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Conserved charges for even dimensional asymptotically AdS gravity theories

Rodrigo Aro& and Mauricio Contrerds
Centro de Estudios Ciefiizos, Casilla 1469, Valdivia, Chile
and Universidad Nacional Andres Bello, Sazie 2320, Santiago, Chile

Rodrigo Ole&
Departamento de Bra, FCFM, Universidad de Chile, Casilla 487-3, Santiago, Chile
and Centro de Estudios Ciéftos, Casilla 1469, Valdivia, Chile

Ricardo Troncoso
Centro de Estudios Cieritos, Casilla 1469, Valdivia, Chile
and Physique Ttarique et Mathenatique, Universited.ibre de Bruxelles, Campus Plaine,
C.P. 231, B-1050, Bruxelles, Belgium

Jorge Zanelli
Centro de Estudios Ciefitos, Casilla 1469, Valdivia, Chile
and Universidad de Santiago de Chile, Casilla 307, Santiago 2, Chile
(Received 7 December 1999; published 12 July 2000

Mass and other conserved Noether charges are discussed for solutions of gravity theories with locally
anti—de Sitte(AdS) asymptotics in & dimensions. The action is supplemented with a boundary term whose
purpose is to guarantee that it reaches an extremum on the classical solutions, provided the space-time is
locally AdS space-time at the boundary. It is also shown that if space-time is locally AdS at spatial infinity, the
conserved charges are finite and properly normalized without requiring subtraction of a reference background.
In this approach, Noether charges associated with Lorentz and diffeomorphism invariance vanish identically
for constant curvature space-times. The case of a zero cosmological constant is obtained as a limit of AdS
space-time, wherd plays the role of a regulator.

PACS numbd(s): 04.50+h

[. INTRODUCTION is a first drawback in this result, that is, in the case of the
(3+1)-dimensional Kerr black hole, E@l) gives the follow-
Noether’s theorem is the standard tool in theoretical physing answer:
ics to construct conserved charges associated with invari-
ances of the action. Nevertheless, general relativity, de- K( 07):M K<i)=3 )
scribed by the Einstein-Hilbert action, does not lend itself at 2’ 2203 '
naturally to the application of Noether's theorem. The con-
served charge associated with the invariance of the action These results show that there is no common normalization

under diffeomorphisms is given by Komar’s formuts] factor which could give the correct values for mass and an-
gular momentum. Moreover, there is a second drawback

with Komar’s formula: in the presence of negative cosmo-
K(&)= _Kf vegnds,,, (1) logical constant, spacetime is no longer asymptotically flat
ax and the formula yields a divergent value. For example, for

the Schwarzschild—anti-de SittéhdS) metric, one obtains

wherex=(16wG) 1, &=¢"a, is a vector field that defines

the diffeomorphismV , represents the covariant derivative K(

in terms of Christoffel symbol¢s is the boundary of the

spatial section, andzwz%eﬂmﬂdx"/\dxﬁ is the surface

element(dual of the area two-forjn Then, wher¢ is a time- The standard approach to deal with this divergence is to

like or rotational Killing vector,K(&) provides a definition subtract the value df(£) on the AdS background from Eg.

of mass or angular momentum, respectively. However, ther€3) (see, e.g., Ref.2]). In spite of giving a finite result, this
does not correct the normalization factor Mfand the first
problem mentioned above remains.

a\ M r3
ot
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*Email address: rod@cecs.cl The usual procedure to evaluate the conserved charges is
"Email address: contrera@cecs.cl the Arnowitt-Deser-Misner(ADM) formalism [3], which
*Email address: rolea@cecs.cl yields the correct formulas for the energy-momentum and
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by Regge and Teitelboinj4] provides a formula for the finite for (3+1)-dimensional ALAdS spaces. This charge,
variation of the charges, e.gM, and in order to evaluate associated with the invariance under a diffeomorphism of
the charges, e.gM, it is necessary to fix the reference back- EQ. (4), is

ground geometry. The Hamiltonian method can also be ex- |2

tended to provide the correct mass and angular momentum Q&)= _f €abed gwabﬁcd, (5)

for asymptotically AdS spacetimes representing solutions of 2 J;

ﬂ:e 'f'.”?ﬁ'g";%be” aCtI'IO n V\]f't:j iig?él]ve cosmological Con'where§“=x”‘ —x* is the arbitrary vector fieldthat gener-
stantind= , as well as 1o i ates the diffeomorphism.

In many instances this scheme i§ suf_ficiently ;atisfgctory, Although Komar's formula and Ed5) are obtained as the
but there are some cases of physical interest in which the,nserved Noether charge associated with the same invari-
asymptotic behavior can be difficult to assess, as in the Casghce, they disagree because the starting Lagrangians differ
of asymptoticallylocally anti—de SitteALAS) spaces. A by a closed form and are deduced using second and first
formalism to define “conserved” charges in asymptotically order formalism, respectively. In order to clarify this point, it
AdS spaces was proposed by Ashtekar and Magigwho s useful to split the chargé) in such a way that the relation
used conformal techniques to construct the conserved quaith the usual tensor formalism becomes expli€i{.£) can
tities. This construction makes no reference to an action, ande written as
yet reproduces the charges obtained by Hamiltonian methods 2
[5]. — K_j abpcd

Another scheme has been recently proposed by Bala- QUO=KE+X(&)+ 2 Jos €aved ("R, ©
subramanian and Krali8] who use the Einstein-Hilbert ac- o ] o
tion with Dirichlet boundary conditions for the metric, WhereK(¢) is given by Eq(1), X(¢) is a contribution due to
supplemented by counterterms in order to ensure the finitghe local Lorentz invariance
ness of the stress tensor derived by the quasilocal energy p
definition[9]. By adding a finite series of local invariants of X(é)=—- —f €ancdP?Peted, (7
the boundary geometry, the counterterm action regularizes 2) s
that definition of energy. This idea was subsequently ex

tended to higher dimensions in R¢L0]. A different, non- term in the actionwhich was set ax|2/4 times Euler den-

polynomial, expression has been given by Redl], which sity). When ¢ is a Killing vector, 2 can be shown to be

reduces to the previous one in the infinite cosmological con= ! . . s
> . o antisymmetric and be identified as a local Lorentz transfor-
stant limit. In Ref.[12], an alternative construction is pro-

posed which yields the conserved charges (Bi1)- mation. In the second order formalis(i) is absent since

. . ., ; : . there is no local Lorentz invariance.
dimensional general relativity with negative cosmological

constant and does not need to specify the background Prog The last tern;]_thq(G) plays idOUbI? r_ole: |tlcaqcels ]Ehi
vided it is ALAAS. ivergences which appear in the explicit evaluation of the

solutions and contributes to the right normalization factor as
well. In this sense, this term regularizes the Noether charge
Noether charges in 31 ALAdS gravity for ALAAS spaces. This can be checked explicitly in the

, following example: Consider the Schwarzschild-AdS solu-
The approach presented in ReL2] leads to a properly  ion andi=g, . In the standard frame choige® is zero and

defined, convergent expression for the Noether charges in X ishes. Evaluating E iel
3+1 dimensions, provided the ALAdS boundary condition is enceX(¢) vanishes. Evaluating Eg6) yields

with ®ab= ea“/:gez and the last term arises from the surface

imposed on the manifold. It is important to note that the local M r3
AdS behavior at the boundary is not equivalent to the usual K(é)= >t lim —, (8
Dirichlet condition over the metric, in order to have a well r—e 2l
defined variational principle. 5 3

The situation in 31 dimensions is reviewed in order to ﬂf | abRcdzm_ lim ~ 9)
set the basic facts in the construction. The starting observa- 2 Jss €abed ¢@ 2 21?2

tion is that the ALAdS condition requires adding a boundary

term to the Einstein-Hilbert action equal to the Euler densityand henceQ(&) =M.

(Gauss-Bonnet terjrwith a fixed weight factor, in order to

cancel the boundary term coming from the variation of the

Lagrangian. As a consequence, the action, including the'The action of the contraction operatby over a p-form «,

boundary term, is =(Up)a,r. pdx* - dx*®  is  given by lap=1/p
2 —1)1&%a,,1. . p-1dx* - -dx*” . In terms of this operator, the
| = K_j €abcdRAPRY, (4)  Lie derivative read<;=dl+1.d.
4 ane Here, the identityL gea:Dga—Igwgeb , which holds in Rie-

mannian(torsion-free manifolds has been used to obtain E).
_ 3Although it is always possible to choose a frane@)(such that
where R?:=R3+| ~2e3", The Noether charge computed ®3*=0 in an open neighborhood, there could be interesting cases
with the action(4) has the right normalization factor and is where a global obstruction mak&g¢) nontrivial.
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It is apparent from relation$8), (9), that the result(6) Therefore, the action becomes stationary deman@irg0.
remains UnChanged if the linit— o is taken at the end. This Assuming the Spacetime to be ALAdS E":(b: Rab
permits applying the formula equally well for all values of +|-2gagb=0), the vanishing of Eq(13) term is satisfied if
the cosmological constant, including=0. In this sense)\
can be regarded as a regulator for general relativity in the a Amasa o a
absence of cosmological constant. 5ananLM€a1...a2n5w 1%2R%3%. . . R%2n-182n, (14)

In what follows, the extension of this approach to
2n-dimensional gravity theories is presented. Since in highejyhere «,, is defined as
dimensions, the Einstein-HilbefEH) action is not the only

option (see Sec. Il beloyy we will also consider a particular (—1)n2n-2
extension of the so-called Lanczos-Lovelock actions, which an= Km- (15
has been dubbed the Born-Infdl@l) action[13]. This is an
example that the formalism can be applied to other theories The right-hand sidéRHS) of (14) can be recognized as
of gravity that include higher powers of curvaturé®. the variation of the 8-dimensional Euler density

Il. EINSTEIN-HILBERT ACTION 8= ”fMd[fal' -y, Ow™%2R%. . Ran-1%n].

A. Action principle

In this section a well defined first order action principle Thus, the boundary term in E(LO) reads
for EH Lagrangian in even dimensional ALAdS spacetimes
is proposed. As in 31 dimensions, the existence of a extre- B=a f <
mum for ALAdS spaces fixes the boundary term that must be "
added to the action as proportional to the Euler density. Ap-
plying of Noether's theorem to this action yields a regular-and the final expression for the action supplemented by the
ized, background-independent expression for the conservdzbundary term is
charges.

The action to be considered is =1t anf . (16)
M

I=lgy+B, (10)

This particular form of action is our starting point for the
wherel gy is the standard Einstein-Hilbert action with nega- construction of the conserved charges. The topology of the
tive cosmological constant id=2n dimensions manifold is assumed to h&1=RXX.

The diffeomorphism invariance is guaranteed by con-
struction because the actigh6) is written in terms of dif-
R218233. . . g ferential forms. Thus, Noether's theorem provides a con-
served currentA2) associated with this invariand¢see the
Appendix|, given by

K
e A

L d-2
1%d

a ... a
e . .e d), (11 *J=—0(w?,e? 5w — | L, (17)

where §w®’= - £ ;0?", and the Lagrangiah can be read

andB is a boundary terrfl. from Eq.(16). Then,® can be identified from Eq13) as

The on-shell variation of the action yields the boundary

term
O=— na’nfal- ) .aznﬁ gwalaz R2324. .. R%n-132n
5= J 0, 12
M e%3...g%n
_ n
D55 (18
where
The useful identityl ;w?°=DI 0?"+1,R? allows writing
J' 0= K 6 Swit2es. . . efd+ 5B the conserved curreril7) as an exact form. Thus, the con-
IM (d—2) )y 313 ' served charge can be written as
(13

Here we have defined thenimensional Euler density a%,
“Here, wedge produdi between differential forms is understood. = e€a, ..., R*% ... R%n-1%n.Note that the normalization adopted
The gravitational constant has been chosen as[2(d here differs from standard mathematical convention as, for instance,
—2)104_,]"* with Q4_, the volume ofs?~2, in Ref.[14].

044002-3



AROS, CONTRERAS, OLEA, TRONCOSO, AND ZANELLI PHYSICAL REVIEW B2 044002

solution with mass and angular momentum along a single
R?#324. . . R32n-132n axis, is given by the following choice of vielbe[d5]:

= a az
Q(é) nanf[meal“.az”lgw

e=A,[dt—asir?(6)de¢], eleidr,
(19 r

efs. . .gfn

__a\n
+( 1) |2n—2

1
3_ qj _(r2 2 2_
This expression can also be written as e’=sin(#)A[adt—(r*+a®)d¢], e —Aeda,

Q(g) — J;EI fwab/];ib 7 (20) e'=r cog 0) el, (24)
wherei=5, ... d, € is the vielbein fors*~* and
where 7, is the variation of the Lagrangian with respect
Lorentz curvature Az_(r2+a2)(1+ r2/12)—2mr>~d
r Ezpz !
T, ot 21
A sRab’ @) , 1—a?cos20)/1?
Aj= =2 2 !
The general form adopted by the cha(g@é), can in fact =P
be. used for any §uitable gravitational theory—pos§essing a p2=r2+a2cos2 f),
unique cosmological constant—whose Lagrangian is a poly-
nomial in the curvatur®?® and the vielbeire?, and has the ==1-a%2 (25)
right boundary terms to ensure the action to have an extre-
mum for ALAdS configurations. This geometry has two nonvanishing Noether charges,

It is noteworthy that this formula has been derived with-one associated with the timelike Killing vectey and the
out making any assumptions about a background geometryotational Killing vectord,, respectively. For each dimen-
The ALAdS condition restricts only the local asymptotic re- sion, the conserved charges depend on the paranmaters
lation between the curvature and the vielbein, with no men+or instance, in six dimensions the mass and angular mo-

tion of the global topology of the manifold. mentum are given by
If ¢is a Killing vector globally defined on the boundary
9%, the surface integrdfl9) is the mass wheg=4,. Simi- i, m d ma
larly, for other asymptotic Killing vectors, Eq19) gives Q(E) ~ o2 Q(%) =ﬁ- (26)

finite values for the linear and angular momentum for a
broad class of geomgtries. These statements are _expl_icitly (Un)wrapped brane solutionUnlike the Schwarzschild-
checked below for different ALAdS spacetimes with in- oqg solution, where the spherical symmetry implies a mani-

equivalent topologies. fest AdS asymptotic behavior—not only locally, but globally
at the boundary—another kind of ALAdS geometrydidli-
B. Examples mensions corresponds to a brane solution with flat transverse
Schwarzschild-AdS black hol@he simplest example to SPace

be considered corresponds to ttt&limensional black hole 2
solution for the EH action with cosmological constant, ds?=—A(r)2dt?+ (A - A )
known as the Schwarzschild-AdS geometry A(r)? ! d-2n

42 (27)

r
ds?=—A(r)%dt*+ Wﬂzdﬂﬁﬂ. (22 whereA(r)?=—2m/r% 3+r?/I2, In this geometry at least

one of thex' coordinates must be compact, otherwise the
24 d-3, .22 o parametem can be absorbed by a coordinate transformation
where A(r)"=1-2M/r® *+r%/I%. The only nonvanishing 114 Assuming that the volume of the transverse spac (

charge is associated with the timelike Killing vectof. g equal tov, the Noether charge associated with the Killing
Evaluating(19) on this metric yields vector g, is given by

J d \Y
Q(E) =M. (23 Q(E):mg—’ (28)

d-2

Kerr-AdS solution In d=2n dimensions, the rotating and the corresponding charges related with spatial #SO(
black hole solution is labeled by the mass andl param- —2) symmetries are zero.
eters which are related to the Casimir invariants of $O( It should be noted that E¢28) depends on the topologi-
—1). The one parameter Kerr-AdS spacetime, representingeal nature of the transverse spatial section. In this case the
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transverse space is compa¢tis finite and so is the resulting Ref.[19]. In 3+1 dimensions this is the Schwarzschild-AdS
Noether charge. When the transverse space is nhoncompagegometry, but differs from it in higher dimensions. The line

the parametem can be interpreted as a mass density. element is given by

This method provides the correct results even for the elec-
trically charged extensions of the previous solutions. It is dr? )
straightforward to prove that the formula works properly for ds*=—A(r)%dt*+ INGE +r2dQg_,, (32

the higher-dimensional Reissner-Nordstrdlack hole, for
the (3+1)-dimensional Kerr-Newman solution, and for the _ . 2_1_ Un-1) 42412
electrically charged generalization of then)wrapped brane with A(r)”=1—(2M/r) o

(27) studied in Ref[17]. The mass is obtained by direct computation of E2{)

for the Killing vectoré=4,,

I1l. BORN-INFELD ACTION J
Q( —) =M. (33

In higher dimensions, besides the Einstein-Hilbert action Jt
one can consider other gravitational theories that includel_h . . . . .
higher powers of the curvature and still yield second order e conserved charges associated with rotational isometries
field equations for the metric. Among them, there are a fewyanish. : .
that lead to well behaved ALAdS solutior48]. In even (Un)wrappeq bfaf‘e SOIUt'OrA feature in common for the
dimensions @=2n), the Born-Infeld(BI) action belongs to Bl and EH actions is possessing a set of solutions that are

this class of theories. The Bl action takes the explicit form only ALAdS’ bUt. n_ot.globally AdS at th? boundary. Among
many solutions, it is interesting to consider the analog of the
2 o o (un)wrapped brané27), for which the line element reads
| = E M(:‘al. . ,adRa1a2 .. .R%-18q (29 )

+r2(dE+ - +dXG,),

(39

dr
B ds?=—A(r)2dP+ ——
whereR2P=Ra"+| ~2g3eP, This theory is stationary for AL- A(r)

AdS solutions and no boundary terms are required in order to

have a well defined action principfe. with A(r)2=—(2m/r)¥=D+r2/|2_ This corresponds to a

d_ﬁFol:?¥v|n%:h_e Hamlltonf|an mlethod, It w?uld bet extrle;nely articular case of the class of geometries studied by Cai and
micult fo obtain a mass formuia as a surface ntegral 1or arg,, i, Ref [20]. The transverse space in this gravitational

arbitrary localized matter distribution in this kind of theories. configuration is(locally) flat, with a volumeV. This geom-
Such construcﬂon would require inverting th_e symplecncetry has just one nonvanishing Noether charge, that is the
matrix of this apt|on. However, the rank of this matrix de- density of mass associated with the Killing vectpr
pends on the fields and therefore no general form can be

found for an arbitrary field configuration. On the other hand,

in the Lagrangian formalism, the Noether current for diffeo- Q(
morphisms is an exact form, which allows writing down the

conserved charge at once as the surface integral

a\ Y 35
it~ Mgz %9
This last result is in complete agreement with the one
ab computed by the Hamiltonian method, using a minisuper-
Q(§)= &2|§“’ Tab; (30) space model applied to configurations with transverse space
not necessarily compact. However, this result differs by a
global factor compared to the same case as treated in Ref.

where . e S
[20]. The origin of this mismatch lies in the fact that trans-
«l? B o verse space is no longer spherically symmetric; therefore, the
ﬂbZTGabaamadR%a“' .. R%-124, (31)  volumeV cannot cancel the normalization factor, fixed be-

forehand to give the correct value of mass for spherically

. . - (s]ymmetric black holes.
This is an appropriate definition of mass and other conserve

charges, as is shown in the following examples.
Static spherically symmetric solutionThe spherically
symmetric black hole solution of Bl action was studied in

IV. CONSERVED CHARGE FOR LORENTZ
TRANSFORMATIONS

Apart from charges associated with diffeomorphisms and
due to the invariance of the EH and BI actions under local
This expression can also be written a&=2""%(n Lorentz transformations, the Noether method can also be ap-
—1)1«12/detR¥®+1 263", and for this reason it has been Plied to obtain conserved quantities for these symmetries
dubbed the Born-Infeld actiofi3]. In four dimensions, this action (See the Appendjx Substitutingdw® = —DA2 in the gen-
reduces to the usual Einstein-Hilbert with cosmological constaneral expression for the Noether curréAR)

plus the Euler density, with all coefficient fixed as in previous sec-
tion. *J=6wiPT,y, (36)

044002-5



AROS, CONTRERAS, OLEA, TRONCOSO, AND ZANELLI PHYSICAL REVIEW B2 044002

where 7,, is covariantly constant, yields the conservedthe correct answers even for radically different asymptotic

charge in terms of the parameter of the Lorentz transformabehaviors.

tion A2 as The general nature of the treatment, allows extending to
2n dimensions, and also to the Bl action, the following result

Q()‘ab):f \abT 37) valid for the EH action in 3-1 dimensions with a negative
oS ab- cosmological constant: Noether charges associated to Lor

entz and diffeomorphism invariance vanish identically in lo-

Here cally AdS spacetimes. As can be directly checked from Egs.
(19 and(37), the charges are identically zero if

Tab= nanfaba3~ a, R2384. . . R%2n-122n
n

RaP=Raby | ~2g3gb—

e, .. edn
(-1, (38)

[ in the bulk. This means that spaces which are locally AdS
have vanishing charges. In particular, any locally AdS geom-

for the Einstein-Hilbert case and etry with a timelike Killing vector should have zero mdss.
5 This brings in an interesting issue: there could be several

T = i Sa.as Das ia topologically different spaces with locally AdS geometry for

ab™ €ab _,,aR34"'Rd 1d, (39) . . ; .

2 &% which all their quantum numbers associated to spatial trans-

formations vanish. Each of these spaces could be reasonably
for the Born-Infeld action. used as vacuum for a quantum field theory and one should
Lorentz covarianceThe formula(37) is a scalar from the also expect to find interpolating instanton or soliton configu-
point of view of Lorentz covariance. On the other hand, therations. Also, any massive solution such as the examples
chargeg30) and(19) associated with diffeomorphism invari- discussed above could be seen as an excitation of the corre-
ance transform under local Lorentz rotations as sponding background in the same topological sector.
ProspectsOnly two case$EH and B) have been consid-
ered here among all the possible Lanczos-Lovelock theories
Q&) =— J’azf’f)‘ab%b' (40 of gravity [21-23. The suitable theories describing gravita-
tion in higher dimensions must possess a unique cosmologi-

This change inQ(&) vanishes under the usual assumptioncal constant and therefore, a unique background in each to-
that the local transformation with paramedt® approaches Pological sector, so that vacuum configurations approach to

is, £ A%|,;5=0. boundary{18]. Indeed, there exists a subset of these theories

which possesses well behaved black hole solutj@és The
extension of this formalism to those theories, in even dimen-
sions, will be discussed elsewhere.

The method presented here is the direct app]ication of As mentioned above, the odd-dimensional manifolds can-
Noether's theorem to a first order gravitational actionnot be treated with the same method presented here. The

I[e,w], provided the spacetime satisfies ALAJS boundarycases of interest in (2+1) dimensions, analogous to those
conditions. The analysis leads directly to general analyti¢liscussed in this paper, would be EH and Chern-Simons.
expressions for the conserved charges, both for the Einsteifegularization of the charges in these cases remains an open
Hilbert and Born-Infeld actions. The treatment is entirely Problem in the presented framework.
Lagrangian and yields values for the charges that match ex- Another interesting problem to address is the classifica-
actly those obtained by Hamiltonian metho@sg., ADM). tion of all 2n-dimensional constant curvature spaces, as they
In the Hamiltonian approach, however, when the space is ndt@@n be thought of as candidates for vacuum configurations
asymptotically flat it is often necessary to renormalize thefor an AdS field theory. Certainly, one possible class of such
asymptotic Killing vectors to define the conserved chargespaces could be AdS with identifications along global Killing
(see, for example, Ref24]). vectors(that do not introduce causal or conical singularjties
The resulting charges are finite for localized distributionsbut it is not obvious that this exhausts all possibilities in high
of matter(black holeg and yield finite density formulas for €enough dimensions.
extended objectée.g., strings There is no need to subtract
the “vacuum” energy in order to regularize the charges. It
could be argued that the Euler density added as a boundary; should be stressed that this assertion is only valid in even
term does this job for us, but what is indisputable is the facimensions, for it is well known that at least in three dimensions
that one does not need to specify a reference backgroungiferent locally AdS spaces can have different energies- (- 1
against which one should compute the value of the chargeser AdS, m=0 for black holes[25]). This probably means that
What could be even more surprising is the fact that the forthe analysis presented here cannot be repeagebatim in odd
mulas(19), for EH action, and Eq(30) for Bl the case, give dimensions.

V. SUMMARY AND PROSPECTS
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