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Period-doubling bifurcation in strongly anisotropic Bianchi I quantum cosmology
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We solve the Wheeler-DeWitt equation for the minisuperspace of a cosmological Bianchi type-I model with
a minimally coupled massive scalar fielfl as the source by generalizing the calculation of Lukash and
Schmidt[Astron. Nachr309, 25(1988]. Contrary to other approaches we allow strong anisotropy. Combining
analytical and numerical methods, we apply an adiabatic approximatiap, fand as a new feature we find a
period-doubling bifurcation. This bifurcation takes place near the cosmological quantum boundary, i.e., the
boundary of the quasiclassical region with an oscillatihfunction where the WKB approximation is good.
The numerical calculations suggest that such a notion of a “cosmological quantum boundary” is well defined,
because, sharply beyond that boundary, the WKB approximation is no longer applicable at all. This result
confirms the adequateness of the introduction of a cosmological quantum boundary in quantum cosmology.

PACS numbsd(s): 98.80.Hw, 98.70.Vc

I. INTRODUCTION that the geometric part is restricted to only one degree of

freedom, the “radius” of the Universe. This corresponds to

The idea to consider the whole Universe as one quanturf€ isotropic Friedmann Universe model. For this case,
system has already attracted many researchers. One of tR®#Sed-form solutions for the Wheeler-DeWitt equation exist.
approaches to give this idea a physical meaning is to con-_ !N the ordering with respect to simplicity, the next pos-
sider the superspac®of all possible spatial three-geometries SIP1€ 9eometry is the Bianchi type-1 model, where the spatial
inner geometry is flat, but the expansion is allowed to be

together with the matter field degrees of freedom as supely,isoironic. For this case, we have three degrees of freedom

coordinates, and the supermomentum spéceis formed o the geometry: the expansion rates into the three spatial
from the corresponding second fundamental forms togethedjrections? For this case, the Wheeler-DeWitt equation is
with the momenta of the matter fields. The dynamics Wi”ah‘eady quite Comp“(:ated’ SO ohe uses an approximation to
then be defined by the Einstein field equation accompaniegolve it. One of the most powerful of these approximation
by the matter field equations. In the last step, this system wilschemes is the Wentzel-Kramers-Brillou/KB) approxi-
be quantized. mation. In Ref[1], the first-order WKB approximation for

Of course, one has to deal with an infinite number ofthe massive scalar field in the Bianchi type-I model has been
degrees of freedom already from the geometric part. Theleduced, but—as far as we are aware—the higher-order
only way to tackle such a system up to now is to linearize inWKB approximations have not yet been calculated up to
almost all degrees of freedom and to take the nonlinearitieow for this model. The analogous calculations for the Bi-
only from the remaining finitely many ones. But even this anchi type-IX model have been done by Amsterdanp2ki
system is almost untractable. So, the idea of the minisupefn both cases, the anisotropy degrees of freedom had been
space arose: One restricts to a finite-dimensional space @sumed to be small. In the present paper we allow also large
spatial geometries and to matter fields with finitely many@nisotropies. Referen¢8] deals with a similar model allow-
components, disregarding or even ignoring all other degred§9 large anisotropies, too; however, the authorg3dfuse a
of freedom. simpler minisuperspace model, so the results are not directly

From the first glance one could believe that such a bigg@mparable to ours.
simplification would lead to a picture which has nothing to  The text is organized as follows: Sec. Il presents the ge-
do with the real Universe’s evolution. However, the resultsOmetry of the Bianchi type-I cosmological model, Sec. IIl is
given in the last years are encouraging: The dynamics of thi'€ corresponding Wheeler-DeWitt equation, and Sec. IV its
minisuperspace can be written as an equivalent mechanicgputions both analytically and numerically. Section V
system, and then the zero-energy-Sdimger equation for shortly reviews Re_fs[6—48], i.e., the earlier developments
this system carries the name “Wheeler-DeWitt equatidn,” ©f the topic, and discusses the results. _
which can be solved for simple systems and gives already a !N the Appendix, we show how the different versions to

surprisingly good picture of the evolution, even for the caseS°lve the factor-ordering problem influence the solutions of
the Wheeler-DeWitt equation.

*Email address: mbach@physik.fu-berlin.de

"Email address: hjschmi@rz.uni-potsdam.de 2strictly speaking, the axially symmetric Bianchi type-I model,

Though this identification represents partially a misnomer, it iswhere two of the three scale factors coincide, is even simpler, but as
quite usual in the literature, see the more detailed explanation ione will see from the calculations: restricting to axial symmetry
Sec. VB. does not really simplify the procedure.
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Il. THE BIANCHI TYPE-I MODEL are the following't(t) as arbitrary function as long aé(t)

The metric of a spatially flat cosmological model is de-remains unspecified, artdt) =+t after having fixedN=1.
duced as follows: One requires that an Abelian threePermutations of the three spatial coordinates, and for the
dimensional isometry group acts transitively on three-axially symmetric case also spatial rotations, such as if
dimensional spatial hypersurfaces which consequently have 0, then a rotation in they plane is an additional symme-
to be flat three spaces. This restricts the possible metrics ttry. We presented this geometric part so explicitly, because

o contradicting statements exist about this behavior in the lit-
ds?=N2dt*—g;;dx'dx, (2.1)  erature; for example: In our interpretatiods®=dt?— dx?

, , , —dy?—dZ? andds’=dt?*—t?dx?*—dy?—dZ? represent dif-
whereN=N(t) is the lapse function which can be puthd  ferent geometries in spite of the fact that they are locally
=1 by a time reparametrization,j=1,2,3, andg;; repre-  isometric space times.
sents a symmetric positive definite matrix whose components \ye use a one-component real massive scalar fieits a
depend ort only. So we have six free components from thegqrce, and we interpret it as follows: Either it can really be
first consideration. However, resricting to metrics being ag,ch a scalar field.e., a spin zero field e.g., a Higgs field
solution of Einstein’s field equation we can simplify as fol- yhich dominated the early Universe’s evolution but disap-
Iows:. At any initial time, sayt=0, we can choose the initial peared after a symmetry-breaking effect. Or, it mimics any
condition realistic matter field in a region where spin is negligible. Let

P _ m denote the mass of the scalar field. For the grand unified
gij = 9 =diag1,1,1) att=0 22 theory(GUT) mediated inflationary model, one considers the

without loss of generality, and then by a spatial rotation nofollowing order of magnitudem~10 °Mpy, wheremp is
changing Eq.(2.2), the second fundamental form, i.e., e Planck mass. _ . _ .

dg;; /dt, can be brought into diagonal form. By use of the UP to now, we did not restrict the spatial coordinates,
Einstein equation one can show that under these circunNdZ At the classical leveli.e., for locally solving the Ein-
stancesg;; will keep its diagonal form for all times. Thus: Stein field equation it makes no difference, whether they
The Bianchi type-1 model containing nondiagonal terms doe&OVer all the reals or whether they are cyclic ones. But al-

not represent a generalization, and we can say that withoU2dy for global classical considerationsmigkesa differ-
loss of generality let ence: Suppose, Yy, andz are cyclic, then even for the case

r=s=0 the metric is not spatially isotropic, because the

gij=diagA2(t),Bz(t),C2(t)) (2.3 natural length of a closed spatial geodesic depends on the
chosen direction. However, we get the essential difference
with certain positive function#,B,C. only after quantization. If nothing different is said, we as-
After an obvious rearrangement of the terms we get novwsumex, y, andz to be cyclic with modulus 1, i.ex andx
from Egs.(2.1) and(2.3 +1 represent the same point, etc.

d?=N2d2— e2%(e¥+ 2312+ 25~ 2037 qy2 + =454 22),
(2.4) Ill. THE WHEELER-DeWITT EQUATION

wherea,r,s represent three arbitrary real functions depend-, The Wheeler-D_e¥V|tt equation is always a zero-energy-
ing ont. The Hubble parameter is the mean expansion, i_e.Schrajmger equatio due to time-reparametrization invari-
with a dot denotingd/dt we get ance of the gravitational action. However, this is not really a
problem, because the Schlinger equation with nonvanish-
ing energy can be brought to the zero-energy form by a suit-
able shift of the potential, see, e.g., Rpf] for a class of
transformations of this type.
. . In the present paper, we do not consider the entropy of the
In the notation of Eq(2.4), H=da/dt is the Hubble param-  qystem: we only want to mention the recently published re-
eter, and we restrict our considerations to the expanding Unig,; of Kleinert[5] on how the incorporation of entropy can
verse, i.e., tdH>0. The model goes over to the spatially flat change the model.

isotropic Friedmann model if the dimensionless anisotropy T4 formulate the equations that lead to the Wheeler-

A B C
ATB'C

1

3

parameter DeWitt equatior(6] as easily as possible, it proves useful to
1 apply units such that =c=47G/3=1. Then the Lagrang-
= —\r2+s? (2.5 ian of the minimally coupled scalar field in Einstein’s theory
H of gravity (see the first of Refd.1] for detail9 is given by

tends to zero.

It is essential to observe that this approach leading to the
Wheeler-DeWitt equation breaks the Lorentz invariance of
the system already at this level of geometry: Thel3de-
composition of space time is already made from the begin- 3in units withc=1, the Planck mass is about’¥@eV.
ning. The remaining degrees of freedom within the geometry “But, see also, the discussion in Sec. V B. for this notation.

L=Lg+Lp, (3.1
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where the gravitational part is 52
Og=—f*¥ , (3.7
1 R . 0 aqraq”
Lyg=5y e (r?+s’—a? (3.2
and
and the matter Lagrangian is V2
O,=—fr—v. (3.8
1 - y23 v
Lm:me3a(¢2_m2¢2N2). (33) Vq Vq
For the world functiony(g*) we get the relations
Here we supposed the lapse functibnto be constant in B 34
time. The minisuperspace is four-dimensional, its coordi- Higp=Uoipt3¢ e (3.9

nates arg“=(q°q*,0°,9%) with @°=a, q'=¢, g°=r, and wherd

q®=s. The usefulness of the Misner parametrization Eq.

(2.4) of the anisotropy is obvious: The kinetic part of the Dor=e 3¢ go— ¥ 11— ¥ 09— ¥ 33). (3.10
Lagrangian is already in diagonal form. By defining the ’ ’ ’ ’
minisuperspace metricf,,,=e3*diag(—1,1,1,1) the La- The stationary Scfitinger equation with zero energy in

grangian(3.1) is compactly rewritten as minisuperspacé{y(q*)=0 with the wave functions(q*)
o . and the Hamilton operatdk is called theWheeler-DeWitt
L=on[fma = m?(qt)2N2e3d]. (3.4  equationand possesses the form
- N
Thus the introduction of canonical momenta Hip(g*) = E[ﬁZDEJr m?(q4)2e3 |y (g#*)=0 (3.11)
:ﬁz if - 3.5 for the Bianchi type-1 Universé2.4). In detail, we get after
Pu= e~ Nl 2 dividing by Ne/2
allows us to write down the classical Hamiltonian of the Lo 9 d ? P PP
minisuperspace 0={% ol 365_(7752_P_ 32
_ N “ 2/ ~142430% —
H—g[pﬂp +m (q ) e ]—O (36) +m2¢286a l,b(a’,d),r,S). (312)

Time-reparametrization invariance impligdt/oN=0, i.e.,
H=0. The quantization in coordinate space is done as usu
by going over to the appropriate operatqs= —ifd/dq*
with the partial derivativey.

From now on, we will choose two different versions for
the operator ordering ip,,p*: First, variant A, which is the Before we go over to solve E¢3.12 we want to clarify
most simple one, following the interpretation in REf] that  in subsection A what happens if we neglect the anisotropy
the solutions of the forthcoming Wheeler-DeWitt equationfrom the beginning. In subsections B—D we analytically ob-
will not essentially depend on this choice. tain solutions in a well-defined approximation, and in sub-

Second, variant B, solves the factor ordering problem bysection E we present the results of our numerical calculation.
applying the supercovariance principle: It says that the es-
sential equations have to be covariant ones with respect to A. Isotropic models
the (mini-)superspace metric. Taking variant B, we have to ) ) )
replacep,, by p,=—i#V/Vg*, whereV denotes the super- For variant A, i.e..e=0 in Eq.(3.1]) we get

In what follows we derive an approximation scheme to solve
#he Wheeler-DeWitt equation.

IV. SOLUTIONS OF THE WHEELER-DeWITT EQUATION

covariant derivativedefined byf,,, . PR
To cover both var@nti S|multan90usly, we |Etroduce a 0=\ 42 i +m2p2e% | y(a,d),  (4.D)
parametere as follows: e=0 for variant A ande=1 for da“  d¢

variant B. Accordingly, we denote the two variants of the
D’'Alembert operatdt [, by i.e., we simply remove alt ands dependences. For variant
B, however, this recipe does not work because the covariant

SHere we apply the fact that the metric is always covariantly con-

stant, so different orderings give the same result. "If the dimension of the minisuperspaceDsnstead of 4, then the
5The minus sign in Eqg3.7) and(3.9) is inserted to compensate factor 3 in front of Yo in Eq. (3.9 will be replaced by 3D
for the factori? in front of [ oo —2)/2, sold, and[J; coincide forD=2.
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derivatives mix the coordinates. After a short calculation onghe equation with energy proportional to the constantep-
finds out that here also Ed4.1) is the correct Wheeler- resenting the anisotropic degrees of freedom.

DeWitt equation. The reason for this coincidence is as fol- We redefine the coordinate to v =a%=e>*. The coordi-
lows: The two-dimensional superspace is conformally flathatev is proportional to the spatial volume. Then E¢.4)
and the D’Alembertian is conformally invariant, cf. the sec-goes over tqafter dividing by 9

ond paper in Ref[1] for more details.

Defining a=e*>0 as new variable we have to replace _| 52 J J & 52
dlda by a(dlda), and we get from Eq(4.1) now 0= vgvﬁJrev%_(Ez +C.A%f9
o= (47 atal +m’¢%a’ [(a,4), (4.2 +m? %9 x(v, ¢) (4.5
Jda Jda ¢2 ! ! ) X 3 .

a version of the Wheeler-DeWitt equation favored in Ref.AGS one can see in comgarison with E4.2). Instead of the
[7]. a° term we now have a“ potential.

B. Separation ansatz C. Adiabatic scalar field

In this subsection, we assume the scalar figldo be
almost constant. Theny defined byy?=m?$?/(942) is an
adiabatic constant. In Eq4.5 we omit the ¢» derivative

Wa,d,r,8)=x(a,d) p(r)-o(s). (4.3  corresponding to the adiabatic approach. To this end we con-
sider the following equation for the exact dependence on
It turns out thatp »,/p=c, and o 33/ a=C3 represent con- of a new functiony:
stants, i.e., we get

Now we look for the solutions of Eq3.12. First, we
make a separation ansatz

(ﬁ2 vivi—}—evi +¢1h219+ Y0252 | x(v, b)
p(r)=p1exp(\/c_2r)+p2exr(—\/c—2r) dv  dv dv . Y A
and =E(¢) x(v,¢), (4.6)

where E(¢) is an yet undetermined eigenvalue; hetg,
plays the role of a parameter only. We define a new adiabatic
constantA by A?=E(¢)% 2—c4/9. Then Eq.(4.6) be-
comes fore=0

o(S)= o1exp(\/C3S) + opexp — \/c3s)

with arbitrary constantg; and o;. For negative values,,
the functionp(r) has a sinus-function behavior.

One can interpret these cases as follows: If atAndc, 9 ~
are negative, then we have plane waves inrtheds direc- vV +y%2—A?|x=0. 4.7
tion. This is in agreement with the fact that a translation into
the r or s direction can be compensated by a coordinateEquation(4.7) is a Bessel-type ordinary differential equation.
trgnsformation in metri¢2.4) (i.e., by multiplyingx, y, andz |t \ve replace in Eq(4.7) yu by x andx (v, #) by y(x, $) we
with suitable constantsso that.al_lr ands va!ues should be_ get exactly Bessel's form
equally probable. However, this interpretation works only in
the case that we allow;, y, andzto cover all the reals. If we, 2d2y dy
however, restrick, y, andzto be cyclic coordinates, then this X +X&
argument in favor of equal distribution of tleands values dx
is no more valid.

If, on the contrary, one of the constars or c; is non-
negative, then(up to singular exceptionsthe product y=C1J\(X)+ CpJ_r(X). (4.9
p(r)-o(s) tends to+c asr or s does. This allows the fol-
lowing interpretation: The probability to have small anisot- The J, are called cylinder or Bessel functions and have the
ropy is exponentially small. development

For the moment we keep the further interpretation open

+(x2—A?)y=0 (4.8

whose solutions aréhe constant€; depend om\)

and continue the calculation. We define the constantia - K A2k -1 _1
C1+Cy+Cc3=0 and insert Eq(4.3) into Eq.(3.12; we get ‘]A(X):go (-1 2 (kKD TAL(A+k+D)]
p p (4.10
0=|#? EJF:;E%_&TBZ +eifi?+m? e’ | x(a, ). Now we make the ansatz
(4.4

This equation is for variant A just the Wheeler-DeWitt equa- 8if only a discrete set of valued appear, Eq(4.11) will be
tion (4.1), however, now not the zero-energy equation butreplaced by an analogous sum.
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- R E(¢) depends orc,, c3, and A only, i.e., there is nap
x(v,¢)= fAbA(d’)XA(U’d’)dAv (4.1)  dependence, and we writinstead ofE():
where we assigned tg the subscriptA to emphasizey, 0= f hz— b +b E
being an eigenfunction with eigenvalde Thus the general A ¢2[ A(¢)X(U #)1+ba(#) X(U $)dA
solution of Eq.(4.7) is written as (4.19
Ya(0,0)=C1I,(y0)+Cod_A(yv). (412  In Eq. (4.14 we first write out thed*/ 9¢* applied to the
product, but we assume that only?(d¢?)b,(¢) is essen-
Inserting ansatz4.11) into Eq. (4.5 we get tial, and disregarding the other terfrand assuming that the

x's are all independent we get

2

0= f 12 (B30, bA(H)
A

¢2 2 0
—h*— +E|ba(¢)=0, (4.19
of 9 9 G m? 2,2(7 ¢
X| ke v—v— tgltgv ¢°|x(v,¢)dA.
dv -~ dv which possesses solutions
bA(¢):Ble\c‘E¢/ﬁ+ Bze* VE¢/ﬁ_ (41@

In the second term of Eq4.13 we replace the term in the
bracketd ] by the eigenvalude( ¢) according to Eq(4.6). Finally, we get the general wave function

Yio) (@, ¢,1,8)=(prexp{Cor }+ poexp{ = Veor }) (yexp{Veas} + opexp{ — Veas}) f [Biexp VA~ (c,+c9)/0¢}

+Boexp{— VA — (Co+C3)/9¢} [ C1I A (Mpe3/3h) + Cod _ y(Mpe3*/3h) ]dA (4.17)

with real and for the moment continuous eigenvalogg;.  the differential equation(4.18 is simply transformed into
The superscript ¢) at ¢ indicates that we have treated the that for the dimensionless harmonic oscillator

scalar field adiabatically. This solution has to be specified by
appropriate choices for the constapts, p,, o1, 02, By,

B,, C4, andC, from boundary conditions. Before discussing
the result(4.17), however, we calculate the wave function by
considering the scale factar as the adiabatic variable.

d2

—+(7—x%) |y(x)=0. (4.20

By substituting x=x> and then transformingy(x)

D. Adiabatic scale factor approach =e ¥?y(x), we eventually obtain Kummer's differential

) ) _equation
Another adiabatic method to solve the Wheeler-DeWitt
equation(4.4) is to treat the scale facter as a slowly vary-
equations. i d?y(x) dy(x)
ing variable. X +(m—X) —-vy(x)=0,  (4.2)
Once more, we reexpress the scale factoby v=e3¢, dx d

implying that we consider the Wheeler-DeWitt equation

(4.5 in the following. Considering as the adiabatic vari- where in our casg = 1/2 andv=(1— 7)/4. This differential

able means that we neglect derivatives with respeotitba  equation possesses the general solution

first step. Then Eq(4.5 becomes

y(X)=AsF (v, ;%) +B1F 1 (v—p+1,2= u;x)x 4,

- - (4.22

x(v,¢)=E(v)x(v,é)
(4.18 expressed with the help of the confluent hypergeometric

function 1F4(a,b;x). A andB are constants. Thus the partial

with E(v) being a still undetermined eigenvalue. By defining Problem of finding the solution of E¢4.18) is done and the
result is written as

ﬁ2
. \[cz» =o (E(v) gcl), —

(4.19 9This is usually called adiabatic approximation with respeapto

2 2 1
—ﬁzr&'f' 3C1+ §m2¢2v2
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R 5 E(v) depends explicitly on the adiabatic variable which is in
X (v, ) =e W PT2 A E (1= 9)/4,11250(v) $?/H] this casev. Note thatE(v) also depends on the eigenvalues
C,, C3, and . Now we utilize the assumption of the adiaba-

w(v) . ) ticity with Arespect tov b}/ neglecting terms containing de-

+B \/Td’l':l[(?’_ 7)/4,3120(v) $°Ih] rivatives dy,,/dv and ¢°x,/dv? which appear in the first

) term of Eq.(4.25. Furthermore, supposing that all functions
(4.23 3(,,(04)) are independent with respect ig each integrand
in Eq. (4.29 vanishes. Thus we remain with solving the

with y. denoting the eigenfunction to the real, continuous'! . .
X7 9 9 differential equation

eigenvaluer.

For further processing to find an adiabatic solution for the 9 9
Wheeler-DeWitt equatioi4.5 we make the integral ansatz ﬁzvgv %+ E(v)|g(v)=0 (4.27
X(v,¢)= f 9,(0)x,(v,$)d7. (4.24  or, more explicitly,
' 92 1% K%
Inserting this into Eq(4.5), we obtain(for e=0) vzﬁ-l—v %4— K1V~ g(v)=0 (4.28
v
g 9 . 92 _ ) .
ozf hzv—v—[g”(v)xn(v,¢)]+gn(v) —ﬁz—z with k;=mn/3h and k5=4(c,+ C3)/9. Applying the trans-
n OV U d¢ formation x=2\k,v and denoting the solution ag(x)
1 =g(v(x)), Eq.(4.29 takes the same Bessel form as given in
+ 2 (B2, +m2p2?) ;( (v,¢)d7. (4.25 Eq. (4.8), whereas the index i, instead ofA here. For this
9 K reason the general solution of E¢.28 reads

The expression enclosed in the bracketkin the second g”(v):D1J4(C2+C3)/g( vadmuu/3h)
term is substituted by the eigenvalue
+D2J 4 +co(VAMPUI3)  (4.29

1
E(v)= 5[3ﬁm’7”_ﬁ2(02+c3)]' (420 \yith constantD, andD,.
Thus, the complete general wave function obtained with
following from Eq.(4.18 and the definitiong4.19. In con-  an adiabatic scale factor approaghdicated by superscript
trast to the preceding approach with an adiabatic scalar fieldy) is found to be

P (a,,1,5)=[ prexp{Car } + poexpl — Veor Horexp{eas}) + opexp{ — Vess}]
Xf [D1d4(c,+ cyyo( VAM7E 3R ) + D d_4(c, s cyyr VAM7NE™/3h)]
n

X exp{— m¢2e3“/6ﬁ}[A1F1[(1— 7)14,112m¢pe3*/3h ]

m 3al2 . 2 3a
+B\/ 570 AR A[(3- 7)/4,32me?e>/3h] |d (4.30

with constantsp;, ps, o1, 02, A, B, Dy, and D, to be probability amplitude, we concentrate on the absolute value
determined via appropriate boundary conditions. The aniso®f the wave function which is given in Figs. 1-6 in depen-
ropy quantum numbers, andc; are supposed to be real at dence ofa, the logarithm of the cosmic scale factor, and the
this stage. Certain boundary conditions, such as requiring thgcalar field¢. Each figure is printed at fixed values of the
wave function to vanish for infinitely large values of  Other parameters, see the corresponding explanation in the

and/or— «, lead to replacing the integral by a sum owgr  text. i .
For all these essentially different ranges of parameters we

got essentially the same picture: The right part of the figure

is the region where the WKB approximation is valid, that
Now we visualize the results of our numerical calculationmeans, the solution is close to a sinus-shaped wave with a

of the world function(4.17). To get an impression about the slowly varying amplitude. The left-hand side is the quantum

E. Visualization of the world function
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. . FIG. 3. The same as Fig. 1, nowy=—4 andc;=—7.
FIG. 1. The absolute value of the wave functipfi (vertical

axis) in dependence ow (axis from left to righj and ¢ (axis from )
front side to back side of the pictyrat r=s—=1 andc,=4 and els has been developed by several researchers, e.g., the au

P thors and editors of Ref§7] and[8]. At that time, the main
0 discussion dealt with the closed isotropic Friedmann models,

. o ) and the spatially flat Friedmann models had been included as
region where no oscillations exist at all. less interesting limit cases, too.

The range where these two behaviors go into each other, |n[9] and[10], Scha and Hajicek perform a quantization
is relatively sharply defined. This range is what one usuallyof systems with quadratic constraints and discuss the
calls the “cosmological quantum boundary,” and these pic-wheeler-DeWitt equation. In Ref11], Landsman gives de-
tures show up that this notion is relatively well defined.  tails which Hilbert space might be appropriate for the isotro-

A new feature of these pictures is the following: All of pic minisuperspace quantization, a topic which was not much
them show a period-doubling bifurcation of the frequency ifdiscussed before.

one looks from the bottom to the top of these pictures. In the recent preprint by Kirhl2], the minimally coupled
massless scalar field in an open isotropic Friedmann model
V. DISCUSSION has been discussed and its Wheeler-DeWitt equation be

solved from the point of view that the Universe is created
quantum mechanically from “nothing.”
Before we discuss the results of the present paper we give Recently, Capozziello and Lambialsks] investigated the

a short review to other papers. The original pap@rby  connection between the Hartle criterion for selecting corre-
DeWitt was seminal to the whole development of quantumiated regions in the configuration space of dynamical vari-
gravity. Its application to minisuperspace cosmological mod-ables and an associated Noether symmetry. This relationship
serves to classify solutions of the Wheeler-DeWitt equations
in semiclassical minisuperspace models. Thus, the oscilla-

A. Short review of the existing literature

1000

]

500

FIG. 2. The same as Fig. 1, nosy=—4 andcy=7. The dif-
ferent spacing of théy| axis should be noted. FIG. 4. The same as Fig. 1, nosy=0 andc3;=0.
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proaches to quantum cosmology, Kim and PEg discuss
quantum Friedmann models and power-law inflation, Kim
[20] compares quantum Friedmann models with conformally
and minimally coupled scalar fields. In RE€21], Bleyer and
Ivashchuk discuss multidimensional cosmological models
and their corresponding Wheeler-DeWitt equations. Refer-
ence [22] solves the Wheeler-DeWitt equation for scalar
fields as the source.

Referencd 23] represents the famous paper in which the
“Hartle-Hawking boundary conditions” for the Wheeler-
DeWitt equation have been derived. One takes a path inte-
gral over all such space timeg, whose boundary is the
prescribed spatial hypersurfavg.

In Ref.[24], Kiefer constructs wavepackets in minisuper-
space for a Friedmann Universe. An adiabatic approach is
used in the case of a massive scalar field, thereby assuming

FIG. 5. The same as Fig. 1, now=1 andcs=1. the scale parametex to be slightly changing only. In Zeh
[24], these solutions are discussed under the point of view of
tory behavior of a subset of solutions entails the presence dghe definition of the direction of time. Our E¢4.1) coin-
Noether symmetries which, in the consequence, select clasides with the form discussed in R¢24] [Eq. (6.5 of Zeh,
sical Universe models. and Eq.(2.2) of Kiefer]. The approximation of our Sec. IV D

The paper{14] by Schunck and Mielke is related to the was used by Kiefef24] for solving the Wheeler-DeWitt
models discussed here as follows: They apply the Wagoneequation of a Friedmann Universe. In contrast to Kiefer's
Bekenstein-Starobinsky-transformation for classifying infla-procedure, where the harmonic oscillator has discrete eigen-
tionary solutions with scalar field as source, and this classiyg|ues and thus the wave function decreases for large values
fication should also apply to the corresponding Wheelerys the scale factorr, we allow all real eigenvalues.

Dewitt equations. Conradi[25] solves the Wheeler-DeWitt equation for Bi-

In. [15] anq [16], a one-parameter §et of minisuperspaceanchi type-1X model and a massive scalar field. Grishchuk
metrics in arbitrary dimensions is considered, from which we

: ; _ and Sidorov[26] discuss the initial conditions for the
have chosen only tha_t one which gives C'ass'c‘?‘”y the Corre%heeler—DeWitt equation, especially for the massive scalar
correspondence to Einstein’s theory[l5], the signature of '

the superspace metric in dependence on the signature of tﬁgld in a closed Friedmann model.. L
In Ref. [27], Amendola, Khalatnikov, Litterio, and Oc-

underlying manifold is evaluated with the result that the hi . i | ith lex field
normal-hyperbolic character of the Wheeler-DeWitt equationC lonero consider guantum cosmology with a complexfieid.

exists only for the Euclidean and the Lorentzian signature of?Uéndelmann and Kaganovi¢h8] discuss cosmic time in
the underlying manifold. guantum cosmqlogy. The factor-ordering problem is solved
In [17], Horiguchi, Maeda, and Sakmaoto perform an ex-such that the kinetic term gets the forim+ £R where £
pansion of solutions of the Wheeler-DeWitt equation in pow-= £conf-
ers of the Planck length. Vilenkifl8] compares several ap- A comparison of the minisuperspace of minimally and
conformally coupled scalar fields was done by Pgfd. He

solves the factor-ordering problem of the Wheeler-DeWitt
equation by requiring that the kinetic term is proportional to
the Laplacian in the minisuperspace metric, i.e., our variant
B with e=1. The classical equation is similar to the geodesic
equation in superspace.

Referencd 30] deals with quantum cosmology from the
path-integral point of view: The Wheeler-DeWitt equation
can be derived in a first approximation from the correspond-
ing path integral. Halliwell[30] solves the factor-ordering
problem by requiring invariance with respect to field redefi-
nition of both the three metric and lapse function. Jafarizta-
deh, Darabi, and Rasteda&0] apply the method of Duru and
Kleinert to evaluate the path integral for quantum cosmol-
ogy, cf. Kleinert[30].

DeWitt [30] assumes the path integral to be the more
fundamental approach, but the Wheeler-DeWitt equation in
the minisuperspace to remain a good approximation to it.
FIG. 6. Magnification of a subrange of Fig. 1. By considering the Wheeler-DeWitt equation
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9 9 A 1 -
aP—aP—+a"5|y(a)=0, SmAY+V-¢=0,

Gibbons and Grishchuld1] obtain the result that inflation is  whereA is the spatial Laplacian, i.e., the operatt3fdx? in
typical in the set of spatially flat Friedmann models in Ein-the one-dimensional case. This equation is of second order,
stein’s theory with a\ term. The parametqy is due to the and it is this form of the Schainger equation which one had
factor-ordering ambiguity, they takp=1 as a preferred in mind when one compared with the Wheeler-DeWitt equa-
value. An analogous result is given by Hawking and Pageion. However, even this is a yet-to-be-explained compari-
[32]. Melnikov and Pevcoy33] discuss the factor-ordering son: The Laplaciam appearing here is an elliptic operator,
problem for the Wheeler-DeWitt equation in closed and operwhereas in the corresponding place of the Wheeler-DeWitt
Friedmann models and give some solutions to it. equation we have a differential operator of normal hyper-

Reuter and Schmidf34] and Schmidt[35] derive the bolic type, a point which was mentioned already many times,
Wheeler-DeWitt equation of fourth-order gravity for a spa-e.g. in Ref[15]. So, if one wishes to make the analogy of the
tially flat Friedmann model and compare with the corre-two equations more strict, then one has to allow a term with
sponding conformally equivaleritue to the Bicknell theo- negative kinetic energy in the classical Hamiltonidnto-
rem) second-order models. The solution of Reuter-Schmidyether with all these known consequences for stability, etc.
for flat Friedmann models is generalized in R&¥6] by Pi-  Of course, formally it is possible to achieve this negativity
mentel and Obregon to closed and open models. Fabris ary an imaginary transformation of the corresponding coordi-
Reuter{36] continue to generalize the results[8#] to show  nate, and this procedure does work in the search for exact
that the Bicknell theorem applies also at the level of thesolutions, but physically, of course, it really changes the sys-
Wheeler-DeWitt equation. tem. In other words: The imaginary transformation changing

Rainer[37] gives an overview on higher dimensions andfrom the Laplace- to the Klein-Gordon-type equation
discusses three types of conformal transformations of differehanges also the character of the set of solutins.
ent levels for the Wheeler-DeWitt equation. Quite recently, There exist problems with the probability interpretation of
the solutions of the Wheeler-DeWitt equation in comparisorthe wave function of the universe, cf. RpA3]: Similarly as
with the appearance of singularities is treated by Mongarior the one-dimensional free particle in guantum mechanics,
[38]. Zhang and Shen39] consider quantum cosmology the world function can in general not be normalized, and one
with a complex scalar field at finite temperature. A critical has in the result statements about relative probabilities rather
discussion of the Wheeler-DeWitt equation and an alternathan probabilities themselves, see aldd], and the recent
tive quantization scheme is presented in Ré€] by Peres.  review[45] on this subject.

From recent constraint calculations of Hwang and Noh In [44] it is correctly stated that the approach, which is
[41] to an inflation model based on a nonminimally coupledalso used here and all similar papers, has a further problem:
massive scalar field and comparisons with observational dateamely that the homogeneity of the cosmological model is
[Cosmic Background ExplorefCOBE) Differential Micro-  presumedbefore quantization. If taken literally, this would
wave RadiometefDMR)], one can state that minimal cou- lead, see Ref45] (Sec. 1), to a violation of the uncertainty
pling is a good approximation for inflationary models. Fol- principle. This problem should be dealt with by finding an
lowing Futamase and Maedd2], the coupling constant is appropriate effective potential to be added.
either quite small¢<1/1000, or negative. According to the  As we did, Ref[44] deals with the geometry of an aniso-
coupling factor (- £¢?) in front of R, critical behavior ap-  tropic Bianchi type-l model. Otherwise the papé#] deals
pears foré= ¢ 2, i.e., for positive values of only. with the relation taN=1 supergravity which is not the topic
of the present paper.

Reference$36] and[45] (Sec. IV) deal with the compari-
son of the Wheeler-DeWitt equations in different, but classi-

Let us start with explaining the misnomer with Schro cally conformally equivalent theories, especially with fourth-
dinger and Wheeler-DeWitt equation, see the footnotes to therder gravity theories following from a nonlinear Lagrangian
Introduction and to Sec. llI: In quantum mechanics, the clasf(R), on the one hand, and with scalar-tensor theories, on the
sical HamiltonianH gives (for a given energ)e) rise to the  other hand. As a rule one can summarize up to different

Schrainger equatior(W)=E- V¥, whereV is the time- versions how to solve the factor-ordering problems, the con-
dependent wave function atlis the operator form off. In formal relation can be carried over from the classical to the

the most simple case and settifaig- 1 this equation reads quantum theory.

B. Comparison with similar results by others

oV 1
ot T ﬁA\P—'—V' v %The topological origin of this difference is the noncompactness
of the Lorentz group as compared to the compactness of the rotation
, group, cf. Ref[49]. In practice, see, e.g[45] and the references
and is of first order irt. With the ansat2l = ¢-e "' we get  cited there, this has the consequence, that the norm in the corre-
an equation for the time-independent wave funcijorit has  sponding Hilbert space becomes a pseudonorm, i.e., it loses its posi-

the following structure: tive definiteness.
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functions in dependence @f¢, can be compared with our
solution (4.12 representing the linear combination of two
Bessel functiongwhich is almost the same

A further point to be discussed is the relation mentioned Until Eq. (4.6) we parallely dealt with variant A¢=0)
in [47] of the quantum cosmology with quantum wormholes;and B (e=1), but beginning from Eq4.7) we simplified by
here we only mention a further approaet8] dealing with  restricting to variant A. Now we want to complete the cal-

APPENDIX: VARIANT A VS VARIANT B

wormhole-type solutions. culation by showing what changes using variant B.
The purpose of this Appendix is to show in detailed cal-
C. Discussion of the present paper culations what has been verbally mentioned in the literature

Let US now summarize our results: We solved theseveral times, namely the fact that differences in solving the

Wheeler-DeWitt equation for the minisuperspace of a Cosfactor—orderlng problem do not essentially change the results.

mological Bianchi type-l model with a minimally coupled ior;h'fs. (_:(_)n5|d§r?t|on r\]/ve now S.Et:_l in Eq. (4.6 and use
massive scalar field as the source by generalizing the caI-t e definitions below that equation:

culation of Lukash and Schmidi]. Contrarily to other ap-
proaches we allowed strong anisotropy.

Combining analytical and numerical methods, we applied
an adiabatic approximation fop, and as new feature we
found a period-doubling bifurcation of the typical solutions.
This bifurcation takes place near the cosmological quantum d2y dy
boundary, i.e., the boundary of the quasiclassical region with X2 —= 4 2x —
an oscillatingy function where the WKB approximation is X0 dx
good. The numerical calculations suggest that such a notion ) ] -
of a “cosmological quantum boundary” is well defined, be- Whoiellgolut|ons are also Bessel functions, modified by a fac-
cause sharply beyond that boundary, the WKB approximator X ==
tion is no longer applicable. e ~

This result confirms the adequateness of the introduction y(x)=x"Y{CoIzzrza(x) + Cd - mzrma(x)] (A3)
of a cosmological quantum boundary in quantum cosmology. -

We applied the supercovariance principle, i.e., the underlywhereC,,C, are constants.

ing theory should also be covariant with respect to transfor- This means that the wave functiof.17) using variant A
mations representing a mixture between space time and mds changed by multiplying by a factaf3%e >*/m¢. More-
ter degrees of freedom. With our figures, we tried toover, the indexA of the Bessel functions must be replaced

o9
oo o

+ 5202 — AZ) x(v,$)=0. (A1)

The transformation from Eq4.7) to Eq. (4.8) now leads to

+(x?=A?)y=0, (A2)

visualize the birth of the Universe. by VAZ+ 1/4.
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