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A new component of the cosmic medium, a light scalar field or “quintessence,” has been proposed recently
to explain cosmic acceleration with a dynamical cosmological constant. Such a field is expected to be coupled
explicitly to ordinary matter, unless some unknown symmetry prevents it. | investigate the cosmological
consequences of a coupled quintesse@@ model, assuming an exponential potential and a linear coupling.
This model is conformally equivalent to Brans-Dicke Lagrangians with any power-law potential. | evaluate the
density perturbations on the cosmic microwave background and on the galaxy distribution at the present and
derive bounds on the coupling constant from the comparison with observational data. A novel feature of CQ is
that during the matter dominated era the scalar field has a finite and almost constant energy density. This
epoch, denoted asMDE, is a saddle point in the dynamical phase space.dM®E is responsible of several
differences with respect to uncoupled quintessence: the multipole spectrum of the microwave background is
tilted at large angles, the acoustic peaks are shifted, their amplitude is changed, and the preserit 8 Mpc/
density variance is diminished. The present data constrain the dimensionless coupling congiastOta
assuming),,=0.3 and a primordial fluctuation slopg=1.

PACS numbds): 98.80.Cq

I. INTRODUCTION predicted by many fundamental theoriéstring theory,
pseudo-Nambu-Goldstone model, Brans-Dicke theory),etc.
The recent evidence in favor of an accelerated cosmiso that it is natural to look at its cosmological consequences
expansior(1,2] has prompted theorists to hypothesize com-[6-9]. Second, the presence of a scalar field modifies the
ponents of the cosmic medium additional to ordinary mattestandard cold dark mattgiCDM) spectrum[10-13, and
and radiation, whose equation of state is unable to providgerhaps brings it closer to real data, just as a cosmological
the required kinematics. In a flat universe, the dark energy o¢onstant does. Finally, even a small amount of scalar field
such a component should provide roughly 70% of the cosmigiensity may give a detectable contribution to the standard
density, and should possess an effective equation of state CDM scenario, similar to what one has in the mixed dark
matter(MDM) model[9].
p=(w=1)p, (1) A scalar field, however, is expected to couple explicitly
(that is, beyond the gravitational coupling ordinary mat-
ter, with a strength comparable to gravity, as put into evi-
we (0,0.6). 2) dence by Carrol[14], unless some special symmetry pre-
vents or suppresses the coupling. Such a strong coupling
The most obvious candidate, a cosmological constaniwould render the scalar field interaction as strong as gravity,
which providesw=0, has unappealing features: its value and would therefore have been already detected. However, a
would be one hundred orders of magnitude smaller than diresidual coupling still below detection cannot be excluded:;
mensionally expected; upper limits from lensing effectsmoreover, if the coupling to baryons is different from the
barely allow for a{),=0.7 [5], as would be necessary to coupling to dark matter, as proposed by Dametal.[15],
reconcile the amount of matter in clusters with the flatnesshen even a strong coupling is indeed possible. Exactly the
suggested by inflation. The next simplest possibility is persame arguments hold if one supposes the quintessence field
haps to include in the cosmic fluid a light scalar field. In fact,to be coupled to gravity, rather than to matter, as investigated
if the field is light enough to vary slowly during a Hubble by Uzan[16], Chiba[17], Chen and Kamionkowskyi8] and
time, its potential energy can drive an accelerated expansioPerrottaet al. [19]. Indeed, the two models, although physi-
just like during inflation. The varying field equation of state cally different, are related mathematically by a conformal
can then be tuned to lie in the observed range: if this is theransformation(see, e.g., Ref$7,20)).
case, then the scalar field is sometimes denoted in the litera- The nonminimal coupling of the quintessence field to or-
ture as “quintessence.” The scalar field density fractidpy  dinary matter is therefore worth investigating, especially be-
can be made to decrease rapidly in the past, so as to passuse the wealth of high-precision data that is near to come
easily the lensing constraints and to avoid discrepancies iallows the intriguing possibility of detecting the coupling on
the primordial nucleosynthesis abundances. the microwave background and on the present galaxy distri-
In addition to the acceleration argument, the study of &ution. In a previous papdiRef. [21], hereafter paper) Il
scalar field is interesting on its own. First, a scalar field isshowed that a scalar field with an exponential potential
[22,6] and an explicit coupling to matter may behave as a
kind of hot dark matter component, as was first shown by
*Email address: amendola@oarhpl.rm.astro.it Ferreira and Joycf9] for zero coupling. | showed that the

with the present valug3,1,4]

0556-2821/2000/62)/04351110)/$15.00 62 043511-1 ©2000 The American Physical Society



LUCA AMENDOLA PHYSICAL REVIEW D 62 043511

cosmic microwave backgroundCMB) spectrum of the whereK2=87-rM;2 andM is the Planck mass. Moreover, if
m.odel presents acoustic peaks displaced from their locatiothe Brans-Dicke Lagrangian contains a power-law potential
without coupling, and that the galaxy power spectrum also/(¢)~ ¢", then the transformed field’ acquires an expo-

bends in agreement to real data. In that case, the field densifiential potential that, for small positivg can be written as
amounts to at most 20% of the critical density, and the ex-

pansion is not accelerated. The interesting feature was that V(¢’)~exp:(n—4)f<\/g¢>’] (5
the universe has always been in an attractor solution, inde-
pendently of the initial conditions. (see, e.g., Refd29-31,2(). The CQ model with a linear

In this paper | focus instead on accelerated solutions. toupling and an exponential potential that is studied here is
explore first the general phase space of a homogeneous quitrerefore conformally equivalent to a large class of Brans-
tessence model with the same exponential potential and colicke Lagrangians. For instance, the model studied in Per-
pling to matter as in paper |; | will refer to this model as rottaet al.[19] is equivalent ton=—1.
coupled quintessend€Q). Once the phase-space attractors There are several constraints on the coupling congant
have been identified, two distinct solutions are selected thailong with constraints on the mass of the scalar field par-
allow an accelerated epoch, and the density fluctuations oficles, reviewed by Elliset al. [32] and Damouf{15]. The
these trajectories are studied by the use of a purposediyonstraints arise from a variety of observations, ranging from
modified version of the codevBFAST by Seljak and Zaldar- Cavendish-type experiments, to primordial nucleosynthesis
riaga[23]. The linear perturbations in the uncoupled case hagounds, to stellar structure, etc. Most of them, however, ap-
been already studied by Viana and Lid@1s] and Caldwell  ply only if the scalar field couples universally to all matter,
et al.[11]. As it will be shown, the coupling introduces sev- which is not necessarily the case. The most stringent bound
eral qualitatively new features. for a universal coupling, quoted by WettericH, amounts to

-1
1. COUPLED SCALAR FIELD MODEL |C|<O'1MP ’ ©
Consider two components, a scalar fiegbddand ordinary If the coupling to dark matter is different from the baryon
matter (e.g., baryons plus CDMdescribed by the energy- coupling, then the constraints on the former relaxes consid-
momentum tensors 4 andT ,,m) , respectively. General erably, and becomdd5]
covariance requires the conservation of their sum, so that it is
possible to consider a coupling such that, for instance, |C|<5Mp*. (7)

T4 gy u=CTm v It is also noticeable that these constraints are local both in
’ ’ space and time, and could be easily escaped by a time-
dependent coupling constant.
Tomin=~CTm ;- ©) The constraints from nucleosynthesis refer to the energy
density in the scalar component. This has to be small enough
Such a coupling arises for instance in string theory, or after aot to perturb element production, so that at the epoch of
conformal transformation of Brans-Dicke theory. It has alsonucleosynthesi§7,33,9
been proposed to explain “fifth-force” experiments, since it
corresponds to a new interaction that can compete with grav- 0 4(7,6)<0.1-0.2. (8)
ity and be material dependent. A coupling that violates gen-
eral covariance is instead studied in Barrow and Magueijdrhis bound is satisfied by all the models we discuss below.
[24].

The spe(_:ific coupling(?a) is only one of the possible IIl. BACKGROUND
forms. Nonlinear couplings such &T,F(#)¢., or more
complicated functions are also possibisee, e.g., Refs. Here | derive the background equations in the flat confor-

[25,26]). Also, one can think of different couplings to differ- mal Friedmann-Robertson-Walk&RW) metric

ent matter species, for instance coupling the scalar field only o

to dark matter and not to baryons, as proposed by Damour ds’=a’(—d7*+ §;dx'dx). 9)
et al. [15] and Casaset al. [27], and studied recently by

Holden and Wandg28]. Notice that the coupling to radiation The CQ scalar field equation is

(subscripty) vanishes, sinc&,,=0. Here | restrict myself ) _

to the simplest possibility3), which is also the same inves- d+2HP+ a2U,¢= Cpma?, (10
tigated earlier by Wetterich7] and is the kind of coupling

that arises from Brans-Dicke models. In fact, a field with awhereH=a/a, and | adopt the exponential potential
gravity-coupling terms £€$?R in the Lagrangian acquires, af-

ter conformal transformation, a coupling to matter of the U(¢)=Ae2RBrrsd, (12)
form (3). In the limit of small positive coupling one obtains

The matter(subscriptm) and the radiation(subscript y)
C=x V¢, (4)  equations are
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—Cpmd, (12

p,+4Hp,=0.

bm+3HPm:
(13

Denoting with 7y the conformal time today, let us put
H2

3Hg
a(tg)=1, pm(70)= _ZQm:PmO!
K

P(T0)=p,0, d(70)=o. (14

Without loss of generality, the scalar field can be rescaled by

PHYSICAL REVIEW B2 043511

our model. The constraints quoted in the previous section on
C become nowB<0.025 for the universal coupling angl
<1 for the dark matter coupling.

The system(18) is invariant under the change of sign of
y,z and ofa. Since it is also limited by the conditign>0 to
the circlex?+y?+z°<1, we limit the analysis only to the
quarter of unitary sphere of positivez. The critical points,
i.e., the points that verifx’=y’=2z'=0, are scaling solu-
tions, on which the scalar field equation of state is

2x?
W¢:—:

Y. (20

const,

a constant quantity, by a suitable redefinition of the potential

constantA. We put theng,=0. This gives
Pm:PmOa_ae_cd)v
py=pya " (15
The Friedman-Einstein equation can be written as
K? Pmo Py 1.
2" | MMOg-coy B0, ~42, g2
H 3| 3 e o2 2¢ Ua (16)

The dynamics of the CQ model has been analyzed by

Amendola[20], Holden and Wand$28] and Billyard and

the scalar field total energy density @s,=x*+y?, and the
scale factor is

~Pl=p_tP =
a~rt t?, p= 3W (21
[t being the time defined byt=a(7)d7]. The effective
equation of state for the total cosmic fluigy= (Wes
—1)pior has index
Werr=1+X2—y?+22/3=1+Q (W, — 1)+ Q 4(w,— 1)
(22)

Coley[25] in the regime in which either matter or radiation (wherew,=4/3 is the radiation equation of statés already
dominates. Here | generalize the analysis to the case inoticed, a value &w,<0.6 is required by observations,
which both matter and radiation are present. As we will seewhile w.4<2/3 is enough for acceleration.

this introduces some interesting new features. Generalizing The system(18) with an exponential potential has up to

Copelandet al.[34] the following variables are introduced:

e K ¢ _Ka\[ Ka /py

along with the independent variabie=log a. Notice thatx?,

fifteen critical points, of which only eight can be in the al-
lowed region. They are labeled by a letter that reproduces the
classification given in Ref20], and a subscript that denotes
whether beside the field there is a component of mésido-
scriptM), radiation R), both (RM) or neither of the twdin
which case the energy density is taken up completely by the

y2, andz? give the fraction of total energy density carried by Scalar field; no subscript in this casé'he critical points are
the field kinetic energy, the field potent|al energy, and theisted in Table I, whergy(B,u) =48+ 4B+ 18. For every

radiation, respectively, that i€) —x +y? and Q —z

value of the parameteys, 8 there is one and only one stable

Clearly, the matter energy densny fraction is the complemen@rItlcal point (attractoj; one or more saddle point can also

to unity of x>+ y2+ z2. We can rewrite Eq910) and(16) as

x ;—1)—My2+ﬁ<1—x2—y2—zz>,

xX'=

Z/

y’=uxy+y(2+; ,

4
z’=—§(1—3x2+3y2—22), (18)

where the prime denotes hedéda and where | introduced
the dimensionless constant

L
B 2 K

(in Ref.[20] B was defined as twice the value abavEhe

(19

exist.

The regions of existence and stability of the critical points
are summarized in Table Il. In the table the attention is re-
stricted to the half plang >0, since there is complete sym-
metry under simultaneous sign exchangeuoéind 8. | de-
fined

1
= (~ B+ TBT ),

9
~35

Figure 1 displays the regions of the parameter spfareu
>0) in which the various points are stable.

There are only two critical points that admit accelerated
solutions, i.e., solutions that satisfy E®): the pointsa and
by, . They differ in several important aspects, so we study

Mo=— (23

parameters3 and p are all we need to completely specify them separately.
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TABLE I. Critical points.

Point X y z Oy p Wt W,
2\1/2
a - ’_; ( 1- %) 0 1 3u? 2u219 229
2 ) 6" 6
br - P 1-— - 1/2 4/3 4/3
M M Y75
by .3 (909 0 T
2(utp)  2lutpl ap+p? 37 u utp
Cr 0 0 1 0 1/2 4/3 -
1 3\ 1
CrM — 0 1- —) — 1/2 4/3 2
2p 432 4p?
6 482
Cwm 2 0 0 22 — 1+ — 2
3 o 452+ 9 9
-1 0 0 1 1/3 2 2
e +1 0 0 1 1/3 2 2

Solutions of type .aThe attractor, once reached, brings has to provide the correct final conditions fary, and H.
to zero the matter density. To allow for the observed matteSince the scalar field has to start dominating only recently, it
content of the universe, we have to select the initial condiis clear that its initial energy density deep in the radiation era
tions, if they exist, in such a way that the attractor is not yethas to be very small: in the 3D phase space this means that
reached at the present time, but the expansion is alreadire cosmic solutions start neat,y,z)=(0,0,1), that is, near
accelerated. This is of course a kind of fine tuning: a differ-the unstable critical pointg. If initially the field kinetic

ent choice of the initial values ap and ¢ leads to different ~ e€nergy dominate@instable points or €), there will be a fast
amount of(}, at the present. On the positive side, this at-transient towardsg. The trajectories in Fig. 2 that begin at
tractor is accelerated also for small values of the couplindX.,Y,2)=(—1,0,0), rise to neaf 0,1,0 and then fall almost
constant. Let us first consider the lint=x=0, that corre-  Vertically are examples of such cosmic solutions. The attrac-
sponds to the ordinary cosmological constant. Suppose thdar of the CQ model is the same as for the uncoupled case, at
we put initially the field at zero kinetic energw€0). A (X,¥,2)=(—0.033,0.99,0), but while in the ordinary quin-
trajectory acceptable from a cosmological point of viewtessence case there is a saddle pojnat (x,y,z)=(0,0,0),
should start deep into the radiation em=(1), then enter a in CQ this moves to X,y,z)=(24/3,0,0), on whichQ,,
matter dominate eraz&0), and finally fall into the attractor =43°/9. This appears more clearly from Fig. 3, in which the
a, the only one still existent foB= =0, which corresponds trend of Q,,, Q,, and (), is reported. The path of this

to the A-dominated stage. In other words, the path of a or-solution(neglecting a possible initial field kinetic-dominated
dinary A universe would beg— cy—a. A similar sequence

of critical points characterizes all the trajectories discussed ir s

the following.
In Fig. 2 we show the 3D phase spacey( z) of modela, i CRM
with B=0,u=0.1 andB=0.5u=0.1. As before, a cosmo- 6f br c bwm
logical trajectory must start in the radiation era=(1) and o
TABLE Il. Properties of the critical points. 24t
Point Existence Stability Acceleration 3
2 ]
a ©n<3 p<piy, u<\6 n<y3 \\
bg u>+/6 J6<u<-—4p never 1f a
b lu+Bl>3R2pu<pe  p>p, pu>-4p n<2p
Cr Yu,B unstableV u, never -3 2 -1 é 1 2 3
Crm |8|> /312 w>—4B,8<312 never
Cm |Bl<3/2 |Bl> 312> o never FIG. 1. The figure shows the parameter space of the model.
d Yu,pB unstableV u,B never Each region is labeled by the critical point that is stable in that
e Vu,B unstableV u, 8 never region. The shaded area indicates the values for which the attractor

is accelerated.
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p=0
y 0
0.
a
0.
z 0
X
0.
p=0.5 0.6}
o]
y 0
0.

FIG. 3. Behavior of}, (dotted ling, Qg (dashed lingand ) 4

(thick line) as a function of logf) for ©x=0.1 andg as indicated.

Notice that for CQ there is the transient regim®DE in which

both the matter and the scalar field energy density are nonvanishing.
X Notice also that in this case, and for all valuesBaf 0, the matter-
radiation equivalence occurs earlier than in the uncoupled model.
For the small values o8 used for the perturbation calculations,
however, this is a small effect.

FIG. 2. CQ phase space for values that lie in ¢heegion, u
=0.1 andB as indicated. The attracta is the same as in the
uncoupled model, but fg8+ 0 there is a saddle for a nonzero value

of the scalar field density. The phase spaces for the valugd of . . .
investigated in this paper are qualitatively similar to tBe 0.5 verges toward the poird, the dynamics becomes indepen-

case. The trajectory that falls almost vertically from top is similar todent of the COUP“UQ- As a consequence, the cosmological
the background solution effectively employed. probes az<5, similar to type la supernovae or the cluster
abundance, are not efficient tools for discriminating between
ordinary quintessence and CQ.

era is thencg—cy—a, just as in the pure\ model. For . . .
3 R J P Solutions of type f. The attractoiby, is a solution for

>3/2, actually, the point,, ceases to exist, but such high . . -
galues ofB areyanngy ungcceptable g which the matter density and the scalar field share a finite

It is to be emphasized that the saddle-point stage of corfi‘nd constantportion of the cosmic energy. For instance, if
stant and finite!l¢=4ﬁ2/9 is typical of the CQ model, as it we put
is absent in the limit of zero coupling. Let us call this the
field-matter-dominated era, @MDE. As we will see, this
stage is responsible for most of the differences with respect

to ordinary quintessence. We can think of the coupling as ye gettﬂg,zo.s, Ql_ﬁ: 0.7, ?ndw¢:0.14, Wﬁlldw'th'n t'he' defi
mechanism for transferring energy from the matter to thd €quested range. These values, once reached, remain indei-
Inltely constant. The coincidence of similar values of the en-

ergy density in the matter and field component is therefore
_solved, independently of the initial conditions. On the nega-
tive side, however, these solutions require a large value of
the coupling constantg>/6/5 to obtainw,<0.6) and are
)3,(3232) therefore at risk of running into conflict with constraints on

B=4.02, u=2.68 (25

the sign of 8.
The equivalence time in CQ occurs earlier than in un
coupled quintessence

Py

o (24) the coupling derived from local experiments. The strongest

objection to these solutions, however, comes from the simple

fact that they lack a matter dominated era, as we will show in

For the acceptable values gf however, this shift has only a a moment.

minor effect. In Fig. 4 we show the phase space of modgl, assum-
Finally, it is to be noticed that the attractaris indepen- ing 8=4.02, w=2.68. As can be seen, the phase space is

dent of the coupling3. Then, as the universe at=5 con- now completely different. The attractor is aix,y{,z)

Pmo
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p=4.02, n=2.68 The most conspicuous features here are that the radiation

y dominates until recentlyz&=50) and the matter dominated
era is absent. As is intuitive, such behavior is catastrophic for
the growth of the fluctuations: when a fluctuation mode re-
enters the horizon, in fact, is suppressed first by the long
radiation dominated er€RDE), and then by the accelerated

z expansion. As a consequence, the presgris unacceptably
small, of the order of 10* for COBE normalized spectra.
Unless some mechanism other than gravitational instability
powers the fluctuations, the trajectories of typg are pre-
cluded. In the following we restrict therefore our attention to
solutions of typea.

FIG. 4. Phase space of CQ for values that lie intiyeregion. This concludes the analysis of the homogeneous solutions
There is a saddlegy at (x,y,z)=(0.12,0,0.95) that attracts the of CQ. It is to be stressed that we considered all the possible
trajectory that falls from top, similar to the one adopted in the gccelerated solutions. As in the next section we will span all
perturbation calculation. the range ofg and u that yield cosmologically acceptable

solutions of typea, we can consider exhausted the analysis

=(—0.22,0.81,0). The trajectory that falls from top is againof CQ for exponential potentials and linear coupling.
similar to the one used in the perturbation calculations. As

can be seen better in Fig. 5, there is a transient near the

saddle pointcgy,, here at &,y,z)=(0.12,0,0.95). In Fig. 5 IV. PERTURBATIONS ALONG SOLUTIONS a
the evolution of},,Q ,, and(},, in two cases is displayed,
one for which the present value i equals 0.4, for which
B and . must be chosen as above, and the otherwigyf
=0.5, which requireg= w=2.37. In both cases we can see

X

We now proceed to study the evolution of the perturba-
tions in the coupled quintessence theory. In this section we
assume a coupling to dark matter onlgero coupling to
. ; baryons, in order to explore a larger range of coupling pa-
the tranS|e|;lcRM, characterized by),=1/(45%) andQy ramyeters. The effect of%ecouplingthe bagryons on E[)he%gmo-
=1-1/(257), followed by the decay of the radiation com- ganeqys trajectories is not large, since the baryon component
ponent and the stabilization qf the flt_ald qnd matter to theitg 1,ch smaller than the CDM component. The effect on the
final values. The path of this solution is th&k—Crm  perturbations is not large either, because the main effect is
— Dby, in contrast with the solutions of the ty@e As al-  §ye 19 the existence of théMDE, which again depends on
ready remarked, such a trajectory is possible onlyder0. {4 homogeneous solution.

The equations of the perturbations in the synchronous
gauge have been derived and discussed at length in paper |
and will not be repeated here. In that case it was shown that
several important features of the perturbation evolution could
be derived analytically, since the background evolution was
always on one of the attractor, and thus particularly simple.
The same occurs here, at least in some cases. As described in
paper |, all the numerical results presented below have been
obtained by modifying the codemBFAST of Seljak and Zal-
darriaga[23].

- 3 32 1 0 The key fluctuation equation in paper | was the evolution
of the subhorizon perturbations in the MDE regime, the only
situation in which the evolution differs from the pure CDM
case. For CQ, this regime is actually tbdDE introduced
above. Let us note first that along any attractor withx,
one has, from Eq(17)

a
0.4
V6xq
0.2 b= - loga. (26)
0
- 7 loga - ’ Denoting with§ the fluctuation in the matter component, we

derived in paper | an equation for subhorizon modes in MDE
FIG. 5. Behavior of(}, (dotted ling, {2 (dashed lingandQ,  along an attractor that can be rewritten as follows:
(thick line) as a function of log§) for the same parameters as in Fig.
4 (labelwgg=0.4) and forB= u=2.37(labelw.4=0.5). Notice the 3
transient epoch in which radiation and field share the total energy S+H(1+2X.8)5— —H2Q. 8
density (saddlecgy). ( aB)o= 3 M

432
1- T) =0. (27
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As we noticed in the previous section, the solutiarzasses B B B
through thep MDE transient attractocy, , before the present 10 — === T2
¢-dominated epoch. Therefore, from Table I, we can substi- ~N
tute x,=23/3. It follows that Eq.(27) has a growing solu- 1000 Mpe/h

tion

2
o=Aa", with m=1—- 4i (28)
1 3 .

—_—
o

100 Mpc/B\

é6/a
o

This shows two important facts: first, the fluctuations in 1

¢MDE are suppressed with respect to the standard CDM

behavior fn=1), which also holds for the uncoupled quin-

tessence model, for all values @f;, second, the evolution

does not depend on the sign @f Before the present time, at

z=5, the trajectory deviates from tlMDE solution, andp

begins to dominate. -
With respect to paper | the initial conditions are now dif-

ferent, because now initiallfthat is, in the RDE stagehe T I T

) ) . : 0.1

field does not lie on an attractor. Notice thatomBFAST one 10-¢ 0.0001 0.001 0.01 0.1 1

needs initial conditions at different times for each wave num- a

ber_. Th_e_ same t_e_chnqu_Je exploited in paper | to get the adia- FIG. 6. Evolution of the matter density contrasfa for three

batic initial conditions gives now a result that depends on the

. - o Wwavelengths, Z/k=\=1000, 100, and 10 Mpb/, for x=0.1 and
background solution, as worked out in detail in Rgf2]. various values of3. Notice the growth suppression f@+0.

[=2"
@

|

|

|
T TW ™

Sooo

u=0.1 E

10 Mpe/h A

T
2\
N

This gives
. following approximated law governs the size of the sound
horizon along an attractor solution
5= o7, | (29 J
10a .
i XaB
i (30

) rs=rom—m—>,
where ¢; is d¢/dr at the initial integration timer;. The ° 1+2x.8

value of ¢, follows by differentiation. In practice, since the
fluctuations for¢ are forced by the coupling with the other
fluctuation variables, we find that the results are quite inde
pendent on the choice af¢; and its time derivative. The o
choiced¢, = 8¢, =0, for instance, adopted in R¢1.8] gives lpear= 7 =lo(1+2x,8)a, Xah (31
indistinguishable results. FsHo

In Fig. 6 the behavior of three density fluctuation wave-
lengths, calculated numerically wittMBFAST, is shown as a
function of the scale factoa. | plot 6§/a to enhance the
differences among the various cases. It is possible to distin-
guish four distinct epochs. Let us first follow the intermedi- where [y=2/(ryH) =200 is the standard peak location,
ate wavelength of Fig. 6. First, the 100 Mpcfluctuation  and where the second line specializes to@h&DE attractor
grow asa?, while it is a superhorizon mode in RDE; then, cy,. For instance,8=0.1 gives a locationl peaic=1.08
around z=2500 @=0.0004), it reenters the horizon and which, at least to a first approximation, is in agreement with
freezes until thepMDE begins. In uncoupled quintessence the numerical results below. Notice again that the peak dis-
(B8=0) the fluctuation grows now as as usual; in CQ the placement is always toward largks, regardless of the sign
growth is instead suppressed as expected from(ZR). Fi-  of B, contrary to what happened in paper | along the attractor
nally, aroundz=5, ¢ starts to dominate, the universe accel-by . Similar behavior was found numerically by Chen and
erates, and the fluctuation growth is definitely suppressed iKamionkowsky[18] and Perrotteet al. [19] in Brans-Dicke
all cases. The longer wavelength follows the same phasesjodels. Here, substituting?=3&/2, we find that the peak
except that it reenters directly in th#MDE, and therefore  shifts approximately as (£2¢)ag ©.
bypasses the freezing stage. The shorter wavelength starts in The solution we use as background in this section is, as
the plot already inside the horizon, and follows the sameanticipated, on its way to the attractar The initial condi-
¢MDE growth evolution of the other modes. tions will be chosen so that at the present tithe., when

The samepMDE attractor solution can be used to derive H~*=3000 Mpch) we have,=0.3, Q,=0.7 and Wy,
the location of the first acoustic peak on the CMB. In fact,=0. This implies that at the present time we should have
this depends essentially on the size of the sound horizan
decoupling(subscriptd). We have shown in paper | that the Xo=0, y=0.837, z,=0.092 (33

where ro=2(a4/3)"?H, ! is the standard sound horizon.
Therefore, the multipole location of the first acoustic peak is

:IO

4 2
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FIG. 7. Multipole spectra C; (actually we plot [I(I FIG. 8. Comparison between universal or dark matter coupling,

+1)C/2m]*2ukK, as customaryfor the solutionsa for different  and two different values for the primordial fluctuation slope
couplings. The data are a selection from Tegmark's home pag&he data are from the Boomerang experime].

(http://www.sns.ias.edu/max). The thick errorbars are from the . N
Boomerang experimerigs). preliminary Boomeran$36] data plotted in Fig. 7, taken at

face value, would allow only3<0.12 (8=0.12 is rejected at
the 93% C.).

In Fig. 8 some alternative assumptions are tested. The
constraint onB depends clearly on the values of the other
cosmological parametersee, for instance, Ref18] for a
statistical analysis of the covariance among parameters in the
The initial conditions that produce the requested final valueCase of the original Brans-Dicke modieThe analysis of the
have been obtained by tﬁal and error.(:}nserting the backzqgltuij;rcgps[onal confidence_region 196,14, {2y s,

ol D - o y interesting but also very demanding, and will be
ground solution in the modifiedVBFAST code, we obtain  hrsyed in another paper. Most of the other parameters are
the CMB spectra reported in Fig. 7. The other values adoptegh soon will be strongly constrained by other observations.
are Perhaps the only parameter that depends entirely on the

CMB data is the primordial fluctuation slopg. In Fig. 8 |

h=0.7, 0,=0.04, ng=1. (35  compare two models, one without coupling amg=1, and

the other with=0.15 andngs=1.5, the highest value al-
The gravitational wave contribution is assumed negligible. Ilowed by the COBE results. The two curves overlap pretty
can be noticed that the peaks move to larger multipoles, asuch in the lowt region, but are neatly distinguishable at
expected. Their amplitude is generally reduced, due both t6>400. We conclude that, at least as concerfsthe pros-
the growth suppression found above, and to the fact that nowects for disentangling the degeneracy are excellent. In the
the Cosmic Background ExploréCOBE) normalization at same Fig. 8 we consider the case of universal coupling
smalll includes the integrated Sachs-Wolf8W) effect, no  (baryon coupling equal to dark matter couplirgand find that
longer negligible in CQ, and as a consequence the fluctuatiothis decreases the peak height by less than 10%.
amplitude at decoupling is reducésee, for instance, Ref. The reason for the small increase in the acoustic peak that
[35]). The ISW is also responsible for the tilt at small mul- is observed fof8|<0.06 is not entirely clear. Since the nu-
tipoles. Models with3>0.15 are already ruled out by CMB merical fluctuation growth follows very closely the analytical
observations, while models witB<0.01 are essentially in- prediction of Eq.(28) | believe the rise is not a numerical
distinguishable from uncoupled quintessence. Values smallartifact. Notice that for smajB the pMDE transient attractor
than 8<0.06 produce acoustic peaks which are slightlystarts just past the decoupling epoch, and thus the analytical
above those for the uncoupled model. The bo@rd0.15 is  expectations based on tlgdVIDE solution are not accurate.
already stronger than E7), valid for the coupling to dark The effect of changing:, within the limit x< \3 neces-
matter; the determination of the spectrum with a precision obkary to have acceleration, is minimal, since the trajectories
5%, within reach of the Boomerang or Maxima experimentsmust anyway satisfy the same final conditions. The spectrum
will constrain B8 to two decimal digits, better than current for =0 is therefore almost identical to the spectrum of a
constraints to the baryon coupling). The effect for g pure A model with Q,=0.7. Also, as expected from the
<0.03, which satisfies the constraint for the universal couanalytical expressions, the perturbative results are almost in-
pling model, will be distinguishable in the near future. Thesensitive to the sign of3. The present analysis therefore

independently of3. We begin by investigating the parameter
range

w=0.1, B(0,0.15. (34)
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FIG. 9. Power spectrumh?(k)=k3P(k)/(27?) for the same FIG. 10. The varianceg versusB. The shaded area is the 95%

solutions of typea of Fig. 7. The real galaxy data are from Peacock C.I. region that matches the cluster abundais.

and Dodd, 1994.
V. CONCLUSION

spans all the possible accelerated trajectories in CQ with  Soon cosmology will benefit from high-precision data that

,=0.7 that are cosmologically acceptable. will allow unprecedented accuracy in testing fundamental
In Fig. 9 | report the power spectraA®(k) theories. Quintessence models add to the battery of cosmo-

=k*P(k)/(27%) normalized to COBE, compared to the datalogical parameters at least two entries, one describing the

compiled and corrected for redshift and nonlinear distortiongotential of the field and another its coupling to the rest of

by Peacock and Dodd87]. It can be seen that the slope of the world. So far, the coupling was arbitrarily put to zero,

the spectrum is in rough agreement with what is observedithough we know no symmetry condition that implies so. In

(the largest discrepancy is for the four smallest scale datehis paper we let the coupling be nonzero, and investigated

points, where nonlinearity and redshift distortions are moresystematically all the possible trajectories in a flat space that

difficult to correc}; a more precise comparison depends onjead to accelerated expansion at the present @igi-0.7.

the assumption that the bias between galaxies and dark mat- The results for the homogeneous theory are applicable

ter is scale independent, and on other variables which are naiso to all Brans-Dicke models with any power law potential,

of interest here, such ds since there is a direct correspondence between our constants
The matter fluctuation variance in 8 Mpctellsog fora B and u and the Brans-Dicke coupling constahiand the

Q»,=0.3 universe should be around unity to fit the clusterpotential exponent; from Egs.(4), (5),(19) we have

abundancd38-40. Wang and Steinhard@41] find, for a

constantw model, a general expression fog, that corre- , 3

sponds targ e (0.85,1.25) at the 95% C.I., adopting our cos- B =§§,

mological parameters. It is found that this is satisfied by

| B|=<0.1, so that this can be taken as the upper limi{ 8h 3

(see Fig. 10 As found analytically, the suppression of M2=§(n—4)2§- (37

with respect to COBE-normalized standard CDM is due to

the growth suppression in MDE. Another factor is that NOWThe popular choice of an inverse power lams=—1, for

the COBE normalization includes the integrated Sachsjgiance amounts to exploring of all the parameter space, the
Wolfe effect, no longer negligible. The_ fIs€ in th_e CMB |ine pn=5p. For the fluctuations, the transformation that
spectrum that we observed for smgl induces via the  pjnag one from the fluctuation quantities in the Jordan frame
COBE normalization a similar small rise ing for the same (6 frame in which the field is coupled to gravitg those in
values, as can be seen in Fig. 10. the Einstein framein which the field is coupled to the mat-
Afitto ag(B) gives ter) is more complicated, and a complete treatment is still to
s 5 be published. However, in the limit in which the fluctuations
o8(B) = 0g(0) 10+ (04, (36)  of the scalar field are small with respect to the fluctuations in
the other components the fluctuation fields are conformally
where ogo) refers to uncoupled quintessence, and containgnvariant; since the CQ field is almost homogeneous due to
all the dependence on the other cosmological parameters, #@s light mass, this condition is verified for most of the uni-
well as on the exact COBE normalization schefheised verse history. As a consequence, it is conjectured that also
here the Bunn and Whitg?2] normalization implemented in the perturbative CQ results apply to Brans-Dicke models.
the originalCMBFAST code. The verification of this conjecture is left to future work.
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The main feature of the CQ model is the existence of a |B|<0.1 (38)
phase intermediate between the radiation era and the accel-
erated era, that we denotetMDE, a saddle point in the which is stronger than the dark matter constraint of Damour
phase space. During this era the fluctuations grow slowest al. [15] and not very far from the universal constraint of
than in an uncoupled model. TlYEVIDE has three effects on Wetterich [7]. Naturally this constraint holds only when
the CMB: the spectrum at low multipoles is tilted, due to the() ,=0.3 and the other parameters have been fixed as in Eq.
ISW effect; the acoustic peaks are shifted to higher multi(35). However, all these parameters can be fixed by observa-
poles, due to the change in the sound horizon; and theiions independent of the CMB, so the hope of narrowing
amplitude is changed in a nontrivial way. On the power specdown the bound orB is not precluded. As we have shown,
trum at the present, the main effect is the reductionrpfor  the degeneracy betweegandg can be broken dt>400. A
large couplings and a very minor enhancement for small cousystematic study of the the constraints @tetting the other

pling. parameters vary as well is under way.
We found that the potential slope is not efficiently con-
strained by observations, essentially becausedthE is ACKNOWLEDGMENTS

independent ofu. The couplingB is on the contrary con-

strained already by the present data, and is expected to be | am indebted to Carlo Baccigalupi and Francesca Perrotta
much more so in the near future, by at least an order ofor insightful discussions on the topic and to loav Waga for
magnitude. From CMB andg data we can derive the bound useful comments on the manuscript.
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