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Correlated mixtures of adiabatic and isocurvature cosmological perturbations
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We examine the consequences of the existence of correlated mixtures of adiabatic and isocurvature pertur-
bations on the CMB and large scale structure. In particular, we consider the four types of ‘‘elementary’’ totally
correlated hybrid initial conditions, where only one of the four matter species~photons, baryons, neutrinos,
CDM! deviates from adiabaticity. We then study the height and position of the acoustic peaks with respect to
the large angular scale plateau as a function of the isocurvature to adiabatic ratio.

PACS number~s!: 98.80.Cq, 98.70.Vc
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I. INTRODUCTION

In the near future, a lot of data about the anisotropies
the cosmic microwave background~CMB! will be available
to cosmologists, notably thanks to balloon experiments
the planned satellites, the Microwave Anisotropy Pro
~MAP! @1# and Planck@2#. What will be remarkable is the
expected high resolution and sensitivity of these exp
ments, which may turn cosmology into a high precision
tivity.

One of the hopes of cosmologists is to be able to de
mine from these data the cosmological parameters descri
the geometry and matter contents of our universe. In
respect, it is important to stress that the fluctuations that
and that will be measured result, according to our curr
understanding, from acombination of primordial perturba-
tions and cosmological parameters. In the preparation of fu-
ture data analysis, one should be careful to avoid overs
plification a priori of the primordial perturbations and to no
stick to the simplest one-scalar field inflation model. Aft
all, the early universe is the period in the history of t
universe where the physics is the least known.

A more general description of the primordial perturb
tions may therefore be needed to be able to interpret fu
data. In this perspective, the aim of this work is to exam
the consequences of the existence of isocurvature pertu
tions in addition to the usual adiabatic perturbations. S
studies have already been performed in the case ofindepen-
dent mixtures of adiabatic and isocurvature perturbatio
@3–9#. This is why we will focus our attention oncorrelated
mixtures of adiabatic and isocurvature perturbations. T
possibility of such primordial perturbations is motivated
the recent work of one of us, which showed that the simp
model of multiple inflation, a model with two massive no
interacting scalar fields, can produce such correlated m
tures@10#.

Isocurvature perturbations are perturbations in the rela
density ratio between various species in the early univers
contrast with the more standard adiabatic~or isentropic! per-
turbations which are perturbations in the total energy den
with fixed particle number ratios. Primordial isocurvatu
perturbations are often ignored in inflationary models. T
main reason for this is that they are less universal than a
batic perturbations because, on the one hand, they ca
0556-2821/2000/62~4!/043504~12!/$15.00 62 0435
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produced only in multiple inflationary models@11# and, on
the other hand, they do not necessarily survive until
present epoch.

However, isocurvature perturbations have been show
be of potential importance in some specific models: axio
@4,5,7,12#, Affleck-Dine baryogenesis mechanism@13#, mul-
tiple field inflation @10,11,14,15#.

A priori, since the~not too early! universe is filled with
four species, baryons, photons, neutrinos, and dark ma
~which will be assumed to be cold here!, several types of
isocurvature perturbations can be envisaged. For exampl
the past, a model with isocurvature baryon perturbations
proposed@16#, although it does not seem compatible with t
data today@17#. Most recent models, however, contain co
dark matter~CDM! isocurvature perturbations. A more ge
eral approach, including neutrino isocurvature perturbati
~and also isocurvature velocity perturbations!, was consid-
ered recently@18#. In the present work, we will focus ou
attention, for simplicity, on primordial perturbations whe
only one species deviates from adiabaticity, which th
leaves room to four types of hybrid~i.e., adiabatic plus
isocurvature! initial perturbations. These four ‘‘elementary
modes will be systematically studied, without trying to ma
any connection with specific early universe models.

As far as observational constraints are concerned, it
already been established that a pure isocurvature sc
invariant spectrum must be rejected because it predicts
large scales too large temperature anisotropies with res
to density fluctuations@12#, but other possibilities have bee
envisaged, like tilted isocurvature perturbations. The m
trend, however, has been to study models with a mixing
isocurvature and adiabatic perturbations. Confrontation
these models with observational data, such as CMB aniso
pies and large scale structures, seems to allow only fo
small fraction of isocurvature perturbations. Future CM
measurements will also enable us to put much tighter c
straints on this kind of model.

It must be emphasized, however, that all these stud
assumedindependentmixing of isocurvature and adiabati
perturbations. While this assumption can be indeed justi
in some specific early universe models, it is certainly not
absolute rule, as has been shown in@10#. It is thus the pur-
pose of this paper to investigate the consequences on o
vational quantities, namely, the large scale structure and
©2000 The American Physical Society04-1
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DAVID LANGLOIS AND ALAIN RIAZUELO PHYSICAL REVIEW D 62 043504
CMB anisotropies, ofcorrelated mixtures of isocurvatur
and adiabaticperturbations. As will be shown, correlatio
gives more richness to hybrid perturbations. For exam
while the first acoustic peak~relatively to the plateau! is
always lower for independent hybrid perturbations than
pure adiabatic perturbations, it can be either lower or hig
with correlated hybrid perturbations.

The plan of the paper will be the following. In the ne
section~Sec. II!, we recall the basic definitions of isocurva
ture and adiabatic perturbations and introduce hybrid per
bations. Then, Sec. III will discuss the notion of correlati
between isocurvature and adiabatic perturbations. In Sec
we will begin the systematic analysis of the correlated hyb
perturbations by considering the long wavelength mod
which can be solved analytically. Section V is devoted to
numerical investigation for all cosmological scales. Fina
we present our conclusions in Sec. VI. There is also an
pendix, which details the evolution equations and gives
full solution for the long wavelength modes.

II. ADIABATIC AND ISOCURVATURE PERTURBATIONS

In this section, we will define precisely the notion of adi
batic and isocurvature perturbations, and introduce the n
tion that will be used throughout this paper. Only perturb
tions of the scalar type will be considered here.

The perturbations of the spacetime geometry will be
scribed by two scalar potentialsF andC, which appear in
the linear perturbation of the~flat! Friedmann-Lemaıˆtre-
Robertson-Walker~FLRW! metric,

ds252a2~h!~112F!dh21a2~h!~122C!d i j dxidxj ,
~1!

a choice which corresponds to the longitudinal gauge (h is
the conformal time andd i j is the Kronecker symbol!.

For matter, we will consider four different species: tw
relativistic species, photons and massless neutrinos; two
relativistic species, baryons and CDM. Their respective
ergy density contrasts will be denoteddg , dn , db , and
dc (dA[drA /rA).

Before defining adiabatic and isocurvature perturbatio
let us introduce the idea of entropy perturbation, which c
be defined for any pair of componentsA and B by the ex-
pression

SA,B[
dnA

nA
2

dnB

nB
, ~2!

wherenA represents the particle number density for the s
ciesA. When the equation of state for a given species is s
thatw[p/r5const, then one can reexpress the entropy p
turbation in terms of the density contrast in the form

SA,B[
dA

11wA
2

dB

11wB
. ~3!

By definition, an adiabatic~or isentropic! perturbation corre-
sponds to the case where all the entropy perturbations
zero. For our four components, this can be expressed as
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dc5db5
3

4
dn5

3

4
dg[d (a) , ~4!

whered (a) will denote the common value~up to the adiabatic
index of the equation of state! of the density contrasts. An
adiabatic perturbation is thus characterized by a unique
plitude, which can bed (a) but which is usually given, for
convenience, in terms of the gravitational potentialC, which
can be directly related tod (a) through Poisson’s equatio
~see the Appendix!.

An isocurvature perturbation, as indicated by its nam
corresponds to a perturbation for which the gravitational
tential perturbation is zero~or approximately zero!. To get a
nontrivial isocurvature perturbation, one must therefore h
several components and at least one nonvanishing ent
perturbationSA,B . For N species, there will be one adiabat
mode andN21 independent isocurvature modes~there is
also the possibility to have velocity-type isocurvature mod
see@18#!. It is to be noticed that the adiabatic or isocurvatu
character of perturbations is not time invariant. In the c
mological context, when one talks about adiabatic or isoc
vature perturbations, one implicitly assumes that this pr
erty corresponds to theinitial state of the perturbations
which means deep in the radiation era when the wavelen
of the perturbation was much larger than the Hubble rad

In the following, we shall consider primordial perturba
tions which are hybrid, i.e., which are a sum of adiabatic a
isocurvature modes. In order to simplify the exploration
the parameter space, we will restrict our attention to the c
of perturbations for which all entropy perturbations with
three of the species are zero whereas the last species,X, say,
departs from adiabaticity. This means that three of the f
species will satisfy the above relation~4! while the contrast
density for the remaining speciesX will be written in the
form

dX

11wX
5SX1d (a) , ~5!

an expression which defines the isocurvature perturbationSX
associated with the speciesX. Varying X, one can construc
four hybrid perturbations of this type.

III. CORRELATIONS

In cosmology, perturbations are treated as homogene
and isotropic random fields. It is convenient to deal w
them in Fourier space rather than ordinary space, and
quantities defined previously can be transformed into th
Fourier components, according to the relation~since we
work only in flat space!

f k5E d3x

~2p!3/2
e2 ik•xf ~x!. ~6!

Primordial perturbations are usually assumed to be Ga
ian, in which case their statistical properties can be sum
rized simply in terms of their power spectrum, defined fo
quantity f by
4-2
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^ f k f k8
* &52p2k23Pf~k!d~k2k8!. ~7!

When primordial perturbations are described byseveral
quantities, such as would be the case if one has a mixture
adiabatic and isocurvature perturbations, one can also de
for any pair of random fieldsf andg, a covariance spectrum
Cf ,g(k) by the following expression:

R^ f kgk8
* &52p2k23Cf ,g~k!d~k2k8!. ~8!

The correlation betweenf and g can also be expressed
terms of acorrelation spectrumC̃f ,g(k) obtained by normal-
izing Cf ,g(k):

C̃f ,g~k!5
Cf ,g~k!

APf~k!APg~k!
. ~9!

In the present work, we are especially interested in
possible correlation between adiabatic and isocurvature
mordial perturbations, i.e.,C̃F,S(k). Until very recently, only
independent mixtures, i.e., with vanishing correlation, w
considered in the literature. This statistical independe
means that the quantitiesF andS can be expressed as

F5P F
1/2e1 , S5P S

1/2e2 , ~10!

wheree1 ande2 areindependentnormalized centered Gaus
ian random fields @i.e., such that ^ei(k)&50,
^ei(k)ej* (k8)&5d i j d(k2k8), for i , j 51,2#, and where the
subscriptk is implicit, as will be the case in the rest of th
paper. With the assumption~10!, one obtains immediately
vanishing covariance and correlation spectra.

However, as was shown in a specific model of dou
inflation @10#, one can also envisage models of the ea
universe wherecorrelatedprimordial perturbations are gen
erated. To be more specific, this would be the case if
imagines several independent stochastic processes ta
place in the early universe, which contributeboth to adia-
batic and isocurvature perturbations, i.e., such that

F5(
i

F iei , S5(
i

Siei , ~11!

where theei are independentnormalized centered Gaussia
random fields. In the specific example of@10#, there were
two independent random fields, generated by the quan
fluctuations of two scalar fields.

In the present article, our goal will be to study systema
cally the consequences of atotally correlated mixtureof
adiabatic and isocurvature perturbations, i.e., primordial p
turbations which can be written in terms of onesingle ran-
dom field. Of course, the consequences of more general
tial conditions can then be obtained by simply adding
spectra~to get the total density power spectrum or the to
temperature fluctuation multipole spectrum! of several to-
tally correlated initial conditions.
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IV. LONG WAVELENGTH ANALYSIS

As shown in the Appendix, it is possible to solve analy
cally the evolution of the long wavelength perturbations. T
tally correlated perturbations can be defined by two prim
dial quantities: the gravitational potential perturbation de
in the radiation era, denotedF̂, and the entropy perturbation
denotedSX ~the indexX depends on the species which d
parts from adiabaticity as explained in Sec. II!. It is then
possible, using the expressions of the Appendix, to comp
observational quantities at the time of last scattering as fu
tions of the two primordial quantitiesF̂ and SX for scales
larger than the Hubble radius at the time of last scatterin.

In this section, we will use, instead of the energy dens
contrastsdA defined previously in the longitudinal gauge~1!,
the slightly redefined energy density contrasts~defined in the
flat-slicing gauge!

Dg5dg24C, Dn5dn24C,
~12!

Db5db23C, Dc5dc23C.

The reason to use these quantities is essentially that the
servation equations look much simpler~see the Appendix!.
Moreover, it is to be noticed that, with these new dens
contrasts, the definitions of adiabatic and isocurvature fl
tuations keep exactly the same form. In other words, a pu
adiabatic perturbation, as defined by Eq.~4!, will also be
characterized by

Db5Dc5
3

4
Dn5

3

4
Dg[D (a) . ~13!

For a mixed perturbation, with the speciesX deviating from
adiabaticity, the same relation will hold for the three spec
other thanX, and the density of the latter will be given by

DX

11wX
5SX1D (a) . ~14!

Our purpose will now be to express the observable quant
for long wavelength modes, namely, the gravitational pot
tial in the matter era and the temperature anisotropies
terms of the primordial quantitiesF̂ and SX . This will be
possible by using the two following relations, which a
demonstrated in the Appendix. The first relation gives
metric perturbation in terms of the primordial density co
trast, during the radiation era,

F rad[F̂52
1

4 S 31
4

5
Vn

RDD 21F2S 12
4

5
Vn

RDDVg
RDDg

1
2

5
~924Vn

RD!Vn
RDDnG , ~15!

the second one being the analogous equation during the
ter era:
4-3
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Fmatter52
1

5
~Vb

MDDb1Vc
MDDc!. ~16!

Note that, in the above equations,Vn
RD andVg

RD are taken in
the radiation era, whereasVb

MD andVc
MD correspond to their

values in the matter era.
Our hybrid perturbations can be specified either by

pair (F̂,SX) or the pair (D (a) ,SX), the relation between the
two following immediately from the relation~15!. For a
purely adiabatic perturbation, it is easy to see, using Eq.~15!,
that

D (a)52
3

2 S 31
4

5
Vn

RDD F̂[aF̂. ~17!

For a mixed perturbation, there will be in general an ad
tional term proportional toSX . In the case of the baryons an
CDM, the expression forD (a) is the same as the adiabat
case, simply becauseDb and Dc do not appear in Eq.~15!.
For the relativistic species, one obtains

D (a)52
3

2 S 31
4

5
Vn

RDD F̂2S 12
4

5
Vn

RDDVg
RDSg

[aF̂1bgSg ~18!

for a photon-type hybrid perturbation and

D (a)52
3

2 S 31
4

5
Vn

RDD F̂2
1

5
~924Vn

RD!Vn
RDSn

[aF̂1bnSn ~19!

for a neutrino-type hybrid perturbation.
Substituting in Eq.~16! the expressions ofDb andDc in

terms ofD (a) andSX , thus in terms ofF̂ andSX , it is then
possible to find the gravitational potential perturbation d
ing the matter era. For a purely adiabatic perturbation,
finds

Fadiab5
3

10S 31
4

5
Vn

RDD F̂. ~20!

One recognizes the standard transfer coefficient of 9/1
one ignores the anisotropic pressure of neutrinos~see, e.g.,
@19#!. Here, we have its generalization, which is numerica
very close to 1, when the anisotropic pressure is taken
account. For a hybrid perturbation, the gravitational poten
perturbation during the matter era will be of the form

F5Fadiab1F isoc, ~21!

where Fadiab corresponds to the term proportional toF̂,
which is, in all cases, given by the same expression~20!, and
F isoc is the term proportional toSX , whose explicit expres-
sion depends on the particular species considered. For b
ons and CDM, its form is simply
04350
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F isoc52
1

5
VX

MDSX , X5b,c. ~22!

For a photon-type mixed perturbation, one finds

F isoc5
1

5 S 12
4

5
Vn

RDDVg
RDSg , ~23!

and finally, for a neutrino-type hybrid perturbation, one g

F isoc5
1

25
~924Vn

RD!Vn
RDSn . ~24!

The decomposition~21! expresses the fact that a primordi
isocurvature perturbation will also contribute,in the matter
era, to the potential perturbation, whereas it is of course
the case in the radiation era. This illustrates, once more,
the separation between adiabatic and isocurvature mod
not conserved during the time evolution.

Let us now evaluate the contribution of the primord
perturbations to the CMB temperature anisotropies, h
only for large angular scales since we are restricted to l
wavelength perturbations. Neglecting a local monopole a
dipole contribution, the temperature anisotropies, due to s
lar perturbations, are approximatively given by~see@20,21#!

DT

T
5

1

4
DgLSS1~F1C!LSS2ei] i~VLSS!1E

hLSS

h0
~Ḟ1Ċ!dl,

~25!

whereei is a spatial unit vector corresponding to the dire
tion of observation, the subscript LSS indicates that
quantities are evaluated at the last scattering surface, an o
dot denotes derivation with respect to the conformal timeh,
h0 is today’s conformal time, and the integral in the last te
runs on the photon line of sight. The contribution due to t
first two terms is usually called the Sachs-Wolfe~SW! term,
while the third term is called the Doppler term and the la
one the integrated Sachs-Wolfe~ISW! term. In general, but
not always~see the pathological cases below!, the SW term
is dominant for large angular scales. In terms of our va
ables, the SW term can be written

S DT

T D
SW

5
1

4
Dg1F1C.

1

4
Dg12F, ~26!

where the quantities are evaluated at the last scattering
face, assuming that last scattering occurs well in the ma
era ~in this caseC.F). Using the expressions obtaine
above, it is now possible to express the SW term as a fu

tion of the primordial perturbationsF̂ and SX . As for the
gravitational potential perturbation, one can decompose
term into

S DT

T D
SW

5S DT

T D
adiab

1S DT

T D
isoc

, ~27!
4-4
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where the adiabatic component is the term proportional toF̂
and the isocurvature component is proportional toSX . For
all types of hybrid perturbations, the adiabatic term is
same:

S DT

T D
adiab

5
1

10S 31
4

5
Vn

RDD F̂. ~28!

Note that one hasDT/Tadiab5Fadiab/3, which is reminiscent
of the standard~adiabatic! Sachs-Wolfe term. As for the
isocurvature term, it will depend on the particular type
perturbation. For hybrid perturbations which are baryon
CDM isocurvature, one finds

S DT

T D
isoc

52
2

5
VX

MDSX , X5b,c. ~29!

Note that, for baryons and CDM, one has the relat
(DT/T) isoc52F isoc, and by comparison with the similar re
lation for the adiabatic terms, one recognizes the stand
statement in the literature that pure isocurvature pertu
tions ~of the baryon or CDM type! produce large scale tem
perature fluctuations6 times biggerthan pure adiabatic per
turbations. For the photon isocurvature hybrid perturbati
one will get

S DT

T D
isoc

5
1

15F62
9

5
Vn

RD1
4

5
~Vn

RD!2GSg , ~30!

whereas, for the neutrino isocurvature hybrid perturbati
the expression is

S DT

T D
isoc

5
1

75
~924Vn

RD!VnSn . ~31!

V. NUMERICAL ANALYSIS

The present section will be devoted to predictions of te
perature anisotropies, as well as the large scale struc
power spectrum, for primordial correlated hybrid adiaba
and isocurvature perturbations. We will keep fixed a cert
number of parameters,VL50, V051, h10050.5, Vb
50.05; three species of massless nondegenerate neut
~leading to Vg

RD51/@11(21/8)(4/11)4/3#.0.595 andVn
RD

512Vg
RD.0.405); and standard recombination. The p

mordial perturbations will be assumed to be scale invaria

A. Temperature anisotropies

As far as temperature anisotropies are concerned, iso
vature perturbations can be distinguished from pure iso
vature perturbations by a much larger plateau, as expla
in the previous section, with the consequence that all
acoustic peaks will appear smaller than this plateau. To s
these two extreme behaviors we have plotted in Fig. 1
case of pure adiabatic initial conditions and, in Fig. 2, t
case of pure CDM-type isocurvature initial conditions. W
have also plotted, in each case, the SW, Doppler, and I
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contributions. We have used, as usual, the angular po
spectrum for the temperature anisotropies, defined by

Cl
TT5^ualm

T u2&, ~32!

where thealm
T are the multipole coefficients that appear

the decomposition into spherical harmonics of the tempe
ture fluctuations, i.e.,

DT

T
5(

l ,m
alm

T Ylm . ~33!

In the case of hybrid perturbations, we will be someho
between these two extreme situations. For convenience
us parametrize the hybrid perturbations byl, which is de-
fined by the relation

S5lF̂, ~34!

FIG. 1. CMB anisotropies in the pure adiabatic model (l50).
The solid line represents the total~scalar! contribution. The Sachs-
Wolfe, Doppler, and integrated Sachs-Wolfe contributions are,
spectively, represented by long-dashed, short-dashed, and d
lines. At large angular scales~low l ), the total amplitude is essen
tially due to the Sachs-Wolfe contribution.

FIG. 2. CMB anisotropies in the pure isocurvature CDM mod
(l56`). The solid line represents the total scalar contributio
The Sachs-Wolfe~SW!, Doppler, and integrated Sachs-Wolfe co
tributions are, respectively, represented by long-dashed, sh
dashed, and dotted lines. Note that the power at large scales~low l )
is higher than at the degree scale.
4-5



a-
ic

th

d
lt

a-

br
ic
,
hy
th

, of
atio

reas
ial
nn
s
i-
n-
f

first
ays
han

s
or-

de-

d-

th
c
st

d-

d-

eight
aries

(
case

ted

DAVID LANGLOIS AND ALAIN RIAZUELO PHYSICAL REVIEW D 62 043504
and which will quantify how far we are from a purely adi
batic model. The casel50 corresponds to pure adiabat
initial conditions, whereas the limit wherel goes to infinity
corresponds to pure isocurvature perturbations.l can be
positive or negative. To be more specific, one can call
hybrid perturbations we are studyingcorrelatedwhenl.0
andanticorrelatedwhenl,0. In Figs. 3–5, we have plotte
the total temperature anisotropy as a function of the mu
pole indexl for various values of the parameterl ~for CDM-
type hybrid perturbations! and keeping the same normaliz
tion at large angular scales.

To emphasize the difference between correlated hy
perturbations and independent hybrid perturbations, wh
have been considered in the literature, we have plotted
Fig. 6, the total temperature anisotropy for independent
brid initial conditions. The curves are parametrized by
numberR, which is defined by

P S
1/25RP F

1/2. ~35!

FIG. 3. CMB anisotropies in CDM-type correlated hybrid mo
els for various values of the parameterl. The highest curve is
studied in more detail in Fig. 8, the dotted curve represents
~standard! adiabatic case, and the lowest represents the pure iso
vature case shown in Fig. 2. Note that the height of the acou
peaks with respect to the Sachs-Wolfe plateau varies withl, ac-
cording to Eq.~42!.

FIG. 4. CMB anisotropies in CDM-type correlated hybrid mo
els for various values of the parameterl. The two highest curves
are studied in more details in Figs. 7 and 8.
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In some senseR is the analogue, in the independent case
l since the square of both quantities corresponds to the r
of the power spectra. But of courseR can be only positive.
The way these curves are obtained is also different. Whe
for the correlated mixtures one implements hybrid init
conditions from the beginning and one runs the Boltzma
code once~per model!, in the case of independent mixture
one runs the code first with purely adiabatic initial cond
tions, then a second time with purely isocurvature initial co
ditions, and the finalCl are obtained by a weighted sum o
the Cl obtained from each run. As a consequence, the
acoustic peak, as well as the subsequent ones, will alw
appear lower, relative to the plateau, in the hybrid case t
in the purely adiabatic case.

The behavior of theCl for the correlated hybrid models i
quite different when one increases the isocurvature prop
tion. For anticorrelated perturbations, i.e.,l,0, the behavior
is what is expected naively: the amplitude of the peaks

e
ur-
ic

FIG. 5. CMB anisotropies in CDM-type correlated hybrid mo
els for large~positive! values of the parameterl. The solid curve
represents the pure isocurvature case of Fig. 2. Note that the h
of the acoustic peaks with respect to the Sachs-Wolfe plateau v
slowly in this range of values forl.

FIG. 6. CMB anisotropies in independent~uncorrelated! hybrid
CDM-type models for various values of the parameterR. The low-
est, solid curve represents the pure isocurvature case of Fig. 2R
5`), and the highest, dotted curve represents the adiabatic
(R50). We have chosen forR the same numerical values as forl
in Figs. 3–5. Note the significant difference between the correla
and the independent cases especially in the region whereR,l.1.
4-6
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creases, relative to the plateau, with a higher proportion
isocurvature perturbations, as illustrated in Fig. 3, with
curves lower than the adiabatic case. But the evolution
more complicated when one considers correlated mod
i.e., with l.0. Starting from the adiabatic case (l50) and
increasingl slowly, one begins with a phase where the a
plitude of the peaks will increase with respect to the plate
as illustrated by the curves above the adiabatic one in Fig
If one goes on increasingl, one reaches a critical value
beyond which the peaks will now diminish with increasin
l, as illustrated by the curves of Fig. 4.

One can understand this surprising behavior if one g
back to the results of the previous section. In the case
CDM hybrid perturbations, one can evaluate the SW plate
using Eqs.~28! and ~29!,

S DT

T D
SW

5F 1

10S 31
4

5
Vn

RDD2
2

5
Vc

MDlGF̂, ~36!

and therefore there is indeed a critical value forl for which
the SW plateau is suppressed, which explains the rela
height of the peaks. In fact, things are slightly more comp
cated, because when the SW term is suppressed, due to
special choice of initial conditions, the other terms whi
contribute to the anisotropies cannot be neglected any lon
Figure 7 shows in particular that the plateau can be due
sentially to the ISW effect. Note that the valuel51.36 for
which this effect was numerically obtained is slightly diffe
ent from the value one would deduce from Eq.~36!. This is
because Eq.~36! was obtained by supposing that the la
scattering surface is completely in the matter-dominated
which is not the case since the radiation-to-matter transi
occurs not very long before recombination. One can a
adjust the initial conditions so that the large scale aniso
pies will be dominated by the Doppler term, in which ca
there is no longer a plateau on large scales, but an increa
slope as can be seen in Fig. 8.

FIG. 7. CMB anisotropies in a CDM-type correlated hybr
model ~with l51.36). The solid line represents the total~scalar!
contribution. The Sachs-Wolfe~SW!, Doppler, and integrated
Sachs-Wolfe contributions are, respectively, represented by lo
dashed, short-dashed, and dotted lines. The parameterl has been
chosen so that the SW contribution cancels at lowest order. In
case, the low multipole power is no longer dominated by the S
contribution, but rather by the ISW contribution.
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Although at this stage we have discussed and illustra
only the CDM correlated hybrid case, a similar behavior a
pears for the three other types of correlated hybrid pertur
tions, but with noticeable differences. We have system
cally explored the parameter space for the four types
correlated hybrid initial conditions and measured the p
dicted height of the first acoustic peak with respect to
plateau. The results are given in Fig. 9. Here, we ha
adopted a different parametrization of the hybrid correla
perturbations so that one can represent easily all cases
have defined an angular variableuX so that our initial con-
ditions for the density contrasts are of the form

DX

11wX
5cosuX ,

DA

11wA
5sinuX , AÞX, ~37!

which implies

SX5~cotuX21!D (a) . ~38!

Of course, this parameteruX can be related to the paramet
l. Let us write

D (a)5aF̂1bXSX , ~39!

where the subscriptX for the coefficientbX refers to the type
of hybrid mode we are considering.a is the same for all four
types and is given by the coefficient in Eq.~17!. bX is zero
for the CDM and baryon modes and is given by the seco
term on the right hand side in Eqs.~18! and ~19! for the
photon and neutrino cases, respectively. The relation
tweenlX anduX is then

lX5
~cotuX21!a

12~cotuX21!bX
. ~40!

In the region nearu5p/4 ~corresponding to the pure adia
batic case and where all curves cross!, it is easy to see tha

g-

is

FIG. 8. CMB anisotropies in a CDM-type correlated hybr
model ~with l50.95). The solid line represents the total contrib
tion. The Sachs-Wolfe~SW!, Doppler, and integrated Sachs-Wol
~ISW! contributions are, respectively, represented by long-dash
short-dashed, and dotted lines. The parameterl has been chosen s
that the SW and ISW contributions almost cancel each othe
lowest order. In this case, the low multipole power is dominated
the Doppler contribution, which is not flat at low multipoles.
4-7
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the relation betweenu andl is the same for the four types o
perturbations and is given numerically by

l.2a~u2p/4!.9.97~u2p/4!. ~41!

Let us see what happens when one deviates from the
adiabatic case. In the baryon case, the first peak will incre
for correlated mixtures and decrease for anticorrelated m
tures, as in the CDM case, although in a much more mo
ate way. On the contrary, in the photon and neutrino ca
the first peak will start to increase foranticorrelatedpertur-
bations. Moreover, the evolution in the neutrino case
slower than in the photon case.

All these results can be understood rather easily with
analytical results of the previous section. Indeed, in all ca
the SW anisotropy term can be written in the form

S DT

T D
SW

5~a1bXlX!F̂, ~42!

where the special case of CDM is given just above. T
coefficienta is the same for all four cases, as was shown
the previous section. Therefore, the evolution of the SW p
teau will be determined by the coefficientbX which is dif-
ferent in each case. For baryon and CDM perturbations,
coefficientb is negative, which explains why the increase
the first peak~or equivalently the decrease of the platea!
corresponds to correlated (l.0) perturbations when one de
viates from the pure adiabatic case. Moreover,ubcu.ubbu be-
causeVc.Vb and therefore the response to the increase

FIG. 9. Ratio of the height of the first acoustic peak to the hei
of the Sachs-Wolfe~SW! plateau for the four types of hybrid mod
els. The height of the SW plateau is obtained by averaging
power betweenl 52 and l 525, which correspond to the angula
scales explored by COBE. We have defined the ‘‘first acou
peak’’ as the first maximum of the multipole anisotropy spectr
for l>100. Each ratio peaks at a high value (.30) which roughly
corresponds to the moment where the SW plateau disappears@see
Eq. ~42!; in practice, this occurs when the SW and ISW contrib
tions cancel at low multipoles#. The four curves intersect atu
5p/4, as expected, since this value corresponds to the pure
batic case@see Eq.~38!#. As u varies, the position on thel axis of
the first acoustic peak slightly shifts to the left or to the right~see
also Fig. 10!. In some cases, the peak goes belowl 5100. In this
case the ‘‘new’’ first acoustic peak position is atl .200–300, and
its height is different, hence the discontinuities in the curves.
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the isocurvature proportion is stronger in the CDM case.
the photon and neutrino cases, the coefficientb is positive
and therefore only anticorrelated perturbations can lead to
increase of the peak. Moreover,bg.bn , and similarly to the
heavy species, the response to the increase ofl is stronger in
the photon case than in the neutrino case. A consequenc
these results is that, potentially, the correlated hybrid per
bations in the CDM and photon cases will be more stron
constrained by the CMB measurements than the baryon
neutrino cases.

It is also important, in the spirit of putting constraints o
this type of modes, to see the position of the two Dopp
peaks on thel axis. We have plotted in Fig. 10 the position
of the first and second acoustic peaks. Near the pure a
batic case, the behavior is once more strongly pronounce
the CDM and photon cases. In this region, in the CDM ca
correlated hybrid perturbations tend to displace the peak
smallerl whereas anticorrelated perturbations push the pe
to higherl. The same behavior, but very attenuated, seem
apply to the baryon and neutrino cases. In contrast, in
photon case, higherl correspond to correlated perturbatio
and lowerl to anticorrelated perturbations.

Another important feature of the acoustic peaks is
impact of the isocurvature part on the amplitude of the s
ond peak. Figure 11 gives the evolution of the relative a
plitude of the second peak with respect to the first pe
when one varies the coefficientl, for the four types of per-
turbations. As before, in the vicinity of the pure adiaba
point, the effects are more important in the CDM and ph
tons cases than in the two other cases.

B. Power spectrum

In the previous subsection, we have analyzed the C
fluctuations. Another important part of the observational d

t

e

c

-

ia-

FIG. 10. Position of the two first acoustic peaks in the four typ
of hybrid models. As explained in Fig. 9, the first acoustic peak
defined as the first maximum of the multipole anisotropy spectr
for l>100. In some cases (u.3 for the isocurvature baryon mode
u.0.5 for the isocurvature photon model, andu.1.2 for the
isocurvature CDM model!, the first peak disappears in the low mu
tipole region, and the ‘‘new’’ first peak becomes the ‘‘former
second one. In some other cases, the peaks is smeared in the
spectrum and disappears, as is the case for the first acoustic pe
the isocurvature neutrino model atu.1.2 and atu.1.7 for the
second one.
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comes from the large scale structures. However, it is m
difficult to infer precise information from the large sca
structure data as from the expected CMB measurements
cause of additional complications such as the bias eff
Moreover, the signatures due to pure adiabatic perturbat
and pure isocurvature perturbations, respectively, are ea
to distinguish in the CMB anisotropies than in the mat
power spectrum. But nevertheless the LSS power spectru
a useful tool, at least to check the overall amplitude of
perturbations.

To illustrate the power spectra corresponding to cor
lated hybrid perturbations, we have plotted in Figs. 12–
the power spectra~taking the gravitational potential pertu
bation as reference variable! in the case of CDM-type corre
lated hybrid perturbations, for various values ofl.

Some interesting behavior occurs for large values ofl.
When l>a, it is easy to see using Eq.~40! that the CDM
and the baryon density contrasts have initially opposite sig
The CDM density contrast evolves@see Eqs.~A1!,~A2!# ac-
cording to the equation

D̈c1HḊc52k2F, ~43!

FIG. 11. Relative heights of the first two acoustic peaks for
four types of hybrid models. The various discontinuities of the fo
curves originate from the discontinuities in the peak positions,
plained and illustrated in Fig. 10.

FIG. 12. Matter power spectra in the CDM-type hybrid mod
for various values of the parameterl. All the curves have been
normalized to COBE. Note that the overall amplitude, as well as
position of the maximum, varies withl.
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which can be solved to give

Dc5Dc
init2k2E F1

aE aFdhGdh8, ~44!

whereDc
init is the initial value for the CDM density contras

so that it will evolve towards values with sign opposite
that of F, that is, of the same sign asD (a) . Moreover, the
shortest wavelengths will evolve rapidly enough and cha
sign whereas the longest wavelengths will not, so that
CDM power spectrum should exhibit a sign change. Fo
given mode, this sign change occurs all the more rapidly
the initial CDM density contrast is small as compared toF̂,
that is, whenl is small. Plotting the matter power spectrum
it is therefore natural to expect that the wave number
which it is zero is all the more small asl is small. This is
what we can check in Fig. 14.

C. CMB polarization

Although CMB polarization has not yet been measur
and is expected to be difficult to measure, it can provide a
of additional information concerning the cosmological pe
turbations and the cosmological parameters@22#. This is why

e
r
-

e

FIG. 13. Matter power spectra in the CDM-type hybrid mode
for various values of the parameterl. All the curves have been
normalized to COBE.

FIG. 14. Matter power spectra in the CDM-type hybrid mode
for high values of the parameterl. All the curves have been nor
malized to COBE. Note that one the power spectrum goes to z
for a critical scale, which depends on the value ofl.
4-9
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DAVID LANGLOIS AND ALAIN RIAZUELO PHYSICAL REVIEW D 62 043504
we will consider briefly the consequence of correlated hyb
perturbations on the CMB polarization. The polarization c
be decomposed@22# into E-mode polarization andB-mode
polarization, and we shall define, in addition to the tempe
ture angular power spectrum, theE-mode angular powe
spectra

Cl
EE[^ualm

E u2& ~45!

and the correlation spectrum

Cl
ET[^alm

T* alm
E &, ~46!

where thealm
T correspond here to the same coefficients

those defined in Eq.~33!, which gives the correlation be
tween the temperature and theE-mode polarization. Scalar
type perturbations do not contribute to theB-mode polariza-
tion. As an illustration, we have plotted theE-mode
polarization anisotropy spectrum for various values ofl.
Two features in these curves are obvious. First, the am
tude of the polarization varies, as well as the position of
first peak in the spectrum. This can be understood by look
at the Boltzmann equation for the photon fluid. Before t
last scattering surface, Thomson diffusion is important, a
the photon anisotropic stress approximatively obeys
equation

sg.2
4

15

k

k̇
Vbg , ~47!

where k̇ stands for the differential Thomson opacity, a
Vbg is the photon-baryon plasma velocity. Thus, the pho
anisotropic stress@which is proportional to theE-type polar-
ization; see Eqs.~62!, ~63!, ~77! of @23## is proportional to
the photon dipole, and theCl

EE are proportional to the Dop
pler contribution of the CMB temperature anisotropy sp
trum. Therefore, the position and height of the peaks vary
both spectra in the same way withl. These results are rep
resented in Fig. 15 and the cross-correlation spectrum
tween temperature and polarization can be found in Fig.

VI. CONCLUSION

In the present work, our goal has been to analyze
effects of correlated hybrid adiabatic and isocurvature p
turbations on observational quantities, in particular the CM
anisotropies. We have isolated four ‘‘elementary’’ mod
corresponding to a deviation from adiabaticity of one of t
four standard species~photons, neutrinos, baryons, CDM!:
each type of these elementary modes is characterized by
two parameters (S andD (a)). One could, of course, genera
ize our analysis by relaxing the adiabatic ratios among
three remaining species, but at the price of requiring f
parameters.

We have shown, in the case of these elementary mo
that correlation leads to very specific effects on the CM
anisotropies and on large scale structure which do not ap
in the case of independent mixtures.

In this paper, our purpose was not to directly confro
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observations with this type of model, but rather to focus
some qualitative interesting consequences of correlated
brid perturbations. This is why we have considered only
subclass of models, which are extreme in the sense that
are totally correlated and simple because they are descr
by only two parameters. If one wishes to compare hyb
models with observations, one should consider thesum of
spectra of the type we have obtained~as explained in Sec
III !, which means that the adiabatic and isocurvature per
bations would then be only partially correlated~this is the
case in the specific model of@10#!.

The present data are still too imprecise to be able to
tinguish this kind of correlated hybrid perturbation, but
may be interesting to know how much precise data wo
constrain these modes. In practice, it might turn out to b

FIG. 15. CMB polarization anisotropies in the CDM-type hybr
models for various values of the parameterl. We have represented
the spectrum for the same values ofl as in Fig. 3~but we have
omitted two of them for clarity!. The amplitude of the spectrum
decreases and the peaks shift to the right as one goes from
adiabatic case (l50, dotted line! to the pure isocurvature case (l
56`, solid line!, as the spectrum closely follows that of the Do
pler contribution to the temperature anisotropy spectrum~see Figs.
1 and 2!.

FIG. 16. CMB temperature-polarization cross-correlation sp
trum in the CDM-type hybrid models for various values of th
parameterl. As in Fig. 15, we have represented the spectrum
the same values ofl as in Fig. 3 and have omitted two of them fo
clarity. The amplitude of the spectrum decreases and the peaks
to the right as one goes from the adiabatic case (l50, dotted line!
to the pure isocurvature case (l56`, solid line!.
4-10
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difficult task to disentangle the presence of such mode
the data, unless one assumes a specific early universe m
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APPENDIX: EVOLUTION OF PERTURBATIONS

In this appendix, we derive the evolution of all quantiti
for long wavelengths, i.e.,scales outside the Hubble radiu:
k!aH. The whole system of equations, in a notation sligh
different from the one adopted here, can be found, for
ample, in@24#.

Let us first introduce the system of equations govern
the evolution of the matter perturbations, which relate
density contrasts of the four species to the scalar compo
of their velocities~denoted byVA). We first have four equa
tions of conservation, one for each of the four species, wh
read~in Fourier space!

Ḋn5
4

3
kVn ,

Ḋc5kVc ,

Ḋg5
4

3
kVbg ,

Ḋb5kVbg , ~A1!

where a prime denotes a derivative with respect to the c
formal timeh and whereVbg is the velocity common to the
baryon and photon fluids, which are coupled until last sc
tering. We then have three Euler equations, two for the
dependent fluids of CDM and neutrinos, and one for
baryon-photon fluid:

V̇n52kFDn

4
1C1F2snG ,

V̇c52HVc2kF,

V̇bg52
3Vb

4Vg13Vb
HVbg

2k
4Vg

4Vg13Vb
FDg

4
1CG2kF, ~A2!

whereH is the comoving Hubble parameter defined byH
[a8/a. In the last equation, the coefficientsVA are time
dependent since the ratio of the energy density of a gi
species with respect to the critical energy density, w
change with time.

To close the above system of equations, one needs
Einstein equations, which express the metric perturbation
terms of the matter perturbations. Only two components
the Einstein equations are useful, the other ones being re
dant, and they are the Poisson equation,
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2F k2

H 2 1
9

2
~11w!GC5

3

2 (
X

VXFDX2
3H
k

~11wX!VXG ,
~A3!

and the anisotropic stress equation,

k2

H 2 ~C2F!56Vnsn , ~A4!

wheresn represents the anisotropic stress due to the ne
nos~which thus require a description beyond the perfect fl
approximation!. To get the evolution ofsn , one must use a
higher moment of the Boltzmann equation~see@24#!,

ṡn52
4

15
kVn , ~A5!

where other terms on the right hand side have been
glected.

In order to solve the above equations for long wav
lengths, it is convenient to consider an expansion of all qu
tities in terms of the small parameterkh, so that one will
have

X5X(0)1X(1)kh1X(2)~kh!21••• . ~A6!

The Euler equations~A2! then enable us to express the fir
order velocity term as a function of the zeroth order dens
and gravitational potentials:

Vn
(1)52

1

4
Dn

(0)2C (0)2F (0),

Vc
(1)52

F (0)

11Hh
,

Vbg
(1)52

VgDg
(0)14VgC (0)1~4Vg13Vb!F (0)

4Vg13~11Hh!Vb
.

~A7!

The zeroth order components of the velocities are as u
set to zero; otherwise, one would get a divergence on
right hand side of Eq.~A3! ~unless there is a special cance
lation of the type mentioned in@18#!.

Using Eqs.~A4! and ~A5! at lowest order, one gets

C (0)2F (0)52
4

5
VnH 2h2Vn

(1) , ~A8!

and substituting the above expression forVn
(1) , one finds the

following relation betweenF (0) andC (0):

S 11
4

5
VnH 2h2DF (0)5S 12

4

5
VnH 2h2DC (0)

2
1

5
VnH 2h2Dn

(0) . ~A9!

Substituting in Poisson’s equation~A3!, at lowest order, the
expressions obtained above for the velocities, and using
~A9!, one finally gets the following cumbersome equatio
relatingF (0) to the four species densities:
4-11
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2H ~31Vg1Vn!S 11
4

5
Vny2D1

~4Vg13Vb!y

4Vg13Vb~11y! F8Vg13VbS 12
4

5
Vny2D G1

3y

11y
VcS 12

4

5
Vny2D

18yVnJ F (0)

12
4

5
Vny2

5VbDb
(0)1VcDc

(0)1
4Vg~11y!13Vb~112y!

4Vg13Vb~11y!
VgDg

(0)1F4

5
Vgy3

4Vg13Vb

4Vg13Vb~11y!

111y1~31Vg23Vn!
y2

5 G VnDn
(0)

12
4

5
Vny2

, ~A10!

wherey[Hh. While this expression yields the evolution of the gravitational potential perturbation during the whole evo
of the universe from the deep radiation era until the last scattering, it will be sufficient for our present purpose to reta
this equation only its asymptotic forms in the radiation era and the matter era. In the radiation era,y51 and Vc ,Vb
!Vg ,Vn , so that the above expression simplifies to give

F (0)52
1

4 S 31
4

5
VnD 21F2S 12

4

5
VnDVgDg

(0)1
2

5
~924Vn!VnDn

(0)G . ~A11!

In the matter era,y52 andVg ,Vn!Vc ,Vb , so that one finds

F (0)52
1

5
~VbDb

(0)1VcDc
(0)!. ~A12!
J
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