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Varying speed of light cosmologies as two-dimensional dynamical systems
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We formulate the dynamics of Friedman—Robertson-Walker varying speed of light models as a two-
dimensional Hamiltonian dynamical system. The shape of the potential and the existence of an energy first
integral can be used to classify possible evolutions of VSL models. We show that an agpowed|aw
time dependence of the speed of light leads to a uniform evolution pattern of VSL models on two-dimensional
phase space. We also formulate the criteria for solving the flatness and horizon problems in terms of the phase
space and discuss the emerging patterns of evolution on respective phase portraits for all possible initial
conditions. We argue that in the class of FRW VSL models filled with radiation olien-{ 1) models with
a positive cosmological constaft>0 are preferred from the point of view of the flathess and horizon problem
avoidance.

PACS numbd(s): 98.80.Hw

[. INTRODUCTION periments is sensitive only to dimensionless combinations of
dimensional constants. Consequently, the physically mean-
Although the so-called cosmological standard model isngful variability of the speed of light would manifest itself,
usually believed to be the correct picture of our wdrd it for example, as a variation of the fine structure constant.
still does have some problems, among which the flatness anthere have been several teff3$ of possible time variation
horizon problems are the most widely known. The existencef the fine structure constant in the past. The results of
of large-scale structure in the universe extending to the limitshese works indicated that the VSL peri@flit exists at al)
of our deepest survey ] is another mystery. Its very exis- should be confined to the very early universe. On the other
tence implies the necessity of seeds for this structure in thhand, there have been suggestions of evidence of time vary-
early universe. In the standard big-bang scenario they coulohg fine structure constaf8] seen in comparison of quasar
only be a built in, rather undesirable feature of the theoryspectral lines in different multiplets. Barrow and Magueijo in
Therefore, a great amount attention has been paid towaral recent pap€i9] proposed a VSL scenario in which a vary-
inflationary models which, despite invoking exofii¢ not  ing c of the magnitude required to create an apparent change
hypothetical physics, are able to provide at least hope for ain « at the observed leve[8] was also sufficient to produce
consistent explanation of either the flatness or horizon proban acceleration at the level suggested by the supernova type
lems as well as the origin of seeds for the large-scale struda (SNIa) data[10]. In Ref.[11] it has been pointed out that
ture. The development of early universe physics led us tosition of the first acoustic peak of the cosmic microwave
expect the occurrence of phase transitions when the univerdmckground(CMB) angular power spectrum is a sensitive
was young, hot, and den§g]. measure of the variability of after the epoch of last scatter-
An interesting idea was formulated some years ago byng and that future observations should significantly improve
Moffat [4] who conjectured that there could actually takethe current boundfrom the Doppler peakallowing for
place a spontaneous breaking of local Lorenz invariance anabout a 4%, variation is. Hence the exotic problem of VSL
diffeomorphism invariance associated with a first ordercosmologies is entering the stage of seriously confronting its
phase transition in the early universe. The associated varigpredictions with the real world.
tion of the speed of light over manf0) orders of magnitude Anyway, it still remains true that the prime motivation for
is capable of explaining the flathess and horizon problemsySL cosmologies lies in the very early universe which is the
provides a mechanism of monopole suppression and cafomain of high-energy cosmology. The literature of the sub-
solve the cosmological constant problem. This idea was rgect is still growing and comprises a variety of approaches:
vived in recent papers by Albrecht and Magug¢bdand was phenomenological  Albrecht-Barrow-Magueijo[5,6,12,
given further consideration by Barrol@]. In particular the scalar-tensor approach of Clayton and Moff&t13], and a
term varying speed of lightvSL) cosmology was coined in number of other contributions, some of them inspired by
the latter work. higher-dimensional brane theorig$4] (see also the most
It is a well known fact that the outcome of physical ex- recent papef15]). Hence the VSL cosmologies are becom-
ing a serious alternative to the inflationary scenario.
There is a widespread opinion that physically realistic

*Email address: mb@imp.sosnowiec.pl; models of the world should possess some kind of structural
mb@server.phys.us.edu.pl stability. A suitable tool for investigating structural stability
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dynamical systems. This approach is known in the literaturean straightforwardly include the cosmological constaAnt
[16] and has already been applied in our previous worksby introducing respective pressups, and energy density
e.g., Ref[17]. In this paper we formulate VSL Friedmann- p, :

Robertson-Walker cosmological as a two-dimensional dy-

namical system an we discuss on phase portraits their prop- Acd(t)

erties emerging in this picture. PAZ G (6)

Il. BASIC EQUATIONS OF THE THEORY _ )
PA=—paC(t). (7)
In recent papers by Albrecht and Maguefjs] and by

Barrow [6] a useful framework to discuss VSL models was  One is also able to extend the systét—(3) with cos-

set up by the assumption that time varialeleshould not  mological constant to some homogeneous anisotropic mod-
introduce changes in the curvature terms of the gravitationad|s of Bianchi type Kcontaining flat FRW modgland Bian-
field equations and that Einstein’s equations must hold. Bechj type V (containing open FRW modehaving isotropic
cause time varying breaks the Lorenz invariance the VSL curvatures. In general the line element of such models is
cosmology requires a specific reference frameluding  parametrized by three scale fact®gt),R,(t),Rs(t). If one
specific choice of time coordingtén which changes in the introduces the geometric mean scale faet(r), i.e., a3(t)

field equations are minimal and one postulates it to coincide= R, (t)R,(t)R5(t) and the shear anisotropy scalar the

with cosmological comoving frame. field equations can be cast into the form
In the case of the VSL version of the Friedmann-
Robertson-WalkefFRW) models the scale factor obeys the S\ 2 2 2 2
following dynamical equations: a =87TG(t)p _kc ) + ‘T_+ Act(V) (8)
a 3 a%t) 3 3 7
é)Z_SWG(t)p ke2(t) "
a 3 a’(t) a(t)  4mG(t) 3p 202 Ac(t)
. a 3 |""2pn 3 3
a(t 47G(t 3
ay __amsy L 3P ) @ ©
a 3 Cz(t)
. . . . . a p o [. a
Equation (2) is called the Raychaudhuri equation, and p+3_(p+ )+_ U+3_U)
from the above system one can build a generalized conser- a c3(t)] 4mG(1) a
vation equation ) )
G 3ke* ¢ 10
.+3é( LP )_ G 3ké ¢ - T PG G (10
PToal P c3(t) PG gnGazc

The postulate of the standard shear evolution equation
in which time dependence of fundamental constants has been
taken into account explicitly. Alternatively one can think of a
the Raychaudhuri equation together with the generalized oc+3—g=0 (11)
conservation equation as of a fundamental system to which a
Eqg. (1) is a first integral.

Fundamental difficulty concerning the systéi—(3) is ~ Which means that-=3/a%(t), X =const make the general-
that now it became a nonautonomous system with unknowized conservation equation retaining its original VSL form.
functions of time[G(t),c(t)] on the right-hand sides. In In the other words matter decouples from shear evolution.
order to be specific in further analysis we adopt Barrow’sThe main conclusion of this section is therefore a consider-
power-law ansatz able generality of the formalism we use in further sections.

= q = n 4
G()=Gea(t)?, c(h)=coalt) “) IIl. REDUCTION TO THE HAMILTONIAN SYSTEM

Moreover, we assume the hydrodynamical energy- |n this section we shall present the field equatié®sand

momentum tensor with the equation of state in particular Eqs(1)—(3) in the form of a gradient dynamical
= ypC2(t) 5) system. In order to perform this task let us define a new
P=pett), variable

where O<y=<1. Well recognized special cases aye-0,

dust(pressure less matbery= 1/3, radiation, and/=1, stiff X(t)=a(t)°"), (12
Zeldovich matter. The power-law ansa#) turns the field

equations back into an autonomous system. We can nowhere D(y)=3(1+y)/2. The field equations are now
think about extensions of our baseline equations. First, onequivalent to the following gradient system:
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. dV(X) 3 where Kp=KD/2(D+n—1) and Ap=AD/2(D+n). The
XO==—gx ~~ Z()’z— 1)32x(P-6rD above functional form of the potential is valid whene@r
+n—1+#0 andD+n#0. If D+n—1=0 then
+X2VPIK X2/ A X}, (13
V(X)=K In(X)— ApX?"2"D,
where K=32c2(1+vy)(1+39)K and A=3c3(1+y)(1
+3y)A. and in a similar manner, in the casef-n=0 we have
We shall focus our attention on the ca%=0 corre-
sponding to VLS version of FRW models. Moreover we V(X)=KpX2(M+D=1)/D_ A |n(X).
shall assume negative<O0 [6] because this is the range for
which cosmological problems can be solved. Let us stress that now, the constalits and A do not have
Let us now notice that by simple time rescalling to take the same sign &and A do.
=2¢5(1+ y)(1+3v)t one can simplify the system in the ~ The Hamiltonian of the systeifi5) has the form

sense that coefficient§ and A acquire back their original

. . . . . . 2
form and meaning. Denoting, by primes, derivatives with _Y_
respect tor one arrives at the system H(X,Y)= 2 +V(X) (17)
n_(_wx(D-2)D 2n/D
X'=(~KX TAX)X (14) and of courseH =const=C is the first integral. It is easy to
or, in the phase planex(X’), demonstrate thaC=0 sinceK=A=0 correspond to the
Minkowski space. The systelfi?7) is one dimensional and
X'=Y, hence can be integrated in quadratures
Y’ =X2P(—KXP2/P 4 AX). (15) 1 (x d¢ 18
T—T0= = e
Finally one can cast the system into a Hamiltonian form by V2% C=V(0)

introducing the potential function
where Xy=X(7p), one can assumey=0 and Xy=0. An

V(X)=X2"P(KpX@PIP~1)— A 1X?), (16)  example of such integral fa€=0 is

DXV(1—AXZPIK)(— AXP+KX?®P-DP F [(1-n)/2,1/2(3—n)/2,(AX?P)/K]
\/E(n_l)\/_AX2+KX2(D—l)/D J— XZn/D(_AX2+KX2(D—1)/D)

: (19

T— 7=

where ;F, is respective hypergeometric function. and the evolution of models is represented as horizontal lines
The Hamiltonian structure of E17) can be used to clas- lying above theA (X) curve and bouncing off the “wall” of

sify the VSL models qualitatively in the spirit of classical ¢(X)=0. Because the zero-velocity curve is determined by

Robertson’s classificatioflL8]. For this purpose let us con- the potential functiorv(X), one should consider additionally

sider the function two special casedi) D+n—1=0 then
2(n+D)
Y2 A(X) = X~ 2(D+M)/Df|n(X) —
¢(X)= 5 =C-V(X) (X) [In(X)—C],

= C— X2V (K pXZP)D-1)_ A X2, (200 and(ii) D+n=0 then

KDx(nJrD*l)/D_ C

The motion of the system in the configuration space of the A(X)= In(X)

model is confined to the regiob={XeR;¢(X)=0}. The
zero velocity curvep(X)=0 can be represented as

Figures 1 and 2 show th&(X) curves corresponding t
=+1 models for several values of They can be used to
AX) = 2(n+D) ( _ Cx-(@D)(n+D) classify (qualitatively all possible evolutions of respective
cosmological models. In the family of closed VSL FRW
models K= +1) displayed in Fig. 1, the curve far=0
N KD X‘(Z’D)) 21) reproduces standard classical behavior which is inherited by
2(D+n—-1) VSL models withn=—2. Possible patterns of evolution in
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behavior of A(X) depends crucially om. Namely, for—1
=n=<0 A(X)— —x for X—0 and A(X)—0 for X— +x.
Then for —2<sn<—-1 A(X)—+w for X—0 and A(X)
—0 for X— +o0 and finally forn<—2 A(X)— —x for X
—0 and A(X)— +o for X— +0o0. Consequently the pos-
sible evolutions of respective models are the following: for
—1=n=<0 models withA > A ,,, start with initial singular-

r s T b ity and expand to infinity, models with <A ., either are
oscillatory (with initial and final singularities or expand

] from the finite size to infinity. For-1<n<-—2 solutions
"""""""""""""""""""""""""""""""""""""""""""""""" | with A<0 are forbidden and models with positive cosmo-
- logical constant expand to infinity starting from the finite
size. Finally VSL models witm<—2 start from the initial
singularity and finish their evolution in the final singularity.

Soo

N

Lambda(x) for K=+1 C=+1

0

IV. PROPERTIES OF DYNAMICAL SYSTEMS
FIG. 1. Ap(X) function corresponding to closet& +1) VLS DESCRIBING THE EVOLUTION OF VLS MODELS
Friedmann-Robertson-Walker models with radiatidd=(2) for

different values ofn. We shall now investigate the systefh5). Right-hand

sides of this system define a smooth vector fieldR3H0,0}.
) ) ) If we want to have a smooth dynamical system on the whole
this class are the following. FoX larger than the maximum R2 iphe regularization procedufsee below Eq(23)] is re-
Amax of the A(X) curve the universe starts from the initial gyired. In this way all possible evolutions of VSL models
singularity and expands to infinity. Fdr<Amatwo distinct  ¢can pe represented as curves in the phase space. We shall
evolution patterns emerge: the universe either starts from thgiscuss emerging phase portraits in the case of radiative mat-
initial singularity and ends in the final singularity or starting ter (for the purpose of illustrationi.e., forD=2.
from the finite size expands to infinitghonsingular uni- One can notice that fob=2 the classical systeri.e.,
versg. In the case ofA=Ap,, we have either a universe —q corresponding to constant speed of ligistlinear and
expanding from the initial singularity to a static Einstein—de ansition to the VLS model adds nonlinearity to the equa-
Sitter state or starting from finite size expands to infinityjons. In the classical case the system has two critical points
(Lemaitre-Eddington-type evolutiopnThe VSL models with (Xo,Yo)=(0,0) and Ky,Y;)=[(K/A)P"20] and in general
strongly negativen (lesser than -Rexist for A=Amn and  they can survive in VSL system. The first critical point is
starting from the finite size they expand to a finite S'Zeddegenerate and the second one could be either center or
universe. The case df = A, corresponds to the static uni- gaqqle point.
verse. Models withA<Ap,, are forbidden[see, e.g., the One can notice that the phase-space flow generating vec-
phase portrait on Fig.(6)]. _ ~ tor field is singular(blows up to infinity in the origin of the
~The family of VSL open K=—1) models is shown in  coordinate systert0,0). A natural way to deal with this dif-
Fig. 2. From the formul#21) one can see that the asymptotic ficylty is to introduce projective coordinates. We shall illus-
trate this approach fob=2. Let us define projective coor-
ST — . . dinateszz=1/X, u=Y/X. In these new variables the original
" b system takes the form of autonomous dynamical system with
rational right-hand sides

FE-E-1

FEF NN

T dz

E2- E'_ uz,

R au 1( Kz+A)—u? (22
g e —=—(—KzZz —Uu-.

go_ ---------------------------------------------------------- dT Zn

Introducing new time parametetT=d7/z" we obtain the
following system, now with polynomial right-hand sides:

2 0s " 5 2 25 P 25 4 E =—uz"*?
) | X ’ ' daT '
FIG. 2. Ap(X) function corresponding to opeiKE —1) VLS du
F.rledmann-Robertson-WaIker models with radiatidb=(2) for = —Kz+A—u2z" (23)
different values of. dT
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Y

(b) (b)

FIG. 3. (a) Phase portrait of the classical system=0) corre- FIG. 4. (a) Phase portrait of the VSL modeh& —1) corre-
sponding to open FRW model with negative cosmological constansponding to open FRW model with negative cosmological constant
(K=—-1,A=-1). (b) Phase portrait of the classical system ( (K=-1, A=-1). (b) Phase portrait of the VSL modehE —1)
=0) corresponding to closed FRW model with positive cosmologi-corresponding to open FRW model with positive cosmological con-
cal constantK=+1,A=+1). stant K=—1, A=+1).

which is regular in the origin of the coordinate system. .
The system(23) does not have critical points in the origin a(t)>0. (24
of coordinate system. We have one critical poiag,(ip)
=(A/K,0). Trace and determinant of linearization matix This condition is fulfilled in the subspad®, of the phase
at this point are equal T=—(A/K)""! and deA  space
=K(A/K)""1. This means that iK and A have the same
signs then TA<0 and sgn(ded)=sgnK. Type of evolu- Y2 D dV(X)
tion (for K=0 or K=-1) depends on A Dpar= (X,Y): 2 + D—1 dT<0 (29)
=(A/K)"*11—4K whereas stability of solutions is deter-
mined by the sign of TA. it means that trajectories representing the histories of VLS
There is a great advantage of phase-space dynamical dgniverses experience an accelerated expansion while staying
scription that one is able to discuss the distribution of model$y p, , region. Let us stress here that dotted area depicted in
with given properties. In the other words one can imagine alkigs, 3—6 denote the domain where the conditi@6) is
ansamblg19] of models starting from different initial con- broken, i.e.4<0 holds. One can restate the relati(zs)
ditions and ask questions how is given property distributed irhsing 'Ehé .I,—|ami|tonian ' constraint2=2[C—V(X)]. It is

]ng sa(l)rllji?]mtt):]eé f\l/t'litenzrs]?”aggvrhfeorhrggilza;i Slrj(f)fk')cl'eergtirﬂg?r';'ggs asy to see that the respective condition expressed purely in
9 P erms of configuration space, reads

phase-space relations. We understand the solution of flatness
and horizon problems in a similar way as formulateflrb,

) . : S dV(X)
i.e., the standard considerations are valid withd{ig func- Dﬂat:{X:C_V(X)+ - d( <ol (26)
tion taken explicitly into account. D-1 dX
Let us recall that the flatness problem is solved whenever
the scale factor’s acceleration is positive From Eq.(25) one obtains that the demand of
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(b) ch « R LA >

FIG. 5. (a) Phase portrait of regularized VSL modei= —3) corresponding to open FRW model with positive cosmological constant
(K=-1, A=+1). (b) Phase portrait of regularized VSL modei= —3) corresponding to open FRW model with negative cosmological
constant K=—1, A=—1). (c) Phase portrait of regularized VSL modei= —3) corresponding to closed FRW model with positive
cosmological constant{(= +1, A= +1). (d) Phase portrait of regularized VSL model= —3) corresponding to open FRW model with
negative cosmological constarK € +1, A=—1).

dV(X) For example in the VLS models with radiatidh=2 the
—ax -0 (27)  criterion is Y2/2xCyX or equivalentlyV(X)e=(C— yX) In
general, the trajectories of models without horizons have uni-
versal behavioi(28). One can distinguish the VLS models
whereV(X) is given by the formuld16) is the necessary but with or without horizon problems solely on the ground of
not sufficient condition for solving the flatness problem.  their universal asymptotic behavior near singularity. Namely,
Another interesting question concerns the horizon probif 2[C—V(X)]X*~P/P_ const while X—0 the model
lems. It is not difficult to prove the following criterion of does not have event horizons. If @—V(X)]x2(~D)/D
avoiding the horizon problems in the cdde-1. —oo then the event horizon is present in the evolution of the
Corollary. The FRW cosmological model does not havemodel.

event horizons near the singularityaitt) tends to a constant

while a(t) tends to zero. The proof is elementary and is a V. DISCUSSION OF PHASE PORTRAITS
consequence of the observation that condiienC implies _ ) o
that as a—0 fgo(da/a)<Cfg°(dt/a)=C(7707 Teing) The phase portraits of FRW VSL model with radiative

matter are shown in Figs. 3—6. Shaded regions correspond to

where 7 is conformal time. Because the left-hand side mte-regions of the phase space for which flatness and horizon

gral is divergent it means thaj— —« and that there is no oo
causally disconnected regions in this spacetime. problems cannot be solvéde., a<0).

The above criterion can be reformulated in the language . 1€ phase portraits of classical system are displayed in
of the phase-space in the form Fig. 3. Figure 8a) corresponds to the open FRW model with

negative cosmological constanK€ —1, A=—1). In the
physical domain there exists one critical point—a center,
Y=CyX(P~1/P, (28)  leading to periodic trajectories. Trajectories starting from the
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(b) S (d)

FIG. 6. (a) Phase portrait of the VSL model ixX(Y) variables fom= —4 corresponding to open FRW model with positive cosmological
constant K=—1, A=+1). (b) Phase portrait of the VSL model irX(Y) variables forn=—4 corresponding to open FRW model with
negative cosmological constarK€ —1, A=—1). (c) Phase portrait of the VSL model irX(Y) variables forn=—4 corresponding to
closed FRW model with positive cosmological constaft=(+1, A=+1). (d) Phase portrait of the VSL model irX(Y) variables forn
= —4 corresponding to open FRW model with negative cosmological condtant{1, A=—1).

singularity finish their evolution in the final singularity lo- models(corresponding to degenerate case — 1) for dif-
cated in the same point of the phase space. At certain poiriérent combinations df andA. Phase portrait for the model
(X=Xmax, Y=0) a maximum of the scale factor is reached.K=—1,A = —1 is shown in Fig. 4a). Comparison with clas-
Let us note that the critical poiniXq=K/A, Y=0) lies at  sical (non-VSL) FRW model[Fig. 3(@] makes it clear that
the boundary of the region solving the flatness problendespite of nonequivalend@n strict mathematical sensef
ID 4t these phase portraits there is no qualitative difference in the
Figure 3b) corresponds to the closed FRW model with behavior of trajectories in the physical domain between VSL
positive cosmological constanKE& +1, A=+1). In this  and ordinary cosmological models. Quantitatively, in the
case a critical point representing static Einstein solution is & SL models the phase of evolution during whiXhrchanges
saddle point located on the boundai,. In the physical slowly andY rapidly, lasts longer. This phase of evolution
region (i.e., X=0,Y, arbitrary) we have a stable node in the belongs to the domaiBy,; and the critical point lies at the
upper half planeY=0 or unstable node in the lower half boundarydDqy;.
planeY=0. Let us stress the existence of physical solutions Phase portrait for the model with=—1, A=+1 is dis-
traversingDy, region. If KA>0 then the critical point lies played in Fig. 4b) and is in fact a specular reflection of the
in the physical domairXx=0. portrait from Fig. 4a) with respect to OY axis. A character-
In other caseqother combinations oK and A signg istic feature here is a long phase of fast variabilityyoSuch
respective phase portraits are specular reflectionth re-  trajectories fill theDy, region. Critical point(centej lies in
spect to OY axis of the above ones—phase portrait of the this case in nonphysical domain.

systemK=—1,A=+1 is a reflection of the portrait faK Phase portraits of regularized system are shown on Figs.
=+1,A=+1 and the portrait of the systeit=+1, A= 5(a)—5(d) for the VSL models withh=—3. Trajectories are
—1 is a reflection of the portrait fok=—-1, A=—1 now parametrized by a new timeg such thatdr=2z"dT.

Figures 4a) and 4b) show the phase portraits of VSL Typically there exist two critical pointz=0, u=0, andz
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=A/K,0. The most interesting feature of the portraits is howsense that by constructing phase-space portraits of VSL cos-
do trajectories behave near the singularity, i.e., Zes . mological models we were able to obtain a global view of
From the point of view of resolution of the flatness problemtheir dynamics. For this purpose we have used a power law
the models with negative curvature and positive cosmologiansatz[6] for c(t) function and investigated classical Ein-
cal constant are preferred. Closed models with negative cogtein equations witle allowed to be a function of time.
mological constant do not realize the idea of flatness problem We reduced the dynamics of VSL models to a two-
avoidance as a result of varying speed of liitg. 5(d)]. dimensional Hamiltonian dynamical system with quadratic

When the cosmological constant is positive then the idea i§in€tic energy form and a potential function depending on
realized but not foR~0. In negatively curved models, tra- the generalized scale factor. The shape of the potential and

jectories i i theDys region even fork <0. However, the - G PCRtee B U I A0 Do ol o e
preferred case is that d=—1,A=1 in which the Dy ' P ’

: T X : : models evolving from the singularity to infinity, oscillatory
region coincides with the_ phys_lcal domain. Le_t_us als_o NOt,ehavior between initial and final singularity, Einstein—de
thatu/z~const gs the trajectorles aPPfoaCh critical pc_)mts. ItSitter—type models evolving from the singularity to the static
means _thalY~X and we obtain additionally a resolution of world, Lemaitre-Eddington-type models evolving from the
the horizon problem. _ _ static Einstein solution to infinity, models expanding to in-

Figures 62)—6(d) represent phase portraits XY vari-  fiity from the finite size and finally models starting and
ables for another case= -4, Comparlson o_f resp_ectl_ve f|g-_ ending with a finite scale factor.
ures support the view that evolut|o_n of trajectories is quali- \ye nave shown that assumed time dependence of the
tatively generic for any negative value of. The  gpeed of light leads to a uniform evolution pattern of VSL
distinguished role played by open VSL models is also apparyadels on the phase space. The criteria for solving the flat-
ent. ness and horizon problems were formulated in terms of the
phase space. It is an advantage of the phase-space approach
that one can trace the patterns of evolution for all possible
initial conditions. We have depicted, on respective phase

Let us assume that one takes the idea of the varying spegurtraits, the regions where the flatness problem is solved.
of light seriously as a physical effect that might have happerThe models where the region of initial conditions leading to
in a very early universe and today is confined to a veryflatness and horizon problem avoidance is large play a dis-
narrow range admissible by inaccuracy of existing bounds otinguished role. From this perspective opda<—1) mod-
variability of c. One of the problentsarising then is to see els with positive cosmological constant>0 are preferred
how this (admittedlyad ho9 modification of physics would in the class of FRW VSL models filled with radiation. The
change the evolution of standard Friedmann—Robertsorformalism presented in this paper can be easily extended to
Walker cosmological models. So far only specific qualitativethe case where the matter content of the model is a mixture
results are known5,6] concerning the solution of flatness of different types of matter and to the case of models with
and horizon problems in VSL models. In the present workshear(e.g., Bianchi type | or V.
we attempted to extend this qualitative discussion in the

VI. CONCLUSIONS
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