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Monopoles, dyons, and black holes in the four-dimensional Einstein-Yang-Mills theory
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A continuum of monopole, dyon, and black hole solutions exists in the Einstein-Yang-Mills theory in
asymptotically anti—de Sitter space. Their structure is studied in detail. The solutions are classified by non-
Abelian electric and magnetic charges and the Arnowitt-Deser-Misner mass. The stability of the solutions
which have no node in non-Abelian magnetic fields is established. There exist critical spacetime solutions
which terminate at a finite radius, and have universal behavior. The moduli space of the solutions exhibits a
fractal structure as the cosmological constant approaches zero.

PACS numbse(s): 98.80.Hw, 04.20.Jb, 04.70.Bw

I. INTRODUCTION The argument above cannot be extended to curved space-
time. The conservation law*”.,=0 leads to

For a long time, it was believed that no regular particle-
like stable solutiongsolitong with finite mass can exist in _ - _ Y
self-gravitating systems unless the stability is guaranteed to- J d 1X\/__9T}=_ J d lX\/__ngkaT“ #0. (2)
pologically. The Einstein theory in vacuum and the Einstein-

Maxwell system do not admit solitons. It came as quite &The failure of Deser’s simple argument in curved space im-
surprise when Bartnik and McKinnofBK) found globally  plies the possibility of having static solutions in curved
regular solutions to the SB) Einstein-Yang-Mills(EYM)  space. Gravity supplies the attractive force needed to balance
theory without scalar fieldsl]. It was unexpected to find that the repulsive force of Yang-Mills gauge interactions. Indeed,
self-gravitating Yang-Mills systems produced solitons. Un-any solution to S(2) EYM equations in asymptotically
fortunately, the BK solutions were shown to be unstableMinkowski space which is regular asymptotically is also
against linear perturbatiori2]. Later, other fields such as regular for allr>0 [9].

Higgs scalar fields and dilaton fields were included in the The particlelike and black hole solutions were later stud-
EYM action, but, with the exception of the Skyrmions, all ied in a cosmological context. The behavior of static solu-
turned out to be unstablsee[3] for a review. tions to the Einstein-Yang-Mills equations depends consid-

Interest in the BK solutions was renewed with the discov-erably on the sign of the cosmological constant. The
ery of black hole solutions to the EYM equatiofd,5].  solutions can be separated into two familids=0 and A
These non-Abelian black holes apparently violate the no-haik 0. The solutions wherd =0 are the BK solutions. Their
conjecture[6]. But these non-Abelian black hole solutions asymptotically de Sitter analogs ¢ 0) were discovered in-
are also unstable, and again other fields were added in thgependently by Volkowet al. and Torii et al. [10]. The BK
hope of achieving stability without succeésee Refs[3],  solutions and the cosmological extensions all share similar
[7]) for a review. behavior, and are unstabJé1,17. (See Ref[3] for a re-

We stress that it is a surprise that there are static solutiongew.) Recently, asymptotically anti—de Sitter black hole so-
to the Einstein-Yang-Mills equations at all. There are nojutions[13] and soliton solution$§14,15 were found which
static solutions to the Yang-Mills equations in four- are strikingly different from the BK-type solutions. In par-
dimensional flat space. We can see this with a simple arguicular, the asymptotically anti—de SittéAdS) EYM equa-
ment given by Desel8]. The conservation of the canonical tions have solutions where the field strengths are nonzero
energy momentum tensar, T#=0, implies that for a static everywhere. These solutions were also shown to be stable
field configuration?; T/= 0. The total divergence of the quan- against spherically symmetric linear perturbations. These so-
tity xiT{ must vanish to maintain finite energy and regularity, lutions are the only EYM solutions solutions that are stable.
fdd‘lxaj(x‘T{)=0. But aj(x‘Tf)zT}+xiﬁjT{ =T} so that This discovery would be very important to cosmology if the

universe was ever in a phase where the cosmological con-
f dd‘lTi=f gé-1y E(S—d)F2+(d—3)F2 0 stant is negative. _ _
i 2 ij 0i : Another new feature of the EYM theory in AdS is the
(1) existence of dyon solutions. K=0 the electric part of the
gauge fields is forbiddefl6] if the Arnowitt-Deser-Misner

Since the integrand above is positive definite dior 4, F;; (ADM) mass is to remain finite. Scalar fields must be added

and Fq; must vanish. Thus there are no regular static soluto the theory in order for the boundary conditions at infinity

tions. to permit the electric fields and maintain a finite ADM mass
[18,19.

Recently a tremendous amount of interest has evolved in
*Current address: Brookhaven National Laboratory, Buildingfield theories in AdS space. There is the AdS/Clednfor-
510A Upton, NY 11973. mal field theory correspondencfl7] which states that con-
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formal field theories ind dimensions Ry) are described in

terms of supergravity or string theory on the product space of S= f d4x\/—_g
AdS;,; and a compact manifold. There are intimate rela-

tions between data on the bound&y of AdSy,; and data  the Ejnstein and Yang-Mills equations are given by
in the bulk AdS ;1. In the present paper we are examining

the Einstein-Yang-Mills theory in asymptotically AdS space. 1

The boundary in space must be playing a crucial role for the R#Y— Eg‘“’(R—ZA)z&rGT’“’,
existence of stable monopole and dyon solutions, more de-
tailed analysis of which is, however, left for future investi-
gation. We also note that in the three-dimensional AdS space
there exist nontrivial black hole$20] and monopole-
instanton solution$21].

When the value of the cosmological constanis varied,
the space of monopole and dyon solutions, the moduli space,
also changes. With a finite negative, solutions exist in
continuum. They are classified in a finite number of families, H dr2
or branches. With a vanishing or positive solution exists ds?=— —dt?+ — +r%(d#?+sirf 0d¢?), (6)
only in a discrete set, but there are infinitely many. One p H
natural question emerging is how these finite number of — . .
branches of solutions in continuum become infinitely manyhereas Yang-Mills fields are give[i24,25, in the regular
discrete points ad <0 approaches 0. There is a surprising 9249€; by
hidden feature in this limit. We find a fractal structure in the

1 1
_ _ _EFauvga
To-g (R-20)— ZF*FL, . (@)

Fer,+e[A, F#]=0. ®)

We suspect that the gravity provides an attractive force to
balance the equation.

We look for spherically symmetric solutions. The metric
kes the form

moduli space, which seems to explain the transition. A(O):i{A Xt A dx ﬁ( S w)dxk
In the next section the general formalism is given and the 2e|"Or Ly ri r

equations of motion are derived with a spherically symmetric 1-¢

ansatz. Conserved charges in the Yang-Mills theory is de- —6jk|—22XkdX|]- 7)

fined in Sec. Ill. Some general no-go theorems are derived r

from sum rules in Sec. IV. The new soliton solutions in i i
asymptotically anti—de Sitter space are explained in Sec. \A1ere the Cartesian cqordlnaxé’s are related to the polar
The critical spacetime which has universality near the edg&oordinates i(,6,$) as in the flat spaced, p, Ao, A1, ¢1,

of the space is also examined. Black hole solutions whicind ¢ are functions of for monopole or dyon solutions. In
have both magnetic and electric non-Abelian charges are prébe discussion of the stability of the solutions they depend on
sented in Sec. VI. The dependence of the moduli space opoth t andr. The regularity of solutions at the origin de-
the cosmological constamt is investigated in Sec. VIl Mands thaH, p are finite, whereas\,, A;, and¢;—0 and
where the fractal structure is revealed whénapproaches ¢»—1 atr=0.

zero from the negative side. The detailed analysis of the

stability of the monopole solutions is presented in Sec. VIII. A. Simplification of the static gauge field ansatz

The subtle boundary condition in the problem requires elabo-
ration of the previous argument presented in &0 and
A>0 cases.

Let A=A, dx*=37"A%dx*, wherer” are the usual Pauli
matrices. In terms of the basis in spherical coordinates
(7,79,74)=(0;,Ay,Ag)7,  which satisfies [7,7]

=2i€jcT (i=r,0,¢), the ansatz7) is written as
Il. GENERAL FORMALISM

1
In non-Abelian gauge theory, the field equations have so- A =_[ A7, dt+A,7,dr+(¢y 7+ (po—1)7,)d0
lutions which exhibit a magnetic charge. In the 't Hooft— 2e
Polyakov monopole solution +(= (o= 1) 7g+ 1 74)siN6A B]. (8)

Note that there are no singularities in this gauge. Next make

_Xa 0_ i__ . N
Pa=gzH(en, Aa=0, As=—eaijgzl1-K(en], a gauge transformatioA=SAYS 1 (i/e)dS S~ where

3
. ) . 9
where®, is a triplet Higgs scalar field. Its stability is guar- +ellorer cos; +e_'(¢_m/23'”§
anteed by the topology of the triplet Higgs scalar fig2@]. S= ,
The U1) magnetic charge takes a quantized value/et _ei-0rzgin? o

) . ) . sing  +e (¢t D2cog
Dyon solutions were obtainel®3] starting with the above 2 2

ansatz (3) but with a nonzero value forAl [i.e., A2

=(x,/er?J(er)]. Q=0Q(t,r). 9
In this paper we look for monopole and dyon solutions in
the Einstein-Yang-Mills theory without scalar fields: Useful identities are
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ST,S_1= T3,
S7,S 1=cosQ7;—sinQr,,
S7,S t=sinQr+cosQ 7y,
2idS- S 1= —(Q'dr+Qdt) 73— dé(sinQ 7, + cosQ 7,)
+de(sind coslry—sindsin),
—c0sfT13). (10
The new gauge potential is
1 ~
A= z—e{Ungt—l- vrgdr+(wr+Wr,)dé
+(cotfrz+wr,—Wry)sin 6d ¢}, (11

PHYSICAL REVIEW D 62 043513

where

u:A0+Q,

V:A1+QI,
W=+ ¢»; c0SQ + ¢, Sin ),
W= — ¢ SINQ + ¢, cos(). (12

Note that the gauge transformatid®) is singular até=0
and 7. Equation(12) is the gauge potential in the singular
gauge. It has a Dirac string. One can always chdo¢er
=0)= /2 with which the boundary conditions at=0 are
u=r=W=0 andw=1. With appropriat€)(t,r) one can set
v(t,r)=0 oru(t,r)=0.

A straightforward calculation leads to the field strength
F=dA-ieADA:

1
F= oo {(v=u") madtdr +[ (W—uW) 7y + (+uw) 7] dt0d 0

—[(uw+W) 71+ (UW—W) 7, ]dtOsindd p+ [ (W' — vW) 7, + (W' +wv) 7,]drOd 0

+[(W' = vW) 75+ (=W — vw) 7, ]drOsin §d ¢ — (1—w?—®?) 75d §0sin d ¢} (13

The configurations where=u=0, w=W=const, andw?
+W?=1 are pure gauge.

B. Equations of motion

In the general spherically symmetric met(®) tetrads are

1
€=——dt, e =—=dr, e,=rdo,

p H

e3=r sinfd¢.
(14

In the tetrad basid,,=(e,)

momentum tensors ark,,= ngFg“)— : apF UF9D . The

nonvanishing components of the Yang-Mills equatidBs
are

[pré(u’— i/)]'—2£{w(uw+\;¢/)+v\/(uw-w>}=o,

H
[pri(u’ — i/)],t—ZB{—va’ +W'w+ v(W?+W?)}=0,

Ao =) ,—(E(W—UW) + 2 huwri)
p v H _H
w(1l—w?—%?) N
b — (W W) =0,

pr p

(ey) F** and the energy-

!

(E(\Tv'—I—Wv)) —(B(WJruw)) +Bu(u'\7v—\iv)
p H p H

W(1-w?—W?) H B
+ T+ Bv(w'—wm:o. (15)

The nonvanishing components of the energy-momentum ten-
sor are given by

1
TOOZEZ(A_l— B),

1
-2

T:
lle

(—A+B),
1
T22:T3323A:

1
Tor=—2C, (16)
where

1 1
T R20 )2 w2 52\2
A 2p(v u)+2r4(1w we)“,
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2 H
B= o ((UW+ VD)2 (= U)?) + 3 (W' = o) 2
+ (W' +vw)?},

C=f—g{(W’-f—VW)(UW-f—W)-i—(W'—V\TV)(W—UVV)}. (17)

The Einstein equations reduce to

p’ 87GrB H' 1-H 8#G
T H 7 T Tr T (ATBITA,
p|(pH pH'—2p'H|"| 1-H 167G
2|\ H? t+ p? rZ e T
pH 87G
mo e (18

It is convenient to introducen(r) defined by

2m(r) Ar?

H(r)=1- ; 3

(19

m(r) is the mass contained inside the radius p(r)

PHYSICAL REVIEW D62 043513

2
(rzpu’)’=WpW2u, (23
2 22p?
P _ 12
(24)
w?-1) 1
m'=v| —7— +§r2p2(u’)2
UZWZ 2
+H(W )2+ Tp} (25)

wherev =47G/€?.
These equations are solved with the given boundary con-
ditions. Near the origin solutions must be regular so that

a

u(r):ar+5

1
—2b+ §A+2v(a2+4b2)]r3,
w(r)=1-br?,

1
m(r)= Ev(a2+4b2)r3,

p(r)=1—-v(a’+4b?r?, (26)

=const andm(r) =0 correspond to the Minkowski, de Sit- wherea andb are arbitrary constants. The boundary condi-

ter, or anti—de Sitter space fox=0, >0, or <0, respec-
tively. Then the second equation in EG8) becomes

, 477G
m=-—2>
e

r’(A+B). (20

tions at the origin of the EYM equations are completely de-
termined by the values of the constaatandb.

At space infinity the energy-momentum tensogg in Eq.
(16) must approach zero sufficiently fast. Further we expect
that the metric must be asymptoticallanti-) de Sitter
space, depending on the value/fThis, with the equations

The system of the Einstein-Yang-Mills equations containsof motion, leads to the asymptotic expansion at large

one redundant equation. The third equation in 8@) fol-
lows from Eq.(15) and the rest of Eq(18).

C. Static configurations

It is most convenient to take the=0 gauge for static
configurations. The second equation in Etp) then yields
wW' —w’'W=0, which leads tan(r)=Cw(r). By a further
global rotation(2 = const in Eq.(12), one can selv=0. As a
result

1
A= E{UTadt‘FWTld 0+ (cotfr3+wry)sindd ¢}

1
F= Z—e{—u’r3dthr+uwdtD(¢2d0— 71 SiNOd )

+w'dr0(r,d6+ 7, sinfd ) — (1—w?)

X 73dsin 6d ¢} . (21)
Then the Einstein-Yang-Mills equations are
H Vo op o, w(l-wd)
(BW ) — ﬁu - E rz y (22)

1 1
U:UO+U1T+"‘, W:W0+W1§+"',

1 1
m=M+m1T+---, p:po+p4r—4+---, (27

whereug, U, Wg, Wy, My, pg, andp, are constants to be
determined and/l is the ADM massM =m(e) —m(0).
lll. CONSERVED CHARGES

Solutions to Eqs(22)—(25) are classified by the ADM
mass,M =m(), electric and magnetic chargeQg and
Qu - From the Gauss flux theorem

)2 [ as=ol

are conserved. With the ansatz in the singular gdigeand
the asympotitic behavio27), the charges are given by

(QE)_ UiPo | 73
Qu/ \1-w?) 2"

(28)

(29
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Notice that the electric charg®g is determined byu,, These relations are valid, provided the integrals on the right-
whereas the magnetic char@g, by wy. If (uw,m,p is a hand sides are defined. Several important conclusions follow
solution, then Eu,w,m,p) is also a solution. Dyon solu- from Egs.(33)—(35).
tions come in a pair with€£ Qg ,Qu ,M).

The charge$28) are not gauge invariant, however. Under A. In asymptotically flat space

a local gauge transformatioA—UAU 11— (i/e)dUU™1, . .
gaug - (i7e) Consider Eq(33) with r;=0 andr,=c. For regular so-

Qe andQy are transformed to lutions u(0)=0. Bothp andH approach constant as—cc.
QY e Fko The finiteness of the ADM mass requires that|, _..= 0. In
( EU :_J' dSk\/—_gU(X)(~ )Ul(x)_ (30  the expansior(27), uowo=0. On the other hand, ifiy#0,
Qwm 4 Fko wo=0 and Eq(23) impliesw; # 0 so that Eq(22) cannot be
satisfied. Hencey(«)=0. Then the left-hand sidéhs) of
In non-Abelian gauge theory a set of chard€x",Qy"} Eqg. (33) vanishes, implying thati(r) must vanish identi-
are conserved. In the rest of the paper we use the chargesally. There is no regular electrically charged solution. Fur-

Eq. (29), defined in the singular gauge. thermore, Eq.(22) can be solved only if f,)?=1 as
The effective charg®.¢ [1] is defined by the asymptotic H(«)=1, therefore the magnetic char@g, vanishes.
behavior ofH(r); Suppose thatv(r) never vanishes and?><1 for 0<r
<o, Consider Eq(35) with r;=0 andr,=c«. The lhs van-
Qgﬁ 1., ishes, but the integrand on the rhs is positive definite except
HN=1-——+-7—-zAr" (D) for the pure gauge configuration(r)=+1. This implies
that nontrivial solutions withw?<1 must vanish at least

In terms of the coefficients in Eq27), Q%=—2m,. This  °Nce _ _
420, Qey ™ We also note that the singular solutien(r)=0, u’(r)

requires thatn; <0 which indeed is the case. After inserting "', S : . s
Eq. (27) into Egs.(22) and(25) we find the relation (_RrN) éoﬁﬂgopér)_ 1 is nothing but the Reissner-Nordstio

2 2 2 4A P4 . .
Qe=2v Tr(Qg+Qy) — 3 %. (32 B. In asymptotically de Sitter space
In asymptotically de Sitter spacd(r)——Ar?/3 asr
Equation(24) |mp||es thatp(r) is a monotonica”y decreas- —. In this case the finiteness of the ADM mass does not
ing positive function so thgby>0 andp,>0. The effective forbid nonvanishinguw at r=o. However, there arises a
charge is smalletlargey than 2 Tr(Q2+Q%) for A>0  cosmological horizon at=ry, whereH(r,) =0.
(<0). The relation32) incidentally implies that the charges It follows from Eqgs.(24) and(25) thatu or w must vanish

defined in the singular gauge have a physical, gaugedt’=rn. Now consider Eq(35). Suppose that(r)#0, or
invariant meaning. equivalentlyw=0 for r;<r<r,=r, for somer,;>0, the

left-hand side is finite so thai(r,) =0. However, Eq(23)
implies thatu(r) is a monotonically increasing or decreasing
function. With the boundary condition(0)=0, the only
Sum rules are obtained from the equations of motionpossibility available isu(r)=0. This conclusion remains
First, multiply both sides of Eq(23) by u and integrate in valid even ifw(r,)=0. In this case the first and second terms
part: on the rhs give positively divergent contributions negar
whereas the Ihs remains finite. To summarize, there is no
. ry o s P, solution with nonvanishingi(r).
preuu |ri:f drir<p(u’) t2outwe (33 If w>0 for O<r=<r,,, then the left-hand side vanishes in
1 ther,—0 andr,—ry, limit. If one further assumes that?
=<1 in the interval, the integrand on the right-hand side is
positive definite so that the only solution 8(r)==*1,
which is a pure gauge.
H & (H 1 This argument also shows that a nontrivial §0Iut\'rm¢1),
_WW/|rz:j dr:—(w’)2——u2w2——zw2(1—wz)]. which satisfiesw?<1 for O<r<r,, must vanish at least
p 1 Jry p r once in this interval. We have numerically looked for solu-
(34)  tions in whichw?=1 for smallr, but have found that no
such solution exists.

IV. SUM RULES

Secondly, multiply both sides of EqR2) by w and integrate
in part:

Thirdly, divide both sides of E¢22) by w and integrate in
part: C. In asymptotically anti—de Sitter space

Hw'| "2 ) D Hiw'\2 1 In asymptotically anti—de Sitter space there exist solu-
- :f dr(—u2+ —|—] + —2(1—W2)], tions in whichH(r)>0 everywhere. AH(r)~|A|r?/3 for
pwi ~Jr o (H piwj/ pr large r, the condition for the finiteness of the ADM mass

(35 requires only thatiw— const. In other words, both andw
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may approach nonvanishing valuesraso. Consequently, Wo(1—w3)
with the expansior{27) the lhs of Eq.(33) with r;=0 and W= — TThia?
r,=o is —pgUouy and can be nonvanishing. Solutions with h
u(r)#0 are allowed. 2
In critical cases a cosmological horizon appears and _ 2vWiPo (37
H(ry,)=0. In this case the argument above for the asymptoti- P ry

cally de Sitter case applies and eitheor w must vanish at
r=ry. We shall find, indeedw(r,,)=0 below. and so on. This expansion is valid independent of the value
of A. The critical caseh;=H’'(r;,)=0 requires a special
treatment, and will be analyzed in Sec. VC.rikle and
_ Masood-ul-Alan{5] have argued that(r) hasy/|r —ry| sin-
A. The BK solution ; -
gularity atr=ry. However, we have found that the regular
Particlelike solutions of the EYM equations in asymptoti- expansion(36) is valid.
cally Minkowski space were first found by Bartnik and  Just like the BK case, there are a discrete set of solutions
McKinnon (BK) [1] in 1988. Wheru= 0, we can solve Egs. labeled by the number of nodeswrt(r), n and the parameter
(22)—(25) numerically with the boundary conditica= 0. b. Solutions inw and m, have the same form as the BK
As already discusseay(r)=1 andH(r)=1 corresponds solutions except that(r) no longer approaches 1 at infinity.
to a pure gauge configuration. Similarlywf=0 asr -~ we  Equation(32) implies that there is a nonvanishing charge
are left with the RN solution which is singular e&=0. The  Qy (orw#1) if A#0 and that the solutions are all asymp-
Yang-Mills charge (29) vanishes in asymptotically totically the Reissner-Nordstmo type. |w()| is slightly
Minkowski space sincevo= *+1. The effective charg®.  greater than 1 for then=1 solutions. Whenn=2, 1
=0 in all BK solutions, sinc&,,;= A =0. All solutions pos- >w(%)>0, wherew(»)—0 asn—».
sess a metric that is asymptotically Schwarzschild. The massm(r) also stays finite. For all indices, it is
There is a discrete set of BK solutions, labeled by thesmall near the origin and does not grow until it approaches
number of nodes i, ne[1,), and the free shooting pa- the horizon where it quickly climbs to a value near 1. After
rameterb. Since all BK solutions have at least one node, the horizon it stays almost constant.
=1, the solutions are unstable against spherically symmetric The position of the horizon depends dn As long A is
perturbationg2]. below some critical value, the geometry approaches
Reissner—Nordstro—de Sitter space in the asymptotic re-
gion as indicated by Eq32). Above some critical value the
opology changes and a singularity appears. Since the posi-
ion of the horizon depends on, there is a value forA

V. SOLITON SOLUTIONS

B. Solutions with a cosmological horizon

Solutions in asymptotically de Sitter space were obtaineti
by adding a cosmological constafit) term to the Einstein - here this singularity and the horizon meet, in which the

equations. Solutions display the same basic properties as thg, 5|5y hecomes a completely regular manifold. Above this
BK solutions[10]. Just as in the BK solution, these equations, 5,e for A, the solutions are no longer regular. More details

are solved numerically, using the shooting method and reg¢ e topology dependence ahcan be found if10]. All
quiring a=0.

. . i __the solutions are unstab&2)].
In asymptotically de Sitter space, a cosmological horizon,

whereH=0, develops at=r,,. At the horizonH'(r})#0. ] ) ) ) )
Near the horizon C. Solutions in asymptotically anti-de Sitter space

As already discussed, there are no boundary conditions
that forbid a solution to the EYM equations in asymptotically
anti—de Sitter space with a nonzero electric compoo€nj,
to the Yang-Mills fields. Solutions to Eq&22)—(25) are de-
termined with the cosmological constant fixed at some

negative value.

W(T)=Wg+ W X+WpX2+- -,
P(r)=po+ pix+Pox>+:--,

m(r):m0+ m1X+ m2X2+‘ Tty

H(r)=hx+hyx?+---, (36) 1. Monopole solutions
where x=r—r,. my and ry, are related by *(2mqy/ry) Monopole solutions are obtained by settirg=0 (u
—(Arﬁ/3)=0. With givenwy, ry,, andpg, Egs.(22), (24), =0). By varying the initial condition parametdr, a con-

and (25) (Wlth u:O) determine all other CoefﬁcientS, pro- tinuum of m0n0p0|e solutions are found which are I’egulal’ in
videdwy#0, =1 andpy#0; the entire space. Just as in the BK and dS solutions,

crosses the axis an arbitrary number of times depending on
v the value of the adjustable shooting paramétdn contrast

m; ?(WS— 1)?, to the A=0 and A>0 cases which have a discrete set of
h solutions inb andn, there is a continuum of solutions m
om, 2m, 2 for eachn. Typical solutions are displayed in Fig. 1.

hy=———4—5— = Ary, The behavior oim andp is similar to that of the asymp-

totically dS solutiond10]. In contrast, as shown in Fig. 1,
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Dyon Solutions, A = —0.01, v=1
VA ; :

Monopole Solutions, A = ~0.01, v=1

1.4 F
F 7 £ H(r
1'; . Al 1.2 5t )
< E §re 1 F SakiSs
1 F = /___. (r) 0.8 £ —
0.8 Fgz() B a=0.003 NUR
06 Bt r) 0.6 FB=0.0005 W
TE p=0.t \\\\\ 0.4 ¢
0.4 F e e F . i
02 [ \ : 02 ¢ L(r) m(r)
m(r) ok
0 — .
10 1 10 107 10 1 10 10 r
r
1.4
25 ¢ = — = 12 E (r)
- 6=0 ] i 2 (r)
2 = 301 - =
F I / )y ) 0.8 Fa=0.003 )
r o : ; 0.6 wir
Y i/ -~ i 0.4 f-b=0.002 N\
1k — (r) 5 0.2 £ ’ N m(r)
[ : 0 ; = )
05 f i : -0.2 E it E--r..
SEIEE] m(r) SIS —04 ¢ i+ ¥
0 > \ . 7 5
S 3 — 10 1 10 10 ;
10 1 10 10 r
FIG. 1. Monopole solutions foh=—0.01 andv=1. (a,b) FIG. 2. Dyon solutions forA=-0.01 andv=1. In the top
=(0,0.001) and0, —0.001). (w, m atr=c° are(0.318, 0.035and figurew(r) has no noder{=0), whereas in the bottom figure it has
(2.304, 0.201 one node (=1).

there exist solutions whems has no nodes. These solutions  1he numerical integration of the differential equations in-

are of particular interest because they are shown to be stabficates tham(r) andu(r) are regular at=ry. The appro-
against linear perturbations. priate ansatz for the critical solutions with(r,)=H'(ry)

=0is, fory=rp—r=0,

2. Dyon solutions 2
: : : . U=Ug+ Uy +Ugy™+:---,

Dyon solutions to the EYM equations are determined if
the adjustable shooting parameteis chosen to be nonzero W=y {Wo+ Wiy +Woy2+- -},
for a given negative\. Just as in the monopole solutions, we
find a continuum of solutions wheng crosses the axis an p=YyA{po+pry+poy2+---1,
arbitrary number of times depending amndb. Also similar
to the monopole solutions is the existence of solutions where H=y"ho+hyy+hyy2+---},
w does not cross the axis. As shown in Fig. 2, the electric
componenu of the EYM equations starts at zero and mono- M= Mo+ Myy + myy2+--- . (38)
tonically increases to some finite value. The behaviowpf
m, H, andp is similar to that in the monopole solutions. 1.4

Just as for the monopole case, dyon solutions are founc
for a continuous set of parameteasandb. For some values 12
of a andb, solutions blow up, or the functiokl(r) crosses
the axis and becomes negative.

|Near the critical spacetime
a=0.01, b=0.69, v=1.0

1

0.8+

3. Critical solutions
0.6}
As the parameteb is increased, the minimum dfi(r)

hits zero from above, i.eK(r,,)=H’'(ry)=0. This consti- 0.4}
tutes a special case and needs careful examination. Numer 02
cal studies indicate that this happens in a finite range of the [

parametera. The critical solution exists for both the(r) 0

=0 andu(r)#0 cases. One example of solutions near the

critical value[(a,b)=(0.01,0.69) is displayed in Fig. 3. 047 55 15 T 7300

H(r) becomes very close to zero at~1. It has

(Qe.Qm,M)~(0.015,0.998,0.995). FIG. 3. Dyon solution forA=-0.01,v=1, a=0.01, andb
Whenb=b., wandp vanish atr =r, as well. Asp(ry) =0.69. Ata=0.01, the critical value i&.=0.7104.H almost hits

=0, p(r)=0 forr=r,. The space ends at=ry,. There is  the axis around=1. At b., p(r)=0 for r=r,. The space ends

universality at the critical point. atry.

043513-7
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Equation(22) implies thaty=2. Whenu(r)#0, Eq. (23
leads toa= 3. Whenu(r)=0, Eq.(24), instead, implies that
a=3. Other relations obtained from Eq®2)—(25) are

s 2
2/ r2
2wW3uy
Brﬁul_ hO ’
oW
= or
. (39)

The value of the indey is unconstrained whea=0. How-
ever, if u#0, the consistency of Eq22), for instance, de-
mands that B be an integer. The smallest value f®mwhich
satisfies the first relation in E¢39) is 8=2, ashy>0. We
have confirmed this by numerical studies. The relatit®)
further implies that

A

3

2mg

2
M T
1 2
m1=§(Arh—1). (40

From the two relations fom;, one in Eq.(39) and the other
in EQ. (40), ry, is determined as a function of and A <0:

1
Zm(\/1+4U|A|—1).

To summarize, the indices in E(38) are given by

2

rs (41

1
a=5, B=y=2. (42
The coefficientamy, m;, and
4r 4
2_T'h -
Wi==r M=z (43

are all determined by and A only. We are observing the
universality in the behavior of the critical solutions. The co-
efficientsuy andpy depend ora or b as well.

For smallv|A|<1

1 1

rhN\/E, mo“z\/;, m1~—§,
2 h 4 44
Wo Iy U (44)

They are all determined hy only. This universal behavior is

PHYSICAL REVIEW D62 043513

1.4 T T T

121 Monopole spectrum

-2

-1

Qwm
FIG. 4. MassM is plotted as a function of magnetic charQg

for monopole solutions af\=—0.01 andv=1. The number of

nodesn in w(r) is also marked. In the lower bran€y=1 atb
=0.00168.

The meaning of the critical spacetime is yet to be clari-
fied. The space ends atr,,. It defines a spacetime with a
boundary.

4. Spectrum of monopole and dyon solutions

Monopole and dyon solutions permit nonvanishing
chargesQy and Qg, although there are solutions where
Qu=0 andQg#0 or whereQg=0 but Q,,#0. Nonzero
charge€Qy, or Qg ensures tha@.«#0 [see Eq(32)] so that
solutions are asymptotically of the AdS Reissner-Norastro
type.

In Fig. 4 the masd is plotted as a function o), for
monopole solutions ak = —0.01 andv = 1. The behavior of
the solutions near td=b.=0.7104 needs more careful
analysis.

Dyon solutions are found in a good portion of @g-Q),
plane. There are solutions wi,, =0 butQg+# 0. Although
Qu=0,i.e.,w(>x)==x1,w(r)#0. In the shooting parameter
space(a,b), these solutions correspond not exactly, but al-
most to a universal value fds~0.0054. See Fig. 5. More
surprising is the fact thafQy, takes a quantized value
—(47)" Y2 at b=0.0061 independent of the value af
within numerical errors. We have not understood why it
should be so.

Solutions with no node inv(r) have special importance,
as they are stable against small fluctuatidg®ge Sec. VII).

In Fig. 6 the spectrum of nodeless dyon solutions are pre-
sented in the parameter spa@eb). Notice thata must be
small enough 4<0.005) even fobh<O0.

5. Dependence of the coupling on the solutions

The ADM massM depends on the value of the coupling
v=47G/e?. As shown in Fig. 7,M increases a® gets
larger and decreases whergets smaller. With fixeda,b),

clearly seen in the solution in Fig. 3 which is very close toroughly Mx«vy. The Yang-Mills fieldsu andw are roughly

the critical one.

independent ob.

043513-8
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Mass Spectrum, A = =0.01

a=0  —
a=0.001 - o b
2z !
a=0.004 --
10‘1%— ________________
0.5t 10_2;—
= s
O LI A
1} Dyon spectrum o
151 A=-0.01 E'w—sé_
-8F

=0.003, b=0.001

"0 0.001 0.002 0.003 0.004 0.0b05 0.006 0.007 0.008 0.009 0.01

FIG. 5. Magnetic charg®,, of dyon solutions as a function of
the parametel is plotted with various values of the parameteAt 10
b~0.0061,Qy is independent ofy, taking the quantized value
— (4r)~ 2= —0.2821 within numerical errors.

7
L dinl

107" 1 10

FIG. 7. A typical solution showing the dependencevabn the
massm(r). A=-0.01,a=0.003, andb=0.001.w(r) andu(r) do
not have much dependence on

Not long after the BK solutions were discovered, black
hole solutions were also found to be contained in the EYMturn stable against spherically symmetric linear perturba-
equations[4] if different boundary conditions were used. tions. Here, we discuss the solutions found by Winstanley
These solutions generated a large amount of further study, #33] and also present new dyon black hole solutions. We also
they apparently violate the no-hair conjectUi®]. Later, discuss the apparent shrinking of the moduli space when the
EYM black holes were studied in a cosmological context bymagnitude ofA is decreased. Similar to the particlelike so-
including a positive cosmological constda0]. These black lutions already discussed, the moduli space becomes discrete
hole solutions share most of the properties as the solitom the A—0 limit.
solutions, including their instability.

Recently, purely magnetic black hole solutions were A. Boundary conditions at the horizon

found in asymptotically anti—de Sitter spade]. These so- ) ) ) )
lutions are drastically different from their asymptotically ~ Black hole solutions are obtained numerically by specify-
Minkowski or de Sitter counterparts. There are a continuuniNd the boundary conditions at the horizon and shooting for
of solutions in terms of the adjustable shooting parametefégular solutionsv, u, m, andp for r,=<r<e. The location
that specifies the initial conditions at the horizon. Further-Of the horizonyy,, and the valug(r,) >0 can be arbitrarily
more, there exist solutions that have no nodwiand are in  chosen by scaling dfandr. We look for solutions in which
H(r)>0 forr>ry,. AsH(r,)=0 butp(r,)#0, Egs.(22)—
(25) require that eithew or w vanishes at the horizon. A

VI. BLACK HOLE SOLUTIONS

-2
X;02 Spectrum of nodeless dyons stronger condition is obtained from the sum rgB5) with
[T ri=ry, andr,=o. Its left-hand side(lhs) is finite so that
0.15 A= -0.01 u(r,)=0 on its rhs. Hence we are led to the expansion

0.1 : W:WO+W1X+"’,

ol
0.05
U=ugX+--,
0 &;‘(

-0.05 3 p:l+plx+...,

-0.1 3 H:h1X+"',
-0.15

02 § = m=my+m;x+---, (45)
-0.25 wherex=r—r,. We have chosep(ry) =1 without loss of
o3 o generality.

ol N
0 005 0.1 0.15 0.2 0.6215 0.3 0.35 0.4 0.45 0.52

. There are two adjustable shooting parametegsb)

=(uy,Wp). After inserting the ansatz into Eq4.9)—(25) we
FIG. 6. Spectrum of nodeless dyons. find
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M-m(r,))

0.5 1
FIG. 8. Black hole mass vs magnetic chaf@g for then=0
andn=1 arms and for different values df.

3
rn Arp
mO:

2 6
_v[(l—WS)Z 2]

m;= +u
1 2 rﬁ 1

1 2
hj_: r(l—Arh—Zml),
h

e Wo(1- W)
! rohy

2.2
WOUl]

2v 5
P1=——1(wWp)*+ h?
1

Mh

2
wo 1 pg
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The asymptotic expansion at larges the same as in Eq.
(27). The ADM mass is given byl =m().

(46)

B. New electrically and magnetically charged black hole
solutions

PHYSICAL REVIEW D62 043513

Black Hole Dyon Solutions, A = =0.01, v=1, r,=1
a=0.004, b=0.99998

1.4 F
1.2 F

w(r)

0.8 k
0.6 £
0.4 F
02 |

m(r)

-02 E—— e e

1.5

oa E a=0.01, 5=0.9998

075 —
0.5 m(r)

0.25 £

R
et

~0.25 £
-0.5 F
-0.75 E

FIG. 9. Typical dyon black hole solutions with no node and one
node.H(r) andp(r) were not plotted for the sake of clarity. The
top figure corresponds t@(b) =(0.004,0.99998), whereas the bot-
tom corresponds t¢0.01,0.9998

spectrum of those nodeless black hole dyons in the parameter
space(a,b) is plotted in Fig. 10. Notice the similarity be-
tween Figs. 6 and 10. The nodeless solutions exist only for
smalla=u;<<0.0055.b=wy must be around 1.

VII. DEPENDENCE ON A-FRACTAL STRUCTURE

The soliton and black hole solutions depend nontrivially
on the value of the cosmological constantlt has not been
well understood why the continuum of solutions for negative
A become a discrete set of solutions in the-0 limit, and
remain discrete for alA>0. Just as Fig. 8 shows for the
black hole solutions, Figs. 4 and 11 shows the spectrum in
mass vs magnetic chargg, plane for a giveA. The width

Spectrum of nodeless black hole dyons

Just as the soliton solutions, purely magnetically charged
black hole solutions are obtained by setting the adjustable
parameten to zero. The behavior of the solutions are similar
to that of the solitongsee Ref[13] for more informatiof.

The number of nodes in wcan be 0, 1, 2, ... . The black
hole monopole spectrum of mass versus charge is displayed
in Fig. 8. It shows the spectrum for time=0 andn=1 arms.

Solutions with both magnetic and electric charge are ob-
tained by givinga a finite value. Dyon black hole solutions
are similar to the monopole solutions except thas non-
zero. At the horizoru starts at zero and monotonically in-
creases asymptotically to a finite valué.starts at one and
quickly divergesp starts at one and remains almost constant.
Typical black hole dyon solutions are shown in Fig. 9.

Again black hole dyon solutions with no nodevir{r) are
stable against small spherically symmetric perturbations. The

043513-10
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FIG. 10. Spectrum of black hole solutions.



MONOPOLES, DYONS, AND BLACK HOLES IN THE . . .

Monopole spectrum

6 4
Qm
1.1
A=-01 —
105}  Monopole spectrum  A=-001 — 1
A=-0001 -
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0.9

0.85 |

A= 0 »
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b

FIG. 12. The monopole spectrulmvs M (mas$ is plotted with
various values of\.

in w(r) are stable fou=0. One expects the presence of the
electric field not to change the stability of the solitons and
black hole configurations.

In this section we give a detailed discussion for establish-
ing the stability. We find that in the asymptotically anti—de
Sitter space the boundary condition for the resultant Schro
dinger problem becomes subtle, and that the previous argu-
ment given in the asymptotically Minkowski space needs

FIG. 11. The appearance and collapse of soliton solutions in
A—0. The bottom figure is the blow-up of a part of the top figure
near Qv ,M)=(0,1), in which the first four Bartnik-McKinnon
solutions are also marked. It is seen thatAas:0, solutions on a
branch collapse to a point. New branches emerge\hecomes
smaller, too.

of each branch for a giveA gets smaller ag\ approaches
zero. Figure 11 indicates that As—0, the branches collapse
to one point, the BK solution, as the continuum of solutions
vanishes. It is still unknown mathematically why and how
this occurs.

We would like to point out that there is a fractal structure
in the moduli space of the solutions. This is most clearly
seen in the parametérvs masavl plot as displayed in Fig.
12. AsA becomes smaller, a new branch appears. The shape
of branches has approximate self-similarity. Similarly, in
Fig. 13 the magnetic chard@@,, is plotted againgh. Delicate
structure is observed near the critidaF b, which signifies
the critical solution discussed in Section V C 3. There may be
some connection between the limiting point in the monopole
spectrum and the critical solution.

VIII. STABILITY

It has been shown that the soliton and black hole solutions
in asymptotically Minkowski and de Sitter space, which nec-
essarily have at least one node w(r), are unstable
[2,11,10,3. In contrast, the monopole and black hole solu-

elaboration.

A. Perturbation equations

u(r,t)=u(r)+ du(r,t),
w(r,t)=w(r)+ ow(r,t),
W(r,t)=56W(r,t),

v(r,t)=ov(r,t),

We consider small time-dependent perturbations to the
static solutions to the coupled EYM equations. In the static
solutionsv (r)=W(r)=0. In the general ansatz, Egdl.l)

and(14), we set

P

6] al

6t

-8

-10

L A=-00001 —

.

-0.1

0

0.1 02 0.3b0.4 05 06

0.7

0.8

FIG. 13. The monopole spectrulmvs Qy (magnetic chargds
tions in the asymptotically anti—de Sitter space with no nodeplotted with various values of.
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p(r,t)=p(r)+ 8p(r,t), There is residual gauge invariance specified by a gauge func-
tion Q(r,t) in Egs.(9) and(12). Making use of this freedom,
H(r,t)=H(r)+ sH(r,1), (47 one can always set eithéu(r,t)=0 or év(r,t)=0.
andm(r,t)=m(r) + dm(r,t). Substituting Eq(47) into the B. Stability analysis
Yang-Mills equation(15) and retaining only terms linear in  |n examining time-dependent fluctuations around mono-
perturbations, one finds pole solutions for whichu(r)=0, it is convenient to work in

the su(t,r) =0 gauge. Equation@®), (49), and(51) become

2uw?p ( 5p 5H)

o -

[r2u’8p+r2p(du’—6v)] — 5 H

2pw
(12pow) = "1 o, (55

2pw .
— 5 (wéu+2udw+ W) =0, (48 2H
r2p5'i/+T(W6W’—W’5W+W26v)=O, (56)

. ~ 2H
r2p(ou’ — 6v)+r2u’ sp— ?[Wéﬁ/’—w’éﬁﬂrwzév]zo,

M s rwon| — 2 o 5 s B su—o
(49) 6( +Wwéov) ﬁ +W +EW =0,
(57)
wH[(SH 6p\ H " pu ,
S lH D + B&N’ + W(U&NJF 2wéu+26W) whereas Eqs(50), (52), (53), and(54) become
2 — W2 H SH & ' w(1l—w?)
p wup(ép OSH), w(l-w) | ,( p) ,] P .
L DL B el — W' | ———]+w —— W— ———=—94
H oW+ H ( p H ) r2p? op p H p H r2p2 p
1-3w? 1-3w?
7—ow=0, (50) + ——ow=0, (59
rep r-p
H "o ) , - S, 2w(l-w?)
[—(5W’+w5u) + = (U2SW— 2u8W— Wl — 5W) oM’ =v) WZoH + 2HW oW’ = ——7——ow/,
p H
(59
uwp(ép 5|'—|) ) (1—w?) sie s 5 .
_— _— —W r=0. !
Hip H/ p (—p) = wow, (60)
(5) P
. . . . 4
The Einstein equation&l8) and (20) yield SH=— Tva’b\N. (61
. 2uw? _ . -
sm’=v!{r?p2u’(su’—8v)+| r2u’'?+ pop Notice that Eqs(55)—(57) involve only v and 6W, defining
H the odd-parity group, whereas Eq$8)—(61) involve only
p2uw? éw, 6H, and ép, defining the even-parity group. The num-
+(w’2— a2 SH+2Hw' sw’ ber of the equations is larger than the number of the un-
known functions. Indeed, one equation in each group follows
2uw o 2w(1-w?) from the others. ' o
(Wou+udw+ 6W) — ————— 4wy, To derive the equation for each unknown function in a
H r . . . .
closed form, we introduce the tortoise radial coordinatsy
(52)
dp p
sp\’  4dv p2udw? (Sp SH dr H 62
A A )
) with which the equations fow, p, andm become
pruw )
+T(W5U+U5\N+ &N) , (53) d2W H X
d_pzz__rzpzw(l_w ), (63)
: 4vH )
SH=—— {w’ SWw—u(w' SW—wsW') +uw?sv}. dp  2vp?/dw\2
(59 A~ (%) ’ (69
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dm dW2+ H 1w
E—va —2—2rp( —W9)“.

(65

The range ofp is finite, 0<p<pnax Sincep—py andH
—|A|r?/3 asr—=:

r for r~0,

p= 3po (66)
——— for r~oo,
Pmax |A|r *

wherep=py+ O(1/r).

In the odd parity group Eq55) expressesw in terms of
Sv. Substituting it into Eq(56) and making use of Eq63),
one finds

d2
[_d_pz+UB(P)],3:w2,3,

U H Liw? 2 [dw\?
B—rz_pz( +W)+v7 )
ov= W W= 1 d 6
V—r—rpﬁ, = m&(wﬂ)- (67)

Here we have supposed fluctuations to be harmonic:

Sv(r,t)=e “Su(p) and SW(r,t)=e '“'sW(p). Equation
(57) follows from Egs.(55), (56), and(63).

In the even-parity group, Eq$60) and (61) expresssp
and 6H (&m) in terms of Sw. Equation(59) automatically
follows from Egs.(60), (61), (63), and (64). Equation(58)
becomes, with the use of Eq®0), (61), and(63).

2
( - d—szer(P)] Sw=w?w,

U—Hszl4dpOIWZ 68

W—W( we—1)+ vaplalap) | (68)

Again harmonic fluctuationdw(r,t)=e~'“'sw(p) are sup-
posed.

Equationg67) and(68) have the same form as the Schro

PHYSICAL REVIEW D 62 043513

Clearly B(0)=0. At p=pmax, Ov=3W=0 so thatB'+hpg
=0 whereh=w’'/w. Note that

_ldw  |A] r?dw

“wdp pmax_3p0 w dr

_ | Awy
3PpeWo

(69

r=cw

wherew;’s are defined in Eq(27). For the monopole con-
figurations with no nodes iw, h<0 (h>0) whenw is
monotonically decreasin@ncreasing.

Following Courant and Hilberft28], we define

D(¢;h)= fopmaxdp{so’(p)“r Ug(p)e(p)?+he(pmad?,

Me)= fop"‘“dpcmp)% (70

If w(r) is nodeless, thet z(p) is regular on the interval
except ap=0. The equation implies thgg=O(p?) near the
origin. In this case, an eigenfunctigd(p) in Eq. (67) satis-

fies

, D(p)
D) MB) (71
It follows immediately that all eigenvalues? are positive
definite if h=0 so that the solution is stable against small
odd-parity perturbations.
For h<0 more careful analysis is necessary. The lowest
eigenvaluew?=\, in the eigenvalue equatid?) is exactly
the lower bound of the set of values assumed by the func-
tional D(¢,h), where ¢ is any function continuous on the
interval [ 0,0ma] With piecewise continuous derivatives sat-
isfying ¢(0)=1 and\{(¢)=1:
N1(h)=min,D(¢;h). (72
If X\1>0, then the solution is stable against odd-parity per-
turbations. Suppose that (p) saturates the lower bound for
hi: Ni(h1) =D(¢1;h1). As

N1(hy) =D(@1;Nh2)+ (h1—h2) ©1(Pman?

dinger equation on a one-dimensional interval. Both of the

potentialsU, and U,, are singular atp=0, behaving as
+2/p?. Uz has an additional singularity i has a zero at

pk; Ug~+2/(p—py).
The integrated energy-momentum densit§®\/— gd®x
due to fluctuations must remain finite. At the origis 0 it

implies thatéw= 6W=0, whereasSv=0(1). Taking advan-

=N 1(hp) + (h1—h2) @1(pmad (73
where A (h) is a monotonically increasing function &f
Hence, if\1(h;)>0, then\,(h)>0 for h=h,.

To establish the stability we utilize the residual gauge
invariance. There is a zero-modeith w?=0) for Eq. (67)

tage of the general coordinate invariance, one can impos#ith an appropriate boundary conditidg. In the A =0 case

op=0 and SH=-28m/r=0. At r~w, éw’', W', dv

the existence of the zero mode was utilized to prove the

=0(r ~?). These are mild boundary conditions. One can im-instability of the BK and black hole solutions which has at

pose more strict conditions such as the regularity=a® and

least one node inw(r) [26,27. Consider the time-

vanishing atr=c. As physical perturbations we demand independent gauge functiof(r) in Eq. (9). For |Q|<1,

that all ow, 6W, év, 6H, and p vanish atr = .

In Eq. (67) the potentiald z(p) is positive definite. How-

ever, this does not necessarily mean that the eigenvalie

positive definite. It depends on the boundary condition. E

Sv=dQ/dr and W= —w{). Equation(55) is satisfied if

d (rzp2 dQ

L 2
o dp) 2wAQ). (74)
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As Q(0)=0, Q~ap+O(p®) for p~0. Hence, Eq(74) de-
termines Q(r) up to an overall constantBq,=(r2p?
wH)(dQ/dp) is the zero mode of Eq(67) and Ug
= Byl Bo, WhereQ)'=dQ/dp, etc. In this cas&)(pma)#0
andhy= —B(’)/Bo|pmax differs fromh in the eigenvalue prob-

lem under consideration. K> h,, then\ ;(h)>0, establish-
ing the stability. Asd(wp,)/dp=2w3Q,

2w?HQ
h=hg+ T (75
Nodeless solutionsw>0) are stable if2/Q' >0 at pmax-

Solving Eq.(74) numerically, we have determindd(p)
to find that indeech>h, for nodeless solutions. This analy-
sis also shows that becomes exactly, for the configura-
tion with w(r =) =0. In this limiting case the zero mode is
not normalizable; it diverges ap £ pma)

This is a general behavior. Whem has a node ap
< pmax, there appears a negativ@ mode which behaves as
(p—p) " nearpy.

If w(r) hasn nodes, i.e.w(r;)=0 (j=1,...n), the po-
tential U, develops ;()—,oj)‘2 singularities. Volkovet al.
have shown for the BK solutions in the=0 case that there
appear exactlyn negative eigenmodeswf<0) if w hasn

nodeg 26]. A similar conclusion has been obtained for black
hole solutions as we[R27]. Their argument needs elaboration

in the A<0 case, however.
To investigate the eigenvalue spectrum of E&Y) in this
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Spectrum

0.15 , . \ .
3
At o
0 w at infinity
g
3 2
Z 005FT
(]
2
d 1
0r \ i ——
-0.05 : . . . .
0  0.0005 0.001 o.ot<)J15 0.002 0.0025 0.003

FIG. 14. Eigenvalues\, (n=1,2,3) in the dual Schdinger
equation(77) with the boundary conditiori79) are displayed for
monopole configurations with varying valuesmfA =—0.01 and
v=1. Whenw(«) develops a node, the negative eigenvalue mode
arises, signaling the instability of the solutiomi()=0 at b
=0.001 68, where the numerical evaluatiomgfbecomes difficult.

An
h—ho’

hy=—hy (79
The advantage of considering the dual equation is that the

dual potentiaIUﬁ(p) is regular except ap=0 where it be-
haves ast+ 6/p2. However, the eigenvalug, has to be de-

case, it is convenient to consider the dual equation as wagrmined self-consistently such that the boundary condition

done in[26]. One can write the Schdinger equation in Eq.
(67) as

Q+Q_en=Anen,
4B
Qu==g,+ 5 (76

where By(p) is the zero mode described abovg,=O(p?)
nearp=0 and ¢, +he,=0 at p,.. The dual equation is
given by

a2 .
QQ+’¢n:[_d_p2+UB}’¢n:)\n¢nv
o H Lw? 8ww'HQ g w2HQ |2
BT W( +W) r2p29/ erZQr .
(77)
¢, andg, are related to each other by
5 Q_o¢n for \,#0,
7 orl=p51 for A,=0. (78)

However, the boundary condition f@r,(p) depends on,:
@n(0)=0,

Br(Pmad +Nn@n(Pmad =0,

(79 is satisfied. We have determinég’s numerically for
the monopole configurations in the lower branch in Fig. 4.
The first, second, and third eigenvalues are displayed in Fig.
14. One sees that; >0 for the nodeless configurations, but
the unstable mode develops wherhas a node.

The wave function of the unstable mode in the original
equation, not in the dual equation, diverges at the zeroes of
w(r). In other words, the instability sets in around the zeros

Potentials and wave functions

—— dual UB

-- wave function

-0.5 |
+ dual wave function
0 5 10 1p5 20 25 30

FIG. 15. Ug(p) and Oﬁ(p) for the monopole solution ab
=0.0025,A=—0.01, andb = 1. The wave function of the unstable
mode (=—0.0033) are also plotted,(p) in the dual equation
(77) is a regular smooth function, byt (p) in the original equation
(76) diverges at the zero aof.
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of w(r). The potentiall 4(p) andUB(p) for the solution at trivial bou.n.dary condiFion plgys a crucial role iq Qeveloping
b=0.0025 are plotted in Fig. 15. At the node wf U, di- the instability for solutions with nodes. The stability of node-

less dyon solutions needs to be established.

Though electric and magnetic charges of monopole and
dyon solutions are not quantized in classical theory, they are
expected to be quantized in quantum theory. If this is the
case, then at least solutions with the smallest charge would
become absolutely stable.

We have also found the critical spacetime solutions which

end at finiter. These solutions may have connections to
eblack hole solutions, though more detailed study is neces-
sary.
The solutions found in the present paper may have pro-
und consequences in the evolution of the early universe
which may have gone through the anti—de Sitter phase. We
hope to report on these subjects in future publications.

verges, bulD,B remains finite. The wave functioa,(p) of
the lowest eigenvaluen = —0.0033) and the corresponding
¢1(p) also have been plotted in Fig. 15.

For the even-parity perturbation the potentid),(p) in
Eq. (68) is not positive definite. The first term i, be-
comes negative fow?<1/3. The second term also can be-
come negative whew'’ vanishes at finite. We have solved
the Schrdinger equatior{68) numerically for typical mono-
pole solutions, and found that for the solutions with no nod
in w(r), the eigenvalues»? are always positive even if
w(r=«)<1W3. Hence we have established the stabilityfo
of the monopole solutions with no node w{(r).

IX. SUMMARY
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