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New approach to the evolution of cosmological perturbations on large scales
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We discuss the evolution of linear perturbations about a Friedmann-Robertson-Walker background metric,
using only the local conservation of energy momentum. We show that on sufficiently large scales the curvature
perturbation on spatial hypersurfaces of uniform density is conserved when the non-adiabatic pressure pertur-
bation is negligible. This is the first time that this result has been demonstrated independently of the gravita-
tional field equations. A physical picture of long-wavelength perturbations as being composed of separate
Robertson-Walker universes gives a simple understanding of the possible evolution of the curvature perturba-
tion, in particular clarifying the conditions under which super-horizon curvature perturbations may vary.

PACS number~s!: 98.80.Cq
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I. INTRODUCTION

Structure in the Universe is generally supposed to or
nate from the quantum fluctuation of the inflaton field. A
each scale leaves the horizon during inflation, the fluctua
freezes in, to become a perturbation of the classical field.
resulting cosmological inhomogeneity is commonly char
terized by the intrinsic curvature of spatial hypersurfaces
fined with respect to the matter. This metric perturbation i
crucial quantity, because at approach of horizon re-entry
ter inflation it determines the adiabatic perturbations of
various components of the cosmic fluid, which seem to g
a good account of large-scale structure@1#.

To compare the inflationary prediction for the curvatu
perturbation with observation, we need to know its evolut
outside the horizon, through the end of inflation, until r
entry on each cosmologically relevant scale. The stand
assumption is that the curvature perturbation is practic
constant. This has recently been called into question in
context of preheating models@2# at the end of inflation where
non-inflaton perturbations can be resonantly amplified@3,4#.
The purpose of the present paper is to investigate the circ
stances under which the curvature perturbation may vary

Using only the local conservation of energy–momentu
we show that the rate of change of the curvature perturba
on uniform-density hypersurfaces,1 z, on large scales is du
to the non-adiabatic part of the pressure perturbation. T
result is independent of the form of the gravitational fie
equations, demonstrating for the first time that the curvat
perturbation remains constant on large scales for purely a
batic perturbations inany relativistic theory of gravity where
the energy-momentum tensor is covariantly conserv
Tm

n;m50. We also show that for adiabatic perturbations p
duced during single field inflation the curvature perturbat

*Present address.
1The ‘‘conserved quantity’’z was originally defined in Bardeen

Steinhardt and Turner@5#, but constructed from perturbations d
fined in the uniform Hubble-constant gauge.
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on uniform-density hypersurfaces,z @5–7#, can be identified
with the comoving curvature perturbation,R @1,8#.

The pressure perturbation must be adiabatic if there
definite equation of state for the pressure as a function
density, which is the case during both radiation dominat
and matter domination. On the other hand, a change inz on
super-horizon scales will occur during the transition fro
matter to radiation domination if there is an isocurvatu
matter density perturbation@9,8#. We give a simple deriva-
tion of this effect in terms of the curvature perturbations
uniform-radiation and uniform-matter hypersurfaces wh
remain constant throughout.

A simple intuitive understanding of how the curvatu
perturbation on large scales changes, due to the diffe
integrated expansion in locally homogeneous but causa
disconnected regions of the universe, can be obtained wi
the ‘‘separate universes’’ picture which we describe in S
IV. This enables one to model the evolution of the larg
scale curvature perturbation using the equations of mo
for an unperturbed Robertson-Walker universe. In Sec. V
use this approach to discuss the evolution of the curva
perturbation in single- and multi-field inflation models.

II. LINEAR SCALAR PERTURBATIONS

In this section we summarize the essential results fr
cosmological perturbation theory, applied to the scalar m
ric perturbations and the associated perturbations in the p
sure and energy density. In contrast with the usual appro
to cosmological perturbation theory, we shall not invoke a
gravitational field equations. We define energy-moment
in the usual way,

Tmn[22
]Lmat

]gmn
1gmnLmat, ~1!

whereLmat is any contribution to the Lagrange density fro
matter fields with no external interactions. General coor
nate invariance implies the energy-momentum conserva
law Tm

n;m50, without invoking the Einstein field equation
©2000 The American Physical Society27-1
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There are many different ways of characterizing cosm
logical perturbations, reflecting the arbitrariness in the cho
of coordinates~gauge!, which in turn determines the slicin
of spacetime into spatial hypersurfaces, and its threading
timelike worldlines. The line element allowing arbitrary lin
ear scalar perturbations of a Friedmann-Robertson-Wa
~FRW! background can be written@10–13#

ds252~112A!dt212a2~ t !¹ iB dxidt

1a2~ t !@~122c!g i j 12¹ i¹ jE#dxidxj . ~2!

The unperturbed spatial metric for a space of constant
vaturek is given byg i j and covariant derivatives with re
spect to this metric are denoted by¹ i .2 The intrinsic curva-
ture of a spatial hypersurface,(3)R, is usually described by
the dimensionless curvature perturbation3 c, where

(3)R5
6k

a2 1
12k

a2
c1

4

a2
¹2c. ~4!

The curvature perturbation on fixed-t hypersurfaces is a
gauge-dependent quantity and under an arbitrary linear c
dinate transformation,t→t1dt, it transforms as

c→c1Hdt. ~5!

For a scalar quantityx, such as the energy density or th
pressure, the corresponding transformation is

dr→dr2 ṙ dt, ~6!

where a dot denotes differentiation with respect to coordin
time t.

The curvature perturbation on uniform-density hypers
faces, can be written as4

2z5Hj, ~7!

where the displacement between the uniform-densitydr
50) hypersurface and the uniform-curvature (c50) hyper-
surface has the gauge-invariant definition:

j[
c

H
1

dr

ṙ
. ~8!

2For comparison with the notation of Bardeen@11# note that

A[ABQ(0), c[2SHL1
1

3
HTDQ(0),

B[
BBQ(0)

ka
, E[

HTQ
(0)

k2
, ~3!

where Bardeen explicitly includedQ(0)(xi), the eigenmodes of the
spatial Laplacian,¹2, with eigenvalue2k2.

3This quantity is denotedR in Refs.@14,15#.
4The sign ofz is chosen here to coincide with Refs.@5,6#.
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Alternatively one can work in terms of the density perturb
tion on uniform-curvature hypersurfaces

drc5 ṙ j, ~9!

where the subscriptc indicates the uniform-curvature hype
surface.

The curvature perturbation on uniform-density hypers
faces, z, is often chosen as a convenient gauge-invari
definition of the scalar metric perturbation on large scal
These hypersurfaces become ill-defined if the density is
strictly decreasing, as can occur in a scalar field domina
universe when the kinetic energy of the scalar field vanish
In this case one can instead work in terms of the den
perturbation on uniform-curvature hypersurfaces,drc ,
which remains finite.

The pressure perturbation~in any gauge! can be split into
adiabatic and entropic~non-adiabatic! parts, by writing

dp5cs
2dr1 ṗG, ~10!

wherecs
2[ ṗ/ ṙ. The non-adiabatic part isdpnad[ ṗG, and

G[
dp

ṗ
2

dr

ṙ
. ~11!

The entropy perturbationG, defined in this way, is gauge
invariant, and represents the displacement between hype
faces of uniform pressure and uniform density.

III. EVOLUTION OF THE CURVATURE PERTURBATION

A. Rate of change of the curvature perturbation
on large scales

Of primary interest to us, and much of modern cosm
ogy, is the evolution of the curvature perturbation,c, on the
constant-time hypersurfaces defined in Eq.~2!. These
constant-time hypersurfaces are orthogonal to the unit ti
like vector field@12#

nm5~12A,2¹ iB!. ~12!

The expansion of the spatial hypersurfaces with respec
the proper time,dt[(11A)dt, of observers with 4-velocity
nm, is given by

u[n ;m
m 53H~12A!23ċ1¹2s, ~13!

where the scalar describing the shear is

s5Ė2B. ~14!

However it is useful to define the expansion rate with resp
to the coordinate time

ũ5~11A!u53H23ċ1¹2s. ~15!

We can write this as an equation for the time evolution ofc

in terms of the perturbed expansion,dũ[ũ23H, and the
shear:
7-2
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ċ52
1

3
dũ1

1

3
¹2s. ~16!

Note that this is independent of the field equations and
lows simply from the geometry.

Irrespective of the gravitational field equations we c
derive important results from the local conservation of
energy-momentum tensorTm

n;m50. The energy conserva
tion equationnnTm

n;m50 for first-order density perturba
tions gives

ḋr523H~dr1dp!1~r1p!@3ċ2¹2~s1v1B!#,
~17!

where ¹ iv is the perturbed 3-velocity of the fluid. In th
uniform-density gauge, wheredr50 and c52z, the en-
ergy conservation equation~17! immediately gives

ż52
H

r1p
dpnad2

1

3
¹2~s1v1B!. ~18!

We emphasize that we have derived this result without
voking any gravitational field equations, although related
sults have been obtained in particular non-Einstein gra
theories@16,17#. We see thatz is constant if~i! there is no
non-adiabatic pressure perturbation, and~ii ! the divergence
of the 3-momentum on zero-shear hypersurfaces,¹2(v1B
1s), is negligible.

On sufficiently large scales, gradient terms can be
glected and@18,8#

ż52
H

r1p
dpnad, ~19!

which implies thatz is constant if the pressure perturbatio
is adiabatic. It has been argued@8# that the divergence is
likely to be negligible on all super-horizon scales, and in
following we shall make that assumption.

Although there have been many previous discussion
conserved quantities in perturbed FRW cosmologies~which
coincide withz on large scales!, we believe that this is the
first time that the constancy ofz has been derived withou
reference to any equations of motion for the gravitatio
field. It holds for linear perturbations about an FRW met
for any relativistic theory of gravity, as a consequence
local energy conservationnnTm

n;m50.

B. Non-Einstein gravity theories

The most intensively studied example of non-Einst
gravity is provided by scalar-tensor theories, which includ
scalar field,f, non-minimally coupled to the spacetime cu
vature. One approach to studying the evolution of the me
perturbation previously applied@19# is to perform a confor-
mal transformation to the Einstein frame in which the sca
field is minimally coupled to the metric, and hence the us
Einstein gravitational field equations hold, but no
minimally coupled to other matter fields~whose energy-
momentum tensor has non-vanishing trace!. The conserva-
tion of the total energy-momentum tensor, including t
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scalar field, in the Einstein frame ensures that the curva

perturbation in this frame,z̃, will remain constant on large

scales, but only so long asdf/ḟ5dr/ ṙ, i.e., only for per-
turbations obeying the generalized adiabatic conditionGfr

50 @see Eq.~29!#, in addition to the adiabatic condition fo
the fluid,G50 in Eq. ~11!. However, Eq.~18! shows thatz
must always be conserved on uniform density hypersurfa
in the original frame where ordinary matter is minimal
coupled, for adiabatic fluid perturbations (G50) indepen-
dently of the perturbations inf. The two alternative defini-

tions of the curvature perturbation are equal,z5 z̃, only in

the special case whendf/ḟ5dr/ ṙ and it then follows that
the curvature perturbation is constant in both frames beca
the generalized adiabatic condition holds.

Non-Einstein gravity~in our four spacetime dimensions!
may also emerge@20# from theories involving a large extra
dimension@21,22#. In particular, our proof of Eq.~19! vali-
dates a recent discussion@23# of chaotic inflation in these
theories, which relied on that equation.

C. Matter plus radiation

In a multi-fluid system we can define uniform-density h
persurfaces for each fluid and a corresponding curvature

turbation on these hypersurfaces,z ( i )[2c2dr ( i ) / ṙ ( i ) .
Equation~18! then shows thatz ( i ) remains constant for adia-
batic perturbations in any fluid whose energy-momentum
locally conserved: nnT ( i ) n;m

m 50. Thus, for example, in a
universe containing non-interacting cold dark matter plus
diation, which both have well-defined equations of sta
(pm50 and pg5rg/3), the curvatures of uniform-matter
density hypersurfaces,zm , and of uniform-radiation-density
hypersurfaces,zg , remain constant on super-horizon scal
The curvature perturbation on the uniform-total-density h
persurfaces is given by

z5
~4/3!rgzg1rmzm

~4/3!rg1rm
. ~20!

At early times in the radiation dominated era (rg@rm) we
have z ini.zg , while at late times (rm@rg) we havezfin
.zm. z remains constant throughout only for adiabatic p
turbations where the uniform-matter-density and unifor
radiation-density hypersurfaces coincide, ensuringzg5zm.
The isocurvature~or entropy! perturbation is conventionally
denoted by the perturbation in the ratio of the photon a
matter number densities

S5
dng

ng
2

dnm

nm
53~zg2zm!. ~21!

Hence the entropy perturbation for any two non-interact
fluids always remains constant on large scales indepen
of the gravitational field equations. Hence we recover
7-3
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standard result for the final curvature perturbation in terms
the initial curvature and entropy perturbation5

zfin5z ini2
1

3
S. ~22!

IV. THE SEPARATE UNIVERSE APPROACH

One can proceed to use the perturbed field equation
follow the evolution of linear perturbations in the metric a
matter fields in whatever gauge one chooses. This allows
to calculate the corresponding perturbations in the den
and pressure and the non-adiabatic pressure perturbati
there is one, and see whether it causes a significant chan
z.

However, there is a particularly simple alternative a
proach to studying the evolution of perturbations on la
scales, which has been employed in some multi-compon
inflation models @24,25,14,26,15,8#. This considers each
super-horizon sized region of the Universe to be evolv
like a separate Robertson-Walker universe where density
pressure may take different values, but are locally homo
neous. After patching together the different regions, this
be used to follow the evolution of the curvature perturbat
with time. Figure 1 shows the general idea of the sepa
universe picture, though really every point is viewed as h
ing its own Robertson-Walker region surrounding it.

Consider two such locally homogeneous regions~a! and
~b! at fixed spatial coordinates, separated by a coordin

5This result was derived first by solving a differential equation@9#,
and then@8# by integrating Eq.~19! using Eq.~20!. We have here
demonstrated that even the integration is unnecessary.

FIG. 1. A schematic illustration of the separate universes p
ture, with the symbols as identified in the text.
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distancel, on an initial hypersurface~e.g., uniform-density
hypersurface! specified by a fixed coordinate time,t5t1, in
the appropriate gauge~e.g., uniform-density gauge!. The ini-
tial large-scale curvature perturbation on the scalel can then
be defined~independently of the background! as

dc1[ca12cb1 . ~23!

On a subsequent hypersurface defined byt5t2 the curvature
perturbation at~a! or ~b! can be evaluated using Eq.~16! @but
neglecting¹2s# to give @14#

ca25ca12dNa , ~24!

where the integrated expansion between the two hyper
faces along the world-line followed by region~a! is given by
Na5N1dNa , with N[ ln a the expansion in the unper
turbed background and

dNa5E
t1

t2 1

3
dũadt. ~25!

The curvature perturbation whent5t2 on the comoving
scalel is thus given by

dc2[ca22cb25dc12~Na2Nb!. ~26!

In order to calculate the change in the curvature perturba
in any gauge on very large scales it is thus sufficient
evaluate the difference in the integrated expansion betw
the initial and final hypersurface along different world-line

In particular, using Eq.~26!, one can evolve the curvatur
perturbation,z, on super-horizon scales, knowing only th
evolution of the family of Robertson-Walker universe
which according to the separate Universe assumption
scribe the evolution of the Universe on super-horizon sca

Dz5DN, ~27!

whereDz52ca1cb on uniform-density hypersurfaces an
DN5Na2Nb in Eq. ~26!. As we shall discuss in the nex
section, this evolution is in turn specified by the values of
relevant fields during inflation, and as a result one can c
culatez at horizon re-entry from the vacuum fluctuations
these fields.

While it is a non-trivial assumption to suppose that eve
comoving regionwell outside the horizonevolves like an
unperturbed universe, there has to be some scalels for
which that assumption is true to useful accuracy. If the
were not, the concept of an unperturbed~Robertson-Walker!
background would make no sense. We use the phrase ‘b
ground’ to describe the evolution on a much larger scalel0,
which should be much bigger even than our present hori
size, with respect to which the perturbations in section
were defined. It is important to distinguish this from regio
of sizels large enough to be treated as locally homogeneo
but which when pieced together over a larger scale,l, rep-
resent the long-wavelength perturbations under consi
ation. Thus we require a hierarchy of scales:

l0@l@ls*cH21. ~28!

-

7-4
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Ideally l0 would be taken to be infinite. However it may b
that the Universe becomes highly inhomogeneous on s
very much larger scale,le@l0, where effects such as sto
chastic or eternal inflation determine the dynamical evo
tion. Nevertheless, this will not prevent us from defining
effectively homogeneous background in our observable U
verse, which is governed by the local Einstein equations
hence impervious to anything happening on vast scales.
cifically we will assume that it is possible to foliate spac
time on this large scalel0 with spatial hypersurfaces.

When we use homogeneous equations to describe s
rate regions on length scales greater thanls, we are implic-
itly assuming that the evolution on these scales is indep
dent of shorter wavelength perturbations. This is true wit
linear perturbation theory in which the evolution of ea
Fourier mode can be considered independently, but any n
linear interaction introduces mode-mode coupling which
dermines the separate universes picture. The separate
verse model may still be used for the evolution of line
metric perturbation if the perturbations in the total dens
and pressure remain small, but a suitable model~possibly a
thermodynamic description! of the effect of the non-linea
evolution of matter fields on smaller scales may be neces
in some cases. An application to the study of preheatin
the end of inflation is discussed in Sec. V C.

Adiabatic perturbations in the density and pressure co
spond to shifts forwards or backwards in time along
background solution,dp/dr5 ṗ/ ṙ[cs

2 , and henceG50 in
Eq. ~11!. For example, in a universe containing only bar
onic matter plus radiation, the density of baryons or phot
may vary locally, but the perturbations are adiabatic if t
ratio of photons to baryons remains unperturbed. Differ
regions are compelled to undergo the same evolution alo
unique trajectory in field space, separated only by a shif
the expansion. The pressurep thus remains a unique functio
of the density r and the energy conservation equatio
dr/dN523(r1p), determinesr as a function of the inte-
grated expansion,N. Under these conditions, uniform
density hypersurfaces are separated by a uniform expan
and hence the curvature perturbation,z, remains constant.

For GÞ0 it is no longer possible to define a simple sh
to describe both the density and pressure perturbation.
existence of a non-zero pressure perturbation on unifo
density hypersurfaces changes the equation of state in di
ent regions of the Universe and hence leads to perturbat
in the expansion along different worldlines between unifor
density hypersurfaces. This is consistent with Eq.~18! which
quantifies how the non-adiabatic pressure perturbation de
mines the variation ofz on large scales@18,8#.

The entropy perturbation between any two quantit
~which are spatially homogeneous in the background! has a
naturally gauge-invariant definition@which follows from the
obvious extension of Eq.~11!#

Gxy[
dx

ẋ
2

dy

ẏ
. ~29!

We define a generalized adiabatic condition which requ
Gxy50 for any physical scalarsx andy. In the separate uni
04352
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verses picture this condition ensures that if all field pertur
tions are adiabatic at any one time~i.e. on any spatial hyper
surface!, then they must remain so at any subsequent ti
Purely adiabatic perturbations can never give rise to entr
perturbations on large scales as all fields share the same
shift, dt5dx/ ẋ, along a single phase-space trajectory.

V. INFLATION

A. Single-component inflaton field

In Sec. III we showed that the curvature perturbationz on
the uniform-density gauge is constant on large scales
adiabatic perturbations. A common application of this is
perturbations produced by a single scalar field during in
tion. Even this apparently simple case is somewhat su
since a scalar field obeys a second-order equation of mo
and cannot in general be described by an equation of s
p(r), since the total energy can be split between poten
and kinetic energy. However, the existence of an attrac
solution for a strongly-damped inflaton field allows one
drop the decaying mode as inflation progresses and ensu
unique relation between the field value and its first deri
tive.

The specific relations between the inflaton field and c
vature perturbations depends on the choice of gauge. In p
tice the inflaton field perturbation spectrum can be calcula
on uniform-curvature (c50) slices, where the field pertur
bations have the gauge-invariant definition@27,13#

dfc[df1
ḟ

H
c. ~30!

In the slow-roll limit the amplitude of field fluctuations a
horizon crossing (l5H21) is given byH/2p. Note that this
is the amplitude of the asymptotic solution on large sca
This result is independent of the geometry and holds fo
massless scalar field in de Sitter spacetime independent
the gravitational field equations.

The field fluctuation is then related to the curvature p
turbation on comoving hypersurfaces~on which the scalar
field is uniform,dfc50) using Eq.~5!, by

R[cc5
H

ḟ
dfc . ~31!

We will now demonstrate that for adiabatic perturbatio
we can identify the curvature perturbation on comoving h
persurfaces,R, with the curvature perturbation on uniform
density hypersurfaces,2z. In an arbitrary gauge the densit
and pressure perturbations of a scalar field are given by

dr5ḟ ḋf2Aḟ21V8 df, ~32!

dp5ḟ ḋf2Aḟ22V8 df, ~33!

where V8[dV/df. Thus we find dr2dp52V8df. For
adiabatic perturbations on uniform-density hypersurfa
both the density and pressure perturbation must vanish
7-5
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WANDS, MALIK, LYTH, AND LIDDLE PHYSICAL REVIEW D 62 043527
thus so does the field perturbationdfr50 for V8Þ0. Hence
the uniform-density and comoving hypersurfaces coinci
andR and2z are identical, for adiabatic perturbations.

The asymptotic solution/growing mode for the scalar fie
vacuum fluctuation corresponds to a perturbation about
background attractor solution and hence generates a pu
adiabatic perturbation on super-horizon scales. Thus the
sity perturbation when a mode re-enters the horizon du
the radiation or matter dominated eras can be directly rela
to the growing mode of the inflaton field perturbation wh
that mode left the horizon during inflation due to the co
stancy ofz once the decaying mode becomes negligible a
horizon crossing@7#. We have shown that this does not d
pend on any slow-roll type approximation for the inflato
field, nor does it depend on the form of the gravitational fie
equations. The result holds for any metric theory of grav
that respects local conservation of energy–momentum. A
example, the large-scale curvature perturbation spect
produced during a period of ‘‘brane inflation’’ has recen
been calculated@23# in the four-dimensional effective theor
of gravity induced on the world-volume of a 3-brane in fiv
dimensional Einstein gravity@22,20#, even though the full
theory of cosmological perturbations has yet to be de
mined in this model.

B. Multi-component inflaton field

During a period of inflation it is important to distinguis
between ‘‘light’’ fields, whose effective mass is less than t
Hubble parameter, and ‘‘heavy’’ fields whose mass is grea
than the Hubble parameter. Long-wavelength~super-Hubble
scale! perturbations of heavy fields are under-damped
oscillate with rapidly decaying amplitude (^f2&}a23) about
their vacuum expectation value as the universe expa
Light fields, on the other hand, are over-damped and m
decay only slowly towards the minimum of their effectiv
potential. It is the slow-rolling of these light fields that co
trols the cosmological dynamics during inflation.

The inflaton, defined as the direction of the classical e
lution, is one of the light fields, while the other light fields~if
any! will be taken to be orthogonal to it in field space. In
multi-component inflation model there is a family of inflato
trajectories, and the effect of the orthogonal perturbation
to shift the inflaton from one trajectory to another.

If all the fields orthogonal to the inflaton are heavy th
there is a unique inflaton trajectory in field space. In this c
even a curved path in field space, after canonically norm
izing the inflaton trajectory, is indistinguishable from th
case of a straight trajectory, and leads to no variation inz.

When there are multiple light fields evolving during infl
tion, uncorrelated perturbations in more than one field w
lead to different regions that are not simply time translatio
of each other. In order to specify the evolution of each
cally homogeneous universe one needs as initial data
value of every cosmologically significant field. In gener
therefore, there will be non-adiabatic perturbations,GxyÞ0.

If the local integrated expansion,N, is sensitive to the
value of more than one of the light fields thenz is able to
evolve on super-horizon scales, as has been shown by se
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authors@19,18#. Note also that the comoving and uniform
density hypersurfaces need no longer coincide in the p
ence of non-adiabatic pressure perturbations. In practice
necessary to follow the evolution of the perturbations
super-horizon scales in order to calculate the curvature
turbation at later times. In most models studied so far,
trajectories converge to a unique one before the end of in
tion, but that need not be the case in general.

The separate universe approach described in Sec. IV g
a rather straightforward procedure for calculating the evo
tion of the curvature perturbation,c, on large scales base
on the change in the integrated expansion,N, in different
locally homogeneous regions of the universe. This appro
was developed in Refs.@14,26,15# for general relativistic
models where scalar fields dominate the energy density
pressure, though it has not been applied to many spe
models. In the case of a single-component inflaton, t
means that on each comoving scale,l, the curvature pertur-
bation, z, on uniform-density~or comoving! hypersurfaces
must stop changing when gradient terms can be neglec
(l.ls). More generally, with a multi-component inflaton
the perturbations generated in the fields during inflation w
still determine the curvature perturbation,z, on large scales
but one needs to follow the time evolution during the ent
period a scale remains outside the horizon in order to ev
atez at later times. This will certainly require knowledge o
the gravitational field equations and may also involve the
of approximations such as the slow-roll approximation
obtain analytic results.

C. Preheating

During inflation, every field is supposed to be in th
vacuum state well before horizon exit, corresponding to
absence of particles. The vacuum fluctuation cannot pla
role in cosmology unless it is converted into a classical p
turbation, defined as a quantity which can have a w
defined value on a sufficiently long time-scale@28,29#. For
every light field this conversion occurs at horizon exit (l
;H21). In contrast, heavy fields become classical, if at a
only when their quantum fluctuation is amplified by som
other mechanism.

There has recently been great interest in models wh
vacuum fluctuations become classical~i.e., particle produc-
tion occurs! due to the rapid change in the effective ma
~and hence the vacuum state! of one or more fields. This
usually ~though not always@30#! occurs at the end of infla
tion when the inflaton oscillates about its vacuum expec
tion value which can lead to parametric amplification of t
perturbations—a process which has become known as
heating@2#. The rate of amplification tends to be greatest
long-wavelength modes and this has lead to the claim
rapid amplification of non-adiabatic perturbations cou
change the curvature perturbation,z, even on very large
scales@3#.

Within the separate universes picture this is certainly p
sible if preheating leads to different integrated expansion
different regions of the universe. In particularz can evolve if
a significant non-adiabatic pressure perturbation is produ
7-6



ra
su
tu
re
re

th
he

on
ha
-
u
th

d
om

r
e
an
fo

tu

n
io
l

e

he
of

n-
per-
ba-
as

on
pa-
the

hy-
lid,
gli-
rate
the

-
a
sult
o-
ua-
uf-
y,
ur-

re
rtur-

oy
theo

NEW APPROACH TO THE EVOLUTION OF . . . PHYSICAL REVIEW D 62 043527
on large scales. However it is also apparent in the sepa
universes picture that no non-adiabatic perturbation can
sequently be introduced on large scales if the original per
bations were purely adiabatic. This is of course also appa
in the field equations where preheating can only amplify p
existing field fluctuations.

Efficient preheating requires strong coupling between
inflaton and preheating fields which typically leads to t
preheating field being heavy during inflation~when the infla-
ton field is large!. The strong suppression of super-horiz
scale fluctuations in heavy fields during inflation means t
in this case no significant change inz is produced on super
horizon scales before back-reaction due to particle prod
tion on much smaller scales damps the oscillation of
inflaton and brings preheating to an end@31,32,4#.

Because the first-order effect is so strongly suppresse
such models, the dominant effect actually comes fr
second-order perturbations in the fields@31,32,4#. The ex-
pansion on large scales is no longer independent of sho
wavelength field perturbations when we consider high
order terms in the equations of motion. Nonetheless in m
cases it is still possible to use linear perturbation theory
the metric perturbations while including second-order per
bations in the matter fields.6 In Ref. @4# this was done to
show that even allowing for second-order field perturbatio
there is no significant non-adiabatic pressure perturbat
and hence no change inz, on large scales in the origina
model of preheating in chaotic inflation.

More recently a modified version of preheating has be
proposed @33# ~requiring a different model of inflation!

6Formally one considers the matter field perturbations to be
ordere, but the metric perturbations to be of ordere2.
.
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where the preheating field is light during inflation, and t
coupling to the inflaton only becomes strong at the end
inflation. In such a multi-component inflation model no
adiabatic perturbations are no longer suppressed on su
horizon scales and it is possible for the curvature pertur
tion z to evolve both during inflation and preheating,
described in Sec. V B.

VI. CONCLUSIONS

In this paper, we have identified the general conditi
under which the super-horizon curvature perturbation on s
tial hypersurfaces can vary as being due to differences in
integrated expansion along different worldlines between
persurfaces. As long as linear perturbation theory is va
then, when spatial gradients of the perturbations are ne
gible, such a situation can be described using the sepa
universes picture, where regions are evolved according to
homogeneous equations of motion.

In particular, the curvature perturbation on uniform
density hypersurfaces,z, can vary only in the presence of
significant non-adiabatic pressure perturbation. The re
follows directly from the local conservation of energy m
mentum and is independent of the gravitational field eq
tions. Thusz is conserved for adiabatic perturbations on s
ficiently large scales in any metric theory of gravit
including scalar-tensor theories of gravity or induced fo
dimensional gravity in the brane-world scenario.

Multi-component inflaton models are an example whe
non-adiabatic perturbations may cause the curvature pe
bation to evolve on super-horizon scales.
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