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Monopoles, dyons, and black holes in the four-dimensional Einstein-Yang-Mills theory
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A continuum of monopole, dyon, and black hole solutions exists in the Einstein-Yang-Mills theory in
asymptotically anti–de Sitter space. Their structure is studied in detail. The solutions are classified by non-
Abelian electric and magnetic charges and the Arnowitt-Deser-Misner mass. The stability of the solutions
which have no node in non-Abelian magnetic fields is established. There exist critical spacetime solutions
which terminate at a finite radius, and have universal behavior. The moduli space of the solutions exhibits a
fractal structure as the cosmological constant approaches zero.

PACS number~s!: 98.80.Hw, 04.20.Jb, 04.70.Bw
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I. INTRODUCTION

For a long time, it was believed that no regular partic
like stable solutions~solitons! with finite mass can exist in
self-gravitating systems unless the stability is guaranteed
pologically. The Einstein theory in vacuum and the Einste
Maxwell system do not admit solitons. It came as quite
surprise when Bartnik and McKinnon~BK! found globally
regular solutions to the SU~2! Einstein-Yang-Mills~EYM!
theory without scalar fields@1#. It was unexpected to find tha
self-gravitating Yang-Mills systems produced solitons. U
fortunately, the BK solutions were shown to be unsta
against linear perturbations@2#. Later, other fields such a
Higgs scalar fields and dilaton fields were included in
EYM action, but, with the exception of the Skyrmions, a
turned out to be unstable~see@3# for a review!.

Interest in the BK solutions was renewed with the disco
ery of black hole solutions to the EYM equations@4,5#.
These non-Abelian black holes apparently violate the no-
conjecture@6#. But these non-Abelian black hole solution
are also unstable, and again other fields were added in
hope of achieving stability without success~see Refs.@3#,
@7#! for a review!.

We stress that it is a surprise that there are static solut
to the Einstein-Yang-Mills equations at all. There are
static solutions to the Yang-Mills equations in fou
dimensional flat space. We can see this with a simple a
ment given by Deser@8#. The conservation of the canonic
energy momentum tensor,]nTmn50, implies that for a static
field configuration] jTi

j50. The total divergence of the quan
tity xiTi

j must vanish to maintain finite energy and regulari
*dd21x] j (x

iTi
j )50. But ] j (x

iTi
j )5Tj

j1xi] jTi
j5Tj

j so that

E dd21Ti
i5E dd21xF1

2
~52d!Fi j

2 1~d23!F0i
2 G50.

~1!

Since the integrand above is positive definite ford54, Fi j
and F0i must vanish. Thus there are no regular static so
tions.

*Current address: Brookhaven National Laboratory, Build
510A Upton, NY 11973.
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The argument above cannot be extended to curved sp
time. The conservation lawTmn

;n50 leads to

E dd21xA2gTj
j52E dd21xA2gxkGkmnTmnÞ0. ~2!

The failure of Deser’s simple argument in curved space
plies the possibility of having static solutions in curve
space. Gravity supplies the attractive force needed to bala
the repulsive force of Yang-Mills gauge interactions. Inde
any solution to SU~2! EYM equations in asymptotically
Minkowski space which is regular asymptotically is al
regular for allr .0 @9#.

The particlelike and black hole solutions were later stu
ied in a cosmological context. The behavior of static so
tions to the Einstein-Yang-Mills equations depends cons
erably on the sign of the cosmological constant. T
solutions can be separated into two families;L>0 and L
,0. The solutions whereL50 are the BK solutions. Their
asymptotically de Sitter analogs (L.0) were discovered in-
dependently by Volkovet al. and Torii et al. @10#. The BK
solutions and the cosmological extensions all share sim
behavior, and are unstable@11,12#. ~See Ref.@3# for a re-
view.! Recently, asymptotically anti–de Sitter black hole s
lutions @13# and soliton solutions@14,15# were found which
are strikingly different from the BK-type solutions. In pa
ticular, the asymptotically anti–de Sitter~AdS! EYM equa-
tions have solutions where the field strengths are nonz
everywhere. These solutions were also shown to be st
against spherically symmetric linear perturbations. These
lutions are the only EYM solutions solutions that are stab
This discovery would be very important to cosmology if th
universe was ever in a phase where the cosmological c
stant is negative.

Another new feature of the EYM theory in AdS is th
existence of dyon solutions. IfL>0 the electric part of the
gauge fields is forbidden@16# if the Arnowitt-Deser-Misner
~ADM ! mass is to remain finite. Scalar fields must be add
to the theory in order for the boundary conditions at infin
to permit the electric fields and maintain a finite ADM ma
@18,19#.

Recently a tremendous amount of interest has evolve
field theories in AdS space. There is the AdS/CFT~confor-
mal field theory! correspondence@17# which states that con
©2000 The American Physical Society13-1
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formal field theories ind dimensions (Rd) are described in
terms of supergravity or string theory on the product spac
AdSd11 and a compact manifold. There are intimate re
tions between data on the boundaryRd of AdSd11 and data
in the bulk AdSd11 . In the present paper we are examini
the Einstein-Yang-Mills theory in asymptotically AdS spac
The boundary in space must be playing a crucial role for
existence of stable monopole and dyon solutions, more
tailed analysis of which is, however, left for future inves
gation. We also note that in the three-dimensional AdS sp
there exist nontrivial black holes@20# and monopole-
instanton solutions@21#.

When the value of the cosmological constantL is varied,
the space of monopole and dyon solutions, the moduli sp
also changes. With a finite negativeL, solutions exist in
continuum. They are classified in a finite number of famili
or branches. With a vanishing or positiveL solution exists
only in a discrete set, but there are infinitely many. O
natural question emerging is how these finite number
branches of solutions in continuum become infinitely ma
discrete points asL,0 approaches 0. There is a surprisi
hidden feature in this limit. We find a fractal structure in t
moduli space, which seems to explain the transition.

In the next section the general formalism is given and
equations of motion are derived with a spherically symme
ansatz. Conserved charges in the Yang-Mills theory is
fined in Sec. III. Some general no-go theorems are deri
from sum rules in Sec. IV. The new soliton solutions
asymptotically anti–de Sitter space are explained in Sec
The critical spacetime which has universality near the e
of the space is also examined. Black hole solutions wh
have both magnetic and electric non-Abelian charges are
sented in Sec. VI. The dependence of the moduli space
the cosmological constantL is investigated in Sec. VII
where the fractal structure is revealed whenL approaches
zero from the negative side. The detailed analysis of
stability of the monopole solutions is presented in Sec. V
The subtle boundary condition in the problem requires ela
ration of the previous argument presented in theL50 and
l.0 cases.

II. GENERAL FORMALISM

In non-Abelian gauge theory, the field equations have
lutions which exhibit a magnetic charge. In the ’t Hoof
Polyakov monopole solution

Fa5
xa

er2 H~er!, Aa
050, Aa

i 52eai j

xj

er2 @12K~er!#,

~3!

whereFa is a triplet Higgs scalar field. Its stability is gua
anteed by the topology of the triplet Higgs scalar field@22#.
The U~1! magnetic charge takes a quantized value, 4p/e.
Dyon solutions were obtained@23# starting with the above
ansatz ~3! but with a nonzero value forAa

0 @i.e., Aa
0

5(xa /er2)J(er)#.
In this paper we look for monopole and dyon solutions

the Einstein-Yang-Mills theory without scalar fields:
04351
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S5E d4xA2gF 1

16pG
~R22L!2

1

4
FamnFmn

a G . ~4!

The Einstein and Yang-Mills equations are given by

Rmn2
1

2
gmn~R22L!58pGTmn,

Fmn
;n1e@Am ,Fmn#50. ~5!

We suspect that the gravity provides an attractive force
balance the equation.

We look for spherically symmetric solutions. The metr
takes the form

ds252
H

p2 dt21
dr2

H
1r 2~du21sin2 udf2!, ~6!

whereas Yang-Mills fields are given@24,25#, in the regular
gauge, by

A~0!5
t j

2e H A0

xj

r
dt1A1

xjxk

r 2 dxk1
f1

r S d jk2
xjxk

r 2 Ddxk

2e jkl

12f2

r 2 xkdxl J . ~7!

Here the Cartesian coordinatexk’s are related to the pola
coordinates (r ,u,f) as in the flat space.H, p, A0 , A1 , f1 ,
andf2 are functions ofr for monopole or dyon solutions. In
the discussion of the stability of the solutions they depend
both t and r. The regularity of solutions at the origin de
mands thatH, p are finite, whereasA0 , A1 , andf1→0 and
f2→1 at r 50.

A. Simplification of the static gauge field ansatz

Let A5Amdxm5 1
2t

aAm
a dxm, whereta are the usual Paul

matrices. In terms of the basis in spherical coordina
(t r ,tu ,tf)5(nW r ,nW u ,nW f)tW , which satisfies @t i ,t j #
52i e i jktk ( i 5r ,u,f), the ansatz~7! is written as

A~0!5
1

2e
@A0t rdt1A1t rdr1„f1tu1~f221!tf…du

1„2~f221!tu1f1tf…sinudf#. ~8!

Note that there are no singularities in this gauge. Next m
a gauge transformationA5SA(0)S212( i /e)dS•S21 where

S5S 1ei ~f1V!/2 cos
u

2
1e2 i ~f2V!/2 sin

u

2

2ei ~f2V!/2 sin
u

2
1e2 i ~f1V!/2 cos

u

2

D ,

V5V~ t,r !. ~9!

Useful identities are
3-2
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St rS
215t3 ,

StuS215cosVt12sinVt2 ,

StfS215sinVt11cosVt2 ,

2idS•S2152~V8dr1V̇dt!t32du~sinVt11cosVt2!

1df~sinu cosVt12sinu sinVt2

2cosut3!. ~10!

The new gauge potential is

A5
1

2e
$ut3dt1nt3dr1~wt11w̃t2!du

1~cotut31wt22w̃t1!sinudf%, ~11!
04351
where

u5A01V̇,

n5A11V8,

w51f1 cosV1f2 sinV,

w̃52f1 sinV1f2 cosV. ~12!

Note that the gauge transformation~9! is singular atu50
and p. Equation~12! is the gauge potential in the singula
gauge. It has a Dirac string. One can always chooseV(t,r
50)5p/2 with which the boundary conditions atr 50 are
u5n5w̃50 andw51. With appropriateV(t,r ) one can set
n(t,r )50 or u(t,r )50.

A straightforward calculation leads to the field streng
F5dA2 ieA∧A:
F5
1

2e
$~ ṅ2u8!t3dt∧dr1@~ẇ2uw̃!t11~w8 1uw!t2#dt∧du

2@~uw1w8 !t11~uw̃2ẇ!t2#dt∧sinudf1@~w82nw̃!t11~w̃81wn!t2#dr∧du

1@~w82nw̃!t21~2w̃82nw!t1#dr∧sinudf2~12w22w̃2!t3du∧sinudf%. ~13!
ten-
The configurations wheren5u50, w5w̃5const, andw2

1w̃251 are pure gauge.

B. Equations of motion

In the general spherically symmetric metric~6! tetrads are

e05
AH

p
dt, e15

1

AH
dr, e25rdu, e35r sinudf.

~14!

In the tetrad basisFab5(ea)m(eb)nFmn and the energy-
momentum tensors areTab5Fac

( i )Fb
c( i )2 1

4 habFde
( i )Fde( i ). The

nonvanishing components of the Yang-Mills equations~5!
are

@pr2~u82 ṅ !#822
p

H
$w~uw1w8 !1w̃~uw̃2ẇ!%50,

@pr2~u82 ṅ !# ,t22
H

p
$2w̃w81w̃8w1n~w21w̃2!%50,

S H

p
~w82w̃n! D 8

2S p

H
~ẇ2uw̃! D

,t

1
p

H
u~uw1w8 !

1
w~12w22w̃2!

pr2 2
H

p
n~w̃81wn!50,
S H

p
~w̃81wn! D 8

2S p

H
~w8 1uw! D

,t

1
p

H
u~uw̃2ẇ!

1
w̃~12w22w̃2!

pr2 1
H

p
n~w82w̃n!50. ~15!

The nonvanishing components of the energy-momentum
sor are given by

T005
1

e2 ~A1B!,

T115
1

e2 ~2A1B!,

T225T335
1

e2 A,

T0152
1

e2 C, ~16!

where

A5
1

2
p2~ ṅ2u8!21

1

2r 4 ~12w22w̃2!2,
3-3
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B5
p2

r 2H
$~uw1w8 !21~ẇ2uw̃!2%1

H

r 2 $~w82nw̃!2

1~w̃81nw!2%,

C5
2p

r 2 $~w̃81nw!~uw1w8 !1~w82nw̃!~ẇ2uw̃!%. ~17!

The Einstein equations reduce to

p8

p
52

8pG

e2

rB

H
2

H8

r
1

12H

r 2 5
8pG

e2 ~A1B!1L,

p

2 H S pḢ

H2 D
,t

1S pH822p8H

p2 D 8J 1
12H

r 2 5
16pG

e2 A,

pḢ

rH
52

8pG

e2 C. ~18!

It is convenient to introducem(r ) defined by

H~r !512
2m~r !

r
2

Lr 2

3
. ~19!

m(r ) is the mass contained inside the radiusr. p(r )
5const andm(r )50 correspond to the Minkowski, de Si
ter, or anti–de Sitter space forL50, .0, or ,0, respec-
tively. Then the second equation in Eq.~18! becomes

m85
4pG

e2 r 2~A1B!. ~20!

The system of the Einstein-Yang-Mills equations conta
one redundant equation. The third equation in Eq.~18! fol-
lows from Eq.~15! and the rest of Eq.~18!.

C. Static configurations

It is most convenient to take then50 gauge for static
configurations. The second equation in Eq.~15! then yields
ww̃82w8w̃50, which leads tow̃(r )5Cw(r ). By a further
global rotationV5const in Eq.~12!, one can setw̃50. As a
result

A5
1

2e
$ut3dt1wt1du1~cotut31wt2!sinudf%

F5
1

2e
$2u8t3dt∧dr1uwdt∧~t2du2t1 sinudf!

1w8dr∧~t1du1t2 sinudf!2~12w2!

3t3du∧sinudf%. ~21!

Then the Einstein-Yang-Mills equations are

S H

p
w8D 8

52
p

H
u2w2

w

p

~12w2!

r 2 , ~22!
04351
s

~r 2pu8!85
2p

H
w2u, ~23!

p852
2v
r

pF ~w8!21
u2w2p2

H2 G ,
~24!

m85vF ~w221!2

2r 2 1
1

2
r 2p2~u8!2

1H~w8!21
u2w2p2

H G , ~25!

wherev54pG/e2.
These equations are solved with the given boundary c

ditions. Near the origin solutions must be regular so that

u~r !5ar1
a

5 H 22b1
1

3
L12v~a214b2!J r 3,

w~r !512br2,

m~r !5
1

2
v~a214b2!r 3,

p~r !512v~a214b2!r 2, ~26!

wherea andb are arbitrary constants. The boundary con
tions at the origin of the EYM equations are completely d
termined by the values of the constantsa andb.

At space infinity the energy-momentum tensorsTab in Eq.
~16! must approach zero sufficiently fast. Further we exp
that the metric must be asymptotically~anti–! de Sitter
space, depending on the value ofL. This, with the equations
of motion, leads to the asymptotic expansion at larger;

u5u01u1

1

r
1¯ , w5w01w1

1

2
1¯ ,

m5M1m1

1

r
1¯ , p5p01p4

1

r 4 1¯ , ~27!

whereu0 , u1 , w0 , w1 , m1 , p0 , andp4 are constants to be
determined andM is the ADM mass,M5m(`)2m(0).

III. CONSERVED CHARGES

Solutions to Eqs.~22!–~25! are classified by the ADM
mass,M5m(`), electric and magnetic charges,QE and
QM . From the Gauss flux theorem

S QE

QM
D 5

e

4p E dSkA2gS Fk0

F̃k0D ~28!

are conserved. With the ansatz in the singular gauge~11! and
the asympotitic behavior~27!, the charges are given by

S QE

QM
D 5S u1p0

12w0
2D t3

2
. ~29!
3-4
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Notice that the electric chargeQE is determined byu1 ,
whereas the magnetic chargeQM by w0 . If ~u,w,m,p! is a
solution, then (2u,w,m,p) is also a solution. Dyon solu
tions come in a pair with (6QE ,QM ,M ).

The charges~28! are not gauge invariant, however. Und
a local gauge transformationA→UAU212( i /e)dUU21,
QE andQM are transformed to

S QE
U

QM
UD 5

e

4p E dSkA2gU~x!S Fk0

F̃k0D U21~x!. ~30!

In non-Abelian gauge theory a set of charges$QE
U ,QM

U%
are conserved. In the rest of the paper we use the cha
Eq. ~29!, defined in the singular gauge.

The effective chargeQeff @1# is defined by the asymptoti
behavior ofH(r );

H~r !512
2M

r
1

Qeff
2

r 2 2
1

3
Lr 2. ~31!

In terms of the coefficients in Eq.~27!, Qeff
2 522m1. This

requires thatm1,0 which indeed is the case. After insertin
Eq. ~27! into Eqs.~22! and ~25! we find the relation

Qeff
2 52v Tr~QE

21QM
2 !2

4L

3

p4

p0
. ~32!

Equation~24! implies thatp(r ) is a monotonically decreas
ing positive function so thatp0.0 andp4.0. The effective
charge is smaller~larger! than 2v Tr(QE

21QM
2 ) for L.0

(,0). The relation~32! incidentally implies that the charge
defined in the singular gauge have a physical, gau
invariant meaning.

IV. SUM RULES

Sum rules are obtained from the equations of moti
First, multiply both sides of Eq.~23! by u and integrate in
part:

pr2uu8ur 1

r 25E
r 1

r 2
drH r 2p~u8!212

p

H
u2w2J . ~33!

Secondly, multiply both sides of Eq.~22! by w and integrate
in part:

H

p
ww8ur 1

r 25E
r 1

r 2
drH H

p
~w8!22

p

H
u2w22

1

pr2 w2~12w2!J .

~34!

Thirdly, divide both sides of Eq.~22! by w and integrate in
part:

2
Hw8

pw U
r 1

r 2

5E
r 1

r 2
drH p

H
u21

H

p S w8

w D 2

1
1

pr2 ~12w2!J .

~35!
04351
es,
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These relations are valid, provided the integrals on the rig
hand sides are defined. Several important conclusions fo
from Eqs.~33!–~35!.

A. In asymptotically flat space

Consider Eq.~33! with r 150 andr 25`. For regular so-
lutions u(0)50. Both p andH approach constant asr→`.
The finiteness of the ADM mass requires thatuwur 5`50. In
the expansion~27!, u0w050. On the other hand, ifu0Þ0,
w050 and Eq.~23! impliesw1Þ0 so that Eq.~22! cannot be
satisfied. Hence,u(`)50. Then the left-hand side~lhs! of
Eq. ~33! vanishes, implying thatu(r ) must vanish identi-
cally. There is no regular electrically charged solution. F
thermore, Eq.~22! can be solved only if (w0)251 as
H(`)51, therefore the magnetic chargeQM vanishes.

Suppose thatw(r ) never vanishes andw2<1 for 0,r
,`. Consider Eq.~35! with r 150 andr 25`. The lhs van-
ishes, but the integrand on the rhs is positive definite exc
for the pure gauge configurationw(r )561. This implies
that nontrivial solutions withw2<1 must vanish at leas
once.

We also note that the singular solutionw(r )50, u8(r )
5r 22, and p(r )51 is nothing but the Reissner-Nordstro¨m
~RN! solution.

B. In asymptotically de Sitter space

In asymptotically de Sitter spaceH(r )→2Lr 2/3 as r
→`. In this case the finiteness of the ADM mass does
forbid nonvanishinguw at r 5`. However, there arises
cosmological horizon atr 5r h , whereH(r h)50.

It follows from Eqs.~24! and~25! thatu or w must vanish
at r 5r h . Now consider Eq.~35!. Suppose thatw(r h)Þ0, or
equivalently wÞ0 for r 1<r<r 25r h for some r 1.0, the
left-hand side is finite so thatu(r h)50. However, Eq.~23!
implies thatu(r ) is a monotonically increasing or decreasin
function. With the boundary conditionu(0)50, the only
possibility available isu(r )50. This conclusion remains
valid even ifw(r h)50. In this case the first and second term
on the rhs give positively divergent contributions nearr h ,
whereas the lhs remains finite. To summarize, there is
solution with nonvanishingu(r ).

If w.0 for 0<r<r h , then the left-hand side vanishes
the r 1→0 andr 2→r h limit. If one further assumes thatw2

<1 in the interval, the integrand on the right-hand side
positive definite so that the only solution isw(r )561,
which is a pure gauge.

This argument also shows that a nontrivial solutionw(r ),
which satisfiesw2<1 for 0<r<r h , must vanish at leas
once in this interval. We have numerically looked for sol
tions in which w2>1 for small r, but have found that no
such solution exists.

C. In asymptotically anti –de Sitter space

In asymptotically anti–de Sitter space there exist so
tions in whichH(r ).0 everywhere. AsH(r );uLur 2/3 for
large r, the condition for the finiteness of the ADM mas
requires only thatuw→const. In other words, bothu andw
3-5
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JEFF BJORAKER AND YUTAKA HOSOTANI PHYSICAL REVIEW D62 043513
may approach nonvanishing values asr→`. Consequently,
with the expansion~27! the lhs of Eq.~33! with r 150 and
r 25` is 2p0u0u1 and can be nonvanishing. Solutions wi
u(r )Þ0 are allowed.

In critical cases a cosmological horizon appears a
H(r h)50. In this case the argument above for the asympt
cally de Sitter case applies and eitheru or w must vanish at
r 5r h . We shall find, indeed,w(r h)50 below.

V. SOLITON SOLUTIONS

A. The BK solution

Particlelike solutions of the EYM equations in asympto
cally Minkowski space were first found by Bartnik an
McKinnon ~BK! @1# in 1988. Whenu50, we can solve Eqs
~22!–~25! numerically with the boundary conditiona50.

As already discussed,w(r )51 andH(r )51 corresponds
to a pure gauge configuration. Similarly, ifw50 asr→` we
are left with the RN solution which is singular atr 50. The
Yang-Mills charge ~29! vanishes in asymptotically
Minkowski space sincew0561. The effective chargeQeff
50 in all BK solutions, sinceQM5L50. All solutions pos-
sess a metric that is asymptotically Schwarzschild.

There is a discrete set of BK solutions, labeled by
number of nodes inw, nP@1,̀ ), and the free shooting pa
rameterb. Since all BK solutions have at least one noden
>1, the solutions are unstable against spherically symme
perturbations@2#.

B. Solutions with a cosmological horizon

Solutions in asymptotically de Sitter space were obtain
by adding a cosmological constant~L! term to the Einstein
equations. Solutions display the same basic properties a
BK solutions@10#. Just as in the BK solution, these equatio
are solved numerically, using the shooting method and
quiring a50.

In asymptotically de Sitter space, a cosmological horiz
whereH50, develops atr 5r h . At the horizonH8(r h)Þ0.
Near the horizon

w~r !5w01w1x1w2x21¯ ,

p~r !5p01p1x1P2x21¯ ,

m~r !5m01m1x1m2x21¯ ,

H~r !5h1x1h2x21¯ , ~36!

where x5r 2r h . m0 and r h are related by 12(2m0 /r h)
2(Lr h

2/3)50. With givenw0 , r h , andp0 , Eqs.~22!, ~24!,
and ~25! ~with u50! determine all other coefficients, pro
vided w0Þ0, 61 andp0Þ0;

m15
v

2r h
2 ~w0

221!2,

h152
2m1

r h
1

2m0

r h
2 2

2

3
Lr h ,
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w152
w0~12w0

2!

h1r h
2 ,

p152
2vw1

2p0

r h
, ~37!

and so on. This expansion is valid independent of the va
of L. The critical caseh15H8(r h)50 requires a specia
treatment, and will be analyzed in Sec. V C. Ku¨nzle and
Masood-ul-Alam@5# have argued thatw(r ) hasAur 2r hu sin-
gularity at r 5r h . However, we have found that the regul
expansion~36! is valid.

Just like the BK case, there are a discrete set of soluti
labeled by the number of nodes inw(r ), n and the paramete
b. Solutions inw and m, have the same form as the B
solutions except thatw(r ) no longer approaches 1 at infinity
Equation ~32! implies that there is a nonvanishing char
QM ~or wÞ1! if LÞ0 and that the solutions are all asym
totically the Reissner-Nordstro¨m type. uw(`)u is slightly
greater than 1 for then51 solutions. Whenn>2, 1
.w(`).0, wherew(`)→0 asn→`.

The massm(r ) also stays finite. For all indicesn, it is
small near the origin and does not grow until it approach
the horizon where it quickly climbs to a value near 1. Aft
the horizon it stays almost constant.

The position of the horizon depends onL. As long L is
below some critical value, the geometry approach
Reissner–Nordstro¨m–de Sitter space in the asymptotic r
gion as indicated by Eq.~32!. Above some critical value the
topology changes and a singularity appears. Since the p
tion of the horizon depends onL, there is a value forL
where this singularity and the horizon meet, in which t
topology becomes a completely regular manifold. Above t
value forL, the solutions are no longer regular. More deta
of the topology dependence onL can be found in@10#. All
the solutions are unstable@12#.

C. Solutions in asymptotically anti–de Sitter space

As already discussed, there are no boundary conditi
that forbid a solution to the EYM equations in asymptotica
anti–de Sitter space with a nonzero electric componentu(r ),
to the Yang-Mills fields. Solutions to Eqs.~22!–~25! are de-
termined with the cosmological constantL fixed at some
negative value.

1. Monopole solutions

Monopole solutions are obtained by settinga50 (u
50). By varying the initial condition parameterb, a con-
tinuum of monopole solutions are found which are regular
the entire space. Just as in the BK and dS solutionsw
crosses the axis an arbitrary number of times depending
the value of the adjustable shooting parameterb. In contrast
to the L50 and L.0 cases which have a discrete set
solutions inb and n, there is a continuum of solutions inb
for eachn. Typical solutions are displayed in Fig. 1.

The behavior ofm andp is similar to that of the asymp
totically dS solutions@10#. In contrast, as shown in Fig. 1
3-6
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there exist solutions wherew has no nodes. These solution
are of particular interest because they are shown to be s
against linear perturbations.

2. Dyon solutions

Dyon solutions to the EYM equations are determined
the adjustable shooting parametera is chosen to be nonzer
for a given negativeL. Just as in the monopole solutions, w
find a continuum of solutions wherew crosses the axis a
arbitrary number of times depending ona andb. Also similar
to the monopole solutions is the existence of solutions wh
w does not cross the axis. As shown in Fig. 2, the elec
componentu of the EYM equations starts at zero and mon
tonically increases to some finite value. The behavior ofw,
m, H, andp is similar to that in the monopole solutions.

Just as for the monopole case, dyon solutions are fo
for a continuous set of parameters,a andb. For some values
of a andb, solutions blow up, or the functionH(r ) crosses
the axis and becomes negative.

3. Critical solutions

As the parameterb is increased, the minimum ofH(r )
hits zero from above, i.e.,H(r h)5H8(r h)50. This consti-
tutes a special case and needs careful examination. Num
cal studies indicate that this happens in a finite range of
parametera. The critical solution exists for both theu(r )
50 andu(r )Þ0 cases. One example of solutions near
critical value @(a,b)5(0.01,0.69)# is displayed in Fig. 3.
H(r ) becomes very close to zero atr;1. It has
(QE ,QM ,M );(0.015,0.998,0.995).

Whenb5bc , w andp vanish atr 5r h as well. Asp(r h)
50, p(r )50 for r>r h . The space ends atr 5r h . There is
universality at the critical point.

FIG. 1. Monopole solutions forL520.01 andv51. (a,b)
5(0,0.001) and~0, 20.001!. ~w, m! at r 5` are~0.318, 0.035! and
~2.304, 0.201!.
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The numerical integration of the differential equations
dicates thatm(r ) andu(r ) are regular atr 5r h . The appro-
priate ansatz for the critical solutions withH(r h)5H8(r h)
50 is, for y5r h2r>0,

u5u01u1y1u2y21¯ ,

w5ya$w01w1y1w2y21¯%,

p5yb$p01p1y1p2y21¯%,

H5yg$h01h1y1h2y21¯%,

m5m01m1y1m2y21¯ . ~38!

FIG. 2. Dyon solutions forL520.01 andv51. In the top
figurew(r ) has no node (n50), whereas in the bottom figure it ha
one node (n51).

FIG. 3. Dyon solution forL520.01, v51, a50.01, andb
50.69. At a50.01, the critical value isbc50.7104.H almost hits
the axis aroundr 51. At bc , p(r )50 for r>r h . The space ends
at r h .
3-7
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Equation ~22! implies thatg52. When u(r )Þ0, Eq. ~23!
leads toa5 1

2. Whenu(r )50, Eq.~24!, instead, implies tha
a5 1

2. Other relations obtained from Eqs.~22!–~25! are

S b2
3

2Dh05
2

r h
2 ,

br h
2u15

2w0
2u0

h0
,

b5
vw0

2

2r h
,

m152
v

2r h
2 . ~39!

The value of the indexb is unconstrained whenu50. How-
ever, if uÞ0, the consistency of Eq.~22!, for instance, de-
mands that 2b be an integer. The smallest value forb which
satisfies the first relation in Eq.~39! is b52, ash0.0. We
have confirmed this by numerical studies. The relation~19!
further implies that

2m0

r h
512

L

3
r h

2,

m15
1

2
~Lr h

221!. ~40!

From the two relations form1 , one in Eq.~39! and the other
in Eq. ~40!, r h is determined as a function ofv andL,0:

r h
25

1

2uLu ~A114vuLu21!. ~41!

To summarize, the indices in Eq.~38! are given by

a5
1

2
, b5g52. ~42!

The coefficientsm0 , m1 , and

w0
25

4r h

v
, h05

4

r h
2 ~43!

are all determined byv and L only. We are observing the
universality in the behavior of the critical solutions. The c
efficientsu0 andp0 depend ona or b as well.

For smallvuLu!1

r h;Av, m0;
1

2
Av, m1;2

1

2
,

w0;
2

v1/4, h0;
4

v
. ~44!

They are all determined byv only. This universal behavior is
clearly seen in the solution in Fig. 3 which is very close
the critical one.
04351
-

The meaning of the critical spacetime is yet to be cla
fied. The space ends atr 5r h . It defines a spacetime with
boundary.

4. Spectrum of monopole and dyon solutions

Monopole and dyon solutions permit nonvanishi
chargesQM and QE , although there are solutions whe
QM50 and QEÞ0 or whereQE50 but QMÞ0. Nonzero
chargesQM or QE ensures thatQeffÞ0 @see Eq.~32!# so that
solutions are asymptotically of the AdS Reissner-Nordstr¨m
type.

In Fig. 4 the massM is plotted as a function ofQM for
monopole solutions atL520.01 andv51. The behavior of
the solutions near tob5bc50.7104 needs more carefu
analysis.

Dyon solutions are found in a good portion of theQE-QM
plane. There are solutions withQM50 butQEÞ0. Although
QM50, i.e.,w(`)561, w(r )Þ0. In the shooting paramete
space~a,b!, these solutions correspond not exactly, but
most to a universal value forb;0.0054. See Fig. 5. More
surprising is the fact thatQM takes a quantized valu
2(4p)21/2 at b50.0061 independent of the value ofa
within numerical errors. We have not understood why
should be so.

Solutions with no node inw(r ) have special importance
as they are stable against small fluctuations.~See Sec. VIII!.
In Fig. 6 the spectrum of nodeless dyon solutions are p
sented in the parameter space~a,b!. Notice thata must be
small enough (a,0.005) even forb,0.

5. Dependence of the couplingv on the solutions

The ADM massM depends on the value of the couplin
v54pG/e2. As shown in Fig. 7,M increases asv gets
larger and decreases whenv gets smaller. With fixed~a,b!,
roughly M}v. The Yang-Mills fieldsu and w are roughly
independent ofv.

FIG. 4. MassM is plotted as a function of magnetic chargeQM

for monopole solutions atL520.01 andv51. The number of
nodesn in w(r ) is also marked. In the lower branchQM51 at b
50.00168.
3-8
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VI. BLACK HOLE SOLUTIONS

Not long after the BK solutions were discovered, bla
hole solutions were also found to be contained in the EY
equations@4# if different boundary conditions were use
These solutions generated a large amount of further stud
they apparently violate the no-hair conjecture@6#. Later,
EYM black holes were studied in a cosmological context
including a positive cosmological constant@10#. These black
hole solutions share most of the properties as the sol
solutions, including their instability.

Recently, purely magnetic black hole solutions we
found in asymptotically anti–de Sitter space@13#. These so-
lutions are drastically different from their asymptotical
Minkowski or de Sitter counterparts. There are a continu
of solutions in terms of the adjustable shooting parame
that specifies the initial conditions at the horizon. Furth
more, there exist solutions that have no node inw and are in

FIG. 5. Magnetic chargeQM of dyon solutions as a function o
the parameterb is plotted with various values of the parametera. At
b;0.0061, QM is independent ofa, taking the quantized value
2(4p)21/2520.2821 within numerical errors.

FIG. 6. Spectrum of nodeless dyons.
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turn stable against spherically symmetric linear pertur
tions. Here, we discuss the solutions found by Winstan
@13# and also present new dyon black hole solutions. We a
discuss the apparent shrinking of the moduli space when
magnitude ofL is decreased. Similar to the particlelike s
lutions already discussed, the moduli space becomes dis
in the L→0 limit.

A. Boundary conditions at the horizon

Black hole solutions are obtained numerically by speci
ing the boundary conditions at the horizon and shooting
regular solutionsw, u, m, andp for r h<r ,`. The location
of the horizon,r h , and the valuep(r h).0 can be arbitrarily
chosen by scaling oft andr. We look for solutions in which
H(r ).0 for r .r h . As H(r h)50 but p(r h)Þ0, Eqs.~22!–
~25! require that eitheru or w vanishes at the horizon. A
stronger condition is obtained from the sum rule~35! with
r 15r h and r 25`. Its left-hand side~lhs! is finite so that
u(r h)50 on its rhs. Hence we are led to the expansion

w5w01w1x1¯ ,

u5u1x1¯ ,

p511p1x1¯ ,

H5h1x1¯ ,

m5m01m1x1¯ , ~45!

wherex5r 2r h . We have chosenp(r h)51 without loss of
generality.

There are two adjustable shooting parameters, (a,b)
5(u1 ,w0). After inserting the ansatz into Eqs.~19!–~25! we
find

FIG. 7. A typical solution showing the dependence ofv on the
massm(r ). L520.01,a50.003, andb50.001.w(r ) andu(r ) do
not have much dependence onv.
3-9
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m05
r h

2
2

Lr h
3

6
,

m15
v
2 H ~12w0

2!2

r h
2 1u1

2J ,

h15
1

r h
~12Lr h

222m1!,

w152
w0~12w0

2!

r h
2h1

,

p152
2v
r h

H ~w1!21
w0

2u1
2

h1
2 J ,

u252H w0
2

r h
2h1

1
1

r h
1

p1

2 J . ~46!

The asymptotic expansion at larger is the same as in Eq
~27!. The ADM mass is given byM5m(`).

B. New electrically and magnetically charged black hole
solutions

Just as the soliton solutions, purely magnetically char
black hole solutions are obtained by setting the adjusta
parametera to zero. The behavior of the solutions are simi
to that of the solitons~see Ref.@13# for more information!.
The number of nodesn in w can be 0, 1, 2, . . . . The blac
hole monopole spectrum of mass versus charge is displa
in Fig. 8. It shows the spectrum for then50 andn51 arms.

Solutions with both magnetic and electric charge are
tained by givinga a finite value. Dyon black hole solution
are similar to the monopole solutions except thatu is non-
zero. At the horizonu starts at zero and monotonically in
creases asymptotically to a finite value.H starts at one and
quickly diverges.p starts at one and remains almost consta
Typical black hole dyon solutions are shown in Fig. 9.

Again black hole dyon solutions with no node inw(r ) are
stable against small spherically symmetric perturbations.

FIG. 8. Black hole mass vs magnetic chargeQM for the n50
andn51 arms and for different values ofL.
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spectrum of those nodeless black hole dyons in the param
space~a,b! is plotted in Fig. 10. Notice the similarity be
tween Figs. 6 and 10. The nodeless solutions exist only
small a5u1,0.0055.b5w0 must be around 1.

VII. DEPENDENCE ON L-FRACTAL STRUCTURE

The soliton and black hole solutions depend nontrivia
on the value of the cosmological constantL. It has not been
well understood why the continuum of solutions for negat
L become a discrete set of solutions in theL→0 limit, and
remain discrete for allL.0. Just as Fig. 8 shows for th
black hole solutions, Figs. 4 and 11 shows the spectrum
mass vs magnetic chargeQM plane for a giveL. The width

FIG. 9. Typical dyon black hole solutions with no node and o
node.H(r ) and p(r ) were not plotted for the sake of clarity. Th
top figure corresponds to (a,b)5(0.004,0.99998), whereas the bo
tom corresponds to~0.01,0.9998!.

FIG. 10. Spectrum of black hole solutions.
3-10
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of each branch for a givenL gets smaller asL approaches
zero. Figure 11 indicates that asL→0, the branches collaps
to one point, the BK solution, as the continuum of solutio
vanishes. It is still unknown mathematically why and ho
this occurs.

We would like to point out that there is a fractal structu
in the moduli space of the solutions. This is most clea
seen in the parameterb vs massM plot as displayed in Fig.
12. AsL becomes smaller, a new branch appears. The sh
of branches has approximate self-similarity. Similarly,
Fig. 13 the magnetic chargeQM is plotted againstb. Delicate
structure is observed near the criticalb5bc which signifies
the critical solution discussed in Section V C 3. There may
some connection between the limiting point in the monop
spectrum and the critical solution.

VIII. STABILITY

It has been shown that the soliton and black hole soluti
in asymptotically Minkowski and de Sitter space, which ne
essarily have at least one node inw(r ), are unstable
@2,11,10,3#. In contrast, the monopole and black hole so
tions in the asymptotically anti–de Sitter space with no no

FIG. 11. The appearance and collapse of soliton solution
L→0. The bottom figure is the blow-up of a part of the top figu
near (QM ,M )5(0,1), in which the first four Bartnik-McKinnon
solutions are also marked. It is seen that asL→0, solutions on a
branch collapse to a point. New branches emerge asuLu becomes
smaller, too.
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in w(r ) are stable foru50. One expects the presence of t
electric field not to change the stability of the solitons a
black hole configurations.

In this section we give a detailed discussion for establi
ing the stability. We find that in the asymptotically anti–d
Sitter space the boundary condition for the resultant Sch¨-
dinger problem becomes subtle, and that the previous a
ment given in the asymptotically Minkowski space nee
elaboration.

A. Perturbation equations

We consider small time-dependent perturbations to
static solutions to the coupled EYM equations. In the sta
solutions v(r )5w̃(r )50. In the general ansatz, Eqs.~11!
and ~14!, we set

u~r ,t !5u~r !1du~r ,t !,

w~r ,t !5w~r !1dw~r ,t !,

w̃~r ,t !5dw̃~r ,t !,

n~r ,t !5dn~r ,t !,

in

FIG. 12. The monopole spectrum.b vs M ~mass! is plotted with
various values ofL.

FIG. 13. The monopole spectrum.b vs QM ~magnetic charge! is
plotted with various values ofL.
3-11
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p~r ,t !5p~r !1dp~r ,t !,

H~r ,t !5H~r !1dH~r ,t !, ~47!

andm(r ,t)5m(r )1dm(r ,t). Substituting Eq.~47! into the
Yang-Mills equation~15! and retaining only terms linear in
perturbations, one finds

@r 2u8dp1r 2p~du82dṅ!#82
2uw2p

H S dp

p
2

dH

H D
2

2pw

H
~wdu12udw1dw8 !50, ~48!

r 2p~du̇82dn̈!1r 2u8d ṗ2
2H

p
@wdw̃82w8dw̃1w2dn#50,

~49!

Fw8H

p S dH

H
2

dp

p D1
H

p
dw8G81

pu

H
~udw12wdu12dw8 !

2
p

H
dẅ1

wu2p

H S dp

p
2

dH

H D2
w~12w2!

r 2p2 dp

1
123w2

r 2p
dw50, ~50!

FH

p
~dw̃81wdn!G81

p

H
~u2dw̃22udẇ2wdu̇2d ẅ̃!

2
uwp

H
S d ṗ

p
2

dḢ

H
D 1

~12w2!

r 2p
dw̃1

H

p
w8dn50.

~51!

The Einstein equations~18! and ~20! yield

dm85vH r 2p2u8~du82dṅ!1S r 2u821
2u2w2

H D pdp

1S w822
p2u2w2

H2 D dH12Hw8dw8

1
2uwp2

H
~wdu1udw1dw8 !2

2w~12w2!

r 2 dwJ ,

~52!

S dp

p D 8
52

4v
r H w8dw81

p2u2w2

H2 S dp

p
2

dH

H D
1

p2uw

H2 ~wdu1udw1dw8 !J , ~53!

dḢ52
4vH

r
$w8dẇ2u~w8dw̃2wdw̃8!1uw2dn%.

~54!
04351
There is residual gauge invariance specified by a gauge f
tion V(r ,t) in Eqs.~9! and~12!. Making use of this freedom
one can always set eitherdu(r ,t)50 or dn(r ,t)50.

B. Stability analysis

In examining time-dependent fluctuations around mo
pole solutions for whichu(r )50, it is convenient to work in
thedu(t,r )50 gauge. Equations~48!, ~49!, and~51! become

~r 2pdn!852
2pw

H
dw̃, ~55!

r 2pdn̈1
2H

p
~wdw̃82w8dw̃1w2dn!50, ~56!

FH

p
~dw̃81wdn!G82

p

H
d ẅ̃1

12w2

r 2p
dw̃1

H

p
w8dn50,

~57!

whereas Eqs.~50!, ~52!, ~53!, and~54! become

FH

p H w8S dH

H
2

dp

p D1dw8J G82
p

H
dẅ2

w~12w2!

r 2p2 dp

1
123w2

r 2p
dw50, ~58!

dm85vH w82dH12Hw8dw82
2w~12w2!

r 2 dwJ ,

~59!

S dp

p D 8
52

4v
r

w8dw8, ~60!

dH52
4v
r

Hw8dw. ~61!

Notice that Eqs.~55!–~57! involve onlydn anddw̃, defining
the odd-parity group, whereas Eqs.~58!–~61! involve only
dw, dH, anddp, defining the even-parity group. The num
ber of the equations is larger than the number of the
known functions. Indeed, one equation in each group follo
from the others.

To derive the equation for each unknown function in
closed form, we introduce the tortoise radial coordinater by

dr

dr
5

p

H
~62!

with which the equations forw, p, andm become

d2w

dr2 52
H

r 2p2 w~12w2!, ~63!

dp

dr
52

2vp2

rH S dw

dr D 2

, ~64!
3-12
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dm

dr
5vH pS dw

dr D 2

1
H

2r 2p
~12w2!2J .

~65!

The range ofr is finite, 0<r<rmax, since p→p0 and H
→uLur 2/3 asr→`:

r5H r for r;0,

rmax2
3r0

uLur
for r;`,

~66!

wherep5p01O(1/r ).
In the odd parity group Eq.~55! expressesdw in terms of

dn. Substituting it into Eq.~56! and making use of Eq.~63!,
one finds

H 2
d2

dr2 1Ub~r!J b5v2b,

Ub5
H

r 2p2 ~11w2!1
2

w2 S dw

dr D 2

,

dn5
w

r 2p
b, dw̃52

1

2w

d

dr
~wb!. ~67!

Here we have supposed fluctuations to be harmo
dn(r ,t)5e2 ivtdn(r) and dw̃(r ,t)5e2 ivtdw̃(r). Equation
~57! follows from Eqs.~55!, ~56!, and~63!.

In the even-parity group, Eqs.~60! and ~61! expressdp
anddH (dm) in terms ofdw. Equation~59! automatically
follows from Eqs.~60!, ~61!, ~63!, and ~64!. Equation~58!
becomes, with the use of Eqs.~60!, ~61!, and~63!.

H 2
d2

dr2 1Uw~r!J dw5v2dw,

Uw5
H

r 2p2 ~3w221!14v
d

dr F p

rH S dw

dr D 2G . ~68!

Again harmonic fluctuationsdw(r ,t)5e2 ivtdw(r) are sup-
posed.

Equations~67! and~68! have the same form as the Schr¨-
dinger equation on a one-dimensional interval. Both of
potentialsUb and Uw are singular atr50, behaving as
12/r2. Ub has an additional singularity ifw has a zero at
rk ; Ub;12/(r2rk)

2.
The integrated energy-momentum densityTabA2gd3x

due to fluctuations must remain finite. At the originr 50 it
implies thatdw5dw̃50, whereasdn5O~1!. Taking advan-
tage of the general coordinate invariance, one can imp
dp50 and dH522dm/r 50. At r;`, dw8, dw̃8, dn
5O(r 22). These are mild boundary conditions. One can i
pose more strict conditions such as the regularity atr 50 and
vanishing atr 5`. As physical perturbations we deman
that all dw, dw̃, dn, dH, anddp vanish atr 5`.

In Eq. ~67! the potentialUb(r) is positive definite. How-
ever, this does not necessarily mean that the eigenvaluev2 is
positive definite. It depends on the boundary conditi
04351
c:

e

se

-

.

Clearly b(0)50. At r5rmax, dn5dw̃50 so thatb81hb
50 whereh5w8/w. Note that

h5
1

w

dw

dr U
rmax

5
uLu
3p0

r 2

w

dw

dr U
r 5`

5
uLuw1

3p0w0
~69!

wherewj ’s are defined in Eq.~27!. For the monopole con-
figurations with no nodes inw, h,0 (h.0) when w is
monotonically decreasing~increasing!.

Following Courant and Hilbert@28#, we define

D~w;h!5E
0

rmax
dr$w8~r!21Ub~r!w~r!2%1hw~rmax!

2,

N~w!5E
0

rmax
drw~r!2. ~70!

If w(r ) is nodeless, thenUb(r) is regular on the interva
except atr50. The equation implies thatb5O(r2) near the
origin. In this case, an eigenfunctionb(r) in Eq. ~67! satis-
fies

v25
D~b!

N~b!
. ~71!

It follows immediately that all eigenvaluesv2 are positive
definite if h>0 so that the solution is stable against sm
odd-parity perturbations.

For h,0 more careful analysis is necessary. The low
eigenvaluev2[l1 in the eigenvalue equation~67! is exactly
the lower bound of the set of values assumed by the fu
tional D(w,h), wherew is any function continuous on th
interval @0,rmax# with piecewise continuous derivatives sa
isfying w(0)51 andN(w)51:

l1~h!5minwD~w;h!. ~72!

If l1.0, then the solution is stable against odd-parity p
turbations. Suppose thatw1(r) saturates the lower bound fo
h1 : l1(h1)5D(w1 ;h1). As

l1~h1!5D~w1 ;h2!1~h12h2!w1~rmax!
2

>l1~h2!1~h12h2!w1~rmax!
2, ~73!

where l1(h) is a monotonically increasing function ofh.
Hence, ifl1(h1).0, thenl1(h).0 for h>h1 .

To establish the stability we utilize the residual gau
invariance. There is a zero-mode~with v250! for Eq. ~67!
with an appropriate boundary conditionh0 . In theL50 case
the existence of the zero mode was utilized to prove
instability of the BK and black hole solutions which has
least one node inw(r ) @26,27#. Consider the time-
independent gauge functionV(r ) in Eq. ~9!. For uVu!1,
dn5dV/dr anddw̃52wV. Equation~55! is satisfied if

d

dr S r 2p2

H

dV

dr D52w2V. ~74!
3-13



-

-

is

s

ck
n

w

the

ion

4.
Fig.
ut

al
s of
ros

e

de

JEFF BJORAKER AND YUTAKA HOSOTANI PHYSICAL REVIEW D62 043513
As V(0)50, V;ar1O(r3) for r;0. Hence, Eq.~74! de-
termines V(r ) up to an overall constant.b05(r 2p2/
wH)(dV/dr) is the zero mode of Eq.~67! and Ub

5b09/b0 , whereV8[dV/dr, etc. In this caseV(rmax)Þ0
andh052b08/b0urmax

differs from h in the eigenvalue prob

lem under consideration. Ifh.h0 , thenl1(h).0, establish-
ing the stability. Asd(wb0)/dr52w2V,

h5h01
2w2HV

r 2p2V8
. ~75!

Nodeless solutions (w.0) are stable ifV/V8.0 at rmax.
Solving Eq.~74! numerically, we have determinedV(r)

to find that indeedh.h0 for nodeless solutions. This analy
sis also shows thath becomes exactlyh0 for the configura-
tion with w(r 5`)50. In this limiting case the zero mode
not normalizable; it diverges as (r2rmax)

21.
This is a general behavior. Whenw has a node atrk

,rmax, there appears a negativev2 mode which behaves a
(r2rk)

21 nearrk .
If w(r ) hasn nodes, i.e.,w(r j )50 ( j 51,...,n), the po-

tential Ub develops (r2r j )
22 singularities. Volkovet al.

have shown for the BK solutions in theL50 case that there
appear exactlyn negative eigenmodes (v2,0) if w has n
nodes@26#. A similar conclusion has been obtained for bla
hole solutions as well@27#. Their argument needs elaboratio
in the L,0 case, however.

To investigate the eigenvalue spectrum of Eq.~67! in this
case, it is convenient to consider the dual equation as
done in@26#. One can write the Schro¨dinger equation in Eq.
~67! as

Q1Q2wn5lnwn ,

Q656
d

dr
1

b08

b0
, ~76!

whereb0(r) is the zero mode described above,wn5O(r2)
near r50 and wn81hwn50 at rmax. The dual equation is
given by

Q2Q1w̃n5H 2
d2

dr2 1ŨbJ w̃n5lnw̃n ,

Ũb52
H

r 2p2 ~11w2!2
8ww8HV

r 2p2V8
18S w2HV

r 2p2V8D
2

.

~77!

wn and w̃n are related to each other by

w̃n5H Q2wn for lnÞ0,

wn
215b0

21 for ln50.
~78!

However, the boundary condition forw̃n(r) depends onln :

w̃n~0!50,

w̃n8~rmax!1h̃nw̃n~rmax!50,
04351
as

h̃n52h02
ln

h2h0
. ~79!

The advantage of considering the dual equation is that
dual potentialŨb(r) is regular except atr50 where it be-
haves as16/r2. However, the eigenvalueln has to be de-
termined self-consistently such that the boundary condit
~79! is satisfied. We have determinedln’s numerically for
the monopole configurations in the lower branch in Fig.
The first, second, and third eigenvalues are displayed in
14. One sees thatl1.0 for the nodeless configurations, b
the unstable mode develops whenw has a node.

The wave function of the unstable mode in the origin
equation, not in the dual equation, diverges at the zeroe
w(r ). In other words, the instability sets in around the ze

FIG. 15. Ub(r) and Ũb(r) for the monopole solution atb
50.0025,L520.01, andv51. The wave function of the unstabl
mode (l520.0033) are also plotted.w̃1(r) in the dual equation
~77! is a regular smooth function, butw1(r) in the original equation
~76! diverges at the zero ofw.

FIG. 14. Eigenvaluesln (n51,2,3) in the dual Schro¨dinger
equation~77! with the boundary condition~79! are displayed for
monopole configurations with varying values ofb. L520.01 and
v51. Whenw(`) develops a node, the negative eigenvalue mo
arises, signaling the instability of the solution.w(`)50 at b
50.001 68, where the numerical evaluation ofl1 becomes difficult.
3-14
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of w(r ). The potentialUb(r) andŨb(r) for the solution at
b50.0025 are plotted in Fig. 15. At the node ofw, Ub di-
verges, butŨb remains finite. The wave functionw̃1(r) of
the lowest eigenvalue (l1520.0033) and the correspondin
w1(r) also have been plotted in Fig. 15.

For the even-parity perturbation the potentialUw(r) in
Eq. ~68! is not positive definite. The first term inUw be-
comes negative forw2,1/3. The second term also can b
come negative whenw8 vanishes at finiter. We have solved
the Schro¨dinger equation~68! numerically for typical mono-
pole solutions, and found that for the solutions with no no
in w(r ), the eigenvaluesv2 are always positive even i
w(r 5`),1/). Hence we have established the stabil
of the monopole solutions with no node inw(r ).

IX. SUMMARY

New monopole, dyon, and black hole solutions to t
Einstein-Yang-Mills equations have been found in the
ymptotically anti–de Sitter space. The solutions with
node in the non-Abelian field strengths are shown to
stable against spherically symmetric perturbations. The n
n,

ys

r,

nd

it

04351
e

-

e
n-

trivial boundary condition plays a crucial role in developin
the instability for solutions with nodes. The stability of nod
less dyon solutions needs to be established.

Though electric and magnetic charges of monopole
dyon solutions are not quantized in classical theory, they
expected to be quantized in quantum theory. If this is
case, then at least solutions with the smallest charge wo
become absolutely stable.

We have also found the critical spacetime solutions wh
end at finite r. These solutions may have connections
black hole solutions, though more detailed study is nec
sary.

The solutions found in the present paper may have p
found consequences in the evolution of the early unive
which may have gone through the anti–de Sitter phase.
hope to report on these subjects in future publications.
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