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Varying speed of light cosmologies as two-dimensional dynamical systems
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We formulate the dynamics of Friedman–Robertson-Walker varying speed of light models as a two-
dimensional Hamiltonian dynamical system. The shape of the potential and the existence of an energy first
integral can be used to classify possible evolutions of VSL models. We show that an assumed~power-law!
time dependence of the speed of light leads to a uniform evolution pattern of VSL models on two-dimensional
phase space. We also formulate the criteria for solving the flatness and horizon problems in terms of the phase
space and discuss the emerging patterns of evolution on respective phase portraits for all possible initial
conditions. We argue that in the class of FRW VSL models filled with radiation open (K521) models with
a positive cosmological constantL.0 are preferred from the point of view of the flatness and horizon problem
avoidance.

PACS number~s!: 98.80.Hw
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I. INTRODUCTION

Although the so-called cosmological standard mode
usually believed to be the correct picture of our world@1# it
still does have some problems, among which the flatness
horizon problems are the most widely known. The existe
of large-scale structure in the universe extending to the lim
of our deepest surveys@2# is another mystery. Its very exis
tence implies the necessity of seeds for this structure in
early universe. In the standard big-bang scenario they co
only be a built in, rather undesirable feature of the theo
Therefore, a great amount attention has been paid tow
inflationary models which, despite invoking exotic~if not
hypothetical! physics, are able to provide at least hope fo
consistent explanation of either the flatness or horizon pr
lems as well as the origin of seeds for the large-scale st
ture. The development of early universe physics led us
expect the occurrence of phase transitions when the univ
was young, hot, and dense@3#.

An interesting idea was formulated some years ago
Moffat @4# who conjectured that there could actually ta
place a spontaneous breaking of local Lorenz invariance
diffeomorphism invariance associated with a first ord
phase transition in the early universe. The associated va
tion of the speed of light over many~30! orders of magnitude
is capable of explaining the flatness and horizon proble
provides a mechanism of monopole suppression and
solve the cosmological constant problem. This idea was
vived in recent papers by Albrecht and Magueijo@5# and was
given further consideration by Barrow@6#. In particular the
term varying speed of light~VSL! cosmology was coined in
the latter work.

It is a well known fact that the outcome of physical e
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periments is sensitive only to dimensionless combinations
dimensional constants. Consequently, the physically me
ingful variability of the speed of light would manifest itsel
for example, as a variation of the fine structure consta
There have been several tests@7# of possible time variation
of the fine structure constanta in the past. The results o
these works indicated that the VSL period~if it exists at all!
should be confined to the very early universe. On the ot
hand, there have been suggestions of evidence of time v
ing fine structure constant@8# seen in comparison of quasa
spectral lines in different multiplets. Barrow and Magueijo
a recent paper@9# proposed a VSL scenario in which a var
ing c of the magnitude required to create an apparent cha
in a at the observed levels@8# was also sufficient to produc
an acceleration at the level suggested by the supernova
Ia ~SNIa! data@10#. In Ref. @11# it has been pointed out tha
position of the first acoustic peak of the cosmic microwa
background~CMB! angular power spectrum is a sensitiv
measure of the variability ofc after the epoch of last scatte
ing and that future observations should significantly impro
the current bound~from the Doppler peak! allowing for
about a 4%, variation inc. Hence the exotic problem of VSL
cosmologies is entering the stage of seriously confronting
predictions with the real world.

Anyway, it still remains true that the prime motivation fo
VSL cosmologies lies in the very early universe which is t
domain of high-energy cosmology. The literature of the su
ject is still growing and comprises a variety of approach
phenomenological Albrecht-Barrow-Magueijo @5,6,12#,
scalar-tensor approach of Clayton and Moffat@4,13#, and a
number of other contributions, some of them inspired
higher-dimensional brane theories@14# ~see also the mos
recent paper@15#!. Hence the VSL cosmologies are becom
ing a serious alternative to the inflationary scenario.

There is a widespread opinion that physically realis
models of the world should possess some kind of struct
stability. A suitable tool for investigating structural stabilit
and similar kinds of questions is provided by the theory
©2000 The American Physical Society14-1
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dynamical systems. This approach is known in the literat
@16# and has already been applied in our previous wor
e.g., Ref.@17#. In this paper we formulate VSL Friedmann
Robertson-Walker cosmological as a two-dimensional
namical system an we discuss on phase portraits their p
erties emerging in this picture.

II. BASIC EQUATIONS OF THE THEORY

In recent papers by Albrecht and Magueijo@5# and by
Barrow @6# a useful framework to discuss VSL models w
set up by the assumption that time variablec should not
introduce changes in the curvature terms of the gravitatio
field equations and that Einstein’s equations must hold.
cause time varyingc breaks the Lorenz invariance the VS
cosmology requires a specific reference frame~including
specific choice of time coordinate! in which changes in the
field equations are minimal and one postulates it to coinc
with cosmological comoving frame.

In the case of the VSL version of the Friedman
Robertson-Walker~FRW! models the scale factor obeys th
following dynamical equations:

S ȧ

a
D 2

5
8pG~ t !r

3
2

kc2~ t !

a2~ t !
, ~1!

ä~ t !

a
52

4pG~ t !

3 S r1
3p

c2~ t !
D . ~2!

Equation ~2! is called the Raychaudhuri equation, a
from the above system one can build a generalized con
vation equation

ṙ13
ȧ

a S r1
p

c2~ t !
D 52r

Ġ

G
1

3kc2

8pGa2

ċ

c
~3!

in which time dependence of fundamental constants has b
taken into account explicitly. Alternatively one can think
the Raychaudhuri equation together with the generali
conservation equation as of a fundamental system to w
Eq. ~1! is a first integral.

Fundamental difficulty concerning the system~1!–~3! is
that now it became a nonautonomous system with unkno
functions of time@G(t),c(t)# on the right-hand sides. In
order to be specific in further analysis we adopt Barrow
power-law ansatz

G~ t !5G0a~ t !q, c~ t !5c0a~ t !n. ~4!

Moreover, we assume the hydrodynamical ener
momentum tensor with the equation of state

p5grc2~ t !, ~5!

where 0<g<1. Well recognized special cases areg50,
dust~pressure less matter!, g51/3, radiation, andg51, stiff
Zeldovich matter. The power-law ansatz~4! turns the field
equations back into an autonomous system. We can
think about extensions of our baseline equations. First,
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can straightforwardly include the cosmological constantL
by introducing respective pressurepL and energy density
rL :

rL5
Lc2~ t !

8pG~ t !
, ~6!

pL52rLc2~ t !. ~7!

One is also able to extend the system~1!–~3! with cos-
mological constant to some homogeneous anisotropic m
els of Bianchi type I~containing flat FRW model! and Bian-
chi type V ~containing open FRW model! having isotropic
curvatures. In general the line element of such models
parametrized by three scale factorsR1(t),R2(t),R3(t). If one
introduces the geometric mean scale factora(t), i.e., a3(t)
5R1(t)R2(t)R3(t) and the shear anisotropy scalars, the
field equations can be cast into the form

S ȧ

a
D 2

5
8pG~ t !r

3
2

kc2~ t !

a2~ t !
1

s2

3
1

Lc2~ t !

3
, ~8!

ä~ t !

a
52

4pG~ t !

3 S r1
3p

c2~ t !
2

2s2

3
1

Lc2~ t !

3 D
~9!

ṙ13
ȧ

a S r1
p

c2~ t !
D 1

s

4pG~ t !
S ṡ13

ȧ

a
s D

52r
Ġ

G
1

3kc2

8pGa2

ċ

c
. ~10!

The postulate of the standard shear evolution equation

ṡ13
ȧ

a
s50 ~11!

which means thats5S/a3(t), S5const make the genera
ized conservation equation retaining its original VSL form
In the other words matter decouples from shear evoluti
The main conclusion of this section is therefore a consid
able generality of the formalism we use in further section

III. REDUCTION TO THE HAMILTONIAN SYSTEM

In this section we shall present the field equations~8! and
in particular Eqs.~1!–~3! in the form of a gradient dynamica
system. In order to perform this task let us define a n
variable

X~ t !5a~ t !D(g), ~12!

where D(g)53(11g)/2. The field equations are now
equivalent to the following gradient system:
4-2
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Ẍ~ t !52
dV~X!

dX
52

3

4
~g221!S2X(D26)/D

1X2n/D$K̄X(D22)/D2L̄X%, ~13!

where K̄5 3
4 c0

2(11g)(113g)K and L̄5 3
4 c0

2(11g)(1
13g)L.

We shall focus our attention on the caseS50 corre-
sponding to VLS version of FRW models. Moreover w
shall assume negativen,0 @6# because this is the range fo
which cosmological problems can be solved.

Let us now notice that by simple time rescallingt
5 3

4 c0
2(11g)(113g)t one can simplify the system in th

sense that coefficientsK̄ and L̄ acquire back their origina
form and meaning. Denoting, by primes, derivatives w
respect tot one arrives at the system

X95~2KX(D22)/D1LX!X2n/D ~14!

or, in the phase plane (X,X8),

X85Y,

Y85X2n/D~2KX(D22)/D1LX!. ~15!

Finally one can cast the system into a Hamiltonian form
introducing the potential function

V~X!5X2n/D~KDX(2/D)(D21)2LDX2!, ~16!
-
al
-

th
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where KD5KD/2(D1n21) and LD5LD/2(D1n). The
above functional form of the potential is valid wheneverD
1n21Þ0 andD1nÞ0. If D1n2150 then

V~X!5K ln~X!2LDX212n/D,

and in a similar manner, in the case ofD1n50 we have

V~X!5KDX2(n1D21)/D2L ln~X!.

Let us stress that now, the constantsKD andLD do not have
to take the same sign asK andL do.

The Hamiltonian of the system~15! has the form

H~X,Y!5
Y2

2
1V~X! ~17!

and of courseH5const5C is the first integral. It is easy to
demonstrate thatC>0 since K5L50 correspond to the
Minkowski space. The system~17! is one dimensional and
hence can be integrated in quadratures

t2t05
1

A2
E

X0

X dz

AC2V~z!
, ~18!

where X05X(t0), one can assumet050 and X050. An
example of such integral forC50 is
t2t052
DXA~12LX2/D/K !~2LX21KX2(D21)/D

1F1@~12n!/2,1/2,~32n!/2,~LX2D!/K#

A2~n21!A2LX21KX2(D21)/DA2X2n/D~2LX21KX2(D21)/D!
, ~19!
ines

by
y

e

by
n

where 1F1 is respective hypergeometric function.
The Hamiltonian structure of Eq.~17! can be used to clas

sify the VSL models qualitatively in the spirit of classic
Robertson’s classification@18#. For this purpose let us con
sider the function

w~X!5
Y2

2
5C2V~X!

5C2X2n/D~KDX~2/D !(D21)2LDX2!. ~20!

The motion of the system in the configuration space of
model is confined to the regionD5$XPR;w(X)>0%. The
zero velocity curvew(X)50 can be represented as

L~X!5
2~n1D !

D S 2CX2(2/D)(n1D)

1
KD

2~D1n21!
X2(2/D)D ~21!
e

and the evolution of models is represented as horizontal l
lying above theL(X) curve and bouncing off the ‘‘wall’’ of
w(X)50. Because the zero-velocity curve is determined
the potential functionV(X), one should consider additionall
two special cases:~i! D1n2150 then

L~X!5
2~n1D !

D
X22(D1n)/D@ ln~X!2C#,

and ~ii ! D1n50 then

L~X!5
KDX(n1D21)/D2C

ln~X!
.

Figures 1 and 2 show theL(X) curves corresponding toK
561 models for several values ofn. They can be used to
classify ~qualitatively! all possible evolutions of respectiv
cosmological models. In the family of closed VSL FRW
models (K511) displayed in Fig. 1, the curve forn50
reproduces standard classical behavior which is inherited
VSL models withn>22. Possible patterns of evolution i
4-3
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M. BIESIADA AND M. SZYDŁOWSKI PHYSICAL REVIEW D 62 043514
this class are the following. ForL larger than the maximum
Lmax of the L(X) curve the universe starts from the initi
singularity and expands to infinity. ForL,Lmax two distinct
evolution patterns emerge: the universe either starts from
initial singularity and ends in the final singularity or startin
from the finite size expands to infinity~nonsingular uni-
verse!. In the case ofL5Lmax we have either a univers
expanding from the initial singularity to a static Einstein–
Sitter state or starting from finite size expands to infin
~Lemaitre-Eddington-type evolution!. The VSL models with
strongly negativen ~lesser than -2! exist for L>Lmin and
starting from the finite size they expand to a finite siz
universe. The case ofL5Lmin corresponds to the static un
verse. Models withL,Lmin are forbidden@see, e.g., the
phase portrait on Fig. 6~d!#.

The family of VSL open (K521) models is shown in
Fig. 2. From the formula~21! one can see that the asympto

FIG. 1. LD(X) function corresponding to closed (K511) VLS
Friedmann-Robertson-Walker models with radiation (D52) for
different values ofn.

FIG. 2. LD(X) function corresponding to open (K521) VLS
Friedmann-Robertson-Walker models with radiation (D52) for
different values ofn.
04351
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behavior ofL(X) depends crucially onn. Namely, for21
<n<0 L(X)→2` for X→0 andL(X)→0 for X→1`.
Then for 22<n,21 L(X)→1` for X→0 and L(X)
→0 for X→1` and finally forn,22 L(X)→2` for X
→0 and L(X)→1` for X→1`. Consequently the pos
sible evolutions of respective models are the following:
21<n<0 models withL.Lmax start with initial singular-
ity and expand to infinity, models withL<Lmax either are
oscillatory ~with initial and final singularities! or expand
from the finite size to infinity. For21,n<22 solutions
with L,0 are forbidden and models with positive cosm
logical constant expand to infinity starting from the fini
size. Finally VSL models withn,22 start from the initial
singularity and finish their evolution in the final singularity

IV. PROPERTIES OF DYNAMICAL SYSTEMS
DESCRIBING THE EVOLUTION OF VLS MODELS

We shall now investigate the system~15!. Right-hand
sides of this system define a smooth vector field onR2/$0,0%.
If we want to have a smooth dynamical system on the wh
R2 the regularization procedure@see below Eq.~23!# is re-
quired. In this way all possible evolutions of VSL mode
can be represented as curves in the phase space. We
discuss emerging phase portraits in the case of radiative
ter ~for the purpose of illustration!, i.e., for D52.

One can notice that forD52 the classical system~i.e.,
n50 corresponding to constant speed of light! is linear and
transition to the VLS model adds nonlinearity to the equ
tions. In the classical case the system has two critical po
(X0 ,Y0)5(0,0) and (X1 ,Y1)5@(K/L)D/2,0# and in general
they can survive in VSL system. The first critical point
degenerate and the second one could be either cente
saddle point.

One can notice that the phase-space flow generating
tor field is singular~blows up to infinity! in the origin of the
coordinate system~0,0!. A natural way to deal with this dif-
ficulty is to introduce projective coordinates. We shall illu
trate this approach forD52. Let us define projective coor
dinates:z51/X, u5Y/X. In these new variables the origina
system takes the form of autonomous dynamical system w
rational right-hand sides

dz

dt
52uz,

du

dt
5

1

zn
~2Kz1L!2u2. ~22!

Introducing new time parameterdT5dt/zn we obtain the
following system, now with polynomial right-hand sides:

dz

dT
52uzn11,

du

dT
52Kz1L2u2zn ~23!
4-4
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VARYING SPEED OF LIGHT COSMOLOGIES AS TWO- . . . PHYSICAL REVIEW D62 043514
which is regular in the origin of the coordinate system.
The system~23! does not have critical points in the origi

of coordinate system. We have one critical point (z0 ,u0)
5(L/K,0). Trace and determinant of linearization matrixA
at this point are equal TrA52(L/K)n11 and detA
5K(L/K)n11. This means that ifK and L have the same
signs then TrA,0 and sgn(detA)5sgnK. Type of evolu-
tion ~for K50 or K521) depends on D
5(L/K)n11A124K whereas stability of solutions is dete
mined by the sign of TrA.

There is a great advantage of phase-space dynamica
scription that one is able to discuss the distribution of mod
with given properties. In the other words one can imagine
ansamble@19# of models starting from different initial con
ditions and ask questions how is given property distributed
the ansamble. We shall now formulate sufficient conditio
for solving the flatness and the horizon problem in terms
phase-space relations. We understand the solution of flat
and horizon problems in a similar way as formulated in@6,5#,
i.e., the standard considerations are valid with thec(t) func-
tion taken explicitly into account.

Let us recall that the flatness problem is solved whene
the scale factor’s acceleration is positive

FIG. 3. ~a! Phase portrait of the classical system (n50) corre-
sponding to open FRW model with negative cosmological cons
(K521, L521). ~b! Phase portrait of the classical systemn
50) corresponding to closed FRW model with positive cosmolo
cal constant (K511, L511).
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ä~ t !.0. ~24!

This condition is fulfilled in the subspaceDflat of the phase
space

Dflat5H ~X,Y!:
Y2

2
1

D

D21

dV~X!

dX
,0J ~25!

it means that trajectories representing the histories of V
universes experience an accelerated expansion while sta
in Dflat region. Let us stress here that dotted area depicte
Figs. 3–6 denote the domain where the condition~25! is
broken, i.e.,ä<0 holds. One can restate the relation~25!
using the Hamiltonian constraintY252@C2V(X)#. It is
easy to see that the respective condition expressed pure
terms of configuration space, reads

Dflat5H X:C2V~X!1
D

D21

dV~X!

dX
,0J . ~26!

From Eq.~25! one obtains that the demand of

nt

-

FIG. 4. ~a! Phase portrait of the VSL model (n521) corre-
sponding to open FRW model with negative cosmological cons
(K521, L521). ~b! Phase portrait of the VSL model (n521)
corresponding to open FRW model with positive cosmological c
stant (K521, L511).
4-5



tant
ical
e

h

M. BIESIADA AND M. SZYDŁOWSKI PHYSICAL REVIEW D 62 043514
FIG. 5. ~a! Phase portrait of regularized VSL model (n523) corresponding to open FRW model with positive cosmological cons
(K521, L511). ~b! Phase portrait of regularized VSL model (n523) corresponding to open FRW model with negative cosmolog
constant (K521, L521). ~c! Phase portrait of regularized VSL model (n523) corresponding to closed FRW model with positiv
cosmological constant (K511, L511). ~d! Phase portrait of regularized VSL model (n523) corresponding to open FRW model wit
negative cosmological constant (K511, L521).
t

ob
f

ve
t

te

ag

ni-
ls
of
ly,

the

e
d to

izon

in
th

er,
the
dV~X!

dX
,0, ~27!

whereV(X) is given by the formula~16! is the necessary bu
not sufficient condition for solving the flatness problem.

Another interesting question concerns the horizon pr
lems. It is not difficult to prove the following criterion o
avoiding the horizon problems in the caseD.1.

Corollary. The FRW cosmological model does not ha
event horizons near the singularity ifȧ(t) tends to a constan
while a(t) tends to zero. The proof is elementary and is
consequence of the observation that conditionȧ,C implies
that, as a→0, *0

a0(da/a),C*0
t0(dt/a)5C(h02hsing)

whereh is conformal time. Because the left-hand side in
gral is divergent it means thath→2` and that there is no
causally disconnected regions in this spacetime.

The above criterion can be reformulated in the langu
of the phase-space in the form

Y5C0X(D21)/D. ~28!
04351
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For example in the VLS models with radiationD52 the
criterion is Y2/2}C0X or equivalentlyV(X)}(C2gX) In
general, the trajectories of models without horizons have u
versal behavior~28!. One can distinguish the VLS mode
with or without horizon problems solely on the ground
their universal asymptotic behavior near singularity. Name
if 2 @C2V(X)#X2(12D)/D→const while X→0 the model
does not have event horizons. If 2@C2V(X)#X2(12D)/D

→` then the event horizon is present in the evolution of
model.

V. DISCUSSION OF PHASE PORTRAITS

The phase portraits of FRW VSL model with radiativ
matter are shown in Figs. 3–6. Shaded regions correspon
regions of the phase space for which flatness and hor
problems cannot be solved~i.e., ä<0).

The phase portraits of classical system are displayed
Fig. 3. Figure 3~a! corresponds to the open FRW model wi
negative cosmological constant (K521, L521). In the
physical domain there exists one critical point—a cent
leading to periodic trajectories. Trajectories starting from
4-6
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FIG. 6. ~a! Phase portrait of the VSL model in (X,Y) variables forn524 corresponding to open FRW model with positive cosmologi
constant (K521, L511). ~b! Phase portrait of the VSL model in (X,Y) variables forn524 corresponding to open FRW model wit
negative cosmological constant (K521, L521). ~c! Phase portrait of the VSL model in (X,Y) variables forn524 corresponding to
closed FRW model with positive cosmological constant (K511, L511). ~d! Phase portrait of the VSL model in (X,Y) variables forn
524 corresponding to open FRW model with negative cosmological constant (K511, L521).
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singularity finish their evolution in the final singularity lo
cated in the same point of the phase space. At certain p
(X5Xmax, Y50) a maximum of the scale factor is reache
Let us note that the critical point (X05K/L, Y50) lies at
the boundary of the region solving the flatness probl
]Dflat .

Figure 3~b! corresponds to the closed FRW model w
positive cosmological constant (K511, L511). In this
case a critical point representing static Einstein solution
saddle point located on the boundary]Dflat . In the physical
region ~i.e., X>0,Y, arbitrary! we have a stable node in th
upper half planeY>0 or unstable node in the lower ha
planeY<0. Let us stress the existence of physical solutio
traversingDflat region. If KL.0 then the critical point lies
in the physical domainX>0.

In other cases~other combinations ofK and L signs!
respective phase portraits are specular reflections~with re-
spect to OY axis! of the above ones—phase portrait of t
systemK521, L511 is a reflection of the portrait forK
511, L511 and the portrait of the systemK511, L5
21 is a reflection of the portrait forK521, L521

Figures 4~a! and 4~b! show the phase portraits of VS
04351
int
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a

s

models~corresponding to degenerate casen521) for dif-
ferent combinations ofK andL. Phase portrait for the mode
K521,L521 is shown in Fig. 4~a!. Comparison with clas-
sical ~non-VSL! FRW model@Fig. 3~a!# makes it clear that
despite of nonequivalence~in strict mathematical sense! of
these phase portraits there is no qualitative difference in
behavior of trajectories in the physical domain between V
and ordinary cosmological models. Quantitatively, in t
VSL models the phase of evolution during whichX changes
slowly andY rapidly, lasts longer. This phase of evolutio
belongs to the domainDflat and the critical point lies at the
boundary]Dflat .

Phase portrait for the model withK521, L511 is dis-
played in Fig. 4~b! and is in fact a specular reflection of th
portrait from Fig. 4~a! with respect to OY axis. A character
istic feature here is a long phase of fast variability ofY. Such
trajectories fill theDflat region. Critical point~center! lies in
this case in nonphysical domain.

Phase portraits of regularized system are shown on F
5~a!–5~d! for the VSL models withn523. Trajectories are
now parametrized by a new timet, such thatdt5zndT.
Typically there exist two critical points:z50, u50, andz
4-7
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5L/K,0. The most interesting feature of the portraits is h
do trajectories behave near the singularity, i.e., forz→`.
From the point of view of resolution of the flatness proble
the models with negative curvature and positive cosmolo
cal constant are preferred. Closed models with negative
mological constant do not realize the idea of flatness prob
avoidance as a result of varying speed of light@Fig. 5~d!#.
When the cosmological constant is positive then the ide
realized but not forR;0. In negatively curved models, tra
jectories lie in theDflat region even forL,0. However, the
preferred case is that ofK521, L51 in which theDflat
region coincides with the physical domain. Let us also n
thatu/z'const as the trajectories approach critical points
means thatY;X2 and we obtain additionally a resolution o
the horizon problem.

Figures 6~a!–6~d! represent phase portraits inX,Y vari-
ables for another casen524. Comparison of respective fig
ures support the view that evolution of trajectories is qu
tatively generic for any negative value ofn. The
distinguished role played by open VSL models is also app
ent.

VI. CONCLUSIONS

Let us assume that one takes the idea of the varying sp
of light seriously as a physical effect that might have happ
in a very early universe and today is confined to a v
narrow range admissible by inaccuracy of existing bounds
variability of c. One of the problems1 arising then is to see
how this ~admittedlyad hoc! modification of physics would
change the evolution of standard Friedmann–Roberts
Walker cosmological models. So far only specific qualitat
results are known@5,6# concerning the solution of flatnes
and horizon problems in VSL models. In the present wo
we attempted to extend this qualitative discussion in

1More perhaps even more important problems are discussed,
in Ref. @15#.
le
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sense that by constructing phase-space portraits of VSL
mological models we were able to obtain a global view
their dynamics. For this purpose we have used a power
ansatz@6# for c(t) function and investigated classical Ein
stein equations withc allowed to be a function of time.

We reduced the dynamics of VSL models to a tw
dimensional Hamiltonian dynamical system with quadra
kinetic energy form and a potential function depending
the generalized scale factor. The shape of the potential
the existence of the energy integral was used to classify p
sible evolutions of VLS models. The possibilities compri
models evolving from the singularity to infinity, oscillator
behavior between initial and final singularity, Einstein–
Sitter–type models evolving from the singularity to the sta
world, Lemaitre-Eddington-type models evolving from th
static Einstein solution to infinity, models expanding to i
finity from the finite size and finally models starting an
ending with a finite scale factor.

We have shown that assumed time dependence of
speed of light leads to a uniform evolution pattern of VS
models on the phase space. The criteria for solving the
ness and horizon problems were formulated in terms of
phase space. It is an advantage of the phase-space app
that one can trace the patterns of evolution for all poss
initial conditions. We have depicted, on respective ph
portraits, the regions where the flatness problem is solv
The models where the region of initial conditions leading
flatness and horizon problem avoidance is large play a
tinguished role. From this perspective open (K521) mod-
els with positive cosmological constantL.0 are preferred
in the class of FRW VSL models filled with radiation. Th
formalism presented in this paper can be easily extende
the case where the matter content of the model is a mix
of different types of matter and to the case of models w
shear~e.g., Bianchi type I or V!.
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