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New approach to the evolution of cosmological perturbations on large scales
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We discuss the evolution of linear perturbations about a Friedmann-Robertson-Walker background metric,
using only the local conservation of energy momentum. We show that on sufficiently large scales the curvature
perturbation on spatial hypersurfaces of uniform density is conserved when the non-adiabatic pressure pertur-
bation is negligible. This is the first time that this result has been demonstrated independently of the gravita-
tional field equations. A physical picture of long-wavelength perturbations as being composed of separate
Robertson-Walker universes gives a simple understanding of the possible evolution of the curvature perturba-
tion, in particular clarifying the conditions under which super-horizon curvature perturbations may vary.

PACS numbegs): 98.80.Cq

[. INTRODUCTION on uniform-density hypersurfaces[5—7], can be identified
with the comoving curvature perturbatioR, [1,8].

Structure in the Universe is generally supposed to origi- The pressure perturbation must be adiabatic if there is a
nate from the quantum fluctuation of the inflaton field. Asdefinite equation of state for the pressure as a function of
each scale leaves the horizon during inflation, the fluctuatioglensity, which is the case during both radiation domination
freezes in, to become a perturbation of the classical field. Thand matter domination. On the other hand, a changean
resulting cosmological inhomogeneity is commonly characsuper-horizon scales will occur during the transition from
terized by the intrinsic curvature of spatial hypersurfaces dematter to radiation domination if there is an isocurvature
fined with respect to the matter. This metric perturbation is anatter density perturbatiof®9,8]. We give a simple deriva-
crucial quantity, because at approach of horizon re-entry aﬁ.ion of this effect in terms of the curvature perturbations on
ter inflation it determines the adiabatic perturbations of theuniform-radiation and uniform-matter hypersurfaces which
various components of the cosmic fluid, which seem to givéemain constant throughout.

a good account of |arge_sca|e Stl’UCt{llé. A simple intuitive understanding of how the curvature

To compare the inflationary prediction for the curvatureperturbation on large scales changes, due to the different
perturbation with observation, we need to know its evolutionintegrated expansion in locally homogeneous but causally-
outside the horizon, through the end of inflation, until re-disconnected regions of the universe, can be obtained within
entry on each cosmologically relevant scale. The standarthe “separate universes” picture which we describe in Sec.
assumption is that the curvature perturbation is practicall}V. This enables one to model the evolution of the large-
constant. This has recently been called into question in thécale curvature perturbation using the equations of motion
context of preheating mode]g] at the end of inflation where for an unperturbed Robertson-Walker universe. In Sec. V we
non-inflaton perturbations can be resonanﬂy amp||[[ﬂd_] use this approach to discuss the evolution of the curvature
The purpose of the present paper is to investigate the Circunperturbation in Single- and multi-field inflation models.
stances under which the curvature perturbation may vary.

Using only the local conservation of energy—momentum, Il. LINEAR SCALAR PERTURBATIONS
we show that the rate of change of the curvature perturbation
on uniform-density hypersurfacés;, on large scales is due
to the non-adiabatic part of the pressure perturbation. Thi

In this section we summarize the essential results from
gosmological perturbation theory, applied to the scalar met-

result is independent of the form of the gravitational field ric perturbations and the associated perturbations in the pres-

equations, demonstrating for the first time that the curvatur&4r® and Iengrgly detnsgy.t_ln ct(r)]ntrast W'th;hﬁ ustu_al aiproach
perturbation remains constant on large scales for purely adi 0 cosmological perturbation theory, we shall not Invoke any

batic perturbations ianyrelativistic theory of gravity where gravitational field equations. We define energy-momentum

the energy-momentum tensor is covariantly conserved! the usual way,
T#,.,=0. We also show that for adiabatic perturbations pro-

duced during single field inflation the curvature perturbation To= _zaﬁmat+ oLonats )
agr”
*Present address. where L, iS any contribution to the Lagrange density from

The “conserved quantity’ was originally defined in Bardeen, Mmatter fields with no external interactions. General coordi-
Steinhardt and Turndi5], but constructed from perturbations de- nate invariance implies the energy-momentum conservation
fined in the uniform Hubble-constant gauge. law T#,.,=0, without invoking the Einstein field equations.
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There are many different ways of characterizing cosmo-Alternatively one can work in terms of the density perturba-
logical perturbations, reflecting the arbitrariness in the choicgion on uniform-curvature hypersurfaces
of coordinateggauge, which in turn determines the slicing )
of spacetime into spatial hypersurfaces, and its threading into opy=pé, 9
timelike worldlines. The line element allowing arbitrary lin- o )
ear scalar perturbations of a Friedmann-Robertson-Walkefhere the subscript indicates the uniform-curvature hyper-

(FRW) background can be writteii0—13 surface. _ _ _
The curvature perturbation on uniform-density hypersur-
ds?= —(1+2A)dt?+2a%(t)V,B dXdt faces, {, is often chosen as a convenient gauge-invariant

o definition of the scalar metric perturbation on large scales.
+a%(t)[(1-2¢)y;+2V;V,E]dXdX.  (2)  These hypersurfaces become ill-defined if the density is not
strictly decreasing, as can occur in a scalar field dominated
The unperturbed spatial metric for a space of constant cutaniverse when the kinetic energy of the scalar field vanishes.
vature k is given by y;; and covariant derivatives with re- |n this case one can instead work in terms of the density
spect to this metric are denoted ﬁy.z The intrinsic curva-  perturbation on uniform-curvature hypersurfacesp,, ,
ture of a spatial hypersurfac&®)R, is usually described by which remains finite.
the dimensionless curvature perturbafign where The pressure perturbatigim any gauggcan be split into
adiabatic and entropithon-adiabatit parts, by writing
BCIR= 6_K+& +iv2 (4) 2 .
REYART v 22 . dp=cidp+pl, (10)
by ) _ ) N
The curvature perturbation on fixeédaypersurfaces is a wherec;=plp. The non-adiabatic part 6pm,=pl’, and
gauge-dependent quantity and under an arbitrary linear coor- sp Sp
dinate transformatiort,—t+ 6t, it transforms as I=—-—.
p p

(11)

y—ytHa. ®) The entropy perturbatiolr, defined in this way, is gauge-

invariant, and represents the displacement between hypersur-

For a scalar quantitk, such as the energy density or the faces of uniform pressure and uniform density.

pressure, the corresponding transformation is

- lll. EVOLUTION OF THE CURVATURE PERTURBATION
op—Sp—p o, (6)

A. Rate of change of the curvature perturbation
where a dot denotes differentiation with respect to coordinate on large scales
time t.
The curvature perturbation on uniform-density hypersur
faces, can be written 4s

Of primary interest to us, and much of modern cosmol-
‘ogy, is the evolution of the curvature perturbatign,on the
constant-time hypersurfaces defined in E@). These
constant-time hypersurfaces are orthogonal to the unit time-

—{=H¢, (™ Jike vector field[12]
where the displacement between the uniform-densdy ( n“=(1-A,-V'B). (12)
=0) hypersurface and the uniform-curvatuig=0) hyper-
surface has the gauge-invariant definition: The expansion of the spatial hypersurfaces with respect to

the proper timedr=(1+ A)dt, of observers with 4-velocity
& Sp n*, is given by
gE ﬁ + —. (8) .
p g=n* ,=3H(1-A)—-3y+V?o, (13

where the scalar describing the shear is

2For comparison with the notation of Bard note that .
P o] o=E—B. (14)

1
=A.00 y=— = () - , . .
A=AQ™, Y=—|H F 3HT)Q ' However it is useful to define the expansion rate with respect

to the coordinate time

BQ®  __HQY

BE A ) ) (3)

ka K2 9=(1+A)0=3H-3y+V?0. (15)
where Bardeen explicitly include@(®(x), the eigenmodes of the , ) i i ,
spatial Laplaciany2, with eigenvalue— k2. We can write this as an equation for the time evolutiorjof
3This quantity is denote® in Refs.[14,15. in terms of the perturbed expansiofig=60—3H, and the
“The sign of¢ is chosen here to coincide with Refs,6]. shear:
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scalar field, in the Einstein frame ensures that the curvature
perturbation in this frameZ, will remain constant on large

scales, but only so long asp/ = Splp, i.e., only for per-
turbations obeying the generalized adiabatic condifigy

S D
Y= 380+ 3V (16)

Note that this is independent of the field equations and fol

lows simply from the geometry. =0 [see Eq(29)], in addition to the adiabatic condition for

Irrespective of the gravitational field equations we can . P
derive important results from the local conservation of thethe fluid, '=0 in Eq. (11). However, Eq(18) shows that

energy-momentum tensai*,.,—0. The energy conserva- must always be conserved on uniform density hypersurfaces

tion equationn’T#, =0 for first-order density perturba- " e original framg whgre ordinary_ matter is. minimally
tions g:?ives e yp coupled, for adiabatic fluid perturbation$ € 0) indepen-

dently of the perturbations ig. The two alternative defini-
Sp=—3H(8p+p)+(p+p)[3¢y—V3o+v+B)], tions of the curvature perturbation are equakZ, only in

(17 the special case whedp/ d=Sp/p and it then follows that
the curvature perturbation is constant in both frames because
the generalized adiabatic condition holds.
Non-Einstein gravity(in our four spacetime dimensions
may also emergg20] from theories involving a large extra
) 1_, dimension[21,22. In particular, our proof of Eq(19) vali-
{=- m&’nad_ §V (ctv+B). (18 dates a recent discussi¢@3] of chaotic inflation in these
theories, which relied on that equation.
We emphasize that we have derived this result without in-
voking any gravitational field equations, although related re- C. Matter plus radiation
sults have been obtained in particular non-Einstein gravity
theories[16,17]. We see that is constant if(i) there is no
non-adiabatic pressure perturbation, dng the divergence

where V'v is the perturbed 3-velocity of the fluid. In the
uniform-density gauge, wherép=0 and )= — ¢, the en-
ergy conservation equatiqi7) immediately gives

In a multi-fluid system we can define uniform-density hy-
persurfaces for each fluid and a corresponding curvature per-

of the 3-momentum on zero-shear hypersurfa§e§p +B  turbation on these hypersurfacesg,=—— dpgy/py -
+ o), is negligible. Equation(18) then shows thaf ;) remains constant for adia-
On sufficiently large scales, gradient terms can be nebatic perturbations in any fluid whose energy-momentum is
glected and 18,8 locally conserved: fiT{j, ,.,=0. Thus, for example, in a
universe containing non-interacting cold dark matter plus ra-
-__15 (19 diation, which both have well-defined equations of state
£= p+p Prad: (pm=0 and p,=p,/3), the curvatures of uniform-matter-

density hypersurfaceg,,, and of uniform-radiation-density
which implies that/ is constant if the pressure perturbation hypersurfaces{,, remain constant on super-horizon scales.
is adiabatic. It has been arguédl] that the divergence is The curvature perturbation on the uniform-total-density hy-
likely to be negligible on all super-horizon scales, and in thepersurfaces is given by
following we shall make that assumption.

Although there have been many previous discussions of (43 p, Lyt pmém
conserved quantities in perturbed FRW cosmologisich - (413)p,+ pm
coincide with{ on large scaleés we believe that this is the
first time that the constancy df has been derived without

reference to any equations of motion for the gravitationalat early times in the radiation dominated erp, & p) we
field. It holds for linear perturbations about an FRW metrichaye {ini={,, while at late times g,>p,) we have g,

for any relativistic theory of gravity, as a consequence of~; . remains constant throughout only for adiabatic per-

(20

local energy conservatiomT#,. ,=0. turbations where the uniform-matter-density and uniform-
radiation-density hypersurfaces coincide, ensudng ¢y, .
B. Non-Einstein gravity theories The isocurvaturéor entropy perturbation is conventionally

The most intensively studied example of non-EinsteindenOted by the perturbation in the ratio of the photon and

gravity is provided by scalar-tensor theories, which include gnatter number densities

scalar field,», non-minimally coupled to the spacetime cur-

vature. One approach to studying the evolution of the metric

perturbation previously appligd 9] is to perform a confor- g= 2 =3(¢— 1) 21)

mal transformation to the Einstein frame in which the scalar n, nNp yoeme

field is minimally coupled to the metric, and hence the usual

Einstein gravitational field equations hold, but non-

minimally coupled to other matter fieldesvhose energy- Hence the entropy perturbation for any two non-interacting
momentum tensor has non-vanishing thacehe conserva- fluids always remains constant on large scales independent
tion of the total energy-momentum tensor, including theof the gravitational field equations. Hence we recover the
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A distance\, on an initial hypersurfacée.g., uniform-density

0 hypersurfacgspecified by a fixed coordinate timest4, in
the appropriate gauge.g., uniform-density gaugeThe ini-
tial large-scale curvature perturbation on the séatan then
be definedindependently of the backgrounds

OY1=tha1— p1- (23

! On a subsequent hypersurface defined by, the curvature
2 perturbation ata) or (b) can be evaluated using E{.6) [but
neglectingV2¢7] to give[14]

Wap= tha1— 6Na, (24)

where the integrated expansion between the two hypersur-
faces along the world-line followed by regida) is given by
N,=N-+6N,, with N=Ina the expansion in the unper-
turbed background and

1
SN, = ft Zgéaadt. (25)

1

a b

The curvature perturbation whein=t, on the comoving
scale\ is thus given by

standard result for the final curvature perturbation in terms of O2=Vaz~ thoz= 01~ (Na=Np). 26

the initial curvature and entropy perturbation In order to calculate the change in the curvature perturbation
in any gauge on very large scales it is thus sufficient to
evaluate the difference in the integrated expansion between
the initial and final hypersurface along different world-lines.
In particular, using Eq(26), one can evolve the curvature
perturbation,Z, on super-horizon scales, knowing only the
evolution of the family of Robertson-Walker universes,

One can proceed to use the perturbed field equations, ihich according to the separate Universe assumption de-
follow the evolution of linear perturbations in the metric and Scribe the evolution of the Universe on super-horizon scales:
matter fields in whatever gauge one chooses. This allows one Af=AN 27
to calculate the corresponding perturbations in the density ¢=AaN,
and pressure and the non-adiabatic pressure perturbatioan _

. ) T vhereA (=
there is one, and see whether it causes a significant change i\, — \
a

{

FIG. 1. A schematic illustration of the separate universes pic
ture, with the symbols as identified in the text.

_ 1
Liin= Lini— 55- (22

IV. THE SEPARATE UNIVERSE APPROACH

— o+ i, on uniform-density hypersurfaces and

N, in Eg. (26). As we shall discuss in the next

: . . . . section, this evolution is in turn specified by the values of the
However, thgre IS a partlcplarly simple alpernatlve aP-relevant fields during inflation, and as a result one can cal-

proach to studying the evolution of perturbations on Iargeculateg at horizon re-entry from the vacuum fluctuations of

scales, which has been employed in some multi-componertlf;]ese fields

inflation models [24,25,14,26,15)8 This considers each )

super-horizon sized region of the Universe to be evoIvingC

like a separate Robertson-Walker universe where density a

While it is a non-trivial assumption to suppose that every
moving regionwell outside the horizorevolves like an

be used to follow the evolution of the curvature perturbat'onbackground would make no sense. We use the phrase ‘back-

wit.h time. _Figure 1 shows the general .ide_a o_f the separataround, to describe the evolution on a much larger saale
universe picture, though really every point is viewed as hav:

ing its own Robertson-Walker region surrounding i. which should be much bigger even than our present horizon

Consider two such locally homogeneous regiéasand size, with respect to which the perturbations in section I
. ; ally 9 9 . were defined. It is important to distinguish this from regions
(b) at fixed spatial coordinates, separated by a coordina

t8f sizellarge enough to be treated as locally homogeneous,
but which when pieced together over a larger scalerep-
resent the long-wavelength perturbations under consider-
SThis result was derived first by solving a differential equafioh ation. Thus we require a hierarchy of scales:

and then8] by integrating Eq(19) using Eq.(20). We have here

demonstrated that even the integration is unnecessary. )\0>7\>)\5ch_1. (28
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Ideally Ao would be taken to be infinite. However it may be verses picture this condition ensures that if all field perturba-
that the Universe becomes highly inhomogeneous on somi@ns are adiabatic at any one tirfiee. on any spatial hyper-
very much larger scaley.>\,, Where effects such as sto- surface, then they must remain so at any subsequent time.
chastic or eternal inflation determine the dynamical evoluPurely adiabatic perturbations can never give rise to entropy
tion. Nevertheless, this will not prevent us from defining anperturbations on large scales as all fields share the same time
effectively homogeneous background in our observable Unishift, st= 5x/x, along a single phase-space trajectory.
verse, which is governed by the local Einstein equations and
hence impervious to anything happening on vast scales. Spe-
cifically we will assume that it is possible to foliate space-
time on this large scalk, with spatial hypersurfaces. A. Single-component inflaton field

When we use homogeneous equations to describe sepa- |, sec. |11 we showed that the curvature perturbatoon
rate regions on length scales greater thgnwe are implic- o \niform-density gauge is constant on large scales for
itly assuming that the evolution on these scales is indepengiapatic perturbations. A common application of this is to
dent of shorter wavelength perturbations. This is true withinyery,rhations produced by a single scalar field during infla-
Ilnea_r perturbation theory_ln Whl_ch the evolution of eachiion Even this apparently simple case is somewhat subtle
Fourier mode can be considered independently, but any NoRjnce 5 scalar field obeys a second-order equation of motion
linear interaction introduces mode-mode coupling which Un-4n4 cannot in general be described by an equation of state
dermines the separate universes picture. Thg separate UBicp), since the total energy can be split between potential
verse model may still be used for the evolution of linearyn ' \inetic energy. However, the existence of an attractor
metric perturbation if the perturbations in the total density, tion for a strongly-damped inflaton field allows one to

and pressure remain small, but a suitable ma@gessibly @ 44 the decaying mode as inflation progresses and ensures a
thermodynamic descriptiorof the effect of the non-linear nique relation between the field value and its first deriva-
evolution of matter fields on smaller scales may be necessagy,q

in some cases. An application o the study of preheating at the gpecific relations between the inflaton field and cur-

the end of inflation is discussed in Sec. V C. vature perturbations depends on the choice of gauge. In prac-

Adiabatic perturbations in the density and pressure COIegcq the inflaton field perturbation spectrum can be calculated
spond to shifts forwards or b.ackwards in time along theOn uniform-curvature ¢=0) slices, where the field pertur-
background solutiongp/ Sp=p/p=cZ, and hencd"=0 in  pations have the gauge-invariant definiti@¥,13
Eq. (11). For example, in a universe containing only bary-
onic matter plus radiation, the density of baryons or photons &
may vary locally, but the perturbations are adiabatic if the Sy=¢+ . (30
ratio of photons to baryons remains unperturbed. Different
regions are compelled to undergo the same evolution along @ the slow-roll limit the amplitude of field fluctuations at
unique trajectory in field space, separated only by a shift ihorizon crossingX=H 1) is given byH/27. Note that this
the expansion. The pressipéhus remains a unique function s the amplitude of the asymptotic solution on large scales.
of the densityp and the energy conservation equation, This result is independent of the geometry and holds for a
dp/dN=—3(p+p), determinep as a function of the inte- massless scalar field in de Sitter spacetime independently of
grated expansionN. Under these conditions, uniform- the gravitational field equations.
density hypersurfaces are separated by a uniform expansion The field fluctuation is then related to the curvature per-

and hence the curvature perturbatignremains constant.  tyrpation on comoving hypersurfacésn which the scalar
ForI'#0 it is no longer possible to define a simple shift fie|d is uniform, 5¢.=0) using Eq.(5), by

to describe both the density and pressure perturbation. The

V. INFLATION

existence of a non-zero pressure perturbation on uniform- H
density hypersurfaces changes the equation of state in differ- R=ipe=—0¢y,. (31
ent regions of the Universe and hence leads to perturbations ¢

in the expansion along different worldlines between uniform- ) ) , ,
density hypersurfaces. This is consistent with @& which We WI|| now demonstrate that for ad_labatlc perturpatlons
quantifies how the non-adiabatic pressure perturbation detef/® can identify the curvature perturbation on comoving hy-
mines the variation of on large scale§l8, ). persurfacesR, with the curvature perturbation on uniform-

The entropy perturbation between any two quantitiesdens'ty hypersurfaces; § In an arbltrary_gauge thg density
(which are spatially homogeneous in the backgroumas a and pressure perturbations of a scalar field are given by
naturally gauge-invariant definitigmwhich follows from the

obvious extension of Eq11)] Sp=p Sp—AP*+V' 8¢, (32
e o
=2 29 5p=¢ 5¢p—AP*—V' 56, (33
X y

where V'=dV/d¢. Thus we find 6p—p=2V’'d¢. For
We define a generalized adiabatic condition which requiresidiabatic perturbations on uniform-density hypersurfaces
I'yy=0 for any physical scalansandy. In the separate uni- both the density and pressure perturbation must vanish and
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thus so does the field perturbatié,=0 for V' #0. Hence  authors[19,18. Note also that the comoving and uniform-
the uniform-density and comoving hypersurfaces coincidedensity hypersurfaces need no longer coincide in the pres-
andR and — ¢ are identical, for adiabatic perturbations. ence of non-adiabatic pressure perturbations. In practice it is
The asymptotic solution/growing mode for the scalar fieldnecessary to follow the evolution of the perturbations on
vacuum fluctuation corresponds to a perturbation about thguper-horizon scales in order to calculate the curvature per-
background attractor solution and hence generates a purefyrbation at later times. In most models studied so far, the
adiabatic perturbation on super-horizon scales. Thus the defrmjectories converge to a unique one before the end of infla-
sity perturbation when a mode re-enters the horizon duringion put that need not be the case in general.
the radiation or matter dominated eras can be directly related e separate universe approach described in Sec. IV gives

to the growing mode of the inflaton field perturbation when, (aiher straightforward procedure for calculating the evolu-

that mode left the hOI’IZOI’_1 during inflation due to_ the CONtion of the curvature perturbation, on large scales based
stancy of{ once the decaying mode becomes negligible after

horizon crossing7]. We have shown that this does not de- on the change in the integrated expansibiy,in different
i L . locally homogeneous regions of the universe. This approach
pend on any slow-roll type approximation for the inflaton

field, nor does it depend on the form of the gravitational field V&S developed in Re_fs[.14,26,1_5 for general relat|V|s_t|c
equations. The result holds for any metric theory of gravitymoOIeIS where sca_lar fields dominate th? energy density ?f?d
that respects local conservation of energy—momentum. As apyessure, though it has not peen applied to many speqﬂc
example, the large-scale curvature perturbation spectrurWOdels' In the case of a'smgle—component inflaton, this
produced during a period of “brane inflation” has recently means that on each comoving scalethe curvature pertur-

been calculatef23] in the four-dimensional effective theory bation, £, on uniform—density(or.comoving hypersurfaces
of gravity induced on the world-volume of a 3-brane in five- MUStstop changing when gradient terms can be neglected

dimensional Einstein gravity22,20, even though the full (A>Xs). Mor_e generally, W't_h a mu_Itl-comp(_)nent mf_laton,_
theory of cosmological perturbations has yet to be deterth,e perturbgnons generated in the f|eIQS during inflation will
mined in this model. still determine the curvature perturbatiaf),on large scales,
but one needs to follow the time evolution during the entire
period a scale remains outside the horizon in order to evalu-
B. Multi-component inflaton field ate at later times. This will certainly require knowledge of
During a period of inflation it is important to distinguish the gravita_\tion_al field equations and may also invqlve t_he use
L . . of approximations such as the slow-roll approximation to
between “light” fields, whose effective mass is less than the ; :
. i . obtain analytic results.
Hubble parameter, and “heavy” fields whose mass is greater
than the Hubble parameter. Long-wavelengthper-Hubble
scale perturbations of heavy fields are under-damped and
oscillate with rapidly decaying amplitudé¢?)<a3) about During inflation, every field is supposed to be in the
their vacuum expectation value as the universe expandsacuum state well before horizon exit, corresponding to the
Light fields, on the other hand, are over-damped and magbsence of particles. The vacuum fluctuation cannot play a
decay only slowly towards the minimum of their effective role in cosmology unless it is converted into a classical per-

potential. It is the slow-rolling of these light fields that con- turbation, defined as a quantity which can have a well-

C. Preheating

trols the cosmological dynamics during inflation. defined value on a sufficiently long time-sca8,29. For
The inflaton, defined as the direction of the classical evoevery light field this conversion occurs at horizon exit (
lution, is one of the light fields, while the other light field6 ~ ~H™1). In contrast, heavy fields become classical, if at all,

any) will be taken to be orthogonal to it in field space. In a only when their quantum fluctuation is amplified by some
multi-component inflation model there is a family of inflaton other mechanism.

trajectories, and the effect of the orthogonal perturbations is There has recently been great interest in models where
to shift the inflaton from one trajectory to another. vacuum fluctuations become classi¢eé., particle produc-

If all the fields orthogonal to the inflaton are heavy thention occurg due to the rapid change in the effective mass
there is a unique inflaton trajectory in field space. In this cas¢and hence the vacuum statef one or more fields. This
even a curved path in field space, after canonically normalusually (though not alway$30]) occurs at the end of infla-
izing the inflaton trajectory, is indistinguishable from the tion when the inflaton oscillates about its vacuum expecta-
case of a straight trajectory, and leads to no variatioti.in  tion value which can lead to parametric amplification of the

When there are multiple light fields evolving during infla- perturbations—a process which has become known as pre-
tion, uncorrelated perturbations in more than one field willheating[2]. The rate of amplification tends to be greatest for
lead to different regions that are not simply time translationdong-wavelength modes and this has lead to the claim that
of each other. In order to specify the evolution of each lo-rapid amplification of non-adiabatic perturbations could
cally homogeneous universe one needs as initial data thehange the curvature perturbatiofi, even on very large
value of every cosmologically significant field. In general, scaleq3].
therefore, there will be non-adiabatic perturbationg,# 0. Within the separate universes picture this is certainly pos-

If the local integrated expansiofN, is sensitive to the sible if preheating leads to different integrated expansion in
value of more than one of the light fields thénis able to  different regions of the universe. In particutacan evolve if
evolve on super-horizon scales, as has been shown by sevegatignificant non-adiabatic pressure perturbation is produced
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on large scales. However it is also apparent in the separatghere the preheating field is light during inflation, and the
universes picture that no non-adiabatic perturbation can sutsoupling to the inflaton only becomes strong at the end of
sequently be introduced on large scales if the original perturinflation. In such a multi-component inflation model non-

bations were purely adiabatic. This is of course also apparerdiabatic perturbations are no longer suppressed on super-

in the field equations where preheating can only amplify prel10rizon scalels ang ithisdpqssipleﬂfo_r the c(ljJrvatuhre perturba-
existing field fluctuations. tion ¢ to evolve both during inflation and preheating, as

Efficient preheating requires strong coupling between thedescrlbed in Sec. VB.

inflaton and preheating fields which typically leads to the
preheating field being heavy during inflatiGmhen the infla-
ton field is large. The strong suppression of super-horizon In this paper, we have identified the general condition
scale fluctuations in heavy fields during inflation means thatinder which the super-horizon curvature perturbation on spa-
in this case no significant change gris produced on super- tial hypersurfaces can vary as being due to differences in the
horizon scales before back-reaction due to particle produdntegrated expansion along different worldlines between hy-
tion on much smaller scales damps the oscillation of thd€rsurfaces. As long as linear perturbation theory is valid,
inflaton and brings preheating to an ef&l,32,4. then, when spatial gradients of the perturbations are negli-

Because the first-order effect is so stronaly suppressed iﬂible’ such a situation can be described using the separate
. gly supp niverses picture, where regions are evolved according to the
such models, the dominant effect actually comes frorr}1

. . . omogeneous equations of motion.
second-order perturbations in the fielgl,32,4. The ex- In particular, the curvature perturbation on uniform-

pansion on Iarge scales is.no longer independgnt of ,Short%fensity hypersurfaceg, can vary only in the presence of a
wavelength field perturbations when we consider highersignificant non-adiabatic pressure perturbation. The result
order terms in the equations of motion. Nonetheless in manygiows directly from the local conservation of energy mo-
cases it is still possible to use linear perturbation theory foimentum and is independent of the gravitational field equa-
the metric perturbations while including second-order perturtions. Thus{ is conserved for adiabatic perturbations on suf-
bations in the matter fieldsln Ref. [4] this was done to ficiently large scales in any metric theory of gravity,
show that even allowing for second-order field perturbationsincluding scalar-tensor theories of gravity or induced four-
there is no significant non-adiabatic pressure perturbatiordimensional gravity in the brane-world scenario.
and hence no change ify on large scales in the original Multi-component inflaton models are an example where
model of preheating in chaotic inflation. non-adiabatic perturbations may cause the curvature pertur-
More recently a modified version of preheating has beerpation to evolve on super-horizon scales.
proposed[33] (requiring a different model of inflation
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