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Conserved charges for even dimensional asymptotically AdS gravity theories
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Mass and other conserved Noether charges are discussed for solutions of gravity theories with locally
anti–de Sitter~AdS! asymptotics in 2n dimensions. The action is supplemented with a boundary term whose
purpose is to guarantee that it reaches an extremum on the classical solutions, provided the space-time is
locally AdS space-time at the boundary. It is also shown that if space-time is locally AdS at spatial infinity, the
conserved charges are finite and properly normalized without requiring subtraction of a reference background.
In this approach, Noether charges associated with Lorentz and diffeomorphism invariance vanish identically
for constant curvature space-times. The case of a zero cosmological constant is obtained as a limit of AdS
space-time, whereL plays the role of a regulator.
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I. INTRODUCTION

Noether’s theorem is the standard tool in theoretical ph
ics to construct conserved charges associated with inv
ances of the action. Nevertheless, general relativity,
scribed by the Einstein-Hilbert action, does not lend its
naturally to the application of Noether’s theorem. The co
served charge associated with the invariance of the ac
under diffeomorphisms is given by Komar’s formula@1#

K~j!52kE
]S

¹mjndSmn , ~1!

wherek5(16pG)21, j5jm]m is a vector field that define
the diffeomorphism,¹m represents the covariant derivativ
in terms of Christoffel symbol,]S is the boundary of the
spatial section, anddSmn5 1

2 emnabdxa`dxb is the surface
element~dual of the area two-form!. Then, whenj is a time-
like or rotational Killing vector,K(j) provides a definition
of mass or angular momentum, respectively. However, th
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is a first drawback in this result, that is, in the case of
~311!-dimensional Kerr black hole, Eq.~1! gives the follow-
ing answer:

KS ]

]t D5
M

2
, KS ]

]f D5J. ~2!

These results show that there is no common normaliza
factor which could give the correct values for mass and
gular momentum. Moreover, there is a second drawb
with Komar’s formula: in the presence of negative cosm
logical constant, spacetime is no longer asymptotically
and the formula yields a divergent value. For example,
the Schwarzschild–anti-de Sitter~AdS! metric, one obtains

KS ]

]t D5
M

2
1 lim

r→`

r 3

2l 2
. ~3!

The standard approach to deal with this divergence is
subtract the value ofK(j) on the AdS background from Eq
~3! ~see, e.g., Ref.@2#!. In spite of giving a finite result, this
does not correct the normalization factor ofM and the first
problem mentioned above remains.

The usual procedure to evaluate the conserved charg
the Arnowitt-Deser-Misner~ADM ! formalism @3#, which
yields the correct formulas for the energy-momentum a
angular momentum for asymptotically flat spacetimes. N
ertheless, this approach and its further extension develo
©2000 The American Physical Society02-1



k-
e
tu
o

n

r
th
a

lly

ua
an
o

al
-
,
it

er
f

iz
ex

on
-

a
pr

s
is

ca
u
ll

o
rv
r
it

th
th

d
is

e,
of

vari-
iffer
first
it

ce

or-

e
the
as
rge

he
lu-

ses
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by Regge and Teitelboim@4# provides a formula for the
variation of the charges, e.g.,dM , and in order to evaluate
the charges, e.g.,M , it is necessary to fix the reference bac
ground geometry. The Hamiltonian method can also be
tended to provide the correct mass and angular momen
for asymptotically AdS spacetimes representing solutions
the Einstein-Hilbert action with negative cosmological co
stant ind54 @5#, as well as fordÞ4 @6#.

In many instances this scheme is sufficiently satisfacto
but there are some cases of physical interest in which
asymptotic behavior can be difficult to assess, as in the c
of asymptoticallylocally anti–de Sitter~ALAdS! spaces. A
formalism to define ‘‘conserved’’ charges in asymptotica
AdS spaces was proposed by Ashtekar and Magnon@7#, who
used conformal techniques to construct the conserved q
tities. This construction makes no reference to an action,
yet reproduces the charges obtained by Hamiltonian meth
@5#.

Another scheme has been recently proposed by B
subramanian and Kraus@8# who use the Einstein-Hilbert ac
tion with Dirichlet boundary conditions for the metric
supplemented by counterterms in order to ensure the fin
ness of the stress tensor derived by the quasilocal en
definition @9#. By adding a finite series of local invariants o
the boundary geometry, the counterterm action regular
that definition of energy. This idea was subsequently
tended to higher dimensions in Ref.@10#. A different, non-
polynomial, expression has been given by Ref.@11#, which
reduces to the previous one in the infinite cosmological c
stant limit. In Ref.@12#, an alternative construction is pro
posed which yields the conserved charges in~311!-
dimensional general relativity with negative cosmologic
constant and does not need to specify the background
vided it is ALAdS.

Noether charges in 3¿1 ALAdS gravity

The approach presented in Ref.@12# leads to a properly
defined, convergent expression for the Noether charge
311 dimensions, provided the ALAdS boundary condition
imposed on the manifold. It is important to note that the lo
AdS behavior at the boundary is not equivalent to the us
Dirichlet condition over the metric, in order to have a we
defined variational principle.

The situation in 311 dimensions is reviewed in order t
set the basic facts in the construction. The starting obse
tion is that the ALAdS condition requires adding a bounda
term to the Einstein-Hilbert action equal to the Euler dens
~Gauss-Bonnet term! with a fixed weight factor, in order to
cancel the boundary term coming from the variation of
Lagrangian. As a consequence, the action, including
boundary term, is

I 5
k l 2

4 E
M

eabcdR̄
abR̄cd , ~4!

where R̄ab
ªRab1 l 22eaeb. The Noether charge compute

with the action~4! has the right normalization factor and
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finite for ~311!-dimensional ALAdS spaces. This charg
associated with the invariance under a diffeomorphism
Eq. ~4!, is

Q~j!5
k l 2

2 E
]S

eabcdI jv
abR̄cd, ~5!

wherejm5x8m 2xm is the arbitrary vector field1 that gener-
ates the diffeomorphism.

Although Komar’s formula and Eq.~5! are obtained as the
conserved Noether charge associated with the same in
ance, they disagree because the starting Lagrangians d
by a closed form and are deduced using second and
order formalism, respectively. In order to clarify this point,
is useful to split the charge~5! in such a way that the relation
with the usual tensor formalism becomes explicit.Q(j) can
be written as

Q~j!5K~j!1X~j!1
k l 2

2 E
]S

eabcdI jv
abRcd, ~6!

whereK(j) is given by Eq.~1!, X(j) is a contribution due to
the local Lorentz invariance2

X~j!52
k

2E]S
eabcdF

abeced, ~7!

with Fab5eamLjem
b and the last term arises from the surfa

term in the action~which was set ask l 2/4 times Euler den-
sity!. When j is a Killing vector,Fab can be shown to be
antisymmetric and be identified as a local Lorentz transf
mation. In the second order formalism~7! is absent since
there is no local Lorentz invariance.3

The last term in Eq.~6! plays a double role: it cancels th
divergences which appear in the explicit evaluation of
solutions and contributes to the right normalization factor
well. In this sense, this term regularizes the Noether cha
for ALAdS spaces. This can be checked explicitly in t
following example: Consider the Schwarzschild-AdS so
tion andj5] t . In the standard frame choiceFab is zero and
henceX(j) vanishes. Evaluating Eq.~6! yields

K~j!5
M

2
1 lim

r→`

r 3

2l 2
, ~8!

k l 2

2 E
]S

eabcdI jv
abRcd5

M

2
2 lim

r→`

r 3

2l 2
, ~9!

and hence,Q(j)5M .

1The action of the contraction operatorI j over a p-form ap

5(1/p!)am1•••mpdxm1
•••dxmp

is given by I japª1/(p

21)!jnanm1
•••mp21dxm1

•••dxmp21
. In terms of this operator, the

Lie derivative readsLj5dIj1I jd.
2Here, the identityL je

a5Dja2I jvb
aeb , which holds in Rie-

mannian~torsion-free! manifolds has been used to obtain Eq.~6!.
3Although it is always possible to choose a frame (ea) such that

Fab50 in an open neighborhood, there could be interesting ca
where a global obstruction makesX(j) nontrivial.
2-2
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CONSERVED CHARGES FOR EVEN DIMENSIONAL . . . PHYSICAL REVIEW D 62 044002
It is apparent from relations~8!, ~9!, that the result~6!
remains unchanged if the limitl→` is taken at the end. This
permits applying the formula equally well for all values
the cosmological constant, includingL50. In this sense,L
can be regarded as a regulator for general relativity in
absence of cosmological constant.

In what follows, the extension of this approach
2n-dimensional gravity theories is presented. Since in hig
dimensions, the Einstein-Hilbert~EH! action is not the only
option ~see Sec. III below!, we will also consider a particula
extension of the so-called Lanczos-Lovelock actions, wh
has been dubbed the Born-Infeld~BI! action@13#. This is an
example that the formalism can be applied to other theo
of gravity that include higher powers of curvatureRab.

II. EINSTEIN-HILBERT ACTION

A. Action principle

In this section a well defined first order action princip
for EH Lagrangian in even dimensional ALAdS spacetim
is proposed. As in 311 dimensions, the existence of a extr
mum for ALAdS spaces fixes the boundary term that mus
added to the action as proportional to the Euler density.
plying of Noether’s theorem to this action yields a regul
ized, background-independent expression for the conse
charges.

The action to be considered is

I 5I EH1B, ~10!

whereI EH is the standard Einstein-Hilbert action with neg
tive cosmological constant ind52n dimensions

I EH5
k

2~n21!
E

M
ea1•••adS Ra1a2ea3

•••ead

1
d22

l 2d
ea1

•••eadD , ~11!

andB is a boundary term.4

The on-shell variation of the action yields the bounda
term

dI 5E
]M

Q, ~12!

where

E
]M

Q5
k

~d22!
E

]M
ea1•••ad

dva1a2ea3
•••ead1dB.

~13!

4Here, wedge product∧ between differential forms is understoo
The gravitational constant has been chosen ask5@2(d
22)!Vd22#21 with Vd22 the volume ofSd22.
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Therefore, the action becomes stationary demandingQ50.
Assuming the spacetime to be ALAdS (R̄ab5Rab

1 l 22eaeb50), the vanishing of Eq.~13! term is satisfied if

dB5nanE
]M

ea1 . . . a2n
dva1a2Ra3a4

•••Ra2n21a2n, ~14!

wherean is defined as

an5k
~21!nl 2n22

2n~n21!
. ~15!

The right-hand side~RHS! of ~14! can be recognized a
the variation of the 2n-dimensional Euler density5

dE2n5nE
M

d@ea1•••a2n
dva1a2Ra3a4

•••Ra2n21a2n#.

Thus, the boundary term in Eq.~10! reads

B5anEM
E2n ,

and the final expression for the action supplemented by
boundary term is

I 5I EH1anEM
E2n . ~16!

This particular form of action is our starting point for th
construction of the conserved charges. The topology of
manifold is assumed to beM5R3S.

The diffeomorphism invariance is guaranteed by co
struction because the action~16! is written in terms of dif-
ferential forms. Thus, Noether’s theorem provides a c
served current~A2! associated with this invariance@see the
Appendix#, given by

* J52Q~vab,ea,dvab!2I jL, ~17!

wheredvab52L jv
ab, and the LagrangianL can be read

from Eq. ~16!. Then,Q can be identified from Eq.~13! as

Q52nanea1•••a2n
L jv

a1a2FRa3a4
•••Ra2n21a2n

1~21!n
ea3

•••ea2n

l 2n22 G . ~18!

The useful identityL jv
ab5DI jv

ab1I jR
ab allows writing

the conserved current~17! as an exact form. Thus, the con
served charge can be written as

5Here we have defined the 2n-dimensional Euler density asE2n

5ea1•••a2n
Ra1a2 . . . Ra2n21a2n. Note that the normalization adopte

here differs from standard mathematical convention as, for insta
in Ref. @14#.
2-3
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Q~j!5nanE
]S

ea1•••a2n
I jv

a1a2FRa3a4
•••Ra2n21a2n

1~21!n
ea3

•••ea2n

l 2n22 G . ~19!

This expression can also be written as

Q~j!5E
]S

I jv
abTab , ~20!

where Tab is the variation of the Lagrangian with respe
Lorentz curvature

Tab5
dL

dRab
. ~21!

The general form adopted by the charge~20!, can in fact
be used for any suitable gravitational theory—possessin
unique cosmological constant—whose Lagrangian is a p
nomial in the curvatureRab and the vielbeinea, and has the
right boundary terms to ensure the action to have an ex
mum for ALAdS configurations.

It is noteworthy that this formula has been derived wi
out making any assumptions about a background geom
The ALAdS condition restricts only the local asymptotic r
lation between the curvature and the vielbein, with no m
tion of the global topology of the manifold.

If j is a Killing vector globally defined on the bounda
]S, the surface integral~19! is the mass whenj5] t . Simi-
larly, for other asymptotic Killing vectors, Eq.~19! gives
finite values for the linear and angular momentum for
broad class of geometries. These statements are expl
checked below for different ALAdS spacetimes with i
equivalent topologies.

B. Examples

Schwarzschild-AdS black hole. The simplest example to
be considered corresponds to thed-dimensional black hole
solution for the EH action with cosmological constan
known as the Schwarzschild-AdS geometry

ds252D~r !2dt21
dr2

D~r !2
1r 2dVd22

2 , ~22!

whereD(r )25122M /r d231r 2/ l 2. The only nonvanishing
charge is associated with the timelike Killing vector] t .
Evaluating~19! on this metric yields

QS ]

]t D5M . ~23!

Kerr-AdS solution. In d52n dimensions, the rotating
black hole solution is labeled by the mass andn21 param-
eters which are related to the Casimir invariants of SOd
21). The one parameter Kerr-AdS spacetime, representi
04400
a
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solution with mass and angular momentum along a sin
axis, is given by the following choice of vielbein@15#:

e05D r@dt2a sin2~u!df#, e15
1

D r
dr,

e35sin~u!Du@adt2~r 21a2!df#, e25
1

Du
du,

ei5r cos~u!ẽi , ~24!

wherei 55, . . . ,d, ẽi is the vielbein forSd24 and

D r
25

~r 21a2!~11r 2/ l 2!22mr52d

J2r2
,

Du
25

12a2 cos2~u!/ l 2

J2r2
,

r25r 21a2 cos2~u!,

J512a2/ l 2. ~25!

This geometry has two nonvanishing Noether charg
one associated with the timelike Killing vector] t and the
rotational Killing vector]f , respectively. For each dimen
sion, the conserved charges depend on the parametersm, a.
For instance, in six dimensions the mass and angular
mentum are given by

QS ]

]t D5
m

J2
, QS ]

]f D5
ma

2J2
. ~26!

(Un)wrapped brane solution. Unlike the Schwarzschild-
AdS solution, where the spherical symmetry implies a ma
fest AdS asymptotic behavior—not only locally, but global
at the boundary—another kind of ALAdS geometry ind di-
mensions corresponds to a brane solution with flat transv
space,

ds252D~r !2dt21
dr2

D~r !2
1r 2~dx1

21•••1dxd22
2 !,

~27!

whereD(r )2522m/r d231r 2/ l 2. In this geometry at leas
one of thexi coordinates must be compact, otherwise t
parameterm can be absorbed by a coordinate transformat
@16#. Assuming that the volume of the transverse space (xi)
is equal toV, the Noether charge associated with the Killin
vector] t is given by

QS ]

]t D5m
V

Vd22
, ~28!

and the corresponding charges related with spatial ISOd
22) symmetries are zero.

It should be noted that Eq.~28! depends on the topologi
cal nature of the transverse spatial section. In this case
2-4
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CONSERVED CHARGES FOR EVEN DIMENSIONAL . . . PHYSICAL REVIEW D 62 044002
transverse space is compact,V is finite and so is the resulting
Noether charge. When the transverse space is noncom
the parameterm can be interpreted as a mass density.

This method provides the correct results even for the e
trically charged extensions of the previous solutions. It
straightforward to prove that the formula works properly f
the higher-dimensional Reissner-Nordstro¨m black hole, for
the (311)-dimensional Kerr-Newman solution, and for th
electrically charged generalization of the~un!wrapped brane
~27! studied in Ref.@17#.

III. BORN-INFELD ACTION

In higher dimensions, besides the Einstein-Hilbert act
one can consider other gravitational theories that incl
higher powers of the curvature and still yield second or
field equations for the metric. Among them, there are a f
that lead to well behaved ALAdS solutions@18#. In even
dimensions (d52n), the Born-Infeld~BI! action belongs to
this class of theories. The BI action takes the explicit for

I 5
k l 2

2n EM
ea1•••ad

R̄a1a2 . . . R̄ad21ad, ~29!

whereR̄ab5Rab1 l 22eaeb. This theory is stationary for AL-
AdS solutions and no boundary terms are required in orde
have a well defined action principle.6

Following the Hamiltonian method, it would be extreme
difficult to obtain a mass formula as a surface integral for
arbitrary localized matter distribution in this kind of theorie
Such construction would require inverting the symplec
matrix of this action. However, the rank of this matrix d
pends on the fields and therefore no general form can
found for an arbitrary field configuration. On the other han
in the Lagrangian formalism, the Noether current for diffe
morphisms is an exact form, which allows writing down t
conserved charge at once as the surface integral

Q~j!5E
]S

I jv
abTab , ~30!

where

Tab5
k l 2

2
eaba3•••ad

R̄a3a4
•••R̄ad21ad. ~31!

This is an appropriate definition of mass and other conser
charges, as is shown in the following examples.

Static spherically symmetric solution. The spherically
symmetric black hole solution of BI action was studied

6This expression can also be written asL52n21(n
21)!k l 2Adet(Rab1 l 22eaeb), and for this reason it has bee
dubbed the Born-Infeld action@13#. In four dimensions, this action
reduces to the usual Einstein-Hilbert with cosmological cons
plus the Euler density, with all coefficient fixed as in previous s
tion.
04400
ct,

c-
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e
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e
,
-

d

Ref. @19#. In 311 dimensions this is the Schwarzschild-Ad
geometry, but differs from it in higher dimensions. The lin
element is given by

ds252D~r !2dt21
dr2

D~r !2
1r 2dVd22

2 , ~32!

with D(r )2512(2M /r )1/(n21)1r 2/ l 2.
The mass is obtained by direct computation of Eq.~30!

for the Killing vectorj5] t ,

QS ]

]t D5M . ~33!

The conserved charges associated with rotational isome
vanish.

(Un)wrapped brane solution. A feature in common for the
BI and EH actions is possessing a set of solutions that
only ALAdS, but not globally AdS at the boundary. Amon
many solutions, it is interesting to consider the analog of
~un!wrapped brane~27!, for which the line element reads

ds252D~r !2dt21
dr2

D~r !2
1r 2~dx1

21•••1dxd22
2 !,

~34!

with D(r )252(2m/r )1/(n21)1r 2/ l 2. This corresponds to a
particular case of the class of geometries studied by Cai
Soh in Ref.@20#. The transverse space in this gravitation
configuration is~locally! flat, with a volumeV. This geom-
etry has just one nonvanishing Noether charge, that is
density of mass associated with the Killing vector] t

QS ]

]t D5m
V

Vd22
. ~35!

This last result is in complete agreement with the o
computed by the Hamiltonian method, using a minisup
space model applied to configurations with transverse sp
not necessarily compact. However, this result differs by
global factor compared to the same case as treated in
@20#. The origin of this mismatch lies in the fact that tran
verse space is no longer spherically symmetric; therefore,
volume V cannot cancel the normalization factor, fixed b
forehand to give the correct value of mass for spherica
symmetric black holes.

IV. CONSERVED CHARGE FOR LORENTZ
TRANSFORMATIONS

Apart from charges associated with diffeomorphisms a
due to the invariance of the EH and BI actions under lo
Lorentz transformations, the Noether method can also be
plied to obtain conserved quantities for these symmet
~see the Appendix!. Substitutingdvab52Dlab in the gen-
eral expression for the Noether current~A2!

* J5dvabTab , ~36!

t
-

2-5
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where Tab is covariantly constant, yields the conserv
charge in terms of the parameter of the Lorentz transfor
tion lab as

Q~lab!5E
]S

labTab . ~37!

Here

Tab5naneaba3•••a2nFRa3a4
•••Ra2n21a2n

1~21!n
ea3 . . . ea2n

l 2n22 G , ~38!

for the Einstein-Hilbert case and

Tab5
k l 2

2
eaba3•••ad

R̄a3a4
•••R̄ad21ad, ~39!

for the Born-Infeld action.
Lorentz covariance. The formula~37! is a scalar from the

point of view of Lorentz covariance. On the other hand,
charges~30! and~19! associated with diffeomorphism invar
ance transform under local Lorentz rotations as

dlQ~j!52E
]S

L jl
abTab . ~40!

This change inQ(j) vanishes under the usual assumpti
that the local transformation with parameterlab approaches
a rigid Lorentz transformation on]S, constant alongj, that
is, L jl

abu]S50.

V. SUMMARY AND PROSPECTS

The method presented here is the direct application
Noether’s theorem to a first order gravitational acti
I @e,v#, provided the spacetime satisfies ALAdS bounda
conditions. The analysis leads directly to general anal
expressions for the conserved charges, both for the Eins
Hilbert and Born-Infeld actions. The treatment is entire
Lagrangian and yields values for the charges that match
actly those obtained by Hamiltonian methods~e.g., ADM!.
In the Hamiltonian approach, however, when the space is
asymptotically flat it is often necessary to renormalize
asymptotic Killing vectors to define the conserved char
~see, for example, Ref.@24#!.

The resulting charges are finite for localized distributio
of matter~black holes! and yield finite density formulas fo
extended objects~e.g., strings!. There is no need to subtrac
the ‘‘vacuum’’ energy in order to regularize the charges
could be argued that the Euler density added as a boun
term does this job for us, but what is indisputable is the f
that one does not need to specify a reference backgro
against which one should compute the value of the char
What could be even more surprising is the fact that the
mulas~19!, for EH action, and Eq.~30! for BI the case, give
04400
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the correct answers even for radically different asympto
behaviors.

The general nature of the treatment, allows extending
2n dimensions, and also to the BI action, the following res
valid for the EH action in 311 dimensions with a negative
cosmological constant: Noether charges associated to
entz and diffeomorphism invariance vanish identically in
cally AdS spacetimes. As can be directly checked from E
~19! and ~37!, the charges are identically zero if

R̄ab5Rab1 l 22eaeb50

in the bulk. This means that spaces which are locally A
have vanishing charges. In particular, any locally AdS geo
etry with a timelike Killing vector should have zero mass7

This brings in an interesting issue: there could be sev
topologically different spaces with locally AdS geometry f
which all their quantum numbers associated to spatial tra
formations vanish. Each of these spaces could be reason
used as vacuum for a quantum field theory and one sho
also expect to find interpolating instanton or soliton config
rations. Also, any massive solution such as the exam
discussed above could be seen as an excitation of the c
sponding background in the same topological sector.

Prospects. Only two cases~EH and BI! have been consid
ered here among all the possible Lanczos-Lovelock theo
of gravity @21–23#. The suitable theories describing gravit
tion in higher dimensions must possess a unique cosmol
cal constant and therefore, a unique background in each
pological sector, so that vacuum configurations approac
local AdS spacetimes with a fixed curvature radius at
boundary@18#. Indeed, there exists a subset of these theo
which possesses well behaved black hole solutions@26#. The
extension of this formalism to those theories, in even dim
sions, will be discussed elsewhere.

As mentioned above, the odd-dimensional manifolds c
not be treated with the same method presented here.
cases of interest in (2n11) dimensions, analogous to thos
discussed in this paper, would be EH and Chern-Simo
Regularization of the charges in these cases remains an
problem in the presented framework.

Another interesting problem to address is the classifi
tion of all 2n-dimensional constant curvature spaces, as t
can be thought of as candidates for vacuum configurati
for an AdS field theory. Certainly, one possible class of su
spaces could be AdS with identifications along global Killin
vectors~that do not introduce causal or conical singularitie!,
but it is not obvious that this exhausts all possibilities in hi
enough dimensions.

7It should be stressed that this assertion is only valid in e
dimensions, for it is well known that at least in three dimensio
different locally AdS spaces can have different energies (m521
for AdS, m>0 for black holes@25#!. This probably means tha
the analysis presented here cannot be repeatedverbatim in odd
dimensions.
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APPENDIX: NOETHER THEOREM

In order to fix the notation and conventions, here
briefly review Noether’s theorem. Consider ad-form La-
-
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ell

04400
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r

rt
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d
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-

-

grangianL(w,dw), where w denotes collectively a set o
p-form fields. An arbitrary variation of the action under
local changedw is given by the integral of

dL5~EOM!dw1dQ~w,dw!, ~A1!

where EOM stands for equations of motion andQ is a cor-
responding boundary term@27#. The total change inw @d̄w
5w8(x8)2w(x)# can be decomposed as a sum of a lo
variation and the change induced by a diffeomorphism, t
is, d̄w5dw1Ljw, whereLj is the Lie derivative operator
In particular, a symmetry transformation acts on the coor
nates of the manifold asdxm5jm(x), and on the fields as
dw, leading a change in the Lagrangian given bydL5dV.

Noether’s theorem states that there exists a conserved
rent given by

* J5V2Q~w,dw!2I jL, ~A2!

which satisfiesd* J50. This, in turn, implies the existenc
of the conserved charge

Q5E
S

* J,

whereS is the spatial section of the manifold, when a ma
fold is assumed to be of topologyR3S.
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