flat metricy=diag{1,-1,~1, ...}.

proach. In Sec. X we discuss the Nielsen and Ninorfia For later use we shall define the operators

no go theorem for spinors on a lattice and a possible way out.

In Sec. XI we shall summarize, and deliver concluding re- At=i(pP—-ig?), B%=—(p®+ie?), (6)
marks.

+1, if AandB have Grassmann odd character,
AB—
0

for which we can show that tf&#*"'s among themselves fulfill

Il. DIRAC EQUATIONS IN GRASSMANN SPACE the Clifford algebra, as do also t@é’s, while they mutually
. ) anticommute:
What we can call the MankoapproacH 2—4], and which

is the work of one of us, is a rather ambitious model for {aa,”ab}zznabz{“aa,ﬁb}, {aaf{ib}zo_ (7)
going beyond the Standard model with, say, (b® more

extra dimensions, but what we need for the present connedNote that the linear combination®) presuppose a metric
tion with the Dirac-Kéler [1] formalism is only the way in tensor, since otherwise onl§* and p0a but not#, andp??
which the spin part of the Dirac particle fields comes aboutare defined.

The total number of dimensions in the modelnsost hope- We could recognize formally
fully) 13+1 bosonic degrees of freedom, i.e., normal dimen- o -
sions, and the same number of fermionic ones. eithera®p,|¢)=0 ora’p,|¢)=0 8

Let us call the dimension of space-tindeand then the . . . .
Dirac spinor degrees of freedom will come from the odd@S the Dirac-like equation, because of the above generalized

Grassmannian variable®, ac{0,1,2,3,5. .. d}. Eommutation relations. Applying either the opera@8p, or
In wanting to quantize or just to make Poisson bracket®’Pa On the two equation$Egs. (8)] we get the Klein-

out of thed #*s we have two choices, since we could either Gordon equatiop®p,|¢)=0. Here of course we defined

decide to make the differem’s their own conjugate, so that

one only hasl/2 degrees of freedom—this is the approach of D= i 9)

Ravndal and DiVecchif8]—or we could decide to consider & axd

the #*s configuration space variables only. In the latter

case—which is the Mankocase—we have then from the However, it is rather obvious that Eqé8) are not Dirac

6®'s different conjugate variablegs?. equations in the sense of the wave function transforming as a
In this latter case we are entitled to write wave functionsspinor, with respect to the generators for the Lorentz trans-
of the form formations, if taken as usual
Sab:: aapﬁb_ 0bpﬂa. (10)
pdothH= X - _
i=01,...,85...d {a<ap<---<aj}e{0l,....35 ... However it is easily seen that we can write these generators
Xag o . 0210%2. . . g3 (1) as the sum
b_Gab_ Zab
This is the only form a function of the odd Grassmannian SP=8"+5", (11)

variables#® can take. Thus the wave function space here has :

) . Where we have defined
dimension 2. Completely analogously to usual quantum me-
chanics we have the operator for the conjugate variabkes _ i - i

A= — Z[aa,ab], 20 — Z[éa,éb], (12
J -

pli=—i—:=—ig,. (2 . .

a 962 with [A,B]:=AB—BA. One can now easily see that the so-

lutions of the two equationg8) now transform as spinors

The right arrow here just tells us, that the derivation has to bevith respect to eithe*” or S2°.
performed from the left-hand side. These operators then obey It is of great importance for the “trick” of manipulating
the odd Heisenberg algebra which, written by means of thevhat we shall consider to be the Lorentz transformations,

generalized commutators and thus to be able to make the “miraculous” shifts of
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Lorentz representations that is the somewhat remarkablease. Further in the notation of Kier the symbdl § denotes
characteristic of the Kder type of shift in formulation inner differentiation, which means the analogue of the exte-
interpretation, that—untilded, the single tilded and therior differentiald but with the use of the Clifford produsy
double tilded—S3® obey thed-dimensional Lorentz genera- instead of the exterior product

tor algebra {Mab, Mcd}: _i(Madnbc+ Mbcnad_ Macnbd

—MP9%2%, when inserted foM 2. 3 . ou au ° au au
Really the “cheat” consists of replacing the Lorentz gen- U= ;1 dxv/ P dty —-=du+ ;1 € P €0t
erators by thes?®, say (we shall return to this later This (16)

“cheat” means indeed that for this choice the operaf@its ) , )

have to be put strongly to zero in the generators of the Loré@ determines the coupling of the charge with the electro-
entz transformation§Egs. (10—(12)] as well as in all the ™Magnetic fieldw=A.dx* a{0,1,2,3 and m means the
other operators, representing the physical quantities. We&lectron mass; the symbe transforms ap form into (p
shall present the approach of one of us, in further detail i~ 1) form, if thep form includesdx’, otherwise it gives zero.
Sec. 1V, pointing out the similarities between this approach For a free massless particle living in cadimensional

and the Kaler one, and generalizing the Kar approach.

IIl. KA HLER FORMULATION OF SPINORS

The Kahler formulation[1] takes its starting point by con-
sidering p forms in the d-dimensional spaced=4. El-

space-time—this is what interests us in this paper since the
mass term brings no new feature to the theory—E&§) can

be rewritten in the form
dx®/p, u=0, a=0,1,235... d, a7

where u again stands for a linear combination pfforms

egantly, the 1 forms say are defined as dual vectors to th@p:0,1,2,3,5, ..d), that is to say that the wave function

(local) tangent spaces, and the higheforms can then be
defined as antisymmetrized Cartesi@xterion products of

describing the state of the spin-one-half particle is packed
into the exterior algebra function. More about the Kaler

the one-form spaces, and the O forms are the scalars; but Wgyproach will come in Sec. IV, giving the correspondence

can perhaps more concretely think about phierms as for-
mal linear combinations of the differentials of the coordi-
natesdx®: a general linear combination of forms is then writ-
ten

U:U0+u1+--~+ud, (13)

where thep form is

1 . . . .
up—a‘ 2 @iy, ipdx'l/\dx'z/\dx's/\.../\dx'p
L P P ip
= > a i dxtAdxizAdx3A- - Adxe.
ig<ip.-<ip 172TP

(14

Then one can define both the presumably most well
known exterior algebra denoted by the exterior prodiict
and the Clifford product,/ among the forms. The wedge
product /\ has the property of making the product ofpa
form and aq form be a p+q) form, if a p form and aq
form have no common differentials. The Clifford product
dx®\/ on ap form is either gp+ 1 form, if ap form does not
include a one forndx?, or ap—1 form, if a one formdx?@ is
included in ap form.

Actually Kahler found how the Dirac equation could be
written as an equatiofil] [Eq. (26.6) in Kahler's papet

—idu=(m+e-w)\/Uu, (15
where the symbol stands for a linear combination qf
forms[Eq. (13)] andpe{0,1,...,3,5 ... ,d} with d being
the dimension of space-time, namelg=4 for Kahler's

between that and the one with the Grassméfis, where we
shall also give some generalizations.

IV. PARALLELISM BETWEEN THE TWO APPROACHES

We demonstrate the parallelism between thélka ap-
proach[1] and that of one of ug2—4] in steps, paying atten-
tion to the Becher-Jod®] paper as well. First we shall treat
the spins fields only, as Kaler did. We shall use the simple
and transparent definition of the exterior and interior prod-
ucts in Grassmann space to generalize thal&aapproach
to two kinds of§[Eqg. (16)] operators on the space pforms
and then accordingly to three kinds of the generators of the
Lorentz transformations, two of the spinorial and one of the
vectorial character, the first kind transforming spigdields,
the second one transforming the vector fields. We comment
on the Hodge star product for both approaches, define the
scalar product of vectors in the vector space of eighierms
or of polynomials of¢®'s and comment on four replications
of the Weyl bispinor. We also discuss briefly the vector rep-
resentations in both approaches.

A. Dirac-Kahler equation and Dirac equation
in Grassmann space for massless particles

We present here, side by side, the operators in the space
of differential forms and in the space of polynomials@fs.
We present the exterior product

2The notation in the Becher and Jd&§ paper is slightly different
from the Kaler notation. The Becher and Joos paper udes
=dx?(d/9x?), as Kaler does in his paper, bdtof Kahler is in the
Becher and Joos paper replacedday 8, which means that in their
papers= —e?( 5/ 6x?).
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b b ~ ~
DEADEA- -, 6707, (18) dx*/ pad X pou=ppau=0,
the operator of “differentiation” p,a°pp({6°}) = p?pay({6°}) =0.
_ L3 dX/ PadX*\/ ppu=ppau=0,
—ie?, pR=—igd=—i—, (19
70 A A°pptr({6°}) = p?patr({6°H) =0 24
a%paa’pp({6°}) = p*path({6°}) =0. (24)
and the two superpositions of the above operators Both vectors, thau, which are the superpositions of dif-
ferential p forms and they(6%), which are polynomials in
dx@ =dx@N\ +e?, F:=i(p’a—i6?), #%*s, are defined in a similar waEgs.(1),(14)], as we shall

point out in the following subsection. We see that either
~ . ~ _ dx2/p,=0 or dx*/p,=0, similarly as eithe&®p,=0 or
s, AN _pd) Fa,__(pba a - a a a

P/ s==i(dx/\ =€), &%= (pTHi6%). (20 a%p,=0 can represent the Dirac-like equation.

- . ) B. Vector space of two approaches
Here \/ stays instead of/ of Eq. (15), used by Kaler.

Introducing the notation with™) and ) we not only point
out the similarities between the two approaches but also th
two possibilities for the Clifford product—only one of them

The superpositions qf forms on which the Dirac-Kiaer
quation is defined and the superpositions of polynomials in
rassmann space, on which the Dirac-like equations are de-

i - ~ ) fined, are
used by Kaler. Both\/ and\/ are Clifford products orp
forms, while@® and@? are the corresponding linear opera- U=
tors operating on the space of polynomials#dfs. One eas- i=0,1235,...d aj<ay<---<a c]0,1235,...d}
ily finds the commutation relations, if for both approaches .
the generalized form of commutators, presented in (By. X, a,, ... adX/\dX2AAXB/N - AdX,
are understood

~ ~ 0% =
(A, dxP\/} =272, {83aP} =273 o) i;o;,d ay<ay<---<a c(01,235,...d}
X a,, ... a 621622 . . 9%, (25

[T, =27, (BE) =27 (2
The coefficientsozal,a ______ a depend on coordinates® in
Here 7?° is the metric of space-time. both cases and are antisymmetric tensors of the ramikh

The vacuum statg) is defined as respect to indices,e{ay, . ..,a;}. The vector space is for
d=4, used by Khler, in both cases 16 dimensional.

a |\ — qy@ =al\— pa
dAV[)=dxA, @)= 67 C. Dirac y-like operators

Both dx&\/ anddxaf/ define the algebra of the* matri-

a’™ — an Zal\_ _jpa -
V) XA, &%) 6" @2 ces and so do bofi® anda?. One would thus be tempted to
. o _ identify
Now we can define the Dirac-like equations for both ap-
proaches Yaave=aX3/, or Yo e=a% (26)
dx®/pu=0, A2p,i({6%))=0, But there is a large freedom in defining what to identify

with the gamma matrices, because except when ugiras a
parity operation you have an even number of gamma matri-
dxaf/pau=0, A%p({6%))=0. (23)  ces occurring in the physical applicatichhen you may
multiply all the gamma matrices by some factor provided it

Since{e?,dx® A\}= 52 and{e?,e’} =0={dx®/\,dx’\}
=0, while {ip?,6°} =72 and{ip?,ip®}=0={6?,6", it -
is obvious that in the form formalisme® plays the role of 3There are currentgy®y which enter into calculations of physi-
the derivative with respect to a differential one form, simi-cal quantities. Currents have an even numbery8f matrices:
larly asip? does with respect to a Grassmann coordinate. ¥ ¥°¥*#. Also the Lagrange function contains, in addition to the
Taking into account the above definitions, one easily findsnass term, in which/ appears if1y=my* y°y), the even num-
that ber of 2 matrices:/y2p, .
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does not disturb their algebra or their even products. Wend the Poisson brackets, then automatically assures the an-

shall comment on this point in Sec. VI. ticommuting relations between the operators of the fermionic
fields.
1. Problem of statistics of gamma matrices
This freedom might be used to solve what seems to be a 3. Solution by redefinition of oddness
problem. Having an odd Grassmann character, neéheor The simplest solution to the problem with the evenness

A2 should be recognized as the Diraé operators since, and oddness is to use the “naive” gamma matrix identifica-
when operating on polynomials af, they would change tions(26) and simply ignore that the even-odd-ness does not
polynomials of an odd Grassmann character to polynomialsnatch. This is what Kialer did, we can say, insofar as he did
of an even Grassmann character. One would, howevenot really identify the even-odd-ness of thdorms with the
expect—since Grassmann odd fields second-quantize to festatistics of Dirac fields. If, along the lines of the Becher and
mions, while Grassmann even fields second-quantize tdoos pape[9], one makes a second-quantized theory based
bosons—that the® operators do not change the Grassmanron the Kailer trick, one does not proceed by insisting on
character of wave functions. One can notice that, similarly taaking p forms to be fermionic only whep is odd. Becher
the Grassmann case, also the two types of the Clifford prodand Joos take all the forms as fermion fields and then assume
ucts defined om forms, change the oddness or the evennesanticommuting relations for operators of fields. This simplest
of the p forms: an everp form, p=2n, is changed by either solution can thus be claimed to be the one applied byléta
dxa\~/ or dxai;/ to an oddq form, with eitherq=p+1, if and used by Bec_her and Joos: they simply do not dream
dx® is not included in ap form, or q=p—1, if dx® is in- abqut postulating in advance that tpgiorms should neces-
cluded in ap form, while an oddp form, p=2n+1, is sarily be 'Faken to be boson or fermion fields depending on
changed to an evep+1 form orp—1 form. whetherp is even or odql. It is only when one as one o_f usin
her model has the requirement of canonical quantization say-
ing that the #®'s should be Grassmann odd objects, which

2. First solution to gamma-matrix statistics problem !
indeed they are, that the problem occurs.

We shall later therefore propose that accordingly

either;azzidxoiz/dxa\N/ or ;a: i50xa @27 D. Generators of Lorentz transformations
Again we present the generators of the Lorentz transfor-
are recognized as the Dirag® operators operating on the mations of spinors for both approaches
space ofp forms or polynomials of®'s, respectively, since ab_yjab, cab | ab_yanb_ .y b.a
they both have an even Grassmann character and they both M LFH ST LT=xipi=xTp’, (30
fulfill the Clifford algebra
differing among themselves in the definition 8f° only,
{}a,}b}zzﬂab_ (29) which define the generators of the Lorentz transformations
in the internal space, that is in the spacgdbrms or poly-

Of course, the roles of"] and T) can be exchanged in nomials of 6*'s, respectively. While Khaler suggested the

either the Kaler case or the case of polynomials in Grass-J€finition
mann space.
Whether we define the gamma matrices by Ey) or S=dx@AdxP,

(26) only makes a difference for an odd product of gamma
matrices, but for application@ee the last footnotesuch as

construction of currentgy®y or for the Lorentz generators Saby= 1[(dxa/\dxb)\/u_u\/(dxa/\dxb)]’
on the spinors—i[y?,7"] only products of even numbers 2

of gamma matrices occur, except for the parity representa-

tion on the Dirac fields, where thg® matrix is used alone.

This »° matrix has to simulate the parity reflection, which is in the Grassmann ca$] the operato52® is one of the two
either generators defined aboyEq. (12)], that is,

(31)

dx— —dx or 6——4. (29 _ i i
either §*°=5"= — 2 [a%a"]= - 7[y*»"]

The “ugly” gamma-matrix identificationg27) indeed per-
form this operation. And as long as the physical applications
are the ones just mentioned—and that should be sufficient— ~ i
the choice(27) is satisfactory: living in the Grassmann odd or §2P=5= — Z[éa,ab]- (32)
part of the Hilbert space, we do not move into the Grass-
mann even part of it. The canonical quantization of Grass-
mann odd fields, that is the procedure with the Hamiltonian One further finds
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['éab’?iC] —i( 77acréb_ nbcéa)’ E. Hodge star product
In the way in which we have defined the operators in the
[g'éab’fac:lzi( P2BP— 7PER), space ofp forms, the definition of the “Hodge star” opera-

tor, defined by Kaler working in the space qf forms and
o ~ the space ob? polynomials, will be, respectively,
while [ 5¢]= 0=[3% 7°]. 33 P POy peciively
In the Kanler case one can also define two kinds of Lor- =i 1T 7, (38)
entz generators, which operate on the internal spacp of 2=0.1235, ...d
forms, according to two kinds of Clifford products, presented ~a N T e, .
above. Following the definitions in the approach of one of ugVith ¥* equal to eitherdx™/dx*\/ in the Kehler case, or to

[2], one can write thes2® for the Kzhler case: either ia’a® in the approach of one of Ug]. For an everd the
] . factors with double tildes can in both cases be omittEd (
‘Sab— _ :—1[dxa/\+ea,dxb/\+eb]= — ;_r[:ya,?yb] =eitheriTl&% or ill,dx*/; again we could distinguish the

operatorsf“ andT in both cases, according to the elements,
3 i which define the Casimir It follows that
or~Sab=Z[dxa/\—ea,dxb/\—eb]. (34)
~(1=1) (39)
Not only in this case, are the similarities between the two
approaches more transparent, but also the definition of thgre the two operators, which when being applied on wave
generators of the Lorentz transformations in the spacg of functions defined either op forms or on polynomials in
forms is very much simplified. Grassmann space, project out the left- or right-handed com-
One further finds for the spinorial case ponent, respectively.
One easily recognizes that when being applied on a

vacuum staté), the operatof behaves as a “Hodge star”

which demonstrates that the total angular momentum for groduct, since one finds, faf even,

free massless particle is conserved. The above equation is .=, 1 =0y 001

true for both approaches and the generators of the Lorentz ST =dCADAA- - AdX, —iT|)= 6% ---0".40

transformationd/2P fulfill the Lorentz algebra in both cases. (40
In addition, the operators of the Lorentz transformations

with the vectorial character can also be defined for both ap- F. Scalar product

proaches in an equivalent way, that is as a sum of the two |n Mankods approact2], the scalar product between the

operators of the spinorial character two functions ¢M({62}) and ¢(?({62}) is defined as fol-

lows:

[M2°32p,]=0 for M2P=[2P+SP, (35)

SW=5 1= —j(dx/\eP— dx/\e?),
- ()2 = f A0l oy D *H T* gD ({6%). (4D
Sab: Sab+ Sab: eapﬁb_ gbpaa, (36)

: . . Here o is the weight function
which again fulfills the Lorentz algebra. The opera

=—i(dx®\e’—dx’/\e?), if applied on differentiap forms, 2

transforms vectors into vectors; correspondinglg?® 0= 6?'+—i (42

= 62p?— ¢°p’, if applied to polynomials oh? transforms 1=01,2.35,...d a9

vectors into vector$2]. . ) 1) .
Elements of the Lorentz group can be written for bothWhICh operates on the first functioft™) only, while

approaches, for either spinorial or vectorial kinds of genera-

tors as f de?=0, J de?e*=1, a=0,1,2,3,5....,d, (43

U=g (iRoaM™ (37 no summation over the repeated index is meant and

wherew,,, are parameters of the group.Nf2? are equal to J 490600t g2 03¢5 . . 9=1

eitherL2%+S*" or L2°+$?®, the period of transformation is ’

44 either in the space of differential forms or in the Grass- da nd 51 34 124 A 0

mann space, demonstrating the spinorial character of the op- d"9=d¢". --dg>de d6dodo". (44

erator. IfM2 is the sum ofL2® and S+ S0, the period of
transformation is 2, manifesting the vectorial character of Since 6** =62, an asterisk means the complex conjugation
the operator. and a plus means the Hermitian conjugation, then with re-
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spect to the scalar product defined above the opewitor
naaaa anr ea aa Wh|le aa+ — naa-éa and aa+ — naaféa
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TABLE I. Irreducible representations of the two subgroups
SU(2)xSU(2) (i.e., the complex version pthe group S@1,3 as

Again no summation over the repeated index is performeddefined by the generators of the spinorial charastdrs* and the
Accordingly the operators of the Lorentz transformations ofoperator of handedne$¥*. The four copies of the Wey! bispinors

spinorial character are self-adjoiif a#0 andb#0) or
anti-self-adjoint(if a=0 orb=0).

According to Eqgs.(41), (25) the scalar product of two
functions M(6%) and y(?)(6?) can be written as follows:

in Table I. We shall discuss this point also in the next

section.

H. Vector representations of group SG1,3)

have either an odd or an even Grassmann character. The generators

ré”‘“, m,ne (0,1,2,3), transform the two copies of the same Grass-

mann character one into another.

a ({6} s? = T
(1)],7,(2)\ — aD* (2) .
W) % a1<a2§:<'"<ai apa i aya, ""(25) 1 i@l-iad)(al-ad) ; _12 -1
. . _ e 1 [
in complete analogy with the usual definition of scalar prod-1 2 - 3(1+i3'a?)(1-3%>) -5 12 -1
ucts in ordinary space. Kéer[1] defined in Eq(15.11 and '
on page 519 the scalar product of two superpositiong of » 1 L@al-ia?) @0+ 1 b 1
formsu® andu® as follows: 2 2
_1 ix1l=2 =0x3 1 [
<u(1)|u(2)>22 E e @ 2 2 3(1+ia"a%)(1+a’a>) -5 3 1
0d a1<a,<---<aj R REV SRR RIS R TR @ ! ol s 1 i
E - - p— p—
(46) 3 1 (a—ia9)(1-3a"’a) 5 5 1
Wh:h (fc(;rS;eaI coefficientsa,’ , ., o« K=1,2) agrees . 2 _ L(1+ia%2) (070 _% _12 1
with Eq. (45).
. 4 1 la-iEy(1+ad) b
G. Four families of solutions in the Kahler 2 2
or Grassmann space approach(of one of ug 4 ) B —(1+|”1~2)(a°+a3) 1 i 1
We shall limit ourselves td=4 and to the spinorial case 2 2
(as indeed Khler did). The representations for highérana- 5 1 L1 iak?) (@04 79) 1 i 1
lyzed with respect to the groups S8 XSU3)XSU(2) 2 5 5
xU(1), and some other groups in Grassmann space, are for 1 i
Grassmann even and Grassmann odd parts of the spage, 2 —3(@+i3?)(1+3%°) -5 3 1
which belongs to the groups not including GCB) presented _
in Ref.[3] and Ref.[4], respectively. 1 11— iat?) (20— 3%) ror
In the case ofd=4 one may arrange the space df 2 2 2
vectors into four times two Weyl spinors, one left- handed 1x1 | =2 —0x3 1 i
one (T'™)=—1) and one right (I‘Y=1). We are pre- Jz@Eian (A 2 2 !
g p
senting these vectors, which are at the same time the eigen- . 1p —oxs 1 i
vectors of S? and S%, as polynomials of 6™s, m 2(1-ia&) (1+a%a) 5 73 -1
€(0,1,2,3). The two Weyl vectors are connected by the op- 1 i
i ~m T, 2 —3(@+ia?) (@ +ad) -~z - -1
eration of y™ operatord Eq. (27)]. Taking into account that 2 > >
A% )= 6, where| ) is the vacuum stateEq. (22)], we present 1 i
Table 1. 8 1 (1-iata?) (1-3a%d) Z - 1
Similarly also the Kaler spinors can be arranged into 2 2
four copies. We find them by only replacif@ by dx2\/ 8 2 - 3(@+ia?) (a°-a%) ,% 712 1

XSU(2) representation of S@,3) both denoted by(3,3

Analyzing the irreducible representations of the groupand differing among themselves in the Grassmann chatacter
SQ(1,3) in analogy with the spinor case but taking into ac-all of which are eigenvectors ofs(¥?=31s3bs,, T(*)
count the generator of the Lorentz transformations of the=i[(—2i)%/4!]€.pceS2PS%Y, S*2 andS%. Using Eq.(36)

vector type[Egs. (10), (36)] one finds[2—-4] for d=4, two
scalars(a scalar and a pseudoscajawo three-vectorgin
the SU2)xSU(2) representation of S@,3) usually de-

and analyzing the vector space pfforms in a way analo-
gous to the space of the Grassmann polynomials, one finds
the same kind of representations also in thehlga case.

noted by(1,0 and (0,1) representations, respectively, with Both in the spinor case and in the vector case one has

(T'™) equal to +1] and two four vectordin the SUZ2)

2*-dimensional vector space.
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V. APPEARANCE OF SPINORS

Dirac equation—usually which is an equation forspinor

field—appears out of models with only scalar, vector, an
tensor objects. Immediately one would say that it is of cours
purely impossible to construct spinors such as Dirac field

and their external products, or th#’s and their products
626°- - - 6°.

Let us also say immediately that it can only be done by

“cheating.” This cheating really consists a@kplacing the
Lorentz transformation concefincluding rotation concept

by exchanging the Lorentz generata@#$® and S*° say (or
the S2P if we choose them instejdsee Eqs(32), (34). This

indeed means that one of the two kinds of operators fulfilling

the Clifford algebra and anticommuting with the other
kind—a choice ofix®/ was made in the Kaler case an@?

in the approach of one of us—are put to zero in the operators

a
One may wonder about how it is at all possible that thethe 0

e

PHYSICAL REVIEW D 62 044010

Let us point out further that what happens is that either
polynomials of in the one of us approach or the linear
combinations of forms in the Kéler approach, can be for-

OImulated aglouble spinorsi.e., expressions with tw(Dirac)

spinor indicesg and B say, and that the “cheat” consists of
dropping from the concept of Lorentz transformations the

out of integer spin objects such as the differential one formzra_nsformatlons_ irone of these indicesn fact we can re-
write the following.

For the everd case one has either
d
Vap{0%) =2, (Va,Ya,"** Va)apt 0% - - 6%
or

d
Dap(D) =2 (Va,a, " Ya)as

X dxat/A\dx32/\ - - - dx&/\, (48

of Lorentz transformations as well as in all the operators

representing the physical quantities. The uselxdX/ or &°
in the operaton? is the exception, used only to simulate the
Grassmann even parity operatidr®— —dx? and 6— — 6,

respectively. The assumption which we call “cheating” was

made in the Khler approaciil] and in its lattice versioh9],
as well as in the approach of one of [&.

In Ref.[2] the®s are argued away on the grounds, that

with a certain single particle action

I=J drd¢ L(x,0,7,&) (47
(with x? being ordinary coordinateg® Grassmann coordi-
nates,ae{0,1, ... d}, = an ordinary time parameter ard
an anticommuting time parameter and assumkf=x®
+€£6? as a supercoordindtend making a choice foe)
about which we shall not go into detail here, &feappear to
be zero as one of the constraints. This constraint has be

while for the oddd case one has either

d
Vapr(10D)=Z, (Vg Yray Vgm0 6°

or

d
‘r’faﬁr({ﬁa})==i20 (Y(r)ay Y(0)a,” "+ V(1)) ap

X dxat/A\dx32/\ - - - dx&/\, (49

with the conventioma;<a,<a;<---<a;. Here the sums
run over the numbeir of factors in the products afx®/\ or

02 coordinates, a number which is the same as the number of
gamma-matrix factors. It should be remarked that we include
the possibilityi =0, which means no factors, and is taken to

$Hean that the product of zedx®/\ or 62 factors is unity

used to puB®s equal to zero in the further calculations in ang the product of zero gamma matrices is the unit matrix.
this reference and it was used as argument for dropping thene indicesw, g are the spinor indices and taking the prod-

Sav part of the Lorentz generata$?®.® Let us stress that uct of gamma matrices conceived of as matrices the symbol

once the? or dxa\”/ is dropped and accordingly tfeab is (- -)ap Stands for an element in theth row and in theBth

dropped—for whatever reason—one is no longer asking fofolumn. There is an understood Einstein convention summa-

the representation under the same Lorentz tran:sformatior&cr’]n over the co_ntracted yecr:or mdm;a_cﬁ, k:_1,2, )
(including rotations and one shall not expect to find say | € gamma matrices are, in the even-dimension cdSepy

. . . . . ) dr2 i i _di ; d—4)/2
integer spin even if the field considered is purely constructeg(dfmg‘t”ces and in the odd-dimension casé, 22 by
from scalars. vectors. and tensors. 2 matrices. In the odd case we have worked with two
’ ' (slightly) different gamma-matrix choices—and thus have
written the gamma matrices as depending on the®digas

v(I") , —namely gamma matrix choices obeying
“The supercoordinate, depending on ordinas) @nd Grassmann k

coordinates §*) demonstrates the common Lorentz transforma-
tions.

SWe point out in Ref.[2] that this constraint, once taken into
account by being put to zero in all the physical operators, was not
further treated as a weak equation. Furthermore, such a weak®we use the same symbol for the matkix y,v,- - - y4 and for
equation—a% is an odd Grassmann operator—cannot at all be ful-the sign, pointing out that the matrices depend on the value Iof
filled. which is = 1.

F=vy1y2 4. (50
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The y, matrices should, of course, be constructed so thatvhich demonstrates the similarities between the spinors of
they obey the Clifford algebra the approach of one of us, and the Hter approach: the
o ab operatorsdx®\/ anda? transform the left index of the basis
{Ya, 70} =27 (51) Yapry(1dx?}), or correspondingly of the basis
and we could, e.g., choose Yapry({16°}), while keeping the right index fixed and the
operatorgix®/ anda? transform the right index of the basis

i1, 2. .3 n
y1:=loX 03X 03X Xog, apry({dx?}), or correspondingly of the basig, g(ry({6%})

. 1. 2. 3 n and keep the left index fixed. Under the action of either
’}/2::_|0'1><0'3><0'3X"'><0-31 ~ —~ = = H i
dx®\/ anda? or dx®/ anda? the basic functions transform
ya =il 1X ngggx X0y, as spinors. The index in parenthesé&y (s defined only for
odd d. We can count that the number of spinors & i
v =il 1><(_)U§><gg>< .- X a3y, either the Mankoapproach or in the Kaer approach; the
d-dimensional Grassmann space or the spagefofms has
=il 1X 12X 03X - - - X 0}, 2¢ basic functions.

We shall prove the above formulas for the action ofdfe
5 and@?2. The proof is also valid for the Kder case ifa? is

Yo 111 5X 12X 13% - - X ) replaced bydx®/ and&? by dx\,/.
" Proof of our formula for the action 6f%and&. Let us
Yon =11 1XI2X 13X - X (=) 0], first introduce the notation
for an even dimensiod=2n, while for an odd dimension Y P Y Y S Y IS (53

d=2n+1 the gamma matrix>"** has to be included: _ _
with a<b<...-<ceA. We recognize that

'y2n+1:=il—‘0§>< o-%X ng - X0,

from where it follows thatl'=112"*1y,. (The choice of Tr(yay®)=Tr(1)8,°%, ; (Y ap(Y") 5= 2904, 85,
phases of Ref.10] are achieved by using the minus signs in (54)
parenthesesThe above metric is supposed to be Euclidean,

with 62°= — 2. For the Minkowski metricy,,— —iy,, and

has to be taken, if the indexn2s recognized as the “time”

index. We shall make use of the Minkowski metric, countin c Ay _odi.c
the 2 from 0,1,2,3,5. .. d, and assuming the metrig®” ’ ; (VM) ap(Y"Y)35= 2507 ) ya0p5:
=diag(1-1,—-1,...,—1).

In this notation we can see that for fixed values of the N
index B8 we obtain one of the four bispinors in Table I, con- ZA (YR ap( V775 2%Y") poBay (59
ceived of as a spinor in the indexand with the understand-
ing that the@® in the table lead to the correspondifd,  with a;<as,, ...,<a;eA in ascending order and With in
when acting on the vacuum state. The equivalent table fogescending order. The above formulas are true only for the
the Kahler approach follows by replacingf by dx®/\. Euclidean signature #,,=(1,1,1...,1) andwould be

It is our main point to show that the action by the opera-modified in the Minkowski cas¢The first of the formulas of
torsdx®\/ ora? anddx®\/ ora? in the representation based EQ.(54) is trivially true. The second one might be proven by

on the basisf,s({dx?}) or ,g({6%) with noticing that its contraction with/® in the indicese and 8
2d-172  for d odd and withy© in the indicesy and § simultaneously, would be
a,Be ( 1.2,... [ o r]) the same on both sides of the equation. By arguing that all
2 for d eve these “traces”are sufficient to specify uniquely such four

defined by Eq(48) or (49), transforms the indexr and 3, index objects, the equation is derivetlising the first equa-

respectively, of the basisy,g({dx®}) or equivalently tion we find
¥q5(16%) as follows: .
: ~ 0 =— (V") ap¥par)({6°)). (56)
either dx®\/ ¢, 5r)({dX}) = V5, ¥ 5y ({AXE}), od BY Ba(T)
corresponding t&®y . ) ({ 0%1) = ¥4, ¥, 5y ({ 67}), The index (') has meaning only for an odd| which is why

we put it in parentheses. We may accordingly write
or dxa\/ Yoy LA < g1y ({dX}) VS 5,

1 —
e a sy (167D = 20— (Va) ap(¥") {o7).
COI’rESpOI’\dIng t@alpalg(r)({ea})“way(—r)({ea})’)’%g(, 2) df ,B(F) { } ; 2d YA B(y ')/517[,57(F) { }
5

(57)
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Then we find, taking into account thaf|)=62, 3% )  One can check that® have all the properties of the Dirad
=—i6% where|) is a vacuum statgwhich means that F

p({6%) =) for ¢({6%})=1], and Eq.(7)

matrices.(Replacingdx®\/ or a2 by dx®/ or &%, respec-
tively, the gamma matrices defined ag:=eitheridx®

5 N N v dx®\/ or ia’&? again have all the properties of the Dirac
acwaﬂ(F)({aa}) ::EA: (7A) aﬁacaA: ; (YA) aﬁac§A| > »ya matrices)

1 e VIl. DISCRETE SYMMETRIES
=2 — (YA ap( YY) ysthsyy({67)).
A od

We shall comment in this section on the discrete symme-
, , , tries of spinors and vectors in the Hilbert space spanned over
Consequently using the above relations starting from Eqgjther the Grassmann coordinate space or the space of differ-
(55) we further find ential forms from the point of view of the one-particle states
of massless Diradthat is the Weyl particles. In order to

A Yapry(16°) = (¥") ay¥rypry{ 67).- (58 define the discrete symmetries of the Lorentz group we in-
o o troduce the space inversidghand the time inversiofl op-
We find in a similar way erators in ordinary space-time in the usual way. We shall
assume the cast=4:
=c ary._ ZCxA|\ — =AZcC
a ‘/’aﬁ(l‘)({e })—; (')’A)aﬁa a |> ; (VA)aﬁa a |> pxap*lzxa’ TXxaT 1= —Xa (61)

with the metric »2°,x3= »2x, already defined in Sec. II.
Since one wants the time reversal operator to lgeyéhat is

the zero component of the ordinary space-time momentum
operator p?), unchangedg®— p°), while the space compo-

nentp should change signp(— —p), one also requires

= ; (7n) updB°] )

1 _
= % ?( YA) (YY) st sy ({67),

which finally gives TiT-*=-i leading toTp*T *=p,. (62

We shall first treat spinors. Having the representation of
spinors expressed in terms of polynomials9df in Table |,
. . which also represents the corresponding superpositiops of
We have therefore proved the two equations which deterfOrms it 62 is chordingly substitSted bggxa/\p wz expeﬁ

mine the action of the operato&' anda® on the basic each of the four copies of Dirac massless spinors to trans-

3%y ({0%D) =01y ({2 (¥°) .- (59

function ¢q,(—r)({6%}). form under discrete symmetries of the Lorentz transforma-
tions in the usual way.
VI. GETTING AN EVEN GAMMA MATRIX The parity operatorP should transform left-handed

spinors with (T™®)=—1 to right-handed spinors with
_ J 1O L 2) It (T'™y=1, without changing the spin of the spinors. This is
trices, entering into the Dirac-Kder approach or the ap- hat 3° [Eq. (27)] does for any of the four copies of the
proach of one of us for spinors, have an odd Grassmang. Y 9. : Any PIES

- ~ ~ irac massless spinors, which are the Weyl bispinors of
character since botliix®\/ anda® as well asdx®/ anda®  Taple I, separately.
have an odd Grassmann character. They therefore transform The time reversal operatdrshould transform left-handed
a Grassmann odd basic function into a Grassmann even basiginors with(I'¥)=—1 and spin} to left-handed spinors
function changing fermion fields into boson fields. It is clearyjth (I'(4)= —1 and spin—%, and that is what the operator
that suchy® matrices are not appropriate to enter into the
equations of motion and Lagrangians for spinors. Toir K. ro=A73

There are several possible ways to avoid this tro(iBle T Tine= VY

One of them was presented in Sec. IV. If working with
dx®/ or &2 alone, puttingdx®/ or & in the Hamiltonian,
Lagrangian and all the operators equal to zeroythenatri-  (whereK does not effect the basic spin-states any longer due
ces of an even Grassmann character can be defined as ptoe-the appropriate choice of the bgsies when applied to
posed in EqQ.27): Y:=idxOydx®y or 7%:=i5%2, which  any of the four copies of the Dirac spinors of Table I. This
transformation involves only members of the same copy of
the Dirac bispinor. The operatos& which are defined in Eq.
(27) have, due to the appropriate choice of phases of the
~a a a I spinors of Table I, the usual chiral matrix representatfon
Y bapm) {0 = Yaybys-y{ 0N veg- (60 poth approaches—the Kier one and the ManKoone.

According to Eqs(58),(59) it is obvious that they® ma-

r,=diag —1,1,1,0), andKiK 1=—i (63)

fulfill the Clifford algebra{»?,7°}=2%2®, while, as we have
already saids®°= —i/4[72,7"]. We then have
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One would, however, expect that the time and the space Applying the transformatiof?’ of Eq. (64) to any of the
reversal operators should work in both spaces—that is, in thiour copies of the Dirac bispinors of Table I, one obtains the
ordinary space-time and in the space of either Grassmargame result as in the above, that is, the standard definition of
polynomials or in the space gf forms—in an equivalent the space-reversal operatidd‘=P. Applying the transfor-
way mationT’ of Eq. (64) to, let us say, the first spinor of the first

P'x3P' l=x,, T'x3T' "1=-x,, copy of the Dirac bispinors of Table[that is, ony,({6})],
_ one obtains the last spinor of the one before the last copy
P’ 6P’ ~1= 0, or correspondinghiP’ dx*/\P' "= dxa/\, [that is, "iJ,({6})]. The left-handed spinor with spétrans-
) A -1 formed to the left-handed spinor of spin3, just as it did
andT’6°T' "= —6, . . ,
under the usual time-reversal transformation, except that in
this case the copy of spinors has been changed.

One can write down the matrix representation for this

T'iT'~'=—i leading toT'p?T’ ~1=p, (64) second kind of the time-reversal transformation. If we
choose for the basis the first copy of bispinors of Table |
and changing equivalently the momenta conjugate to coordiand the fourth copy of bispinors of Table I, we obtain the

or correspondinglyT’ dx@AT’ ~1=—dx,/\,

nates in either the Kder approach or that of one of us. matrix
|
0 0 06K, 0
- 0 0 0 06K, .
| —ioe 9K, 0 0 0 ' €9
0 —ioe K, 0 0

wheree'*=1, due to the choice of the phases of spinors ofhigher part of the internal space as well, affecting the charges
Table |, andK,, means that the complex conjugation has toof spinors, vectors and tensors, if one thinks of the extension
be performed on the phase coefficients only in an expansiol?] as discussed in Sec. IX.

on the basis of Table I. Polynomials of theta have been, due

to the choice of the basis, replaced by real spinor state vec- VIIl. UNAVOIDABILITY OF FAMILIES

tors. Let us point out that while the choice of [Eq. (27] We want to look at the unusual shift of the spin compared
enables the two parity operators, th8 one and thed—  to thea priori spin for a field by replacing priori genera-
— 6, to become equivalent, it is no freedom left to do thetors MaP=[2b+ S3b by another setV2P=L3P+S as a
same with the two time operatoiisand T'. We can, how- general nice idea. A prerequisite for that working is that the
ever, express the time operafr in terms ofk and??, if K difference between the two proposals for Lorentz generators

transformsi into —i also in thed part of spaceT’ =7»°K.
ThisT' is the time-reversal operation discussed by Weinberg
[6] in Appendix C of his booK.

When vectors and scalars are treated in a similar way fo
either of the two approachéthe polynomial representations
in terms of #’s can be found in Refd.2,3,19), it turns out
that the time-reversal operator of E§4) does not transform

one copy into another one. . .
S ) . . Assuming that there are indeed such two Lorentz genera-

We pay attention in this section only to spin degrees of, S .
tor symmetries in a model, we can ask for the representation

freedom. The complex conjugation affects, of course, theunder both for a given set of fields, and we can even ask for

,\z/lab::Mab_l’\“Aab (66)

is also a conserved set of quantities. In the notation above of
Lourse we find

Mab="gab, (67)

representation under the difference algeﬁr%b. In order to

hift from in r spin to half-in r spin in going fravt?®
"The two kinds of time reversal operator have already been dis-S ..tal? teger sp to_ a tege_ sP . 90 g_
cussed in Ref[2]. The appearance of the second kind of time re-10 M, the representation for the fields in question must at

versal operator in Weinberg's book as well as in Wigner's bookleast be spin-1/2 foM1 2, Actually in the cases we discussed
[11] was pointed ouf12] to the authors at the Workshop “What . S ab \,are in the Dirac spinor representation. But that

Comes Beyond the Standard Model” at BIEEP99, when it was . . . .
suggested that the second kind could generate states, which may gieans that the representation of the fields which shift repre-

used to describe the sterile neutrinos. sentation going fronM2® to M2° have to belong undevi2®
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to at least a spin-1/2, i.e., at least the Weyl spin representan the (3+1)-dimensional(flat) space-time.
tion of the Lorentz group, and that ha&2~1) dimensions. If the model had a strength for the compact space Atiyah-
But that means then that a given representation of the fingbinger(AS) theorem “AS strength” and if the dimension of
Mab Lorentz group must always occur in at leadt’2 1) the full space, the number @f's, is d, so that the number of
families (whenever this trick of spin change is used families at thed-dimensional level becomes”, the total
number of “families” observable at low energy should be
IX. GENERALIZATION TO EXTRA DIMENSIONS No. families= “AS strength”><2d’2. (68)
We have discussed the connection between the Grass-
mann 62 formulation and the Kialer formalism for general As an example take the modg2,14] which hasd=14
dimensiond and thus we could apply it simply in thé=4 and at first—at the high-energy level—8Q13 Lorentz
case, or we could use it in extended models with extra digroup, but which should be brokefin two steps$ first to
mensions. One should note that the connection between tf®0(1,7)x SO(6) and then to SO(1,3)SU(3)x SU(2). For
spinor and the forms is such that for each extra two dimenthis example the number of families would come in multiples
sions the number of components of a Dirac spinor goes up bygf 27,
a factor of 2, and at the same time the number of families
also doubles. This agrees with the fact that adding one extra
6% doubles the number of terms in ti# polynomials, and
thus adding two would make this number four times as big. We may see the appearance of equally mémgmely,
Let us now study the application of the extra degrees 0pd2-1) right-handed and left-handed “flavors” in the
freedom, which consists of, let us suppose the Grassmarahler model as an expression for the no-go theoféior
6%'s or the Kanler differential forms, to the case where the putting chiral charge-conserving fermions on the lattice, in-
d-dimensional space is used in a Kaluza-Klein type modelsofar as we could make attempts to make lattice fermions
that is to say, we look here at a Kaluza-Klein model ex-along the lines of Becher and Jof@] it would of course
tended with6®s or the forms, much more rich than usual have been a counterexample to the nd-gaheorem if there
Kaluza-Klein. It has long been suggesti?] that special had been a different number of right and of left Weyl particle
kinds of rotations of the spins in the extrd« 4) dimensions species in the Becher-Joos model, because in the free model
manifest themselves as generators for charges observabletaé number of particles functions as a conserved charge. As
the end for the four-dimensional particles. It is the highlightis very well known the Becher-Joos model is really just the
and main reason for Reff2] that since both the extra dimen- Kogut-Susskind13] lattice fermion model; it is also well
sion spin degrees of freedom and the ordinary spin degreagown that it does not violate the no-go theorgfhand this
of freedom originate from thé®s or the forms we have a is because there is this species doubling, which can be inter-
unification of these internal degrees of freedom. We can sagreted as the flavors. Becher and Joos show that the Kogut-
then that the generators rotating these degrees of freedorBusskind lattice description of Dirac fields is equivalent to
namely, the just mentioned charges acting as higher dimenhe lattice approximation of the Dirac-Kker equation(see
sional spingat high energyand the four-dimensional spin, page 344 in the Becher-Jof8] article).
are unified. This Kogut-Susskind model is one that gives us Dirac
Such rotations of the internal spin degrees of freedom, irparticles, but we can seek to get to Weyl particles in a naive
order to correspond to a Kaluza-Klein gauge field with massy-(4) (orf(4) or ¥® in the usual notationprojecting way, but

less gauge bosons, would have to represent full symmetriesy ¢qyrse now such a projection would have to be translated
of the vacuum state, i.e., they should correspond to Killing-jn(g the language with the vector and scalar fields imla
vectors, as in usual Kaluza-Klein but with the further degree?formulation, and it is rather easy to sEE5] that requiring
of freedom also corresponding to symmetry for the latter. SQ)nIy onel'™ projection implies that the coefficient to ope
at the end we may consider also the charges associated W%‘rm, saydx?, dx*=dx2Adx®2A - - - Adx¥, should relate
the internal spin as ordinary Kaluza-Klein charges, of cours just by a signxi) to that of thexdx* associated by the
in the sense of the very rich model considered here. But O(Eodge star {). Actually, we easily see that requiring the
course unless we have ti#8 or forms degrees of freedom estriction that '
one could risk that the gauge field from such symmetry couIJ
be practically decoupled.

Let us now look at what the “families” found in the
Grassmann or Dirac-Kaer approach will develop into in N
case we use it for a Kaluza-Klein type model, as just proi" the language of Kialer becomes
posed. Usually the number of surviving massless fermions in
the (3+1) space consists only of those which are connected (1+i*)u=0. (70)
with “zero-modes.” This is to be understood as follows: we
use the Atiyah-Singer theorem to ensure that in |If, as Joos and Becher did, we want to put the theory on
(d—4)-dimensional space—the compactified part of thethe lattice there is a difficulty in just imposing this constraint,
space—some modes are zero modes. Correspondingly, easbcause the natural relation imposed by the Hodge star on
such zero mode enables the existence of zero mass particlée lattice would go from the lattice to the dual lattice, and

X. DISCUSSION OF SPECIES DOUBLING PROBLEM

(1+T™yy=0 (69)
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we could not |dent|fy without a somewhat ambigUOUS ChOiCQ‘jegreeS of freedom. In particuiar, Oniy the Opera’éﬂ%are
the * dual of a given lattice element, so as to impose theysed as the Lorentz generator. One has accordingly the new
“self-duality” condition. Lorentz transformations instead of thepriori one used in
Could we possibly invent a way to circumvent the no-gothe wave function on Grassmann space quantization. In that
theorem[?] for Chlrallty ConserVing fermions on the lattice case the argument for having Oniy integer Spin breaks down,
by making the species doublers bosons instead of fermiongyhat the calculations indeed confirm to happen.
both having though spin-1/2? In the formulation by one of us e should now attempt to get an understanding of what
which we have related to the Kber formulation there is goes on here by using a basis inspired from the Dirakkta
(naturally a different Grassmaniann character assigned t@onstruction, which is a way often used on lattices to imple-
different components of the wave function. In fact the wavement fermions on the lattice. The Dirac-ar construction
function with coefficients to monomial terms that are prod-starts from a field theory with a series of fields which are
ucts of different sets Otfmutually differenj 6% variables—in zero form, one form, two form, ... d form. They can be
the sense, of course, that a polynomial is given by itghought of as being expanded on a basis of all the wedge
coefficients—and thus the coefficients to the products withhroduct combinations of the bagist,dx?, . .. dx® for the

an even number of factors have a different Grassmanniagne forms, including wedge products from zero factorsl to
character from those of the odd number of factors. That acfactors. In the Dirac-Kaler construction one succeeds in
tually is, in the theory of one of us, a somewhat embarrassingonstructing 22 Dirac spinor fields out of these “all types
reason for a superselection rule which, though, may be ovef forms.” This construction is impossible without a

come by taking into account the charges related to extra dixcheat” in much the same way as ManKe@pproach ought
mensions appearing in that model. But here we now want tgg pe.

point out the hope that these very Grassmann character prob- we have pointed out clearly in this paper how this

lems may be used as a new idea to circumvent the no-gecheat” occurs in both approaches, showing up all the simi-
theorem. In fact we could hope that spin-1/2 and, say, leffarities of the two approaches and using the simple presenta-
handed flavor appear with fermionic statistithe Grass- tjon of the quantum mechanics in Grassmann space, not to
mann odd CharaCt)EWhile Spin-1/2 flavor with bosonic sta- Oniy Simpiify the Dirac-Khler approach but also to generai_
tistics would appear as right handed, and that even on thge it. We have shown in particular that in both approaches in
lattice. addition to the(two kinds o generators for the Lorentz
transformations for spinors also the generators for vectors
and tensors exist. There are four copies of the Weyl bis-
pinors. One kind of the spinorial type of the Lorentz trans-
The way that Manko¢2] chooses to quantize the system, formations defines the Weyl spinors, another kind transforms
that is a particle moving in ordinary and Grassmann coordione copy of Weyl spinors into another of the same Grass-
nate space, is to let the wave function be allowed to be anynann character. We also have shown the two kinds of the
function of thed Grassmann variableg?, so that any such time reversal operators, as well as the fact that in Grassmann
function represents a state of the system. But in this quantispace or space of differential forms @fdimensionsd>4,
zation théd®'s cannot be put weakly to zero. In other words SPins and charges unify. We pointed out the necessity of
that quantization turned out not to obey the equation exdefining the gamma matrices of an even Grassmann charac-
pected from the expression for the canonical momerpfiin  ter.
being proportional to the coordinat# as derived from the
Lagrangian. If, however, in the operators such as the Hamil-
tonian and the Lorentz transformation operaf@t's are just ACKNOWLEDGMENTS
put strongly to zero, so that all the operators only depend on This work was supported by Ministry of Science and
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