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Warp drive space-time
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In this paper the problem of the quantum stability of the two-dimensional warp drive spacetime moving with
an apparent faster than light velocity is considered. We regard as a maximum extension beyond the event
horizon of that spacetime its embedding in a three-dimensional Minkowskian space with the topology of the
corresponding Misner space. It is obtained that the interior of the spaceship bubble becomes then a multiply
connected nonchronal region with closed spacelike curves and that the most natural vacuum allows quantum
fluctuations which do not induce any divergent behavior of the renormalized stress-energy tensor, even on the
event(Cauchy chronology horizon. In such a case, the horizon encloses closed timelike curves only at scales
close to the Planck length, so that the warp drive satisfies Ford’s negative energy-time inequality. Also found
is a connection between the superluminal two-dimensional warp drive space and two-dimensional gravitational
kinks. This connection allows us to generalize the considered Alcubierre metric to a standard, nonstatic metric
which is only describable on two different coordinate patches.

PACS numbd(is): 04.20.Gz, 04.20.Cv

[. INTRODUCTION relativity is that, whereas two observers at the same point
cannot have relative velocities faster than light, when such
General relativity admits many rather unexpected soluobservers are placed at distant locations their relative veloc-
tions, most of which represent physical situations which havéty may be arbitrarily large while the observers are moving in
been thought to be pathological for a variety of respects, atheir respective light cones.
they correspond to momentum-energy tensors which violate The properties of a warp drive and those of spacetimes
classical conditions and principles considered as sacrosant lyith CTC’s can actually be reunited in a single spacetime.
physicists for many yeargl]. Among these solutions you Everett has in fact considergd3] the formation of CTC's
can find Lorentzian wormhole§2], ringholes[3], Klein  which arise in the Alcubierre warp drive whenever it is
bottle holes[4], the Gott-Grant’s double string5,6], the  modified so that it can contain two sources for the gravita-
Politzer time maching7], the multiply connected de Sitter tional disturbance which are allowed to move past one an-
space[8,9], a time machine in superfluidHe [10], etc., all  other on parallel, noncolinear paths. The resulting time ma-
of which allow the existence of closed timelike curveschine can then be regarded to somehow be a three-
(CTC's), so as spacetimes where superluminal, though nalimensional analogue of the two-dimensional Gott's time
into the past, travels are made possible, such as happensrnmchine[5] in which the CTC’s encircle pairs of infinite,
the Alcubierre warp drivd11]. Most of the solutions that straight, parallel cosmic strings which also move noncolin-
contain CTC’s are nothing but particular modifications orearly. In the present paper we consider the physical and geo-
generalizations from Misner space which can thereby be cormetric bases which allow us to construct a two-dimensional
sidered as the prototype of the nonchronal pathologies isingle-source Alcubierre warp drive moving at a constant
general relativity[12]. faster than light apparent speed, which at the same time can
Time machines constructed from the above-mentionede viewed as a time machine for the astronaut travelling in
spacetimes contain nonchronal regions that are generated bye spaceship. This can be achieved by converting the inte-
shortcutting the spacetime and can allow traveling into theior of the spaceship bubble in a multiply connected space
past and future at velocities that may exceed the speed oégion satisfying the identification properties of three-
light. A solution to Einstein equations that has also fasci-dimensional Misner spadd.4]. We shall also show how in
nated and excited relativists is the so-called warp drivedoing so some of the acutest problems of the Alcubierre
spacetime discovered by AlcubiefrEl]. What is violated in  warp drive can be solved.
this case is only the relativistic principle that a space-going It was Alcubierre himself who raisedl1] doubts about
traveller may move with any velocity up to, but not including whether his spacetime is a physically reasonable one. Energy
or overcoming, the speed of light. Alcubierre’s construct cor-density is in fact negative within the spaceship bubble. This
responds to a warp drive of science fiction in that it causesnay in principle be allowed by guantum mechanics, pro-
spacetime to contract in front of a spaceship bubble and ex+/ided the amount and time duration of the negative energy
pand behind, thus providing the spaceship with a velocitysatisfy Ford like inequalitief15]. However, Ford and Pfen-
that can be much greater than the speed of light relative taing later showed16] that even for bubble wall thickness of
distant objects, while the spaceship never locally travelshe order of only a few hundred Planck lengths, it turns out
faster than light. Thus, the ultimate relativistic reason mak+that the integrated negative energy density is still physically
ing possible such a warp drive within the context of generalunreasonable for macroscopic warp drives. This problem has

0556-2821/2000/62)/04400%7)/$15.00 62 044005-1 ©2000 The American Physical Society



PEDRO F. GONZAEZ-DIAZ PHYSICAL REVIEW D 62 044005

been recently alleviated, but not completely solved, by Varspaceshipxs(t) the trajectory of the spaceship along coordi-
Den Broeck{17] who, by only slightly modifying the Alcu- natex, the radial coordinate being defined by

bierre spacetime, succeeded in largely reducing the amount 5 o1

of negative energy density of the warp. A true solution of the r={[x=xs()]+y“+z}"% (2.2)
problem comes only about if the warp bubble is microscopi- . . .
cally small[16], a situation which will be obtained in this andf(r) an arbitrary function subjected to the boundary con-

paper when CTC's are allowed to exist within the warpditionS thatf=1 atr=0 (the location of the spaceshipnd
bubble. f=0 at infinity.

Most of the physics in this spacetime concentrates on the
two-dimensional space resulting from settipigr z=0, de-
fining the axis about which a cylindrically symmetric space
Hpvelops; thus, the two-dimensional Alcubierre space still
ﬁontains the entire world line of the spaceship. If the appar-

drive instable. A similar calculation performed in this paperem velocity Of the spaceshlp IS taken fo be (:.O”Stmmvo’
for the case where the interior spacetime of the spaceshi en the metric of the two-dimensional Alcubierre space be-
bubble is multiply connected yields a vanishing stress-energ omes{18]

tensor even on the event horizon which becomes then a _ 2¢ 0727442 2

(Cauchy chronology horizon, both for the self consistent ds’=—[1-vf ()*]dt*~2vof (r)dtdx+dx’, (2.3
Li-Gott vacuum[19] and when one uses a modified three-yith r now given byr = \(x—wvt)2, which in the past of the
dimensional Misner spad@0] as the embedding of the two- spaceshipxX>u,t) can simply be written as=x— v t. Met-
dimensional warp drive spacetime. It is worth noticing that if . (2.3 can still be represented in a more familiar form
the astronaut inside the spaceship is allowed to travel into thgnen one chooses as coordinates) instead of {,x). This
past, then most of the Alcubierre’s warp drive problems de, obviously be achieved by the replacemeit=dr
rived from the fact that an observer at the center of the warp, odt, with which metric(2.3) transforms into

bubble is causally separated from the bubble extdi2di

On the other hand, Hiscock has compufd®] for the
two-dimensional Alcubierre warp drive the stress-energy ten
sor of a conformally invariant field and shown that it di-
verges on the event horizon appearing when the appare

can be circumvented in such a way that the observer might vo[1—f(r)]  ]> dr?
now contribute the creation of the warp bubble and control ds*=—A(r)| dt— Tdf + AT’ (2.4
one once it has been created, by taking advantage of the
causality violation induced by the CTC'’s. where the Hiscock functiofl8]
We outline the rest of the paper as follows. In Sec. Il we
biefly review the spacetime geometry of the Alcubierre warp A(r)=1-v1-f(r)]? (2.5

drive, discussing in particular its two-dimensional metric _ _ )
representation and extension when the apparent velocity ek@s been introduced. Metri2.4) can finally be brought into

ceeds the speed of light. The visualization of the two-2 comoving form, in terms of the proper timer=dt
dimensional Alcubierre spacetime as a three-hyperboloid~vol 1—f(r)]dr/A(r):

embedded inE® and its connection with the three- dr2
dimensional Misner space is dealt with in Sec. Ill, where we ds?=—A(r)d72+ _ (2.6)
also covert the two-dimensional warp drive spacetime into a A(r)

multiply connected space by making its coordinates satisfy, . _ . L
the identification properties of the three-dimensional MisnefS p_omted out by Hiscock18], this fqrm of the metric is
space. By replacing the Kruskal maximal extension of themanlfestly Stat'.c.' The case of mqst mteresj[ corresponds to
geodesically incomplete warp drive space with the abov@ppgrent velocities o> 1 (superlumlne}l velouty'where the'
embedding we study in Sec. IV the Euclidean continuatioH“et”C_S(Z'A') e_1nd(2.6) turn out to be_ singular .W'th a coordi-

of the multiply connected warp drive, identifying the periods nﬁte smgularlt)(appaient gvent ho_rlzc))rat a given value of

of the variables for two particulaAnsaze of interest. We r=rq such thatA(rO)—_O, l.e. f(ro) =1—1hv,. .

also consider the Hadamard function and the resulting renor- We note thqt metrlc{2.4} can be regardgd as the kinked
malized stress-energy tensor for each of thessaze com- metric (describing a gravitational topological defel@2])

paring their results. Finally, we conclude in Sec. V. Through-INat corresponds to the static met(&6). [To see this, let us
out the paper units so th@=c=%=1 are used. first redefine the coordinatésandr asdt’=A~"dt anddr

=A"Ydr, so that metriq2.4) can be re-written along the
real intervals B<r'<w (i.e. 0<r=<rg) and Ost'<x as

_ [ 12 12 ’ ’
The Alcubierre spacetime having the properties associated ds’=— JA(N[(dt")*=(dr")*]+2v0[ 1~ F(r)]dt dr2.
with the warp drive can be described by a metric of the form 2.7
[11] Now, metric(2.7) can be viewed as the metric describing at
least a given part of a two-dimensional one-ki(dravita-
ds?=—dt?*+ (dx—vf(r)dt)>+dy*+dz>, (2.)  tional topological charger1) if we take sin(2)==+uvo(1
—f(r)), i.e. cos(2)=\/A, so that this metric can be trans-
with v =dxg(t)/dt the apparent velocity of the warp drive formed into

Il. ALCUBIERRE WARP DRIVE SPACETIME
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ds2= —cod 2a)[(dt')2—(dr")2]+ 2 sin2a)dt'dr’,
(2.9

where « is the tilt angle of the light cones tipping over the
hypersurface$22,23, and the choice of sign in the second
term depends on whether a positigper sign or negative
(lower sign gravitational topological charge is considered.
The existence of the complete one-kink is allowed when-
ever one letsx monotonously increase from O to, starting
with «(0)=0, with the support of the kink being the region
inside the event horizon. Then metri2.8) converts into
metric (2.6) if we introduce the substitution sin

=V[1xVA(r)]/2 and the change of time variable=t’
+9g(r), with dg(r)/dr’=tan(2a). The region inside the
warp drive bubble supporting the kink is the only region
which can actually be described by metii2.8) because

sina cannot exceed unity and hencesB=r. In order to  where we have specialized to the allowed particular case for
have a comple description of the one-kink and therefore ofyhich sintf(oR)=v,. Introducing then the usual coordinates

% (1+21}0)r
r*=
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(3+2v0—v3)v}
1-v3  o(1-v3)?{3vi+2v,—1

2vo(1+uvg)tanior)— \/3v02+ 20— 1]

2vo(1+vo)tanh(ar)+\3vi+2v,—1

XIn

vo(1+3vy)

" 40(1+vg)\20g(1+v0)

1+vo—V2vo(l+vg)tanior)
1+U0+ \/2U0(l+l)0)tanr(0'r)

XIn

Vo
+—20(1+vo)tam‘(or), (212

the warp drive one needs a second coordinate patch whexg=t+r* andwW=t—r*, so that

the other half of thea interval, w/2<a<, can be de-

scribed. This can be achieved by introducing a new time

coordinate [23] ?=t’+h(r), with  dh(r)/dr=[vq(1
—f(r))—k]/A%* in which k=*1, the upper sign for the

first patch and the lower one for the second patch. Thind hence the new coordinates

choice is adopted for the following reason. The zeros of the

denominator ofdh/dr’ =[sin(22)*1]/\/A correspond to the
two event horizons whene=ry andf(ro)=1—1/ro, one per
patch. For the first patch, the horizon occursvat w/4 and
therefore the upper sign is selected so that kidtidr andh
remain well defined and the kink is preserved on this hori-
zon. For the second patch the horizon occurs-aB/4 and
therefore the lower sign is selected for it. The two-
dimensional metric for &in this sensgcomplete warp drive
will be then[23]

2 .
vssintf(or)
ds?=—|1- —> dvdw, (213
(cost(or)+vg)?
aV
tanhV'’' =exp
U0+1
4 sinh!
Uo_l
—oW
tanhW' = —exp

4 sinhi 14/ vot !
vo—1

0

- 22— ol
ds’=—A(r)dt*= 2kdtdr 2.9 we finally obtain the maximally extended, geodesically com-

) — ) ) ) ) plete metric
or, in terms of the (,x) coordinates in the four-dimensional
manifold, o8 vZsintf(or)

dS=—[A(r) 7 2kuo]d 2T 2kd tdx-+dy?+ d 2, o[ (cost(or)+vo)?
(2.10 ( - ot 1 2dV,dWI
sinh 14/

with r as defined by Eq2.2). vo—1

Having shown the existence of a connection between X sin(2V')sin(2W') ' (2.14
warp drive spacetime and topological gravitational kinks and
hence extended the warp drive metric to that described byyherer is implicitly defined by
Eqg. (2.10, we now return to analyze metri@.6) by noting
that the geodesic incompleteness of this metric=at, can, or*
as usual, be avoided by maximally extending it according to tanV' tanW' = —exp . (2.19

the Kruskal technique. For this to be achieved we need to

define first the quantity* = [ dr/A(r). Using for f(r) the
function suggested by Alcubierre,

2 sinh 14/ bot2
vo—1

0

The maximal extension of metri@.6) is thus obtained by
2.19) taking expressiofi2.14) as the metric of the largest manifold
' which metrics given only either in terms dfor in terms of
W can be isometrically embedded. There will be then a maxi-
whereR and o are positive arbitrary constants, we obtain mal manifold on which metri¢2.14) is C? [24].

tanj o(r+R)]—tanH o(r —R)]
2 tanoR) '

f(r)=
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Ill. WARP DRIVE WITH INTERNAL CTC in the original warp drive coordinates. The boost transforma-
. . . . tion in the @,w) plane implied by identification§3.7) will
In this section we investigate a property of the two induce therefore the boost transformati®8) in the two-

dimensional Alcubierre spacetime which will allow us to di ional Alcubi ; he b

avoid the complicatedness of Kruskal extension in order tQ imensiona Alcubierre space. Hence, since the 00St group
. X ; . . ... 1n Alcubierre space must be a subgroup of the invariance

study its Euclidean continuation and hence its stability

against quantum vacuum fluctuations. Thus, taking advarg oUP of the two-dimensional Alcubierre embedding, the

L . static metric(2.6) can also be invariant under symmetry
tage from t_he S'm""?‘“ty bgtween metrﬂﬁ.e_) anq the de Sit (3.7). Thus, for coordinates defined by E@8.3) leading to
ter metric in two dimensions, we can visualize the dimen-

sionally reduced Alcubierre spacetime as a three-hyperboloiHqe static metric with an apparent horizon as ma@ié), the
defined by symmgtry_(&?) can bg satisfied in the region covered by ;uch
a metric, i.e. the regiow>|v|, where there are CTC'’s, with
—v2+ w2+ x2=v,2, (3.1)  the boundaries av=*v, and x?=v,? being the Cauchy
horizons that limit the onset of the nonchronal region from
wherev,>1. This hyperboloid is embedded B’ and the the Alcubierre causal exterior. Such boundaries are situated
most general expression for the two-dimensional metric ofitr,, defined byf(ro)=1—uv,*, and become then appropri-
Alcubierre space fovy>1 is then that which is induced in ate chronology horizon§12] for the so-obtained multiply

this embedding, i.e. connected two-dimensional Alcubierre space wit» 1.
24 du? ) We have in this way succeeded in coverting a two-
ds*= —dv?+dw’+dx?, (3.2 dimensional warp drive with a constant, faster than light ap-

parent velocity in a multiply connected warp drive with
CTC'’s only inside the spaceship and its event horizonyat

in a chronology horizon. This is a totally different way of
transforming warp drives into time machines of the mecha-

which has topologyRx S? and invariance grougQ(2,1).
Metric (3.2) can in fact be conveniently exhibited in static
coordinatesre (—,») andr e (0,r), defined by

v=vy *VA(r) sinh(vy7) nism envisaged by Everett3] for generating causal loops
using two sources of gravitational disturbance which move
— =1 Aoy past one another. In our case, even though the astronaut at
W=vo TVA(T) cosHvor) 33 the center of the warp bubble is still causally separated from
x=F(r), the external space, he can always travel into the past to help
create the warp drive on demand or set up the initial condi-
where tions for the control of one once it has been created.

(dp/dr)?—4v3
4v5(1+p)

IV. QUANTUM STABILITY OF MULTIPLY CONNECTED

[F(r)']%=~— , (3.4 WARP DRIVE

In this section we shall show that the two-dimensional
multiply connected warp drive spacetime is perfectly stable
to the vacuum quantum fluctuations if either a self-consistent

the prime denoting a derivative with respect to the radial
coordinater, with

p=p(r)=—vo[1—f(r)]? (3.5 Rindle vacuum is introduced or for microscopic warp
bubbles. We have already shown that the two-dimensional
and warp drive spacetime can be embedded in the Minkowskian
covering of the three-dimensional Misner space when the
A=1+p(r). (3.6 symmetries of this space implied by identificatio(&7)

[which lead to identification3.8) in Alcubierre coordinatels
are imposed to hold also in the two-dimensional Alcubierre
pacetime withv,>1. Since the embedding can be taken to

Using coordinateq43.3) in metric (3.2) we re-derive then
metric(2.6). Thus, the two-dimensional Alcubierre space can
be embedded in Minkowski space in three dimensions. Sincg

Minkowski metric(3.2) and the identifications p_Iay an analogous role to that Of. a maxi_mal Kruskal exten-
sion, it follows that showing stability against vacuum quan-

(v,w,X)« (v cosi{nb) +w sinh(nb),v sinh(nb) tum fluctuations in three-dimensional Misner space would
imply that the two-dimensional multiply connected warp

+w cosh{nb),x), (3.7  drive space withvy>1 is also stable to the same fluctua-

tions. This conclusion is in sharp contrast with some recent
whereb is a dimensionless arbitrary boosting quantity and result obtained by Hiscock who has showi8] that the
is any integer number, make the universal covefidd] of  stress-energy tensor for a conformally invariant scalar field
the Misner space in three dimensions, one can covert thgropagating in simply connected two-dimensional Alcubierre
two-dimensional Alcubierre space into a multiply connectedspace diverges on the event horizon if the apparent velocity

space if we add the corresponding identifications of the spaceship exceeds the speed of light. He obtained an
b observed energy density near the horizon proportionéf to
(r1)e T+”_,r) (38 —(L-vo")] 2 which in fact diverges as—ro.
v Metric (3.2) can be transformed into the metric of a three-
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dimensional Misner space explicitly by using the coodinateMetric (4.8) becomes positive definite when continuing the
re-definitions new coordinateY so thatY=i{. By using this continuation
L together with rotationg4.6) in expressiong4.9), we can
v =6 coshx deduce that the section on whi¢handZ are both real cor-
responds to the region defined Bye'? x'=1/2, and that

— H 1
w= 6sinhx (42 there exist two possiblénsazeaccording to which the con-
=2 tinuation can be performed. One can first set
o P72 T .
Then, expi)=iex Z—|nexpg—2x| xt 35 exp(ix),
ds?=—d@?+ 6%(dx) 2+ (dx?)?, (4.2

which is the three-dimensional Misner metric for coordinateswhere only the coordinatg turns out to be periodic on the
0< <, 0=x'<27 and O<x?<c. This metric is singular Euclidean sector, with a peridu= 2. Rotating back to the

at #=0 and, such as happens in its four-dimensional extentorentzian region, we then havb=27. Ansatz (4.10
sion, it has CTC's in the regiofi<0. Note that one can also should be associated with the self-consistent Rindler vacuum
obtain the line element(4.2) directly from the two- considered by Li and Gott for four-dimensional Misner space
dimensional Alcubierre metric withy>1 by introducing the  [19], instead of the Minkowski vacuum with multiple images
coordinate transformations originally used by Hiscock and KonkowsK25]. Introducing
then Rindler coordinates defined hy=¢sinhw and o

_IVA(T) = ¢ coshw in the three-dimensional covering met(&:2), so
0= (4.3 :
Vo that it becomes
x'=—i arcsificoshvo7)] (4.4 ds’=— £dw®+dé2+dx?,
and we can compute the Hadamard function for a conformally
invariant scalar field in Rindler vacuum to be
x2=F(r), (4.5
1
with F(r) as defined by Eq(3.4). Let us now consider the GH(X,X")= — i —
Euclidean continuation from which metrit.2) becomes 27" £¢'siny[ —(w— ")+ y7]
positive definite. This is accomplished if we rotate both co- (4.11
. 1 .
ordinatesf andx simultaneously, so that with X=(w,£X), X' =(e’,& x'), and
=iy, x'=iy, (4.6)
2 12 _v’\2
where  and y can be expressed in terms of the Alcubierre coshy= EHeT+(x=x") _ (4.12
coordinatesr and 7 by means of transformatiorig.3) and 2¢¢

(4.4). The covering space of the resulting metric preserves
however the Lorentzian signature. This might be an artifactJsing the method of imagd&5] and the usual definitions of
coming from the singular character of metfit2), so it ap-  the regularized Hadamard function and hence the renormal-
pears most appropriate to extend first this metric beyénd ized stress-energy tensfit8], we finally get for the latter
=0 in order to get the Euclidean sector of the three-quantity an expression which is proportional to
dimensional Misner metric and, hence, investigate the stabil-
ity of the superluminal, multiply connected two-dimensional 1[(2m\®
warp drive spacetime against vacuum quantum fluctuations. ? b/
The extension beyond=0 of metric(4.2) is conventionally
made by using the new coordinatg4] T=6% V=In6  which, if we takeb=27 according to the abovénsatz
+xt andx?=x?, so that obviously vanishes everywhere, even on (Bauchy chro-
nology horizon att=0.
ds’= —dTdV+TdV2+(dx*)?, (4.7) Although in spite of the Ford-Pfenning requirem¢he6],
or by re-defining=Y+Z andT— [TdV=Y—-Z: this allows the exi;tence of stablg supeylumingl, multiply
connected warp drives of any size, this choice for the
ds?=—dY2+dZ2+(dx?)? (4.8 vacuum has two further problems. First of all, previous work
by Kay, Radzikowski and Waldl26] and by Cassidy27]
and casts compelling doubts on the meaning of the Cauchy hor-
ibzon and, hence, on the validity of the conclusion that the
t_f TdVv stress-energy tensor is zero also on such a horizon. On the
Y2—ZZ=V(T— f TdV) Y- _ other hand, having an Euclidean section on which time is not
" Y+Z vV ’ periodic(which implies the nonexistence of any background
(4.9 thermal radiatiopnwhile the spacetime has an event horizon

044005-5



PEDRO F. GONZAEZ-DIAZ PHYSICAL REVIEW D 62 044005

appears to be rather contradictory. It is for these reasons thabnjecture[ 28] is correct. However, the semiclassical insta-
we tend to favor the second possitA@satzimplementing  bilities leading to chronology protection are actually of the
the Euclidean continuation of the three-dimensional Misnekind which are precisely prevented in our above model.
covering, which appears to be less problematic. It reads

-
ex f =eX 222

2x(x+ w2
Xex%_ x(x+ @l2)

V. SUMMARY AND CONCLUSIONS

772

n" ’ Among the achronal pathologies which are present in gen-
eral relativity and which can be associated with the symme-
tries of Misner space, we consider in this paper the two-

[ xt+ml2 dimensional warp drive with an apparent velocity which is

exg i , . S e .

7’ faster than light and whose spaceship interior is multiply

(4.13  connected and therefore nonchronal. After reviewing the

geometrical properties of the Alcubierre-Hiscock two-
where both the Euclidean timg and the Euclidean coordi- dimensional model, it has been proved that there exists a
nate are now periodic, with respective dimensionless periodglose connection between warp drives and gravitational
II,=1/2 andHX=277772. The physical time period in two- kinky topological defects, at least in two dimensions. Gener-
dimensional Alcubierre space at faster than light apparendlizing to the standard Finkenstein kinked metric to allow a
velocity, [T, can be related to period ,, by means of the complete description of the one-kinks, we also generalize the

expression Alcubierre metric in such a way that it can no longer be
q described in just one coordinate patch.
Ma=A4nTl Jam —1 The geodesic mcompleteness of th(_a Alcubierre-Hiscock
ollaI=4mll, NG dn |r”0 space at the event horizon for superluminal warp bubbles has

) ) ) ] been eliminated by first extending the metric beyond the ho-
Using then the Euclidean continuation of E¢.3), one can  izon according to the Kruskal procedure and then by an
obtainll=4m/A(ro)", which corresponds to a background empedding in a three-dimensional Minkowski space. It has
temperature,Ty=A(ro) /4w, which is the same as thal peen also shown that, if the latter space is provided with
which is associated with the event horizon of the spaceshigypological identifications that correspond to the universal
and was first derived by Hiscodl8]. Rotating back to the  covering of three-dimensional Misner space, then one can
Lorentzian section we see that tinte becomes again no convert the interior of the warp spaceship into a multiply

longer periodic, buk® keeps still a periodic character with connected space with closed timelike curves which is able to
period b=276%. If we adhere toAnsatz(4.13), this would  pehave like a time machine.

mean that the Misner space itself should be modified in such The problem of the quantum stability of the two-

a way that its spatial volume would vanish as tifieap-  dimensional, multiply connected warp drive spacetime has
proaches zerg20]. When calculating then the regularized peen finally considered. Using the three-dimensional Misner
Hadamard function, one should use a method of imagegsmbedding as the maximal extension of the two-dimensional
which ought also to be modified accordingly with the factarp drive space, it has also been shown that the divergence
that the period of the closed spatial direction is time depengncountered by Hiscock on the event horizon for the simply
dent. If we use a most general automorphic field and imposgonnected case is smoothed out, while the apparent horizon
constancy for the frequency of the general solution of th%ecomes a regu|arize{¢auchy Chrono|ogy horizon. We ar-
wave equatior{20], one is led[20] to a time quantization gued as well that the unphysical violation of the negative
that unavoidably implies an also strictly zero value for theenergy-time inequalities can at the same time be circum-
renormalized stress-energy tensor, everywhere in the wholganted because the most consistent quantum treatment for
two-dimensional, superluminal Alcubierre space. The pricejealing with vacuum fluctuations in the multiply connected
to be paid[20] for this quantum stability is that the CTC's case leads also to the result that the size of the spaceship
developing inside the warp bubble and actually the warghubble and its closed timelike curves must necessarily be
bubble itself should never exceed a submicroscopic size negfaced at scales close to the Planck length.

the Planck scale, thus avoiding not just the unwanted His-

cock instability, but also any violation of negative energy- ACKNOWLEDGMENTS

time Ford like[15,16 inequality and hence any unphysical

nature of the warp drive. A possible remaining question is The author thanks C.L. Siganza for useful discussions.
whether the CTC'’s within the bubble might produce newThis work was supported by DGICYT under Research
divergences, at least if Hawking’s chronology protectionProject No. PB97-1218.
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