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Gravitational Goldstone fields from affine gauge theory
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In order to facilitate the application of standard renormalization techniques, gravitation should be described,
in the pure connection formalism, as a Yang-Mills theory of a certain spacetime group, say the Poincare´ or the
affine group. This embodies the translational as well as the linear connection. However, the coframe is not the
standard Yang-Mills-type gauge field of the translations, since it lacks the inhomogeneous gradient term in the
gauge transformations. By explicitly restoring this ‘‘hidden’’ piece within the framework ofnonlinear real-
izations, the usual geometrical interpretation of the dynamical theory becomes possible, and in addition one
can avoid the metric or coframe degeneracy which would otherwise interfere with the integrations within the
path integral. We claim that nonlinear realizations provide the general mathematical scheme for the foundation
of gauge theories of spacetime symmetries. When applied to construct the Yang-Mills theory of the affine
group, tetrads become identified with nonlinear translational connections; the anholonomic metric no longer
constitutes an independent gravitational potential, since its degrees of freedom reveal a correspondence to
eliminateableGoldstonebosons. This may be an important advantage for quantization.

PACS number~s!: 04.50.1h
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I. INTRODUCTION

On a macroscopic scale, gravity is empirically rather w
described by Einstein’s general relativity theory~GR!. How-
ever, quantum-field theoretically, Einstein’s theory is pert
batively nonrenormalizable@1,2# and plagued byanomalies
if coupled to fundamental matter as the Dirac field of
electron; cf. @3,4#. As a matter of fact, gravity is usuall
conceived as an interaction of a very different nature fr
the remaining forces, being supposed to be mediated b
metric potential rather than by Yang-Mills connection
Thus, it is reasonable to hope that some of the proble
related to the quantization of this force might disappea
one were able to describe gravitation as an ordinary ga
theory. The search for such a formulation yielded in parti
lar the different gauge theories of gravity proposed by H
and his Cologne group@5–7#. In all of them, the local treat-
ment of translations reveals itself as a cornerstone of
Yang-Mills-type interpretation of gravitation. As Feynma
@8# has put it, ‘‘ . . .gravity is that field which corresponds t
a gauge invariance with respect to displacement transfor
tions’’; cf. @9#.

A. Tetrads as nonlinear connections

In a first order formalism, one introduces alocal frame
field ~or vielbein! ea5ei

a] i together with thecoframefield
or one-form basisqb5ej

bdxj , which is dual to the frameea

with respect to theinterior product: eacqb5da
b. Quite often,

qa is advocated as the translational gauge potential, altho
it does not transform inhomogeneously under local fram
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†Email address: ekke@xanum.uam.mx
0556-2821/2000/62~4!/044004~7!/$15.00 62 0440
ll

-

a
.
s

if
ge
-
l

e

a-

gh

rotations, as is characteristic for a connection. A rigoro
explanation of this apparent paradox requires one to invok
nonlinear realization~NLR! of the local spacetime group
Indeed, as we will see below, NLRs provide the necess
general foundation of gauge theories of gravitation co
structed from spacetime groups in which translations
present. In this paper, we will demonstrate thatqa actually is
the dimensionless nonlinear translational gauge potentia
metric-affine gravity~MAG!, that is, in the Yang-Mills ap-
proach to the affine group.~This quite general group include
the Poincare´ group of elementary particle physics as
subgroup.!

As a consequence of the nonlinear treatment, the me
tensor will reveal itself as dynamically irrelevant, no long
playing the role of a gravitational potential, since the degr
of freedom of the MAG metric become rearrangeable in
redefined connections. Although this fact is derived here
dependently, the idea of regarding the metric as the grav
tional analogue of the Higgs or Goldstone field is not new
was first proposed by Isham, Salam, and Strathdee@10# and
later on was occasionally discussed, e.g., by Nambu@11#,
Ne’eman and Regge@12#, and Trautman@13#. Various exist-
ing models of macroscopic gravity can therefore be rein
preted as nonlinear-affine~or Poincare´! gauge theories; cf.
@14–17#. Later on, Flato and Ra¸czka@18# as well as van der
Bij @19# speculated about agravitational originof the Higgs
field and its decoupling.

B. Spacetime metric as a Goldstone boson

The recent paper by Gronwaldet al. @20# adopts the
‘‘quartet’’ of scalar fields introduced by Guendelman a
Kaganovich@21–27#, originally used in the study of the cos
mological constant problem. Gronwaldet al. apply these
fields in a different context, in order to remedy, as far
©2000 The American Physical Society04-1
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possible, the unsatisfactory fact of the occurrence of the~an-
holonomic! metric tensor in MAG as a field different from
the Yang-Mills ones. As declared in the Introduction by t
authors themselves, they look for an alternative way to
fine a volume element without reference to the metric. We
not enter into the details of such a construction. Nevert
less, we would like to remark that the metric is not mu
appreciated as a fundamental gravitational potential by
principal supporters of the interpretation of gravity as
gauge theory. And the reason for it is that the gau
theoreticalstatusof the metric tensor is not clear. In othe
words, the search for a different volume element is mo
vated by a difficulty inherent to the present understanding
the foundations of MAG itself.

In fact the introduction, in addition to the linear conne
tion and the coframe, of the metric tensor as an indepen
gravitational potential@7# seems to be contrary to the spir
of a pure gauge approach, where the role of gauge poten
is played exclusively by connections. In standard Yang-M
theories, no other quantity is required to carry interactio
Contrarily, in the naivegauge approachto Einstein’s theory
as well as MAG, the metric tensor appears as a strange q
tity with ten additional degrees of freedom, foreign to t
otherwise standard Yang-Mills treatment. Its existence
simply assumed without deriving it from a more fundamen
principle.

In our opinion, nonlinear realizations@10# provide not
only a different foundation of MAG, but the necessary inte
pretation of the actually formulated theory in its present fo
@7#. In fact, most of the features of MAG—such as the vec
character of the coframe despite its nature of~translational!
connection, as already mentioned; the occurrence of the
ric tensor, the freedom to fix it to be Minkowskian witho
loss of generality, the tensoriallity of the nonmetricit
etc.—are consequences of the nonlinearity, although it
not been recognized by all of the founders.

As we will see, the existence of the MAG metric deriv
from a particular nonlinear realization of the affine grou
According to this interpretation, the metric results in being
set of ten Goldstone fields, rearrangeable in the connecti
When rearranged in this way, the metric reduces to a c
stant Minkowski one, without any dynamical degrees of fre
dom. Thus, the anholonomic MAG metric tensor is not
genuine gravitational potential. Accordingly, the nonmetr
ity is not to be interpreted as the corresponding field stren
but simply as the connection component associated to
symmetric generators of the general linear group. Un
gauge transformations, nonmetricity behaves as a tensor
to the ~not immediatly recognizable! underlying nonlinear
realization of the affine group.

II. GAUGING SPACETIME GROUPS

As far as internal symmetries are concerned, the defini
of gauge transformations as fiber-preserving bundle a
morphisms@28# constitutes a satisfactory characterization
them. Accordingly, given a principal fiber bundleP(M ,H)
with the base spaceM representing spacetime, a gauge tra
formation is identical with the action of the structure gro
04400
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H along local fibers, being the spacetime base manifold
being affected by such transformations.

Obviously, this scheme is not applicable to gauge theo
of gravitation. In fact, they are theories of the Yang-Mil
type based on the gauging of spacetime groups, and prec
these groups are symmetries which affect spacetime its
Thus, one has to generalize the definition of gauge trans
mations in order to take account of such external symmet
as well. We follow Lord@29–31#, who suppresses the restric
tion of no action on the base space. According to him
gauge transformation is a general bundle automorphism,
is, a diffeomorphism that maps fibers to fibers.

The natural framework to define such an action is
following, based on the manifold character of Lie groups a
on the simple properties of left and right multiplications
group elements. Let us choose a spacetime groupG and a
subgroupH,G. We will construct the gauge theory ofG on
the principal fiber bundleG(G/H,H), where the group
manifoldG itself is the bundle manifold, and the subgroupH
is taken to be the structure group—differentH ’s may be
chosen to play this role; the quotient spaceG/H will play the
role of spacetime. Gauge transformations are defined on
bundle as follows. As mentioned above, the usual definit
of ~active! gauge transformations as vertical automorphis
along fibers, not affecting spacetime, must be modified t
more general automorphism affecting both vertical fibers a
the points of the quotient spaceG/H the latter are attached
to. Since the left and right multiplications of elements ofG
commute, we have in particularLg+Rh5Rh+Lg , with g
PG, hPH. Thus Lg , acting on fibers defined as orbits o
the right actionRh ~that is, as left cosetsgH), constitutes an
automorphism of the kind we are looking for, transformin
in general fibers into fibers. To be explicit, we define the l
actionLg of G on zero sectionss:G/H→G as follows:

Lg+s~j!5Rh+s~j8!. ~2.1!

As observed by Lord@30#, this equation coincides with the
prescription fornonlinear transformationsdue to Coleman et
al. @32#. In accordance with what one expects for spaceti
symmetries, a transformation is induced on the quoti
spaceG/H, reflecting the mapping from a fiber to anothe
Indeed, taking into account thatp+Rh+s5p+s5 id, from
Eq. ~2.1! then follows

j85p+Lg+s~j!, ~2.2!

the fieldsj being coset fields, characterized as continuou
labels of the elements of the quotient spaceG/H. In particu-
lar, for G/H'R4, they provide the translational fields des
nated to replace the ‘‘quartet’’ of scalar fields of Ref
@20,33#. Actually, in the context of gauge theories of spac
time groups, the ‘‘Poincare´ coordinates’’@34# or components
@35# of ‘‘Cartan’s radius vector’’ja are in fact translationa
coset fields. In the case of MAG, they turn out to transfo
as affine covectors resembling coordinates; see Eqs.~3.5!
and ~4.3! below.
4-2
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Nonlinear connections

For practical calculational purposes, the fundamen
equation~2.1! defining the nonlinear group action may b
rewritten in a more explicit form in terms ofgPG and h
PH as

gs~j!5s~j8!h~j,g!, ~2.3!

or shortly ass85gsh21. Because of this particular transfo
mation law ofs, from the linear connectionG5 of G it be-
comes possible to define the nonlinear connectionG with
suitable transformation properties as follows:

Gªs21~d1G5 !s. ~2.4!

Indeed, given the ordinary linear transformation law of t

linear connection,G5 , namely,

G5 85gG5 g211g dg21, ~2.5!

and the transformation~2.3! of s in its shortened forms8
5gsh21, it follows that the nonlinear connection~2.4!
transforms as

G85hGh211h dh21 ~2.6!

under local transformations. Observe that, according to
~2.6!, only the components ofG defined on the Lie algebra o
H transform inhomogeneously as true connections; the
maining components ofG transform as tensors with respe
to H.

The nonlinear connection allows us to construct covari
derivatives~of nonlinear fields! as follows. Consider a field
w transforming linearly underG asw85gw, and let us sche-
matically define a correlated nonlinear field ascªs21w. It
is trivial to test thatc transforms under the action ofG as
c85hc, that is, as a representation field of the subgroupH.
Accordingly, we define the covariant differential

Dcª~d1G!c5s21~d1G5 !w, ~2.7!

behaving as anH-covariant object, namely,

~Dc!85hDc, ~2.8!

under the left action of the whole groupG.

III. GAUGE THEORETICAL ORIGIN OF THE TETRADS

By applying the previous results, takingG to be theaffine
group A(4,R)ªR4+GL(4,R), i.e., the semidirect produc
of translations and general linear transformations, we w
show that the nonlinear approach provides the ultimate fo
dation of MAG. The commutation relations of the affin
group are

@Pa ,Pb#50,

@La
b ,Pg#5dg

aPb ,
04400
l
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@La
b ,Lg

d#5dd
aLg

b2db
gLa

d . ~3.1!

Observe that the physical dimensions of the generators o
linear group are@La

b#5\, whereas those of translations a
@Pa#5\/ length.

Let us construct in two steps the fiber bundle descriptio
of the spacetime dynamics ofG5A(4,R), which we denote
G(G/H1 ,H1) andG(G/H2 ,H2), corresponding to two con
secutive smaller subgroups as the structure group, nam
H15GL(4,R) and SO(1,3)PH1.SO(1,3),H1, respec-
tively. Other choices ofH are possible, for instance,H3
5SO(3) ~see Ref.@36#!, but this will not be considered here
The occurrence of a certain subgroupH ~or H1 , H2, etc.!, on
which the action of the total groupG becomes projected, is
constitutive feature of NLRs; it should not be confused w
symmetry breaking. Indeed, in the nonlinear approach th
symmetry is not broken, so that alternative choices of
subgroupH are mathematically equivalent. True symmet
breaking requires an additional mechanism involving
ground state of a dynamical theory of fundamental phys
We will not study such mechanisms here.

First we consider the gauge theory of the affine gro
with the general linear groupH15GL(4,R) as a structure
group. We will show that the coframe appears in a natu
way as a nonlinear translative connection.

Now in the formula~2.3! for the nonlinear group action
we substitute the following quantities: The group elementg
of the whole affine groupA(4,R) are parametrized as

g5ei eaPaeiva
bLa

b'I 1 i eaPa1 iva
bLa

b , ~3.2!

where we also indicate the infinitesimal expansion. They
on the zero sections

s̃~j!ªe2 i jaPa, ~3.3!

whereja are~finite! coset parameters. We introduce the til
in order to distinguish Eq.~3.3! from thes introduced in Eq.
~4.1! below. The elementsh of the structure groupGL(4,R)
are taken to be

hªeiva
bLa

b'I 1 iva
bLa

b . ~3.4!

Using the Campell-Hausdorff formula in Eq.~2.3! with Eqs.
~3.2!–~3.4!, the variation of the coset parametersja of Eq.
~3.3! and the value ofva

b @see Eq.~3.4!# are calculable,
resulting in

dja52vb
ajb2ea, va

b5va
b. ~3.5!

Thus we see from Eq.~3.5! that the coset parametersja

transform as affine covectors, as postulated@35# for Cartan’s
generalized radius vector. The nonlinear connection~2.4!
will be constructed in terms of the linear one, namely,

G5 ª2 i G
~T!

aPa2 i G
~GL!

a
bLa

b , ~3.6!
4-3
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which includes the linear translational potentialG
(T)

a and the

GL(4,R) connection G
(GL)

a
b, whose infinitesimal transforma

tions read

d G
~GL!

a
b5 D

~GL!

va
b, d G

~T!
a5 D

~GL!

ea2vb
a G

~T!
b. ~3.7!

Here D
(GL)

denotes the covariant differential constructed fro
theGL(4,R) connection. Making use of the definition~2.4!,
we get

G̃ªs̃21~d1G5 !s̃52 i q̃aPa2 i G̃a
bLa

b , ~3.8!

with

G̃a
b5 G

~GL!

a
b, q̃a

ª G
~T!

a1 D
~GL!

ja. ~3.9!

As in the case of Eq.~3.3!, we denote these objects with
tilde for later convenience. Making use of Eq.~2.6!, it is

straightforward to prove that, whereasG̃ a
b transforms as a

GL(4,R) connection, the coframeq̃a defined as in Eq.~3.9!
transforms as aGL(4,R) covector. Explicitly

dG̃a
b5D̃va

b, dq̃a52vb
aq̃b; ~3.10!

compare with Eq.~3.7!. The nonlinear treatment of the affin
group thus clarifies how the coframe can be constructed f
gauge fields of the Yang-Mills type, in particular those
~3.6!. The coset parametersja play the role of Cartan’s gen
eralized radius vector of Ref.@37#, being not introducedad
hoc, since they are constitutive elements of the theory. T
mainly contribute to the construction of the translational

variantq̃a5 G
(T)

a1D̃ja; the variation ofj under translations
@see Eq.~3.5!# is compensated for by the variation of th
translative connection; see Eq.~3.7!, and cf. @37#. Sincej
5jaPa aquires its values in the ‘‘orbit’’~coset space!
A(n,R)/GL(n,R)'Rn, it can be regarded as an affine vect
field ~or ‘‘generalized Higgs field’’ according to Trautma
@13#! which ‘‘hides’’ @38# the action of the local translationa

‘‘symmetry’’ T(n,R). Accordingly, conditions such asG
(T)

a

50 or Dja50 break the translational symmetry. Only in th
absence of gravitational interaction can we recover the s
cially relativistic relationqa5dja for the coframes~i.e., for
the translational nonlinear connections!, employed in Ref.
@20# in order to derive a ‘‘metric-free’’ volume four-form. I
is interesting to notice that, in this limit, the fieldsja play the
role of ordinary coordinates; see also Eq.~3.5!. In other
words, the spacetime manifold of special relativity is are-
sidualstructure of the nonlinear approach when gravitatio
forces are switched off.

IV. ORIGIN OF THE METRIC IN MAG

In order to complete the MAG scheme, it only remains
explain the emergence of the metric. Indeed, until now
gauge theoretical origin of the metric tensor which is ch
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acteristic for MAG’s has not been apparent. Seemingly
metric with ten additional degrees of freedom will only a
pear in the gauge theory of the affine group if it is introduc
by hand. But this is not exactly true. The next consideratio
are devoted to show how the metric tensor can be introdu
in a deductive way.

Let us consider the second choice of structure subgrou
our bundle approach mentioned above, name
G(G/H2 ,H2) with G5A(4,R), as before, and H2
5SO(1,3). We split up the generatorsLa

b of the general

linear transformations asLa
b5L° a

b1Sa
b , L° a

b being the
Lorentz generators andSa

b those of the symmetric linea
transformations. Now we apply the general formula~2.3!
with the particular factorization

g5ei eaPaeiamnSmneibmnL° mn, sªe2 i jaPaeihmnSmn,

hªeiumnL° mn. ~4.1!

Hereea, amn, andbmn being infinitesimal parameters o
the affine group, the transformed coset parameters ofs re-
duce toj8a5ja1dja andh8mn5hmn1dhmn; the Lorentz pa-
rametersumn ~the structure groupH2 being Lorentzian! are
also infinitesimal. Let us define

r a
b
ª~eh!a

b
ªda

b1ha
b1

1

2!
ha

ghg
b1••• ~4.2!

from the coset parametershab associated with the generato
of the symmetric part ofGL(4,R); see Eq.~4.1!. ~In the
following, r ab, rather than the coset parametershab them-
selves, will play the fundamental role@39,40#.! We find the
variations

dja52~ab
a1bb

a!jb2ea,

dr ab5~aa
g1ba

g!r gb1ub
gr ga, ~4.3!

whereab
a1bb

a5vb
a; compare with Eq.~3.5!. Sincer ab

is symmetric, the antisymmetric part of the second equa
in Eqs. ~4.3! vanishes. From this condition we find the e
plicit form of the nonlinear Lorentz parameter

uab5bab2amntanhH 1

2
log@r a

m~r 21!b
n#J , ~4.4!

which obviously differs from the linear Lorentz paramet
bab. It is precisely the nonlinearuab, and not the linearbab,
which is relevant for nonlinear transformations, as becom
evident in Eqs.~4.9!, ~4.8!, and~4.10! below.

In order to define the nonlinear connection, let us fi
rewrite the linear-affine connection~3.6! as

G5 ª2 i G
~T!

aPa2 i G
~GL!

a
b~Sa

b1L° a
b!. ~4.5!

Then making use of the definition~2.4!, we get

Gªs21~d1G5 !s52 iqaPa2 iGa
b~Sa

b1L° a
b!,

~4.6!
4-4
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with the nonlinearGL(4,R) connectionGa
b and the nonlin-

ear translational connectionqa, respectively, defined as

Ga
b
ª~r 21!a

g G
~GL!

g
lr l

b2~r 21!a
gdrg

b,

qa
ªr b

aS G
~T!

b1 D
~GL!

jb D . ~4.7!

We identify the components ofGa
b andqa of the ~nonlin-

ear! Yang-Mills connections of the affine group with th
geometricallinear connection and with the coframe, respe
tively. Thus Eqs.~4.7! establish the correspondence betwe
the geometricalobjects on the left-hand side~LHS! and the
dynamical objects on the RHS. We find that the connect
behaves as a Lorentz connection

dGa
b5Dua

b, ~4.8!

with the nonlinear Lorentz parameter~4.4!. The covariant
differentialD in Eq. ~4.8! is constructed in terms of the Lor
entz connection itself. On the other hand, the coframe tra
forms as a Lorentz covector

dqa52ub
aqb. ~4.9!

As repeatedly mentioned, this constitutes a main result of
nonlinear approach.

Notice that, in view of the splitting of the general line
generators into a Lorentz plus a symmetric part asLa

b

5L° a
b1Sa

b , the connection is actually composed of tw
parts, defined on different elements of the Lie algebra.
fact, only the antisymmetric part, defined on the Lorentz g
erators, behaves as a true connection of the Lorentz g
playing the role of the structure groupH2. The symmetric

partG (ab)5: 1
2 Qab , i.e., the nonmetricity, is tensorial. Actu

ally,

dQab52u(a
gQb)g . ~4.10!

On the other hand, the structure groupH2 being the Lorentz
group, the Minkowski metricoab emerges automatically in
the theory as a natural invariant:doab50. Thus, a metriza-
tion of the affine theory occurs as a consequence of the n
linear treatment—due to the particular choice of
~pseudo-!orthogonal group as the structure group, so that
corresponding Cartan-Killing metric becomes appare
However, no degrees of freedom are related to
Minkowski metric. This seemingly makes a difference b
tween the dynamical content of our theory and that of or
nary MAG, since in the latter the metric tensor involves t
degrees of freedom. Nevertheless, we will see immedia
how these degrees of freedom, being of Goldstone nat
can be taken from the nonlinear connections where they
hidden. Actually, the Goldstone fields which will manife
themselves as the degrees of freedom of the MAG metric
those of the matrixr ab defined in Eq.~4.2!. They can be
factorized into nonlinear connections and coframes,
shown in Eq.~4.7!, in the presence of the Minkowskian me
ric we are discussing, or alternatively they can be explic
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displayed in the metric tensor, as we will show in Eq.~4.13!
below. In this case, the metric becomes identical to the o
nary MAG metric.

In order to show how the transition between these al
native formulations takes place, we establish a corresp
dence between the objects of both choicesH1 andH2 studied
above. Formally, we find that this correspondence is isom
phic to a finite gauge transformation, with the matrixr ab of
Eq. ~4.2! standing for the symmetric affine transformation
But r ab is not a transformation matrix; it is constructed
terms of coset fields. The relation between Eqs.~3.9! and
~4.7! reads

G̃a
b
ª G

~GL!

a
b5r a

gGg
l~r 21!l

b2r a
gd~r 21!g

b ~4.11!

and

q̃a
ª G

~T!
a1 D

~GL!

ja5~r 21!b
aqb. ~4.12!

The standard metric-affine objects of ordinary MAG, such
connections and coframes~up to the metric!, are identical to
those with a tilde on the LHS of Eqs.~4.11! and ~4.12!,
studied in Sec. III, corresponding to a nonlinear realizat
of the affine group withH15GL(4,R) as the structure
group. In the approach studied in Sec. III, the metric ten
was absent. However, in analogy to Eqs.~4.11! and~4.12!, it
can be introduced as an object with a tilde related to
Minkowski metric oab which appears in the case ofH2

5SO(1,3) studied in Sec. IV. Actually, we defineg̃ab from
oab as

g̃abªr a
mr b

nomn . ~4.13!

The resulting MAG-metric tensor plays the role of aGold-
stone field~cf. @32#!, which drops out after applying the in
verse of the ‘‘gauge transformation’’~4.13!. By also invert-
ing Eqs. ~4.11! and ~4.12!, one reaches the nonlinea
realization studied in Sec. IV, with the Lorentz group as t
structure subgroup. This completes the correspondence
tween the nonlinear objects and those of the framework
metric-affine theory. As a consequence, observe that inv
ants such as the line element may be alternatively expre
in terms of the Lorentz-nonlinear or metric-affine objec
respectively: namely, as

ds25 oabqa
^ qb5g̃abq̃a

^ q̃b, ~4.14!

where the transition fromoab to g̃ab or vice versa takes
place by means of the suitable factorization of the coset
rameters associated with the symmetric affine transfor
tions. The gauge-theoretical origin of the metric tensor in
MAGs is thus explained. Moreover, given a standard MA
if one fixes the metric to be globally Minkowskian, the d
grees of freedom of the theory automatically rearrange th
selves into the nonlinear theory developed in Sec. IV, w
the Lorentz group as the structure group.

Because of the transformation law~4.3! of r ab, which
involves both general linear and Lorentz parameters, the
4-5
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dices of objects with a tilde behave as general linear indic
those of objects without a tilde are Lorentz indices. In t
second case, the ten degrees of freedom corresponding tr ab

are rearranged into the coframe and connections, so that
of them remains in the metric tensor, which becom
Minkowskian. An action which is invariant under affin
transformations can be alternatively expressed in term
GL(4,R) or SO(1,3) tensors, respectively. This correspon
to the choice of variables with or without a tilde, as d
cussed above.

V. OUTLOOK: DYNAMICAL ORIGIN
OF THE SIGNATURE?

Concerning thesignatureof the metric parametrized via
oabªdiag(eiu,1,1,1) ~cf. @41#!, the nonlinear approach i
particularly adapted for dealing withspontaneous symmetr
breaking. In fact, the Higgs mechanism can be understood
a way to select a particular structure groupH by fixing the
Goldstone fields in terms of suitable fields of the theory;
Ref. @42#. Thus, symmetry breaking could give a fundame
tal physical meaning to a particular structure subgroupH,
fixing it dynamically.

Previously to the symmetry breaking, the choices of d
ferent structure groupsH are physically equivalent in the
sense that they simply provide alternative ways to rearra
the degrees of freedom of the total gauge groupG. In par-
ticular, in the gauge theory of the affine group, in the abse
of symmetry breaking one can freely choose the struc
subgroupH to be Lorentz group orSO(4), etc., so that the
corresponding metric signatures become the Minkowskia
the Euclidean one, respectively. They constitute alterna
realizations of the same theory, since the symmetry unde
total groupG is the only relevant one.

In quantum field theory, the Minkowskian or Euclidea
signature is, however, quite different. Usually in the pa
integral approach, the Euclidean signature is chosen in o
to have a well-defined measure. Moreover, tunneling
er
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tween different topologies of instanton configurations m
occur. ~After applying a Wick rotation witheip521, the
physical measurable quantities are regained.! In the path in-
tegral approach to quantum gravity, a summation over
inequivalentcoframes and connections, and even topolo
@43#, is understood. This summation will also involvedegen-
erate (detej

b50) or even vanishing coframes; cf.@44#.
Macroscopically, this would imply the breakdown of an
length measurement performed by means of the me
~4.14!. Microscopically, then also signature changes of
metric are to be admitted; cf. Refs.@45,46#. These conceptua
difficulties @1# are not encountered in the quantization
internal Yang-Mills theories on a fixed spacetime
background.

Degenerate coframes, however, tend to jeopardize
coupling of gravity to matter fields, as exemplified by Dira
or Rarita-Schwinger fields; cf.@47#. The basic reason is tha
the local frameea , even if it still exists, is not invertible any
more; i.e., the relationeacqb5da

b, which is needed in the
formulation of matter Lagrangians, would then be lost.

These arguments seems to require the introduction o
symmetry-fixing mechanism which dynamically differen
ates a particular structure groupH and, thus, the signature. I
other words, it remains to be seen if also the signature of
physical spacetime has a dynamical origin in such a fram
work, as suggested by Sakharov@48# and Greensite@49#, or
arises naturally in string orM theory @50,51,52#.
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