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Gravitational Goldstone fields from affine gauge theory
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In order to facilitate the application of standard renormalization techniques, gravitation should be described,
in the pure connection formalism, as a Yang-Mills theory of a certain spacetime group, say the Rminlcare
affine group. This embodies the translational as well as the linear connection. However, the coframe is not the
standard Yang-Mills-type gauge field of the translations, since it lacks the inhomogeneous gradient term in the
gauge transformations. By explicitly restoring this “hidden” piece within the frameworkaflinear real-
izations the usual geometrical interpretation of the dynamical theory becomes possible, and in addition one
can avoid the metric or coframe degeneracy which would otherwise interfere with the integrations within the
path integral. We claim that nonlinear realizations provide the general mathematical scheme for the foundation
of gauge theories of spacetime symmetries. When applied to construct the Yang-Mills theory of the affine
group, tetrads become identified with nonlinear translational connections; the anholonomic metric no longer
constitutes an independent gravitational potential, since its degrees of freedom reveal a correspondence to
eliminateableGoldstonebosons. This may be an important advantage for quantization.

PACS numbd(s): 04.50+h

[. INTRODUCTION rotations, as is characteristic for a connection. A rigorous
explanation of this apparent paradox requires one to invoke a
On a macroscopic scale, gravity is empirically rather wellnonlinear realization(NLR) of the local spacetime group.
described by Einstein’s general relativity thed¢@R). How-  Indeed, as we will see below, NLRs provide the necessary
ever, quantum-field theoretically, Einstein’s theory is pertur-general foundation of gauge theories of gravitation con-
batively nonrenormalizabld1,2] and plagued bynomalies  structed from spacetime groups in which translations are
if coupled to fundamental matter as the Dirac field of anpresent. In this paper, we will demonstrate tii4tactually is
electron; cf.[3,4]. As a matter of fact, gravity is usually the dimensionless nonlinear translational gauge potential in
concelveql as an |nteract|_on of a very different na;ure frommetric-affine gravity(MAG), that is, in the Yang-Mills ap-
the remaining forces, being supposed to be mediated by &,4:h to the affine grougThis quite general group includes

metnc.p.otentlal rather than by Yang-Mills connections. . Poincaregroup of elementary particle physics as a
Thus, it is reasonable to hope that some of the problem ubgroup.

related to the quant|zat!on of th.'s force might d!sappear " Asa consequence of the nonlinear treatment, the metric
one were able to describe gravitation as an ordinary 98UGER hsor will reveal itself as dynamically irrelevant, no longer
theory. The search for such a formulation yielded in particu- y y ’ 9

lar the different gauge theories of gravity proposed by |_|ehplaying the role of a gravitational potential, since the degrees
and his Cologne groufs—7]. In all of them, the local treat- of freedom of the MAG metric become rearrangeable into

ment of translations reveals itself as a cornerstone of th&edefined connections. Although this fact is derived here in-
Yang-Mills-type interpretation of gravitation. As Feynman c_iepelndenltly, the f'dﬁa of regardmgk;he meft_rlclz das the gravita-
[8] has put it, “ . . .gravity is that field which corresponds to tlonal analogue of the Higgs or Goldstone field is not new. It

a gauge invariance with respect to displacement transform vas first proposed k?y Isham_, Salam, and Strattidégand
tions”; cf. [9]. ater on was occasionally discussed, e.g., by Naurfiil,

Ne’eman and Reggel2], and Trautmail13]. Various exist-

ing models of macroscopic gravity can therefore be reinter-
A. Tetrads as nonlinear connections preted as nonlinear-affin@r Poincarg gauge theories; cf.
[14-17. Later on, Flato and Raka[18] as well as van der
Bij [19] speculated about gravitational origin of the Higgs
field and its decoupling.

In a first order formalism, one introduceslacal frame
field (or vielbein e,=¢' 9, together with thecoframefield
or one-form basi®*=e;#dx!, which is dual to the frame,,
with respect to thénterior product e, |9#= 55. Quite often,
9¢ is advocated as the translational gauge potential, although
it does not transform inhomogeneously under local frame The recent paper by Gronwaldt al. [20] adopts the

“quartet” of scalar fields introduced by Guendelman and

Kaganovich21-27, originally used in the study of the cos-
*Email address: ceef310@imaff.cfmac.csic.es mological constant problem. Gronwalet al. apply these
"Email address: ekke@xanum.uam.mx fields in a different context, in order to remedy, as far as

B. Spacetime metric as a Goldstone boson
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possible, the unsatisfactory fact of the occurrence ofdéme  H along local fibers, being the spacetime base manifold not
holonomig metric tensor in MAG as a field different from being affected by such transformations.

the Yang-Mills ones. As declared in the Introduction by the Obviously, this scheme is not applicable to gauge theories
authors themselves, they look for an alternative way to deof gravitation. In fact, they are theories of the Yang-Mills
fine a volume element without reference to the metric. We ddype based on the gauging of spacetime groups, and precisely
not enter into the details of such a construction. Neverthethese groups are symmetries which affect spacetime itself.
less, we would like to remark that the metric is not muchThus, one has to generalize the definition of gauge transfor-
appreciated as a fundamental gravitational potential by th&ations in order to take account of such external symmetries

principal supporters of the interpretation of gravity as a@S Well. We follow Lord 2931, who suppresses the restric-

gauge theory. And the reason for it is that the gaugej[ion of no action on the base space. According to him, a

theoreticalstatusof the metric tensor is not clear. In other gauge_transformz_ation s a genera_tl bundle _automorphism, that
words, the search for a different volume element is moti->" 2 diffeomorphism that maps fibers to fibers.

o . . The natural framework to define such an action is the
vated by a difficulty inherent to the present understanding OFoIIowing based on the manifold character of Lie groups and
the foundations of MAG itself. ’

. ) : . . he simpl i f lef igh Itiplicati f
In fact the introduction, in addition to the linear connec- on the simple properties of left and right multiplications o

. . . roup elements. Let us choose a spacetime g@umd a
tion _anql the cofram_e, of the metric tensor as an mdepenqle bgroupH C G. We will construct the gauge theory Gfon
gravitational potential7] seems to be contrary to the spirit

of a pure gauge approach, where the role of gauge potentiaige principal fiber bundleG(G/H,H), where the group

is played exclusively by connections. In standard Yang-Mills anifoldG itself is the bundle manifold, and the subgrddp
thgori)t/es no other yua>;1tit is re uiréd to carr intera%:tionsiS taken to be the structure group—diﬁffe“rlemts may be
Contrarii in the nz;]iv auye a qroacho Einste)i/n’s theo chosen to play this role; the quotient sp will play the
Y, ©Qauge app Y role of spacetime. Gauge transformations are defined on this
as well as MAG, the metric tensor appears as a strange quap ; -
. . o . undle as follows. As mentioned above, the usual definition
tity with ten additional degrees of freedom, foreign to the . : . .
. . . - of (active gauge transformations as vertical automorphisms
otherwise standard Yang-Mills treatment. Its existence is

simply assumed without deriving it from a more fundamentalalong fibers, not affecting spacetime, must be modified to a
prin?:iigle 9 more general automorphism affecting both vertical fibers and

In our opinion, nonlinear realization&l0] provide not the points of the quotient spa¢&/H the latter are attached

only a different foundation of MAG, but the necessary inter—to' Since the left and _right multiplications of eIeme_ntsG)f
pretation of the actually formulated theory in its present formcoanmhutel,_l W_I(_eh hali/ e n t?:rt'cﬁlﬁfjgorRh; IE';IOLdg’ Wltrhbitg f
[7]. In fact, most of the features of MAG—such as the vectorti ' hT .t' ﬂgs (t?’], ta.c 9 ?ﬂ ers : N aftc; S 0
character of the coframe despite its naturgtadnslational e right actiorR;, (that is, as left cosetgH), constitutes an

connection, as already mentioned; the occurrence of the me«'fx_utomorphlsm Of. the .kmd we are Iooklr!g for, tra'nsformlng
fic tensor, the freedom to fix it to be Minkowskian without " general fibers into fibers. To be explicit, we define the left

loss of generality, the tensoriallity of the nonmetricity, actionlg of G on zero sections-G/H—G as follows:

etc.—are consequences of the nonlinearity, although it has

not been recognized by all of the founders. Lyea(§)=Rpea(&’). (2.9
As we will see, the existence of the MAG metric derives

from a particular nonlinear realization of the affine group. . . o .

Accordir?g to this interpretation, the metric results in bgeingpaAS obg;er_ved by Lo_rc[30], this equat!on coincides with the

set of ten Goldstone fields, rearrangeable in the connection8rescription fomonlinear transformationsiue to Coleman et

When rearranged in this way, the metric reduces to a conz-il' [32]. In accordance with what one expects for spacetime

stant Minkowski one, without any dynamical degrees of fregSymmetries, a transformation is induced on the quotient

dom. Thus, the anholonomic MAG metric tensor is not aspaceG/H, .refle.cting the mapping from a fiber.to another.
genuine gravitational potential. Accordingly, the nonmetric—'ndezdl’ tt?}k'n% ||?to account thateRyeo=mo=id, from

ity is not to be interpreted as the corresponding field strengtlllz'q' (2.2) then follows

but simply as the connection component associated to the

symmetric genera_tors of the g_eneral linear group. Under g =molga(f), (2.2)
gauge transformations, nonmetricity behaves as a tensor due

to the (not immediatly recognizableunderlying nonlinear ] ) ) ) )
realization of the affine group. the fields ¢ being coset fields characterized as continuous

labels of the elements of the quotient sp&/#. In particu-
lar, for G/H~R?, they provide the translational fields desti-
nated to replace the “quartet” of scalar fields of Refs.

As far as internal symmetries are concerned, the definitiop20,33. Actually, in the context of gauge theories of space-
of gauge transformations as fiber-preserving bundle autaime groups, the “Poincareoordinates’[34] or components
morphismg 28] constitutes a satisfactory characterization of[35] of “Cartan’s radius vector”¢é* are in fact translational
them. Accordingly, given a principal fiber bundig(M,H) coset fields. In the case of MAG, they turn out to transform
with the base spadd representing spacetime, a gauge trans-as affine covectors resembling coordinates; see E3j5)
formation is identical with the action of the structure groupand(4.3) below.

Il. GAUGING SPACETIME GROUPS
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Nonlinear connections [L¥ ., L75]=85L75— SHL" 5. (3.1
For practical calculational purposes, the fundamental
equation(2.1) defining the nonlinear group action may be Observe that the physical dimensions of the generators of the

rewritten in a more explicit form in terms aje G and h linear group ar¢L“;]="%, whereas those of translations are
eH as [P, ]="%llength.
) Let us construct in two steps the fiber bundle descriptions
go(§)=0(&)h(£,9), (23 of the spacetime dynamics &=A(4,R), which we denote

_ . . G(G/H,H,) andG(G/H,,H,), corresponding to two con-

r_ 1 1 1 2 2

or shortly ass” =goh . Because of this particular transfor- oo e’ smaller subgroups as the structure group, namely,
mation law of o, from the linear connectiof’ of G it be- H,=GL(4,R) and SO(1,3kH,>SO(1,3CH,, respec-
comes possible to define the nonlinear connecliomwith tively. Oth,er choices 01H, are possible, for inlc,tance-lg

suitable transformation properties as follows: =S(Q(3) (see Ref[36]), but this will not be considered here.
. ~ The occurrence of a certain subgradgor H,, H,, etc), on
=0~ (d+I)o. (2.4 which the action of the total group becomes projected, is a

_ ) . . constitutive feature of NLRs; it should not be confused with
Indeed, given the ordinary linear transformation law of thesymmetry breakingindeed, in the nonlinear approach the

linear connectionf, namely, symmetry is not broken, so that alternative choices of the
. . subgroupH are mathematically equivalent. True symmetry
I'=gl'g t+gdg %, (2.5  breaking requires an additional mechanism involving the

ground state of a dynamical theory of fundamental physics.
and the transformatiof2.3) of o in its shortened formy’  We will not study such mechanisms here.

=goh™?, it follows that the nonlinear connectiot®.4) First we consider the gauge theory of the affine group
transforms as with the general linear groupl;=GL(4,R) as a structure
group. We will show that the coframe appears in a natural
I''=hT'"h™+hdh? (2.6)  way as a nonlinear translative connection.

Now in the formula(2.3) for the nonlinear group action,
under local transformations. Observe that, according to Edwye substitute the following quantities: The group elements
(2.6), only the components df defined on the Lie algebra of of the whole affine groug\(4,R) are parametrized as
H transform inhomogeneously as true connections; the re-
maining components df transform as tensors with respect
to H.

The nonlinear connection allows us to construct covariant . . )
derivatives(of nonlinear fields as follows. Consider a field Where we also indicate the infinitesimal expansion. They act
¢ transforming linearly unde® as¢’ =ge, and let us sche- ©ON the zero sections
matically define a correlated nonlinear field @as=0 1. It

g=€<Pagl L~ +ie*P +iw, L%, (32

is trivial to test thaty transforms under the action & as o(&)=e 1€Pa, (3.3
' =hy, that is, as a representation field of the subgrbiup
Accordingly, we define the covariant differential where&? are(finite) coset parameters. We introduce the tilde
. in order to distinguish E¢3.3) from the ¢ introduced in Eq.
Dyi=(d+I)y=0"Y(d+T) e, 2.7 (4.1) below. The elementk of the structure grou@sL(4,R)

are taken to be
behaving as ail-covariant object, namely,

(D)’ =hDy, 2.9 h::ei”aBLanHivaBL“B. (3.9

under the left action of the whole grou Using the Campell-Hausdorff formula in E@.3) with Egs.
(3.2—(3.4), the variation of the coset parametée of Eq.
Ill. GAUGE THEORETICAL ORIGIN OF THE TETRADS S'ss:jltﬁnngdirghe value ob,.” [see Eq.(3.4] are calculable,
By applying the previous results, taki@to be theaffine
group A(4,R):=R*&GL(4,R), i.e., the semidirect product SEv= —wggﬁ—e“, v P=w,P. (3.5
of translations and general linear transformations, we will
show that the nonlinear approach provides the ultimate foun-rhuS we see from Eq(3.5) that the coset parametes

dation of MAG. The commutation relations of the affine transform as affine covectors, as postuld@] for Cartan’s

group are generalized radius vectorThe nonlinear connectio(2.4)
[P..Ps]=0 will be constructed in terms of the linear one, namely,
a ﬁ — Y,
@ a ~ (T (GL)
[L,P,]=8Pg, Ti=—iT “P,—i T AL, (3.6)
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(1) acteristic for MAG’s has not been apparent. Seemingly, a

which includes the Iigg"’“ translational potentlal® and the ey with ten additional degrees of freedom will only ap-

GL(4,R) connection I' _#, whose infinitesimal transforma- P€ar in the gauge theory of the affine group if it is introduced

tions read by hand. But this is not exactly true. The next considerations
are devoted to show how the metric tensor can be introduced
(GL) (GL) (T (GL) (M in a deductive way.
T =D wl, oT=D e~ws TA (3.7 Let us consider the second choice of structure subgroup in
(GL) our bundle approach mentioned above, namely,
Here D denotes the covariant differential constructed fromG(G/Hz,Hp)  with G=A(4,R), as before, andH,
the GL(4,R) connection. Making use of the definiti¢ga.4), ~ =SO(1,3). We split up the generatols’, of the general
we get linear transformations ak“z=L“+S";, L“z being the

- . ~ ~ Lorentz generators an8“; those of the symmetric linear
l"::cr’l(d+l“)cr=—iz‘}“Pa—iI‘aBLaﬁ, (3.8  transformations. Now we apply the general forma3)
with the particular factorization
with

i€YP,nia™’S

@ S glB iz 1EPagin®'S,,

~ (6L ~ (M (©y g=e
r,f=r 2, 9%=T “+ D &~ (3.9 .
h:=el"""Lur, (4.2
As in the case of Eq(3.3), we denote these objects with a

tilde for later convenience. Making use of E@.6), it is Here e*, o, and B*" being infinitesimal parameters of

straightforward to prove that, wherefs,® transforms as a e affine group, the transformed coset parameters o¢-

GL(4,R) connection, the cofram@® defined as in Eq3.9 ducettog quat; 55: antdh “E=hTE ih{”; tlr_]e Lotrgntz pa-
transforms as &L(4,R) covector. Explicitly rametersu .( e structure g'rou;HZ eing Lorentziah are
also infinitesimal. Let us define

5faﬁ=5waﬂ, 5:9“2—(1),3“’1‘5%; (3.10 1
raB::(eh)aB,:5Qﬁ+haﬁ+_Iha7hy:3+. .. 4.2
compare with Eq(3.7). The nonlinear treatment of the affine 2!
group thus clarifies how the coframe can be constructed frorﬂom the coset parameten$” associated with the generators
gauge fields of the Yang-Mills type, in particular those of of the symmetric part of5L(4,R): see Eq.(4.1). (In the
(3.6). The coset parameteé$ play the role of Cartan’s gen- : B o o

g . X . following, r*#, rather than the coset parametérd them-
eralized radius vector of Ref37], being not introducead selves, will play the fundamental rof@9.40.) We find the
hog since they are constitutive elements of the theory. The ariati(;ns T
mainly contribute to the construction of the translational in-

~ (T - @ _ @ a\eB_ L

variantd*=I" *+ D &%; the variation of¢ under translations 08"=—(ap "+ Bg") ¢ — €,
[see EQ.(3.5] is compensated for by the variation of the wB_( @\ vBa B ¢y
translative connection; see E(.7), and cf.[37]. Since ¢ o= (a4 BT+ un, e, 4.3
=¢*P, aquires its nvglues in the “orbit”(coset spacge where a ;" + 85" = w4*; compare with Eq(3.5). Sincer“#
A(n,R)/GL(n,R)~R", it can be regarded as an affine vectorjs symmetric, the antisymmetric part of the second equation

field (or “generalized Higgs field” according to Trautman j, Egs. (4.3) vanishes. From this condition we find the ex-
[13]) which “hides” [38] the action of the local translational plicit form of the nonlinear Lorentz parameter
(M

“symmetry” 7(n,R). Accordingly, conditions such a¥ ¢ 1

=0 orD&*=0 break the translational symmetry. Only in the ush=pgab— aﬂ"tam—{—log[ra#(rl)ﬁv]] . (49
absence of gravitational interaction can we recover the spe- 2

cially relativistic relation9“=d¢&* for the coframegi.e., for
the translational nonlinear connectiphemployed in Ref.
[20] in order to derive a “metric-free” volume four-form. It
is interesting to notice that, in this limit, the field$ play the
role of ordinary coordinates; see also H8.5). In other
words, the spacetime manifold of special relativity isea
sidual structure of the nonlinear approach when gravitationa
forces are switched off. . (M (GL)

Fi=—il *P,—i T A(Sp+L%). (4.5

which obviously differs from the linear Lorentz parameter
B*P. Itis precisely the nonlinear®?, and not the lineag“?,
which is relevant for nonlinear transformations, as becomes
evident in Eqs(4.9), (4.8), and(4.10 below.

In order to define the nonlinear connection, let us first
rewrite the linear-affine connectia®.6) as

V. ORIGIN OF THE METRIC IN MAG Then making use of the definitiof2.4), we get

In order to complete the MAG scheme, it only remains to . 3
explain the emergence of the metric. Indeed, until now the =0 Yd+I)o= —iﬁ“Pa—iFaﬁ(S“B+ L%%),
gauge theoretical origin of the metric tensor which is char- (4.6
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with the nonlineaGL(4,R) connectionl’ ,# and the nonlin-
ear translational connectiof®, respectively, defined as

GL)
L nf=(r1,drpA,
)- 4.7

We identify the components df ,# and 9¢ of the (nonlin-
ea) Yang-Mills connections of the affine group with the

(
P f=(rh),

(M (GL)

f}a::rﬁa( A+ D ¢

geometricallinear connection and with the coframe, respec-
n(4.7) reads

tively. Thus Eqgs(4.7) establish the correspondence betwee
the geometricalobjects on the left-hand sidéHS) and the

dynamical objects on the RHS. We find that the connection

behaves as a Lorentz connection
or P=Du,?, (4.8

with the nonlinear Lorentz parameté4.4). The covariant
differential D in Eq. (4.8) is constructed in terms of the Lor-
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displayed in the metric tensor, as we will show in E4.13
below. In this case, the metric becomes identical to the ordi-
nary MAG metric.

In order to show how the transition between these alter-
native formulations takes place, we establish a correspon-
dence between the objects of both choidgsandH, studied
above. Formally, we find that this correspondence is isomor-
phic to a finite gauge transformation, with the matr$¢ of
Eq. (4.2 standing for the symmetric affine transformations.
But r*# is not a transformation matrix; it is constructed in
terms of coset fields. The relation between E(9 and

(GL)

rp=r

a

=r T

a

Moy P-rd(r ) (41D

Y
and

- (M (GL)

9*:=T *+ D £*=(r 1)z 0% (4.12

entz connection itself. On the other hand, the coframe transthe standard metric-affine objects of ordinary MAG, such as

forms as a Lorentz covector

59*=—ug 9P, 4.9
As repeatedly mentioned, this constitutes a main result of th
nonlinear approach.

Notice that, in view of the splitting of the general linear
generators into a Lorentz plus a symmetric partlds

=Ii“3+ S%s, the connection is actually composed of two

connections and coframésp to the metrig, are identical to
those with a tilde on the LHS of Eq$4.11) and (4.12,
studied in Sec. lll, corresponding to a nonlinear realization
of the affine group withH;,=GL(4,R) as the structure
group. In the approach studied in Sec. lll, the metric tensor
was absent. However, in analogy to Egs11) and(4.12), it

can be introduced as an object with a tilde related to the
Minkowski metric 0,5 which appears in the case oéf,

=S0(1,3) studied in Sec. IV. Actually, we defirg, ; from

parts, defined on different elements of the Lie algebra. 1P,z as

fact, only the antisymmetric part, defined on the Lorentz gen

erators, behaves as a true connection of the Lorentz group

playing the role of the structure grough,. The symmetric
partF(aﬁ)=:%Qaﬂ, i.e., the nonmetricity, is tensorial. Actu-
ally,

6Qa,8:2u(a7Qﬂ)‘y' (41@

On the other hand, the structure gradp being the Lorentz
group, the Minkowski metrio,; emerges automatically in
the theory as a natural invarianio,;=0. Thus, a metriza-

(4.13

The resulting MAG-metric tensor plays the role ofGald-
stone field(cf. [32]), which drops out after applying the in-
verse of the “gauge transformation(4.13. By also invert-

ing Egs. (4.1) and (4.12, one reaches the nonlinear
realization studied in Sec. IV, with the Lorentz group as the
structure subgroup. This completes the correspondence be-
tween the nonlinear objects and those of the framework of
metric-affine theory. As a consequence, observe that invari-

gaB::ra“rﬁVow.

tion of the affine theory occurs as a consequence of the nofNts such as the line element may be alternatively expressed
linear treatment—due to the particular choice of ain terms of the Lorentz-nonlinear or metric-affine objects,
(pseudojorthogonal group as the structure group, so that théespectively: namely, as

corresponding Cartan-Killing metric becomes apparent.
However, no degrees of freedom are related to the
Minkowski metric. This seemingly makes a difference be- 5
tween the dynamical content of our theory and that of ordi-where the transition frono,; to g,z Or vice versa takes
nary MAG, since in the latter the metric tensor involves tenplace by means of the suitable factorization of the coset pa-
degrees of freedom. Nevertheless, we will see immediatelyameters associated with the symmetric affine transforma-
how these degrees of freedom, being of Goldstone naturgéions. The gauge-theoretical origin of the metric tensor in the
can be taken from the nonlinear connections where they amelAGs is thus explained. Moreover, given a standard MAG,
hidden. Actually, the Goldstone fields which will manifest if one fixes the metric to be globally Minkowskian, the de-
themselves as the degrees of freedom of the MAG metric argrees of freedom of the theory automatically rearrange them-
those of the matrix *? defined in Eq.(4.2). They can be selves into the nonlinear theory developed in Sec. IV, with
factorized into nonlinear connections and coframes, ashe Lorentz group as the structure group.

shown in Eq.(4.7), in the presence of the Minkowskian met-  Because of the transformation la@.3) of r*#, which

ric we are discussing, or alternatively they can be explicitlyinvolves both general linear and Lorentz parameters, the in-

dS2= 0,59°® 9F=0,,9°® 9%, (4.14
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dices of objects with a tilde behave as general linear indicedween different topologies of instanton configurations may
those of objects without a tilde are Lorentz indices. In theoccur. (After applying a Wick rotation withe'”= -1, the
second case, the ten degrees of freedom correspondifi§ to physical measurable quantities are regaingdthe path in-

are rearranged into the coframe and connections, so that notegral approach to quantum gravity, a summation over all
of them remains in the metric tensor, which becomesnequivalentcoframes and connections, and even topology
Minkowskian. An action which is invariant under affine [43], is understood. This summation will also involstegen-
transformations can be alternatively expressed in terms dafrate (deteJﬁ:O) or even vanishing coframes; cf44].
GL(4,R) or SO(1,3) tensors, respectively. This correspondsMacroscopically, this would imply the breakdown of any
to the choice of variables with or without a tilde, as dis-length measurement performed by means of the metric

cussed above. (4.14). Microscopically, then also signature changes of the
metric are to be admitted; cf. Ref&l5,46. These conceptual
V. OUTLOOK: DYNAMICAL ORIGIN difficulties [1] are not encountered in the quantization of
OF THE SIGNATURE? internal  Yang-Mills theories on afixed spacetime
background.

Concerning thesignatureof the metric parametrized via Degenerate coframes, however, tend to jeopardize the
0,5:=diag(e'’,1,1,1) (cf. [41]), the nonlinear approach is coupling of gravity to matter fields, as exemplified by Dirac
particularly adapted for dealing witspontaneous symmetry or Rarita-Schwinger fields; cf47]. The basic reason is that
breaking In fact, the Higgs mechanism can be understood agne |ocal frames, , even if it still exists, is not invertible any
a way to select a particular structure grodpby fixing the more; i.e., the relatiore,|9#= 5°, which is needed in the
Goldstone fields in terms of suitqble fields qf the theory; se,mulation of matter Lagrangiaans, would then be lost.
Ref.[42]. Thus, symmetry breaking could give a fundamen-  These arguments seems to require the introduction of a

tf”‘l_ thS'Ca' meaning to a particular structure subgréip symmetry-fixing mechanism which dynamically differenti-

fixing |t'dynam|cally. , ) . ates a particular structure grotfpand, thus, the signature. In
Previously to the symmetry bre_akmg, the_ Ch0|ce_s of dif-gher words, it remains to be seen if also the signature of the

ferent structure groupsi are physically equivalent in the . qical spacetime has a dynamical origin in such a frame-

sense that they simply provide alternative ways to rearrang@ ok as suggested by Sakhari@8] and Greensitg49)], or
the degrees of freedom of the total gauge gr@ign par-  4ses naturally in string o¥ theory[50,51,53.
ticular, in the gauge theory of the affine group, in the absence

of symmetry breaking one can freely choose the structure
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