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Coupled quintessence
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~Received 11 October 1999; published 24 July 2000!

A new component of the cosmic medium, a light scalar field or ‘‘quintessence,’’ has been proposed recently
to explain cosmic acceleration with a dynamical cosmological constant. Such a field is expected to be coupled
explicitly to ordinary matter, unless some unknown symmetry prevents it. I investigate the cosmological
consequences of a coupled quintessence~CQ! model, assuming an exponential potential and a linear coupling.
This model is conformally equivalent to Brans-Dicke Lagrangians with any power-law potential. I evaluate the
density perturbations on the cosmic microwave background and on the galaxy distribution at the present and
derive bounds on the coupling constant from the comparison with observational data. A novel feature of CQ is
that during the matter dominated era the scalar field has a finite and almost constant energy density. This
epoch, denoted asfMDE, is a saddle point in the dynamical phase space. ThefMDE is responsible of several
differences with respect to uncoupled quintessence: the multipole spectrum of the microwave background is
tilted at large angles, the acoustic peaks are shifted, their amplitude is changed, and the present 8 Mpc/h
density variance is diminished. The present data constrain the dimensionless coupling constant toubu<0.1
assumingVm50.3 and a primordial fluctuation slopens51.

PACS number~s!: 98.80.Cq
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I. INTRODUCTION

The recent evidence in favor of an accelerated cos
expansion@1,2# has prompted theorists to hypothesize co
ponents of the cosmic medium additional to ordinary ma
and radiation, whose equation of state is unable to prov
the required kinematics. In a flat universe, the dark energ
such a component should provide roughly 70% of the cos
density, and should possess an effective equation of sta

p5~w21!r, ~1!

with the present value@3,1,4#

wP~0,0.6!. ~2!

The most obvious candidate, a cosmological const
which providesw50, has unappealing features: its val
would be one hundred orders of magnitude smaller than
mensionally expected; upper limits from lensing effe
barely allow for aVL50.7 @5#, as would be necessary t
reconcile the amount of matter in clusters with the flatn
suggested by inflation. The next simplest possibility is p
haps to include in the cosmic fluid a light scalar field. In fa
if the field is light enough to vary slowly during a Hubb
time, its potential energy can drive an accelerated expans
just like during inflation. The varying field equation of sta
can then be tuned to lie in the observed range: if this is
case, then the scalar field is sometimes denoted in the lit
ture as ‘‘quintessence.’’ The scalar field density fractionVf
can be made to decrease rapidly in the past, so as to
easily the lensing constraints and to avoid discrepancie
the primordial nucleosynthesis abundances.

In addition to the acceleration argument, the study o
scalar field is interesting on its own. First, a scalar field
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predicted by many fundamental theories~string theory,
pseudo-Nambu-Goldstone model, Brans-Dicke theory, e!,
so that it is natural to look at its cosmological consequen
@6–9#. Second, the presence of a scalar field modifies
standard cold dark matter~CDM! spectrum@10–13#, and
perhaps brings it closer to real data, just as a cosmolog
constant does. Finally, even a small amount of scalar fi
density may give a detectable contribution to the stand
CDM scenario, similar to what one has in the mixed da
matter~MDM ! model @9#.

A scalar field, however, is expected to couple explici
~that is, beyond the gravitational coupling! to ordinary mat-
ter, with a strength comparable to gravity, as put into e
dence by Carroll@14#, unless some special symmetry pr
vents or suppresses the coupling. Such a strong coup
would render the scalar field interaction as strong as grav
and would therefore have been already detected. Howev
residual coupling still below detection cannot be exclud
moreover, if the coupling to baryons is different from th
coupling to dark matter, as proposed by Damouret al. @15#,
then even a strong coupling is indeed possible. Exactly
same arguments hold if one supposes the quintessence
to be coupled to gravity, rather than to matter, as investiga
by Uzan@16#, Chiba@17#, Chen and Kamionkowsky@18# and
Perrottaet al. @19#. Indeed, the two models, although phys
cally different, are related mathematically by a conform
transformation~see, e.g., Refs.@7,20#!.

The nonminimal coupling of the quintessence field to
dinary matter is therefore worth investigating, especially b
cause the wealth of high-precision data that is near to co
allows the intriguing possibility of detecting the coupling o
the microwave background and on the present galaxy di
bution. In a previous paper~Ref. @21#, hereafter paper I! I
showed that a scalar field with an exponential poten
@22,6# and an explicit coupling to matter may behave as
kind of hot dark matter component, as was first shown
Ferreira and Joyce@9# for zero coupling. I showed that th
©2000 The American Physical Society11-1
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LUCA AMENDOLA PHYSICAL REVIEW D 62 043511
cosmic microwave background~CMB! spectrum of the
model presents acoustic peaks displaced from their loca
without coupling, and that the galaxy power spectrum a
bends in agreement to real data. In that case, the field de
amounts to at most 20% of the critical density, and the
pansion is not accelerated. The interesting feature was
the universe has always been in an attractor solution, in
pendently of the initial conditions.

In this paper I focus instead on accelerated solution
explore first the general phase space of a homogeneous
tessence model with the same exponential potential and
pling to matter as in paper I; I will refer to this model a
coupled quintessence~CQ!. Once the phase-space attracto
have been identified, two distinct solutions are selected
allow an accelerated epoch, and the density fluctuations
these trajectories are studied by the use of a purpos
modified version of the codeCMBFAST by Seljak and Zaldar-
riaga@23#. The linear perturbations in the uncoupled case
been already studied by Viana and Liddle@13# and Caldwell
et al. @11#. As it will be shown, the coupling introduces se
eral qualitatively new features.

II. COUPLED SCALAR FIELD MODEL

Consider two components, a scalar fieldf and ordinary
matter ~e.g., baryons plus CDM! described by the energy
momentum tensorsTmn(f) andTmn(m) , respectively. Genera
covariance requires the conservation of their sum, so that
possible to consider a coupling such that, for instance,

Tn(f);m
m 5CT(m)f ;n ,

Tn(m);m
m 52CT(m)f ;n . ~3!

Such a coupling arises for instance in string theory, or aft
conformal transformation of Brans-Dicke theory. It has a
been proposed to explain ‘‘fifth-force’’ experiments, since
corresponds to a new interaction that can compete with g
ity and be material dependent. A coupling that violates g
eral covariance is instead studied in Barrow and Magu
@24#.

The specific coupling~3! is only one of the possible
forms. Nonlinear couplings such asCT(m)F(f)f ;n or more
complicated functions are also possible~see, e.g., Refs
@25,26#!. Also, one can think of different couplings to diffe
ent matter species, for instance coupling the scalar field o
to dark matter and not to baryons, as proposed by Dam
et al. @15# and Casaset al. @27#, and studied recently by
Holden and Wands@28#. Notice that the coupling to radiatio
~subscriptg) vanishes, sinceT(g)50. Here I restrict myself
to the simplest possibility~3!, which is also the same inves
tigated earlier by Wetterich@7# and is the kind of coupling
that arises from Brans-Dicke models. In fact, a field with
gravity-coupling term1

2 jf2R in the Lagrangian acquires, a
ter conformal transformation, a coupling to matter of t
form ~3!. In the limit of small positive coupling one obtain

C5kAj, ~4!
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wherek258pM P
22 andM P is the Planck mass. Moreover,

the Brans-Dicke Lagrangian contains a power-law poten
V(f);fn, then the transformed fieldf8 acquires an expo-
nential potential that, for small positivej, can be written as

V~f8!;exp@~n24!kAjf8# ~5!

~see, e.g., Refs.@29–31,20#!. The CQ model with a linear
coupling and an exponential potential that is studied her
therefore conformally equivalent to a large class of Bra
Dicke Lagrangians. For instance, the model studied in P
rotta et al. @19# is equivalent ton521.

There are several constraints on the coupling constanC
along with constraints on the mass of the scalar field p
ticles, reviewed by Elliset al. @32# and Damour@15#. The
constraints arise from a variety of observations, ranging fr
Cavendish-type experiments, to primordial nucleosynthe
bounds, to stellar structure, etc. Most of them, however,
ply only if the scalar field couples universally to all matte
which is not necessarily the case. The most stringent bo
for a universal coupling, quoted by Wetterich@7#, amounts to

uCu,0.1M P
21 . ~6!

If the coupling to dark matter is different from the baryo
coupling, then the constraints on the former relaxes con
erably, and becomes@15#

uCu,5M P
21 . ~7!

It is also noticeable that these constraints are local both
space and time, and could be easily escaped by a ti
dependent coupling constant.

The constraints from nucleosynthesis refer to the ene
density in the scalar component. This has to be small eno
not to perturb element production, so that at the epoch
nucleosynthesis@7,33,9#

Vf~tns!,0.120.2. ~8!

This bound is satisfied by all the models we discuss belo

III. BACKGROUND

Here I derive the background equations in the flat conf
mal Friedmann-Robertson-Walker~FRW! metric

ds25a2~2dt21d i j dxidxj !. ~9!

The CQ scalar field equation is

f̈12Hḟ1a2U ,f5Crma2, ~10!

whereH5ȧ/a, and I adopt the exponential potential

U~f!5AeA2/3kmf. ~11!

The matter~subscriptm) and the radiation~subscriptg)
equations are
1-2
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COUPLED QUINTESSENCE PHYSICAL REVIEW D62 043511
ṙm13Hrm52Crmḟ, ~12!

ṙg14Hrg50. ~13!

Denoting witht0 the conformal time today, let us put

a~t0!51, rm~t0!5
3H0

2

k2
Vm5rm0 ,

rg~t0!5rg0 , f~t0!5f0 . ~14!

Without loss of generality, the scalar field can be rescaled
a constant quantity, by a suitable redefinition of the poten
constantA. We put thenf050. This gives

rm5rm0a23e2Cf,

rg5rg0a24. ~15!

The Friedman-Einstein equation can be written as

H25
k2

3 S rm0

a
e2Cf1

rg0

a2
1

1

2
ḟ21Ua2D . ~16!

The dynamics of the CQ model has been analyzed
Amendola @20#, Holden and Wands@28# and Billyard and
Coley @25# in the regime in which either matter or radiatio
dominates. Here I generalize the analysis to the cas
which both matter and radiation are present. As we will s
this introduces some interesting new features. Generali
Copelandet al. @34# the following variables are introduced

x5
k

H

ḟ

A6
, y5

ka

H
AU

3
, z5

ka

H
Arg

3
, ~17!

along with the independent variablea5 loga. Notice thatx2,
y2, andz2 give the fraction of total energy density carried b
the field kinetic energy, the field potential energy, and
radiation, respectively, that isVf5x21y2 and Vg5z2.
Clearly, the matter energy density fraction is the complem
to unity of x21y21z2. We can rewrite Eqs.~10! and~16! as

x85xS z8

z
21D2my21b~12x22y22z2!,

y85mxy1yS 21
z8

z D ,

z852
z

2
~123x213y22z2!, ~18!

where the prime denotes hered/da and where I introduced
the dimensionless constant

b5A3

2

C

k
~19!

~in Ref. @20# b was defined as twice the value above!. The
parametersb and m are all we need to completely speci
04351
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our model. The constraints quoted in the previous section
C become nowb,0.025 for the universal coupling andb
,1 for the dark matter coupling.

The system~18! is invariant under the change of sign o
y,z and ofa. Since it is also limited by the conditionr.0 to
the circlex21y21z2<1, we limit the analysis only to the
quarter of unitary sphere of positivey,z. The critical points,
i.e., the points that verifyx85y85z850, are scaling solu-
tions, on which the scalar field equation of state is

wf5
2x2

x21y2
5const, ~20!

the scalar field total energy density isVf5x21y2, and the
scale factor is

a;tp/12p5tp, p5
2

3weff
~21!

@ t being the time defined bydt5a(t)dt]. The effective
equation of state for the total cosmic fluidptot5(weff
21)r tot has index

weff511x22y21z2/3511Vg~wg21!1Vf~wf21!
~22!

~wherewg54/3 is the radiation equation of state!. As already
noticed, a value 0,wf,0.6 is required by observations
while weff,2/3 is enough for acceleration.

The system~18! with an exponential potential has up t
fifteen critical points, of which only eight can be in the a
lowed region. They are labeled by a letter that reproduces
classification given in Ref.@20#, and a subscript that denote
whether beside the field there is a component of matter~sub-
scriptM ), radiation (R), both (RM) or neither of the two~in
which case the energy density is taken up completely by
scalar field; no subscript in this case!. The critical points are
listed in Table I, whereg(b,m)[4b214bm118. For every
value of the parametersm,b there is one and only one stab
critical point ~attractor!; one or more saddle point can als
exist.

The regions of existence and stability of the critical poin
are summarized in Table II. In the table the attention is
stricted to the half planem.0, since there is complete sym
metry under simultaneous sign exchange ofm and b. I de-
fined

m15
1

2
~2b1A181b2!,

m052b2
9

2b
. ~23!

Figure 1 displays the regions of the parameter space~for m
.0) in which the various points are stable.

There are only two critical points that admit accelerat
solutions, i.e., solutions that satisfy Eq.~2!: the pointsa and
bM . They differ in several important aspects, so we stu
them separately.
1-3
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TABLE I. Critical points.

Point x y z Vf p weff wf

a 2
m

3 S12
m2

9 D1/2

0 1 3/m2 2m2/9 2m2/9

bR 2
2

m

&

umu S12
6

m2D1/2
6

m2
1/2 4/3 4/3

bM 2
3

2~m1b!

~g29!1/2

2um1bu
0

g

4~b1m!2

2

3S 11
b

m D m

m1b

18

g

cR 0 0 1 0 1/2 4/3 2

cRM
1

2b
0 S 12

3

4b2D 1/2
1

4b2
1/2 4/3 2

cM
2
3 b 0 0 4

9 b2 6

4b219
11

4b2

9
2

d 21 0 0 1 1/3 2 2

e 11 0 0 1 1/3 2 2
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Solutions of type a. The attractora, once reached, bring
to zero the matter density. To allow for the observed ma
content of the universe, we have to select the initial con
tions, if they exist, in such a way that the attractor is not
reached at the present time, but the expansion is alre
accelerated. This is of course a kind of fine tuning: a diff
ent choice of the initial values off andḟ leads to different
amount ofVf at the present. On the positive side, this
tractor is accelerated also for small values of the coup
constant. Let us first consider the limitb5m50, that corre-
sponds to the ordinary cosmological constant. Suppose
we put initially the field at zero kinetic energy (x50). A
trajectory acceptable from a cosmological point of vie
should start deep into the radiation era (z'1), then enter a
matter dominate era (z'0), and finally fall into the attractor
a, the only one still existent forb5m50, which corresponds
to theL-dominated stage. In other words, the path of a
dinaryL universe would becR→cM→a. A similar sequence
of critical points characterizes all the trajectories discusse
the following.

In Fig. 2 we show the 3D phase space (x,y,z) of modela,
with b50,m50.1 andb50.5,m50.1. As before, a cosmo
logical trajectory must start in the radiation era (z.1) and

TABLE II. Properties of the critical points.

Point Existence Stability Acceleratio

a m,3 m,m1 , m,A6 m,A3
bR m.A6 A6,m,24b never
bM um1bu.3/2,m,m0 m.m1, m.24b m,2b
cR ;m,b unstable;m,b never
cRM ubu.A3/2 m.24b,b,A3/2 never
cM ubu,3/2 ubu.A3/2,m.m0 never
d ;m,b unstable;m,b never
e ;m,b unstable;m,b never
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has to provide the correct final conditions forx, y, and H.
Since the scalar field has to start dominating only recently
is clear that its initial energy density deep in the radiation
has to be very small: in the 3D phase space this means
the cosmic solutions start near (x,y,z)5(0,0,1), that is, near
the unstable critical pointcR . If initially the field kinetic
energy dominates~unstable pointsd or e), there will be a fast
transient towardscR . The trajectories in Fig. 2 that begin a
(x,y,z)5(21,0,0), rise to near~ 0,1,0! and then fall almost
vertically are examples of such cosmic solutions. The attr
tor of the CQ model is the same as for the uncoupled cas
(x,y,z)5(20.033,0.99,0), but while in the ordinary quin
tessence case there is a saddle pointcM at (x,y,z)5(0,0,0),
in CQ this moves to (x,y,z)5(2b/3,0,0), on whichVf
54b2/9. This appears more clearly from Fig. 3, in which th
trend of Vm , Vf , and Vg is reported. The path of this
solution~neglecting a possible initial field kinetic-dominate

FIG. 1. The figure shows the parameter space of the mo
Each region is labeled by the critical point that is stable in t
region. The shaded area indicates the values for which the attra
is accelerated.
1-4
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COUPLED QUINTESSENCE PHYSICAL REVIEW D62 043511
era! is thencR→cM→a, just as in the pureL model. For
b.3/2, actually, the pointcM ceases to exist, but such hig
values ofb are anyway unacceptable.

It is to be emphasized that the saddle-point stage of c
stant and finiteVf54b2/9 is typical of the CQ model, as i
is absent in the limit of zero coupling. Let us call this th
field-matter-dominated era, orfMDE. As we will see, this
stage is responsible for most of the differences with resp
to ordinary quintessence. We can think of the coupling a
mechanism for transferring energy from the matter to
field. Note that this is the direction of the transfer whatev
the sign ofb.

The equivalence time in CQ occurs earlier than in u
coupled quintessence

aeq5S rg0

rm0
D 3/(322b2)

. ~24!

For the acceptable values ofb, however, this shift has only a
minor effect.

Finally, it is to be noticed that the attractora is indepen-
dent of the couplingb. Then, as the universe atz.5 con-

FIG. 2. CQ phase space for values that lie in thea region, m
50.1 andb as indicated. The attractora is the same as in the
uncoupled model, but forbÞ0 there is a saddle for a nonzero valu
of the scalar field density. The phase spaces for the valuesb
investigated in this paper are qualitatively similar to theb50.5
case. The trajectory that falls almost vertically from top is similar
the background solution effectively employed.
04351
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verges toward the pointa, the dynamics becomes indepe
dent of the coupling. As a consequence, the cosmolog
probes atz,5, similar to type Ia supernovae or the clust
abundance, are not efficient tools for discriminating betwe
ordinary quintessence and CQ.

Solutions of type bM . The attractorbM is a solution for
which the matter density and the scalar field share a fi
and constantportion of the cosmic energy. For instance,
we put

b54.02, m52.68 ~25!

we getVM50.3, Vf50.7, andwf.0.14, well within the
requested range. These values, once reached, remain in
nitely constant. The coincidence of similar values of the e
ergy density in the matter and field component is theref
solved, independently of the initial conditions. On the neg
tive side, however, these solutions require a large value
the coupling constant (b.A6/5 to obtainwf,0.6) and are
therefore at risk of running into conflict with constraints o
the coupling derived from local experiments. The strong
objection to these solutions, however, comes from the sim
fact that they lack a matter dominated era, as we will show
a moment.

In Fig. 4 we show the phase space of modelbM , assum-
ing b54.02, m52.68. As can be seen, the phase space
now completely different. The attractor is at (x,y,z)

FIG. 3. Behavior ofVM ~dotted line!, VR ~dashed line! andVf

~thick line! as a function of log(a) for m50.1 andb as indicated.
Notice that for CQ there is the transient regimefMDE in which
both the matter and the scalar field energy density are nonvanish
Notice also that in this case, and for all values ofbÞ0, the matter-
radiation equivalence occurs earlier than in the uncoupled mo
For the small values ofb used for the perturbation calculation
however, this is a small effect.
1-5
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5(20.22,0.81,0). The trajectory that falls from top is aga
similar to the one used in the perturbation calculations.
can be seen better in Fig. 5, there is a transient near
saddle pointcRM , here at (x,y,z).(0.12,0,0.95). In Fig. 5
the evolution ofVm ,Vf , andVg in two cases is displayed
one for which the present value ofweff equals 0.4, for which
b and m must be chosen as above, and the other forweff
50.5, which requiresb5m52.37. In both cases we can se
the transientcRM , characterized byVf51/(4b2) and VM
5121/(2b2), followed by the decay of the radiation com
ponent and the stabilization of the field and matter to th
final values. The path of this solution is thencR→cRM
→bM , in contrast with the solutions of the typea. As al-
ready remarked, such a trajectory is possible only forbÞ0.

FIG. 4. Phase space of CQ for values that lie in thebM region.
There is a saddlecRM at (x,y,z).(0.12,0,0.95) that attracts th
trajectory that falls from top, similar to the one adopted in t
perturbation calculation.

FIG. 5. Behavior ofVM ~dotted line!, VR ~dashed line! andVf

~thick line! as a function of log(a) for the same parameters as in Fi
4 ~labelweff50.4) and forb5m52.37~labelweff50.5). Notice the
transient epoch in which radiation and field share the total ene
density~saddlecRM).
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The most conspicuous features here are that the radia
dominates until recently (z.50) and the matter dominate
era is absent. As is intuitive, such behavior is catastrophic
the growth of the fluctuations: when a fluctuation mode
enters the horizon, in fact, is suppressed first by the lo
radiation dominated era~RDE!, and then by the accelerate
expansion. As a consequence, the presents8 is unacceptably
small, of the order of 1024 for COBE normalized spectra
Unless some mechanism other than gravitational instab
powers the fluctuations, the trajectories of typebM are pre-
cluded. In the following we restrict therefore our attention
solutions of typea.

This concludes the analysis of the homogeneous solut
of CQ. It is to be stressed that we considered all the poss
accelerated solutions. As in the next section we will span
the range ofb and m that yield cosmologically acceptabl
solutions of typea, we can consider exhausted the analy
of CQ for exponential potentials and linear coupling.

IV. PERTURBATIONS ALONG SOLUTIONS a

We now proceed to study the evolution of the perturb
tions in the coupled quintessence theory. In this section
assume a coupling to dark matter only~zero coupling to
baryons!, in order to explore a larger range of coupling p
rameters. The effect of decoupling the baryons on the ho
geneous trajectories is not large, since the baryon compo
is much smaller than the CDM component. The effect on
perturbations is not large either, because the main effec
due to the existence of thefMDE, which again depends on
the homogeneous solution.

The equations of the perturbations in the synchron
gauge have been derived and discussed at length in pa
and will not be repeated here. In that case it was shown
several important features of the perturbation evolution co
be derived analytically, since the background evolution w
always on one of the attractor, and thus particularly simp
The same occurs here, at least in some cases. As describ
paper I, all the numerical results presented below have b
obtained by modifying the codeCMBFAST of Seljak and Zal-
darriaga@23#.

The key fluctuation equation in paper I was the evoluti
of the subhorizon perturbations in the MDE regime, the o
situation in which the evolution differs from the pure CDM
case. For CQ, this regime is actually thefMDE introduced
above. Let us note first that along any attractor withx5xa
one has, from Eq.~17!

f5
A6xa

k
loga. ~26!

Denoting withd the fluctuation in the matter component, w
derived in paper I an equation for subhorizon modes in M
along an attractor that can be rewritten as follows:

d̈1H~112xab!ḋ2
3

2
H2VMdS 12

4b2

3 D50. ~27!y
1-6
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COUPLED QUINTESSENCE PHYSICAL REVIEW D62 043511
As we noticed in the previous section, the solutionsa passes
through thefMDE transient attractorcM , before the presen
f-dominated epoch. Therefore, from Table I, we can sub
tute xa52b/3. It follows that Eq.~27! has a growing solu-
tion

d5Aam, with m512
4b2

3
. ~28!

This shows two important facts: first, the fluctuations
fMDE are suppressed with respect to the standard C
behavior (m51), which also holds for the uncoupled quin
tessence model, for all values ofb; second, the evolution
does not depend on the sign ofb. Before the present time, a
z.5, the trajectory deviates from thefMDE solution, andf
begins to dominate.

With respect to paper I the initial conditions are now d
ferent, because now initially~that is, in the RDE stage! the
field does not lie on an attractor. Notice that inCMBFAST one
needs initial conditions at different times for each wave nu
ber. The same technique exploited in paper I to get the a
batic initial conditions gives now a result that depends on
background solution, as worked out in detail in Ref.@12#.
This gives

df i5S ḟ

10a
t2dcD

i

, ~29!

where ḟ i is df/dt at the initial integration timet i . The
value ofdḟ i follows by differentiation. In practice, since th
fluctuations forf are forced by the coupling with the othe
fluctuation variables, we find that the results are quite in
pendent on the choice ofdf i and its time derivative. The
choicedf i5dḟ i50, for instance, adopted in Ref.@18# gives
indistinguishable results.

In Fig. 6 the behavior of three density fluctuation wav
lengths, calculated numerically withCMBFAST, is shown as a
function of the scale factora. I plot d/a to enhance the
differences among the various cases. It is possible to dis
guish four distinct epochs. Let us first follow the intermed
ate wavelength of Fig. 6. First, the 100 Mpc/h fluctuation
grow asa2, while it is a superhorizon mode in RDE; the
around z.2500 (a.0.0004), it reenters the horizon an
freezes until thefMDE begins. In uncoupled quintessen
(b50) the fluctuation grows now asa, as usual; in CQ the
growth is instead suppressed as expected from Eq.~28!. Fi-
nally, aroundz.5, f starts to dominate, the universe acc
erates, and the fluctuation growth is definitely suppresse
all cases. The longer wavelength follows the same pha
except that it reenters directly in thefMDE, and therefore
bypasses the freezing stage. The shorter wavelength sta
the plot already inside the horizon, and follows the sa
fMDE growth evolution of the other modes.

The samefMDE attractor solution can be used to deri
the location of the first acoustic peak on the CMB. In fa
this depends essentially on the size of the sound horizonr s at
decoupling~subscriptd). We have shown in paper I that th
04351
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following approximated law governs the size of the sou
horizon along an attractor solution

r s5r 0

ad
xab

112xab
, ~30!

where r 052(ad/3)1/2H0
21 is the standard sound horizon

Therefore, the multipole location of the first acoustic peak

l peak.
2p

r sH0
5 l 0~112xab!ad

2xab
~31!

5 l 0S 11
4b2

3 Dad
22b2/3 , ~32!

where l 0.2p/(r 0H0).200 is the standard peak locatio
and where the second line specializes to thefMDE attractor
cM . For instance,b50.1 gives a locationl peak.1.06l 0
which, at least to a first approximation, is in agreement w
the numerical results below. Notice again that the peak
placement is always toward largerls, regardless of the sign
of b, contrary to what happened in paper I along the attrac
bM . Similar behavior was found numerically by Chen a
Kamionkowsky@18# and Perrottaet al. @19# in Brans-Dicke
models. Here, substitutingb253j/2, we find that the peak
shifts approximately as (112j)ad

2j .
The solution we use as background in this section is,

anticipated, on its way to the attractora. The initial condi-
tions will be chosen so that at the present time~i.e., when
H2153000 Mpc/h) we haveVm50.3, Vf50.7 and wf
.0. This implies that at the present time we should have

x0.0, y050.837, z050.092 ~33!

FIG. 6. Evolution of the matter density contrastd/a for three
wavelengths, 2p/k5l51000, 100, and 10 Mpc/h, for m50.1 and
various values ofb. Notice the growth suppression forbÞ0.
1-7
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independently ofb. We begin by investigating the paramet
range

m50.1, bP~0,0.15!. ~34!

The initial conditions that produce the requested final val
have been obtained by trial and error. Inserting the ba
ground solution in the modifiedCMBFAST code, we obtain
the CMB spectra reported in Fig. 7. The other values adop
are

h50.7, Vb50.04, ns51. ~35!

The gravitational wave contribution is assumed negligible
can be noticed that the peaks move to larger multipoles
expected. Their amplitude is generally reduced, due bot
the growth suppression found above, and to the fact that
the Cosmic Background Explorer~COBE! normalization at
small l includes the integrated Sachs-Wolfe~ISW! effect, no
longer negligible in CQ, and as a consequence the fluctua
amplitude at decoupling is reduced~see, for instance, Ref
@35#!. The ISW is also responsible for the tilt at small mu
tipoles. Models withb.0.15 are already ruled out by CMB
observations, while models withb,0.01 are essentially in
distinguishable from uncoupled quintessence. Values sm
than b,0.06 produce acoustic peaks which are sligh
above those for the uncoupled model. The boundb,0.15 is
already stronger than Eq.~7!, valid for the coupling to dark
matter; the determination of the spectrum with a precision
5%, within reach of the Boomerang or Maxima experimen
will constrain b to two decimal digits, better than curren
constraints to the baryon coupling~6!. The effect for b
,0.03, which satisfies the constraint for the universal c
pling model, will be distinguishable in the near future. T

FIG. 7. Multipole spectra Cl ~actually we plot @ l ( l
11)Cl /2p#1/2mK, as customary! for the solutionsa for different
couplings. The data are a selection from Tegmark’s home p
~http://www.sns.ias.edu/;max). The thick errorbars are from th
Boomerang experiment@36#.
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preliminary Boomerang@36# data plotted in Fig. 7, taken a
face value, would allow onlyb,0.12 (b50.12 is rejected at
the 93% C.l.!.

In Fig. 8 some alternative assumptions are tested.
constraint onb depends clearly on the values of the oth
cosmological parameters~see, for instance, Ref.@18# for a
statistical analysis of the covariance among parameters in
case of the original Brans-Dicke model!. The analysis of the
multidimensional confidence region forb,h,Vf ,Vb ,ns ,
etc., is very interesting but also very demanding, and will
pursued in another paper. Most of the other parameters
~or soon will be! strongly constrained by other observation
Perhaps the only parameter that depends entirely on
CMB data is the primordial fluctuation slopens . In Fig. 8 I
compare two models, one without coupling andns51, and
the other withb50.15 andns51.5, the highest value al
lowed by the COBE results. The two curves overlap pre
much in the low-l region, but are neatly distinguishable
l .400. We conclude that, at least as concernsns , the pros-
pects for disentangling the degeneracy are excellent. In
same Fig. 8 we consider the case of universal coup
~baryon coupling equal to dark matter coupling! and find that
this decreases the peak height by less than 10%.

The reason for the small increase in the acoustic peak
is observed forubu,0.06 is not entirely clear. Since the nu
merical fluctuation growth follows very closely the analytic
prediction of Eq.~28! I believe the rise is not a numerica
artifact. Notice that for smallb thefMDE transient attractor
starts just past the decoupling epoch, and thus the analy
expectations based on thefMDE solution are not accurate

The effect of changingm, within the limit m,A3 neces-
sary to have acceleration, is minimal, since the trajecto
must anyway satisfy the same final conditions. The spect
for b50 is therefore almost identical to the spectrum o
pure L model with VL50.7. Also, as expected from th
analytical expressions, the perturbative results are almos
sensitive to the sign ofb. The present analysis therefor

e

FIG. 8. Comparison between universal or dark matter coupli
and two different values for the primordial fluctuation slopens .
The data are from the Boomerang experiment@36#.
1-8
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COUPLED QUINTESSENCE PHYSICAL REVIEW D62 043511
spans all the possible accelerated trajectories in CQ w
Vf50.7 that are cosmologically acceptable.

In Fig. 9 I report the power spectraD2(k)
5k3P(k)/(2p2) normalized to COBE, compared to the da
compiled and corrected for redshift and nonlinear distortio
by Peacock and Dodds@37#. It can be seen that the slope
the spectrum is in rough agreement with what is obser
~the largest discrepancy is for the four smallest scale d
points, where nonlinearity and redshift distortions are m
difficult to correct!; a more precise comparison depends
the assumption that the bias between galaxies and dark
ter is scale independent, and on other variables which are
of interest here, such ash.

The matter fluctuation variance in 8 Mpc/h cellss8 for a
Vm50.3 universe should be around unity to fit the clus
abundance@38–40#. Wang and Steinhardt@41# find, for a
constant-w model, a general expression fors8, that corre-
sponds tos8P(0.85,1.25) at the 95% C.l., adopting our co
mological parameters. It is found that this is satisfied
ubu<0.1, so that this can be taken as the upper limit onubu
~see Fig. 10!. As found analytically, the suppression ofs8
with respect to COBE-normalized standard CDM is due
the growth suppression in MDE. Another factor is that no
the COBE normalization includes the integrated Sac
Wolfe effect, no longer negligible. The rise in the CM
spectrum that we observed for smallb induces via the
COBE normalization a similar small rise ins8 for the same
values, as can be seen in Fig. 10.

A fit to s8(b) gives

s8~b!5s8(0)10(4.5b)1.52(6.4b)2
, ~36!

wheres8(0) refers to uncoupled quintessence, and conta
all the dependence on the other cosmological parameter
well as on the exact COBE normalization scheme~I used
here the Bunn and White@42# normalization implemented in
the originalCMBFAST code!.

FIG. 9. Power spectrumD2(k)5k3P(k)/(2p2) for the same
solutions of typea of Fig. 7. The real galaxy data are from Peaco
and Dodd, 1994.
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V. CONCLUSION

Soon cosmology will benefit from high-precision data th
will allow unprecedented accuracy in testing fundamen
theories. Quintessence models add to the battery of cos
logical parameters at least two entries, one describing
potential of the field and another its coupling to the rest
the world. So far, the coupling was arbitrarily put to zer
although we know no symmetry condition that implies so.
this paper we let the coupling be nonzero, and investiga
systematically all the possible trajectories in a flat space
lead to accelerated expansion at the present withVf50.7.

The results for the homogeneous theory are applica
also to all Brans-Dicke models with any power law potenti
since there is a direct correspondence between our cons
b and m and the Brans-Dicke coupling constantj and the
potential exponentn; from Eqs.~4!, ~5!,~19! we have

b25
3

2
j,

m25
3

2
~n24!2j. ~37!

The popular choice of an inverse power law,n521, for
instance, amounts to exploring of all the parameter space
line m55b. For the fluctuations, the transformation th
brings one from the fluctuation quantities in the Jordan fra
~the frame in which the field is coupled to gravity! to those in
the Einstein frame~in which the field is coupled to the mat
ter! is more complicated, and a complete treatment is stil
be published. However, in the limit in which the fluctuatio
of the scalar field are small with respect to the fluctuations
the other components the fluctuation fields are conform
invariant; since the CQ field is almost homogeneous due
its light mass, this condition is verified for most of the un
verse history. As a consequence, it is conjectured that
the perturbative CQ results apply to Brans-Dicke mode
The verification of this conjecture is left to future work.

FIG. 10. The variances8 versusb. The shaded area is the 95%
C.l. region that matches the cluster abundance@41#.
1-9
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The main feature of the CQ model is the existence o
phase intermediate between the radiation era and the a
erated era, that we denotedfMDE, a saddle point in the
phase space. During this era the fluctuations grow slo
than in an uncoupled model. ThefMDE has three effects on
the CMB: the spectrum at low multipoles is tilted, due to t
ISW effect; the acoustic peaks are shifted to higher mu
poles, due to the change in the sound horizon; and t
amplitude is changed in a nontrivial way. On the power sp
trum at the present, the main effect is the reduction ofs8 for
large couplings and a very minor enhancement for small c
pling.

We found that the potential slope is not efficiently co
strained by observations, essentially because thefMDE is
independent ofm. The couplingb is on the contrary con-
strained already by the present data, and is expected t
much more so in the near future, by at least an order
magnitude. From CMB ands8 data we can derive the boun
ro

ev

et

et
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ubu,0.1 ~38!

which is stronger than the dark matter constraint of Dam
et al. @15# and not very far from the universal constraint
Wetterich @7#. Naturally this constraint holds only whe
Vm50.3 and the other parameters have been fixed as in
~35!. However, all these parameters can be fixed by obse
tions independent of the CMB, so the hope of narrowi
down the bound onb is not precluded. As we have show
the degeneracy betweenns andb can be broken atl .400. A
systematic study of the the constraints onb letting the other
parameters vary as well is under way.
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