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Period-doubling bifurcation in strongly anisotropic Bianchi I quantum cosmology

Michael Bachmann* and Hans-Ju¨rgen Schmidt†

Institut für Mathematik, Universita¨t Potsdam, PF 601553, D-14415 Potsdam, Germany
and Institut für Theoretische Physik, Freie Universita¨t Berlin, Arnimallee 14, D-14195 Berlin, Germany

~Received 15 December 1999; published 25 July 2000!

We solve the Wheeler-DeWitt equation for the minisuperspace of a cosmological Bianchi type-I model with
a minimally coupled massive scalar fieldf as the source by generalizing the calculation of Lukash and
Schmidt@Astron. Nachr.309, 25 ~1988!#. Contrary to other approaches we allow strong anisotropy. Combining
analytical and numerical methods, we apply an adiabatic approximation forf, and as a new feature we find a
period-doubling bifurcation. This bifurcation takes place near the cosmological quantum boundary, i.e., the
boundary of the quasiclassical region with an oscillatingc function where the WKB approximation is good.
The numerical calculations suggest that such a notion of a ‘‘cosmological quantum boundary’’ is well defined,
because, sharply beyond that boundary, the WKB approximation is no longer applicable at all. This result
confirms the adequateness of the introduction of a cosmological quantum boundary in quantum cosmology.

PACS number~s!: 98.80.Hw, 98.70.Vc
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I. INTRODUCTION

The idea to consider the whole Universe as one quan
system has already attracted many researchers. One o
approaches to give this idea a physical meaning is to c
sider the superspaceS of all possible spatial three-geometrie
together with the matter field degrees of freedom as su
coordinates, and the supermomentum spaceS ! is formed
from the corresponding second fundamental forms toge
with the momenta of the matter fields. The dynamics w
then be defined by the Einstein field equation accompan
by the matter field equations. In the last step, this system
be quantized.

Of course, one has to deal with an infinite number
degrees of freedom already from the geometric part. T
only way to tackle such a system up to now is to linearize
almost all degrees of freedom and to take the nonlinear
only from the remaining finitely many ones. But even th
system is almost untractable. So, the idea of the minisu
space arose: One restricts to a finite-dimensional spac
spatial geometries and to matter fields with finitely ma
components, disregarding or even ignoring all other degr
of freedom.

From the first glance one could believe that such a
simplification would lead to a picture which has nothing
do with the real Universe’s evolution. However, the resu
given in the last years are encouraging: The dynamics of
minisuperspace can be written as an equivalent mecha
system, and then the zero-energy-Schro¨dinger equation for
this system carries the name ‘‘Wheeler-DeWitt equation1

which can be solved for simple systems and gives alread
surprisingly good picture of the evolution, even for the ca

*Email address: mbach@physik.fu-berlin.de
†Email address: hjschmi@rz.uni-potsdam.de
1Though this identification represents partially a misnomer, i

quite usual in the literature, see the more detailed explanatio
Sec. V B.
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that the geometric part is restricted to only one degree
freedom, the ‘‘radius’’ of the Universe. This corresponds
the isotropic Friedmann Universe model. For this ca
closed-form solutions for the Wheeler-DeWitt equation ex

In the ordering with respect to simplicity, the next po
sible geometry is the Bianchi type-I model, where the spa
inner geometry is flat, but the expansion is allowed to
anisotropic. For this case, we have three degrees of free
for the geometry: the expansion rates into the three spa
directions.2 For this case, the Wheeler-DeWitt equation
already quite complicated, so one uses an approximatio
solve it. One of the most powerful of these approximati
schemes is the Wentzel-Kramers-Brillouin~WKB! approxi-
mation. In Ref.@1#, the first-order WKB approximation for
the massive scalar field in the Bianchi type-I model has b
deduced, but—as far as we are aware—the higher-o
WKB approximations have not yet been calculated up
now for this model. The analogous calculations for the B
anchi type-IX model have been done by Amsterdamski@2#.
In both cases, the anisotropy degrees of freedom had b
assumed to be small. In the present paper we allow also l
anisotropies. Reference@3# deals with a similar model allow-
ing large anisotropies, too; however, the authors of@3# use a
simpler minisuperspace model, so the results are not dire
comparable to ours.

The text is organized as follows: Sec. II presents the
ometry of the Bianchi type-I cosmological model, Sec. III
the corresponding Wheeler-DeWitt equation, and Sec. IV
solutions both analytically and numerically. Section
shortly reviews Refs.@6–48#, i.e., the earlier development
of the topic, and discusses the results.

In the Appendix, we show how the different versions
solve the factor-ordering problem influence the solutions
the Wheeler-DeWitt equation.

s
in

2Strictly speaking, the axially symmetric Bianchi type-I mode
where two of the three scale factors coincide, is even simpler, bu
one will see from the calculations: restricting to axial symme
does not really simplify the procedure.
©2000 The American Physical Society15-1
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II. THE BIANCHI TYPE-I MODEL

The metric of a spatially flat cosmological model is d
duced as follows: One requires that an Abelian thr
dimensional isometry group acts transitively on thre
dimensional spatial hypersurfaces which consequently h
to be flat three spaces. This restricts the possible metric

ds25N2dt22gi j dxidxj , ~2.1!

whereN5N(t) is the lapse function which can be put toN
51 by a time reparametrization,i , j 51,2,3, andgi j repre-
sents a symmetric positive definite matrix whose compone
depend ont only. So we have six free components from t
first consideration. However, restricting to metrics being
solution of Einstein’s field equation we can simplify as fo
lows: At any initial time, sayt50, we can choose the initia
condition

gi j 5d i j 5diag~1,1,1! at t50 ~2.2!

without loss of generality, and then by a spatial rotation
changing Eq. ~2.2!, the second fundamental form, i.e
dgi j /dt, can be brought into diagonal form. By use of t
Einstein equation one can show that under these circ
stances,gi j will keep its diagonal form for all times. Thus
The Bianchi type-I model containing nondiagonal terms d
not represent a generalization, and we can say that with
loss of generality let

gi j 5diag„A2~ t !,B2~ t !,C2~ t !… ~2.3!

with certain positive functionsA,B,C.
After an obvious rearrangement of the terms we get n

from Eqs.~2.1! and ~2.3!

ds25N2dt22e2a~e2s12A3rdx21e2s22A3rdy21e24sdz2!,
~2.4!

wherea,r ,s represent three arbitrary real functions depe
ing on t. The Hubble parameter is the mean expansion,
with a dot denotingd/dt we get

H5
1

3
S Ȧ

A
1

Ḃ

B
1

Ċ

C
D .

In the notation of Eq.~2.4!, H5da/dt is the Hubble param-
eter, and we restrict our considerations to the expanding U
verse, i.e., toH.0. The model goes over to the spatially fl
isotropic Friedmann model if the dimensionless anisotro
parameter

h5
1

H
Aṙ 21 ṡ2 ~2.5!

tends to zero.
It is essential to observe that this approach leading to

Wheeler-DeWitt equation breaks the Lorentz invariance
the system already at this level of geometry: The 311 de-
composition of space time is already made from the beg
ning. The remaining degrees of freedom within the geome
04351
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are the following:t̃ (t) as arbitrary function as long asN(t)
remains unspecified, andt̃ (t)56t after having fixedN51.
Permutations of the three spatial coordinates, and for
axially symmetric case also spatial rotations, such asr
50, then a rotation in thexy plane is an additional symme
try. We presented this geometric part so explicitly, beca
contradicting statements exist about this behavior in the
erature; for example: In our interpretation,ds25dt22dx2

2dy22dz2 and ds25dt22t2dx22dy22dz2 represent dif-
ferent geometries in spite of the fact that they are loca
isometric space times.

We use a one-component real massive scalar fieldf as a
source, and we interpret it as follows: Either it can really
such a scalar field~i.e., a spin zero field!, e.g., a Higgs field
which dominated the early Universe’s evolution but disa
peared after a symmetry-breaking effect. Or, it mimics a
realistic matter field in a region where spin is negligible. L
m denote the mass of the scalar field. For the grand uni
theory~GUT! mediated inflationary model, one considers t
following order of magnitude:m'1025mPl , where mPl is
the Planck mass.3

Up to now, we did not restrict the spatial coordinatesx, y,
andz. At the classical level~i.e., for locally solving the Ein-
stein field equation!, it makes no difference, whether the
cover all the reals or whether they are cyclic ones. But
ready for global classical considerations itmakesa differ-
ence: Suppose,x, y, andz are cyclic, then even for the cas
r 5s[0 the metric is not spatially isotropic, because t
natural length of a closed spatial geodesic depends on
chosen direction. However, we get the essential differe
only after quantization. If nothing different is said, we a
sumex, y, andz to be cyclic with modulus 1, i.e.,x and x
11 represent the same point, etc.

III. THE WHEELER-DeWITT EQUATION

The Wheeler-DeWitt equation is always a zero-ener
Schrödinger equation4 due to time-reparametrization invar
ance of the gravitational action. However, this is not reall
problem, because the Schro¨dinger equation with nonvanish
ing energy can be brought to the zero-energy form by a s
able shift of the potential, see, e.g., Ref.@4# for a class of
transformations of this type.

In the present paper, we do not consider the entropy of
system; we only want to mention the recently published
sult of Kleinert @5# on how the incorporation of entropy ca
change the model.

To formulate the equations that lead to the Wheel
DeWitt equation@6# as easily as possible, it proves useful
apply units such that\5c54pG/351. Then the Lagrang-
ian of the minimally coupled scalar field in Einstein’s theo
of gravity ~see the first of Refs.@1# for details! is given by

L5Lg1Lm , ~3.1!

3In units with c51, the Planck mass is about 1019 GeV.
4But, see also, the discussion in Sec. V B. for this notation.
5-2
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where the gravitational part is

Lg5
1

2N
e3a~ ṙ 21 ṡ22ȧ2! ~3.2!

and the matter Lagrangian is

Lm5
1

2N
e3a~ḟ22m2f2N2!. ~3.3!

Here we supposed the lapse functionN to be constant in
time. The minisuperspace is four-dimensional, its coor
nates areqm5(q0,q1,q2,q3) with q05a, q15f, q25r , and
q35s. The usefulness of the Misner parametrization E
~2.4! of the anisotropy is obvious: The kinetic part of th
Lagrangian is already in diagonal form. By defining t
minisuperspace metricf mn5e3a diag(21,1,1,1) the La-
grangian~3.1! is compactly rewritten as

L5
1

2N
@ f mnq̇mq̇n2m2~q1!2N2e3q0

#. ~3.4!

Thus the introduction of canonical momenta

pm5
]L

]q̇m
5

1

N
f mnq̇n ~3.5!

allows us to write down the classical Hamiltonian of t
minisuperspace

H5
N

2
@pmpm1m2~q1!2e3q0

#50. ~3.6!

Time-reparametrization invariance implies]H/]N50, i.e.,
H50. The quantization in coordinate space is done as u
by going over to the appropriate operatorspm52 i\]/]qm

with the partial derivative].
From now on, we will choose two different versions f

the operator ordering inpmpm: First, variant A, which is the
most simple one, following the interpretation in Ref.@1# that
the solutions of the forthcoming Wheeler-DeWitt equati
will not essentially depend on this choice.

Second, variant B, solves the factor ordering problem
applying the supercovariance principle: It says that the
sential equations have to be covariant ones with respec
the ~mini-!superspace metric. Taking variant B, we have
replacepm by pm52 i\¹/¹qm, where¹ denotes the super
covariant derivative5 defined byf mn .

To cover both variants simultaneously, we introduce
parametere as follows: e50 for variant A ande51 for
variant B. Accordingly, we denote the two variants of t
D’Alembert operator6 he by

5Here we apply the fact that the metric is always covariantly c
stant, so different orderings give the same result.

6The minus sign in Eqs.~3.7! and~3.8! is inserted to compensat
for the factori 2 in front of pmpm.
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h052 f mn
]2

]qm]qn
, ~3.7!

and

h152 f mn
¹2

¹qm¹qn
. ~3.8!

For the world functionc(qm) we get the relations

h1c5h0c13c ,0e
23a ~3.9!

where7

h0c5e23a@c ,002c ,112c ,222c ,33#. ~3.10!

The stationary Schro¨dinger equation with zero energy i
minisuperspaceĤc(qm)50 with the wave functionc(qm)
and the Hamilton operatorĤ is called theWheeler-DeWitt
equationand possesses the form

Ĥc~qm!5
N

2
@\2he1m2~q1!2e3q0

#c~qm!50 ~3.11!

for the Bianchi type-I Universe~2.4!. In detail, we get after
dividing by Ne3a/2

05S \2F ]2

]a2
13e

]

]a
2

]2

]f2
2

]2

]r 2
2

]2

]s2G
1m2f2e6aD c~a,f,r ,s!. ~3.12!

In what follows we derive an approximation scheme to so
the Wheeler-DeWitt equation.

IV. SOLUTIONS OF THE WHEELER-DeWITT EQUATION

Before we go over to solve Eq.~3.12! we want to clarify
in subsection A what happens if we neglect the anisotro
from the beginning. In subsections B–D we analytically o
tain solutions in a well-defined approximation, and in su
section E we present the results of our numerical calculat

A. Isotropic models

For variant A, i.e.,e50 in Eq. ~3.11! we get

05S \2F ]2

]a2
2

]2

]f2G1m2f2e6aD c~a,f!, ~4.1!

i.e., we simply remove allr ands dependences. For varian
B, however, this recipe does not work because the covar

-
7If the dimension of the minisuperspace isD instead of 4, then the

factor 3 in front of c ,0 in Eq. ~3.9! will be replaced by 3(D
22)/2, soh0 andh1 coincide forD52.
5-3
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derivatives mix the coordinates. After a short calculation o
finds out that here also Eq.~4.1! is the correct Wheeler
DeWitt equation. The reason for this coincidence is as
lows: The two-dimensional superspace is conformally fl
and the D’Alembertian is conformally invariant, cf. the se
ond paper in Ref.@1# for more details.

Defining a5ea.0 as new variable we have to repla
]/]a by a(]/]a), and we get from Eq.~4.1! now

05S \2Fa
]

]a
a

]

]a
2

]2

]f2G1m2f2a6D c̃~a,f!, ~4.2!

a version of the Wheeler-DeWitt equation favored in R
@7#.

B. Separation ansatz

Now we look for the solutions of Eq.~3.12!. First, we
make a separation ansatz

c~a,f,r ,s!5x~a,f!•r~r !•s~s!. ~4.3!

It turns out thatr ,22/r5c2 and s ,33/s5c3 represent con-
stants, i.e., we get

r~r !5r1exp~Ac2r !1r2exp~2Ac2r !

and

s~s!5s1exp~Ac3s!1s2exp~2Ac3s!

with arbitrary constantsr i and s i . For negative valuesc2,
the functionr(r ) has a sinus-function behavior.

One can interpret these cases as follows: If bothc2 andc3
are negative, then we have plane waves in ther ands direc-
tion. This is in agreement with the fact that a translation in
the r or s direction can be compensated by a coordin
transformation in metric~2.4! ~i.e., by multiplyingx, y, andz
with suitable constants!, so that allr ands values should be
equally probable. However, this interpretation works only
the case that we allowx, y, andz to cover all the reals. If we
however, restrictx, y, andz to be cyclic coordinates, then thi
argument in favor of equal distribution of ther ands values
is no more valid.

If, on the contrary, one of the constantsc2 or c3 is non-
negative, then~up to singular exceptions! the product
r(r )•s(s) tends to6` as r or s does. This allows the fol-
lowing interpretation: The probability to have small aniso
ropy is exponentially small.

For the moment we keep the further interpretation op
and continue the calculation. We define the constantc1 via
c11c21c350 and insert Eq.~4.3! into Eq. ~3.12!; we get

05S \2F ]2

]a2
13e

]

]a
2

]2

]f2G1c1\21m2f2e6aD x~a,f!.

~4.4!

This equation is for variant A just the Wheeler-DeWitt equ
tion ~4.1!, however, now not the zero-energy equation b
04351
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the equation with energy proportional to the constantc1 rep-
resenting the anisotropic degrees of freedom.

We redefine the coordinatea to v5a35e3a. The coordi-
natev is proportional to the spatial volume. Then Eq.~4.4!
goes over to~after dividing by 9!

05S \2Fv
]

]v
v

]

]v
1ev

]

]v
2

]2

]f2G1c1\2/9

1m2f2v2/9D x̃~v,f! ~4.5!

As one can see in comparison with Eq.~4.2!. Instead of the
a6 term we now have av2 potential.

C. Adiabatic scalar field

In this subsection, we assume the scalar fieldf to be
almost constant. Theng defined byg25m2f2/(9\2) is an
adiabatic constant. In Eq.~4.5! we omit the f derivative
corresponding to the adiabatic approach. To this end we c
sider the following equation for the exact dependence ov
of a new functionx̂:

S \2Fv
]

]v
v

]

]v
1ev

]

]vG1c1\2/91g2v2\2D x̂~v,f!

5E~f!•x̂~v,f!, ~4.6!

where E(f) is an yet undetermined eigenvalue; here,f
plays the role of a parameter only. We define a new adiab
constantL by L25E(f)\222c1/9. Then Eq. ~4.6! be-
comes fore50

S v
]

]v
v

]

]v
1g2v22L2D x̂50. ~4.7!

Equation~4.7! is a Bessel-type ordinary differential equatio
If we replace in Eq.~4.7! gv by x andx̂(v,f) by y(x,f) we
get exactly Bessel’s form

x2
d2y

dx2
1x

dy

dx
1~x22L2!y50 ~4.8!

whose solutions are~the constantsCi depend onL)

y5C1JL~x!1C2J2L~x!. ~4.9!

The JL are called cylinder or Bessel functions and have
development

JL~x!5 (
k50

`

~21!kS x

2D L12k

~k! !21@G~L1k11!#21.

~4.10!

Now we make the ansatz8

8If only a discrete set of valuesL appear, Eq.~4.11! will be
replaced by an analogous sum.
5-4
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x̃~v,f!5E
L

bL~f!x̂L~v,f!dL, ~4.11!

where we assigned tox̂ the subscriptL to emphasizex̂L

being an eigenfunction with eigenvalueL. Thus the genera
solution of Eq.~4.7! is written as

x̂L~v,f!5C1JL~gv !1C2J2L~gv !. ~4.12!

Inserting ansatz~4.11! into Eq. ~4.5! we get

05E
L

2\2
]2

]f2
@bL~f!x̂~v,f!#1bL~f!

3F\2S v
]

]v
v

]

]v
1

c1

9 D1
m2

9
v2f2G x̂~v,f!dL.

~4.13!

In the second term of Eq.~4.13! we replace the term in the
brackets@ # by the eigenvalueE(f) according to Eq.~4.6!.
e
b

g
y

it

on
-

ng

04351
E(f) depends onc2 , c3, and L only, i.e., there is nof
dependence, and we writeE instead ofE(f):

05E
L

2\2
]2

]f2
@bL~f!x̂~v,f!#1bL~f!Ex̂~v,f!dL.

~4.14!

In Eq. ~4.14! we first write out the]2/]f2 applied to the
product, but we assume that only (]2/]f2)bL(f) is essen-
tial, and disregarding the other terms9 and assuming that the
x̂ ’s are all independent we get

F2\2
]2

]f2
1EGbL~f!50, ~4.15!

which possesses solutions

bL~f!5B1eAEf/\1B2e2AEf/\. ~4.16!

Finally, we get the general wave function
cc2c3

(f) ~a,f,r ,s!5~r1exp$Ac2r %1r2exp$2Ac2r %!~s1exp$Ac3s%1s2exp$2Ac3s%!E
L

@B1exp$AL2~c21c3!/9f%

1B2exp$2AL2~c21c3!/9f%#@C1JL~mfe3a/3\!1C2J2L~mfe3a/3\!#dL ~4.17!
l

tric
al
with real and for the moment continuous eigenvaluesc2 ,c3.
The superscript (f) at c indicates that we have treated th
scalar field adiabatically. This solution has to be specified
appropriate choices for the constantsr1 , r2 , s1 , s2 , B1 ,
B2 , C1, andC2 from boundary conditions. Before discussin
the result~4.17!, however, we calculate the wave function b
considering the scale factora as the adiabatic variable.

D. Adiabatic scale factor approach

Another adiabatic method to solve the Wheeler-DeW
equation~4.4! is to treat the scale factora as a slowly vary-
ing variable.

Once more, we reexpress the scale factora by v[e3a,
implying that we consider the Wheeler-DeWitt equati
~4.5! in the following. Consideringv as the adiabatic vari
able means that we neglect derivatives with respect tov in a
first step. Then Eq.~4.5! becomes

S 2\2
]2

]f2
1

\2

9
c11

1

9
m2f2v2D x̂~v,f!5E~v !x̂~v,f!

~4.18!

with E(v) being a still undetermined eigenvalue. By defini

v5
1

3
mv, x̃5Av

\
f, h5

1

\v S E~v !2
\2

9
c1D ,

~4.19!
y

t

the differential equation~4.18! is simply transformed into
that for the dimensionless harmonic oscillator

F d2

dx̃2
1~h2 x̃2!G ỹ~ x̃!50. ~4.20!

By substituting x5 x̃2 and then transforming ỹ(x)
5e2x/2y(x), we eventually obtain Kummer’s differentia
equation

x
d2y~x!

dx2
1~m2x!

dy~x!

dx
2n y~x!50, ~4.21!

where in our casem51/2 andn5(12h)/4. This differential
equation possesses the general solution

y~x!5A1F1~n,m;x!1B1F1~n2m11,22m;x!x12m,
~4.22!

expressed with the help of the confluent hypergeome
function 1F1(a,b;x). A andB are constants. Thus the parti
problem of finding the solution of Eq.~4.18! is done and the
result is written as

9This is usually called adiabatic approximation with respect tof.
5-5
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x̂h~v,f!5e2v(v)f2/2\FA1F1@~12h!/4,1/2;v~v !f2/\#

1BAv~v !

\
f1F1@~32h!/4,3/2;v~v !f2/\#G

~4.23!

with x̂h denoting the eigenfunction to the real, continuo
eigenvalueh.

For further processing to find an adiabatic solution for
Wheeler-DeWitt equation~4.5! we make the integral ansat

x̃~v,f!5E
h
gh~v !x̂h~v,f!dh. ~4.24!

Inserting this into Eq.~4.5!, we obtain~for e50)

05E
h
\2v

]

]v
v

]

]v
@gh~v !x̂h~v,f!#1gh~v !F2\2

]2

]f2

1
1

9
~\2c11m2f2v2!G x̂h~v,f!dh. ~4.25!

The expression enclosed in the brackets@ # in the second
term is substituted by the eigenvalue

E~v !5
1

9
@3\mhv2\2~c21c3!#, ~4.26!

following from Eq. ~4.18! and the definitions~4.19!. In con-
trast to the preceding approach with an adiabatic scalar fi
so
at

t

on
e

04351
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E(v) depends explicitly on the adiabatic variable which is
this casev. Note thatE(v) also depends on the eigenvalu
c2 , c3, andh. Now we utilize the assumption of the adiab
ticity with respect tov by neglecting terms containing de
rivatives ]x̂h /]v and ]2x̂h /]v2 which appear in the first
term of Eq.~4.25!. Furthermore, supposing that all function
x̂h(v,f) are independent with respect toh, each integrand
in Eq. ~4.25! vanishes. Thus we remain with solving th
differential equation

F\2v
]

]v
v

]

]v
1E~v !Gg~v !50 ~4.27!

or, more explicitly,

Fv2
]2

]v2
1v

]

]v
1k1v2

k2
2

4 Gg~v !50 ~4.28!

with k15mh/3\ andk2
254(c21c3)/9. Applying the trans-

formation x52Ak1v and denoting the solution asy(x)
5g„v(x)…, Eq. ~4.28! takes the same Bessel form as given
Eq. ~4.8!, whereas the index isk1 instead ofL here. For this
reason the general solution of Eq.~4.28! reads

gh~v !5D1J4(c21c3)/9~A4mhv/3\!

1D2J24(c21c3)/9~A4mhv/3\! ~4.29!

with constantsD1 andD2.
Thus, the complete general wave function obtained w

an adiabatic scale factor approach~indicated by superscrip
a) is found to be
cc2c3

(a) ~a,f,r ,s!5@r1exp$Ac2r %1r2exp$2Ac2r %~s1exp$Ac3s%!1s2exp$2Ac3s%#

3E
h
@D1J4(c21c3)/9~A4mhe3a/3\!1D2 J24(c21c3)/9~A4mhe3a/3\!#

3exp$2mf2e3a/6\%FA1F1@~12h!/4,1/2;mf2e3a/3\#

1BAm

3\
fe 1

3a/2 F1@~32h!/4,3/2;mf2e3a/3\#Gdh ~4.30!
lue
n-
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e
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we
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m

with constantsr1 , r2 , s1 , s2 , A, B, D1, and D2 to be
determined via appropriate boundary conditions. The ani
ropy quantum numbersc2 andc3 are supposed to be real
this stage. Certain boundary conditions, such as requiring
wave function to vanish for infinitely large values ofa
and/or2a, lead to replacing the integral by a sum overh.

E. Visualization of the world function

Now we visualize the results of our numerical calculati
of the world function~4.17!. To get an impression about th
t-

he

probability amplitude, we concentrate on the absolute va
of the wave function which is given in Figs. 1–6 in depe
dence ofa, the logarithm of the cosmic scale factor, and t
scalar fieldf. Each figure is printed at fixed values of th
other parameters, see the corresponding explanation in
text.

For all these essentially different ranges of parameters
got essentially the same picture: The right part of the fig
is the region where the WKB approximation is valid, th
means, the solution is close to a sinus-shaped wave wi
slowly varying amplitude. The left-hand side is the quantu
5-6
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region where no oscillations exist at all.
The range where these two behaviors go into each ot

is relatively sharply defined. This range is what one usua
calls the ‘‘cosmological quantum boundary,’’ and these p
tures show up that this notion is relatively well defined.

A new feature of these pictures is the following: All o
them show a period-doubling bifurcation of the frequency
one looks from the bottom to the top of these pictures.

V. DISCUSSION

A. Short review of the existing literature

Before we discuss the results of the present paper we
a short review to other papers. The original paper@6# by
DeWitt was seminal to the whole development of quant
gravity. Its application to minisuperspace cosmological m

FIG. 1. The absolute value of the wave functionucu ~vertical
axis! in dependence ona ~axis from left to right! andf ~axis from
front side to back side of the picture! at r 5s51 andc254 and
c357.

FIG. 2. The same as Fig. 1, nowc2524 andc357. The dif-
ferent spacing of theucu axis should be noted.
04351
r,
y
-

f

ve
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els has been developed by several researchers, e.g., th
thors and editors of Refs.@7# and@8#. At that time, the main
discussion dealt with the closed isotropic Friedmann mod
and the spatially flat Friedmann models had been include
less interesting limit cases, too.

In @9# and@10#, Schön and Hajicek perform a quantizatio
of systems with quadratic constraints and discuss
Wheeler-DeWitt equation. In Ref.@11#, Landsman gives de
tails which Hilbert space might be appropriate for the isot
pic minisuperspace quantization, a topic which was not m
discussed before.

In the recent preprint by Kim@12#, the minimally coupled
massless scalar field in an open isotropic Friedmann mo
has been discussed and its Wheeler-DeWitt equation
solved from the point of view that the Universe is creat
quantum mechanically from ‘‘nothing.’’

Recently, Capozziello and Lambiase@13# investigated the
connection between the Hartle criterion for selecting cor
lated regions in the configuration space of dynamical va
ables and an associated Noether symmetry. This relation
serves to classify solutions of the Wheeler-DeWitt equatio
in semiclassical minisuperspace models. Thus, the osc

FIG. 3. The same as Fig. 1, nowc2524 andc3527.

FIG. 4. The same as Fig. 1, nowc250 andc350.
5-7
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tory behavior of a subset of solutions entails the presenc
Noether symmetries which, in the consequence, select c
sical Universe models.

The paper@14# by Schunck and Mielke is related to th
models discussed here as follows: They apply the Wago
Bekenstein-Starobinsky-transformation for classifying infl
tionary solutions with scalar field as source, and this cla
fication should also apply to the corresponding Whee
DeWitt equations.

In @15# and @16#, a one-parameter set of minisuperspa
metrics in arbitrary dimensions is considered, from which
have chosen only that one which gives classically the cor
correspondence to Einstein’s theory. In@15#, the signature of
the superspace metric in dependence on the signature o
underlying manifold is evaluated with the result that t
normal-hyperbolic character of the Wheeler-DeWitt equat
exists only for the Euclidean and the Lorentzian signature
the underlying manifold.

In @17#, Horiguchi, Maeda, and Sakmaoto perform an e
pansion of solutions of the Wheeler-DeWitt equation in po
ers of the Planck length. Vilenkin@18# compares several ap

FIG. 5. The same as Fig. 1, nowc251 andc351.

FIG. 6. Magnification of a subrange of Fig. 1.
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proaches to quantum cosmology, Kim and Page@19# discuss
quantum Friedmann models and power-law inflation, K
@20# compares quantum Friedmann models with conforma
and minimally coupled scalar fields. In Ref.@21#, Bleyer and
Ivashchuk discuss multidimensional cosmological mod
and their corresponding Wheeler-DeWitt equations. Re
ence @22# solves the Wheeler-DeWitt equation for scal
fields as the source.

Reference@23# represents the famous paper in which t
‘‘Hartle-Hawking boundary conditions’’ for the Wheeler
DeWitt equation have been derived. One takes a path i
gral over all such space timesV4 whose boundary is the
prescribed spatial hypersurfaceV3.

In Ref. @24#, Kiefer constructs wavepackets in minisupe
space for a Friedmann Universe. An adiabatic approac
used in the case of a massive scalar field, thereby assum
the scale parametera to be slightly changing only. In Zeh
@24#, these solutions are discussed under the point of view
the definition of the direction of time. Our Eq.~4.1! coin-
cides with the form discussed in Ref.@24# @Eq. ~6.5! of Zeh,
and Eq.~2.2! of Kiefer#. The approximation of our Sec. IV D
was used by Kiefer@24# for solving the Wheeler-DeWitt
equation of a Friedmann Universe. In contrast to Kiefe
procedure, where the harmonic oscillator has discrete eig
values and thus the wave function decreases for large va
of the scale factora, we allow all real eigenvalues.

Conradi@25# solves the Wheeler-DeWitt equation for B
anchi type-IX model and a massive scalar field. Grishch
and Sidorov @26# discuss the initial conditions for the
Wheeler-DeWitt equation, especially for the massive sca
field in a closed Friedmann model.

In Ref. @27#, Amendola, Khalatnikov, Litterio, and Oc
chionero consider quantum cosmology with a complex fie
Guendelmann and Kaganovich@28# discuss cosmic time in
quantum cosmology. The factor-ordering problem is solv
such that the kinetic term gets the formh1jR where j
<jcon f .

A comparison of the minisuperspace of minimally a
conformally coupled scalar fields was done by Page@29#. He
solves the factor-ordering problem of the Wheeler-DeW
equation by requiring that the kinetic term is proportional
the Laplacian in the minisuperspace metric, i.e., our vari
B with e51. The classical equation is similar to the geode
equation in superspace.

Reference@30# deals with quantum cosmology from th
path-integral point of view: The Wheeler-DeWitt equatio
can be derived in a first approximation from the correspo
ing path integral. Halliwell@30# solves the factor-ordering
problem by requiring invariance with respect to field rede
nition of both the three metric and lapse function. Jafariz
deh, Darabi, and Rastegar@30# apply the method of Duru and
Kleinert to evaluate the path integral for quantum cosm
ogy, cf. Kleinert@30#.

DeWitt @30# assumes the path integral to be the mo
fundamental approach, but the Wheeler-DeWitt equation
the minisuperspace to remain a good approximation to it

By considering the Wheeler-DeWitt equation
5-8
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S a2p
]

]a
ap

]

]a
1a4

L

3 Dc~a!50,

Gibbons and Grishchuk@31# obtain the result that inflation is
typical in the set of spatially flat Friedmann models in E
stein’s theory with aL term. The parameterp is due to the
factor-ordering ambiguity, they takep51 as a preferred
value. An analogous result is given by Hawking and Pa
@32#. Melnikov and Pevcov@33# discuss the factor-orderin
problem for the Wheeler-DeWitt equation in closed and op
Friedmann models and give some solutions to it.

Reuter and Schmidt@34# and Schmidt@35# derive the
Wheeler-DeWitt equation of fourth-order gravity for a sp
tially flat Friedmann model and compare with the cor
sponding conformally equivalent~due to the Bicknell theo-
rem! second-order models. The solution of Reuter-Schm
for flat Friedmann models is generalized in Ref.@36# by Pi-
mentel and Obregon to closed and open models. Fabris
Reuter@36# continue to generalize the results of@34# to show
that the Bicknell theorem applies also at the level of
Wheeler-DeWitt equation.

Rainer@37# gives an overview on higher dimensions a
discusses three types of conformal transformations of dif
ent levels for the Wheeler-DeWitt equation. Quite recen
the solutions of the Wheeler-DeWitt equation in comparis
with the appearance of singularities is treated by Mong
@38#. Zhang and Shen@39# consider quantum cosmolog
with a complex scalar field at finite temperature. A critic
discussion of the Wheeler-DeWitt equation and an alter
tive quantization scheme is presented in Ref.@40# by Peres.

From recent constraint calculations of Hwang and N
@41# to an inflation model based on a nonminimally coupl
massive scalar field and comparisons with observational
@Cosmic Background Explorer~COBE! Differential Micro-
wave Radiometer~DMR!#, one can state that minimal cou
pling is a good approximation for inflationary models. Fo
lowing Futamase and Maeda@42#, the coupling constant is
either quite small,j,1/1000, or negative. According to th
coupling factor (12jf2) in front of R, critical behavior ap-
pears forj5f22, i.e., for positive values ofj only.

B. Comparison with similar results by others

Let us start with explaining the misnomer with Schr¨-
dinger and Wheeler-DeWitt equation, see the footnotes to
Introduction and to Sec. III: In quantum mechanics, the cl
sical HamiltonianH gives~for a given energyE) rise to the
Schrödinger equationĤ(C)5E•C, whereC is the time-
dependent wave function andĤ is the operator form ofH. In
the most simple case and setting\51 this equation reads

i
]C

]t
52

1

2m
DC1V•C

and is of first order int. With the ansatzC5c•e2 iEt we get
an equation for the time-independent wave functionc; it has
the following structure:
04351
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Dc1Ṽ•c50,

whereD is the spatial Laplacian, i.e., the operatord2/dx2 in
the one-dimensional case. This equation is of second or
and it is this form of the Schro¨dinger equation which one ha
in mind when one compared with the Wheeler-DeWitt equ
tion. However, even this is a yet-to-be-explained compa
son: The LaplacianD appearing here is an elliptic operato
whereas in the corresponding place of the Wheeler-DeW
equation we have a differential operator of normal hyp
bolic type, a point which was mentioned already many tim
e.g. in Ref.@15#. So, if one wishes to make the analogy of t
two equations more strict, then one has to allow a term w
negative kinetic energy in the classical HamiltonianH to-
gether with all these known consequences for stability,
Of course, formally it is possible to achieve this negativ
by an imaginary transformation of the corresponding coor
nate, and this procedure does work in the search for e
solutions, but physically, of course, it really changes the s
tem. In other words: The imaginary transformation chang
from the Laplace- to the Klein-Gordon-type equatio
changes also the character of the set of solutions.10

There exist problems with the probability interpretation
the wave function of the universe, cf. Ref.@43#: Similarly as
for the one-dimensional free particle in quantum mechan
the world function can in general not be normalized, and o
has in the result statements about relative probabilities ra
than probabilities themselves, see also@44#, and the recent
review @45# on this subject.

In @44# it is correctly stated that the approach, which
also used here and all similar papers, has a further prob
namely that the homogeneity of the cosmological mode
presumedbeforequantization. If taken literally, this would
lead, see Ref.@45# ~Sec. II!, to a violation of the uncertainty
principle. This problem should be dealt with by finding a
appropriate effective potential to be added.

As we did, Ref.@44# deals with the geometry of an aniso
tropic Bianchi type-I model. Otherwise the paper@44# deals
with the relation toN51 supergravity which is not the topi
of the present paper.

References@36# and@45# ~Sec. IV! deal with the compari-
son of the Wheeler-DeWitt equations in different, but clas
cally conformally equivalent theories, especially with fourt
order gravity theories following from a nonlinear Lagrangi
f (R), on the one hand, and with scalar-tensor theories, on
other hand. As a rule one can summarize up to differ
versions how to solve the factor-ordering problems, the c
formal relation can be carried over from the classical to
quantum theory.

10The topological origin of this difference is the noncompactne
of the Lorentz group as compared to the compactness of the rota
group, cf. Ref.@49#. In practice, see, e.g.,@45# and the references
cited there, this has the consequence, that the norm in the c
sponding Hilbert space becomes a pseudonorm, i.e., it loses its
tive definiteness.
5-9
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The question for excited states is under debate, and
quantization conditionĤC50 concerns only the groun
state. References@46# and@47# are closely related to ours, s
let us compare them in more detail: There such solution
the Wheeler-DeWitt equation have been found which can
written by a separation ansatz. So, Ref.@47#, Eq. ~3! ~though
deduced for the Brans-Dicke theory and a closed Friedm
model!, which contains the linear combination of two Hank
functions in dependence ona2f, can be compared with ou
solution ~4.12! representing the linear combination of tw
Bessel functions~which is almost the same!.

A further point to be discussed is the relation mention
in @47# of the quantum cosmology with quantum wormhole
here we only mention a further approach@48# dealing with
wormhole-type solutions.

C. Discussion of the present paper

Let us now summarize our results: We solved t
Wheeler-DeWitt equation for the minisuperspace of a c
mological Bianchi type-I model with a minimally couple
massive scalar fieldf as the source by generalizing the ca
culation of Lukash and Schmidt@1#. Contrarily to other ap-
proaches we allowed strong anisotropy.

Combining analytical and numerical methods, we appl
an adiabatic approximation forf, and as new feature w
found a period-doubling bifurcation of the typical solution
This bifurcation takes place near the cosmological quan
boundary, i.e., the boundary of the quasiclassical region w
an oscillatingc function where the WKB approximation i
good. The numerical calculations suggest that such a no
of a ‘‘cosmological quantum boundary’’ is well defined, b
cause sharply beyond that boundary, the WKB approxim
tion is no longer applicable.

This result confirms the adequateness of the introduc
of a cosmological quantum boundary in quantum cosmolo
We applied the supercovariance principle, i.e., the unde
ing theory should also be covariant with respect to trans
mations representing a mixture between space time and
ter degrees of freedom. With our figures, we tried
visualize the birth of the Universe.
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APPENDIX: VARIANT A VS VARIANT B

Until Eq. ~4.6! we parallely dealt with variant A (e50)
and B (e51), but beginning from Eq.~4.7! we simplified by
restricting to variant A. Now we want to complete the ca
culation by showing what changes using variant B.

The purpose of this Appendix is to show in detailed c
culations what has been verbally mentioned in the literat
several times, namely the fact that differences in solving
factor-ordering problem do not essentially change the resu
For this consideration we now sete51 in Eq. ~4.6! and use
the definitions below that equation:

S Fv
]

]v
v

]

]v
1v

]

]vG1g2v22L2D x̂~v,f!50. ~A1!

The transformation from Eq.~4.7! to Eq. ~4.8! now leads to

x2
d2y

dx2
12x

dy

dx
1~x22L2!y50, ~A2!

whose solutions are also Bessel functions, modified by a
tor x21/2:

y~x!5x21/2@C̃1JAL211/4~x!1C̃2J2AL211/4~x!# ~A3!

whereC̃1 ,C̃2 are constants.
This means that the wave function~4.17! using variant A

is changed by multiplying by a factorA3\e23a/mf. More-
over, the indexL of the Bessel functions must be replac
by AL211/4.
@1# V. Lukash, H.-J. Schmidt, Astron. Nachr.309, 25 ~1988!; H.-J.
Schmidt, J. Math. Phys.37, 1244~1996!.

@2# P. Amsterdamski, Phys. Rev. D31, 3073~1985!.
@3# C. Da Silva and R. Williams, Class. Quantum Grav.16, 2681

~1999!.
@4# A. Pelster, Ph.D. thesis, University of Stuttgart, Germa

1996.
@5# H. Kleinert, Phys. Lett. B460, 36 ~1999!.
@6# B. DeWitt, Phys. Rev.160, 1113~1967!.
@7# L. P. Grishchuk and Yu. V. Sidorov, inProceedings of the 4th

Seminar on Quantum Gravity, edited by M. Markov, V. Be-
rezin, and V. Frolov~World Scientific, Singapore, 1988!, p.
700.

@8# D. N. Page, inProceedings of the 5th Seminar on Quantu
Gravity, edited by M. Markov, V. Berezin, and V. Frolo
,

~World Scientific, Singapore, 1991!, p. 82.
@9# M. Schön and P. Hajicek, Class. Quantum Grav.7, 861~1990!.

@10# P. Hajicek, Class. Quantum Grav.7, 871 ~1990!.
@11# N. Landsman, inCurrent Topics in Mathematical Cosmology,

edited by M. Rainer, and H.-J. Schmidt~World Scientific, Sin-
gapore, 1998!, p. 256.

@12# S. P. Kim, gr-qc/9909002, 1999.
@13# S. Capozziello and G. Lambiase, Gen. Relativ. Gravit.32, 673

~2000!.
@14# F. Schunck and E. Mielke, Phys. Rev. D50, 4794~1994!.
@15# H.-J. Schmidt, inDifferential Geometry and Applications, ed-

ited by J. Janyska and D. Krupka~World Scientific, Singapore,
1990!, p. 405.
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