PHYSICAL REVIEW D, VOLUME 62, 043504

Correlated mixtures of adiabatic and isocurvature cosmological perturbations
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We examine the consequences of the existence of correlated mixtures of adiabatic and isocurvature pertur-
bations on the CMB and large scale structure. In particular, we consider the four types of “elementary” totally
correlated hybrid initial conditions, where only one of the four matter spdpiestons, baryons, neutrinos,

CDM) deviates from adiabaticity. We then study the height and position of the acoustic peaks with respect to
the large angular scale plateau as a function of the isocurvature to adiabatic ratio.

PACS numbd(s): 98.80.Cq, 98.70.Vc

I. INTRODUCTION produced only in multiple inflationary mode[41] and, on

}he other hand, they do not necessarily survive until the
present epoch.

However, isocurvature perturbations have been shown to
of potential importance in some specific models: axions

In the near future, a lot of data about the anisotropies o
the cosmic microwave backgroutt@MB) will be available
to cosmologists, notably thanks to balloon experiments an%e

the planned satellites, the Microwave Anisotropy Prob e : . i
(MAP) [1] and PlancK2]. What will be remarkable is the e%i)ISe?ellg iﬁgﬁ%ﬁ [Dllgeltl)alri/ol%eness mechanigtts], mul

expected _high resolution and sen_sitivity .Of thesg EXpert- = a priori, since the(not too early universe is filled with
ments, which may turn cosmology into a high precision aCYour species, baryons, photons, neutrinos, and dark matter

tivity. S (which will be assumed to be cold hereseveral types of

One of the hopes of cosmologists is to be able to detergocyrvature perturbations can be envisaged. For example, in
mine from these data the cosmological parameters describinge past, a model with isocurvature baryon perturbations was
the geometry and matter contents of our universe. In thi%roposec{lG], although it does not seem compatible with the
respect, itis important to stress that the fluctuations that algata toda&{l?]_ Most recent mode|s, howe\/er, contain cold
and that will be measured result, according to our currenfiark mattef CDM) isocurvature perturbations. A more gen-
understanding, from aombination of primordial perturba- eral approach, including neutrino isocurvature perturbations
tions and cosmological parametels the preparation of fu- (and also isocurvature velocity perturbatipneas consid-
ture data analysis, one should be careful to avoid oversimered recently{18]. In the present work, we will focus our
plification a priori of the primordial perturbations and to not attention, for simplicity, on primordial perturbations where
stick to the simplest one-scalar field inflation model. Afteronly one species deviates from adiabaticity, which thus
all, the early universe is the period in the history of theleaves room to four types of hybridi.e., adiabatic plus
universe where the physics is the least known. isocurvaturg initial perturbations. These four “elementary”

A more general description of the primordial perturba-modes will be systematically studied, without trying to make
tions may therefore be needed to be able to interpret futurany connection with specific early universe models.
data. In this perspective, the aim of this work is to examine As far as observational constraints are concerned, it has
the consequences of the existence of isocurvature perturbakeady been established that a pure isocurvature scale-
tions in addition to the usual adiabatic perturbations. Suclinvariant spectrum must be rejected because it predicts on
studies have already been performed in the casad#pen- large scales too large temperature anisotropies with respect
dent mixtures of adiabatic and isocurvature perturbationsto density fluctuation§12], but other possibilities have been
[3—9]. This is why we will focus our attention otorrelated  envisaged, like tilted isocurvature perturbations. The main
mixtures of adiabatic and isocurvature perturbations. Therend, however, has been to study models with a mixing of
possibility of such primordial perturbations is motivated by isocurvature and adiabatic perturbations. Confrontation of
the recent work of one of us, which showed that the simplesthese models with observational data, such as CMB anisotro-
model of multiple inflation, a model with two massive non- pies and large scale structures, seems to allow only for a
interacting scalar fields, can produce such correlated mixsmall fraction of isocurvature perturbations. Future CMB
tures[10]. measurements will also enable us to put much tighter con-

Isocurvature perturbations are perturbations in the relativetraints on this kind of model.
density ratio between various species in the early universe, in It must be emphasized, however, that all these studies
contrast with the more standard adiabaticisentropi¢ per-  assumedndependenmixing of isocurvature and adiabatic
turbations which are perturbations in the total energy densitperturbations. While this assumption can be indeed justified
with fixed particle number ratios. Primordial isocurvaturein some specific early universe models, it is certainly not an
perturbations are often ignored in inflationary models. Theabsolute rule, as has been showrj10]. It is thus the pur-
main reason for this is that they are less universal than adiggose of this paper to investigate the consequences on obser-
batic perturbations because, on the one hand, they can ational quantities, namely, the large scale structure and the
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CMB anisotropies, ofcorrelated mixtures of isocurvature 3
and adiabaticperturbations. As will be shown, correlation 8c=0b=70,=70,=0a) (4)
gives more richness to hybrid perturbations. For example,
while the first acoustic peakrelatively to the plateauis  \heres,, will denote the common valu@ip to the adiabatic
always lower for independent hybrid perturbations than fofindex of the equation of statef the density contrasts. An
pure adiabatic perturbations, it can be either lower or higheggiabatic perturbation is thus characterized by a unique am-
with correlated hybrid perturbations. _ plitude, which can be,, but which is usually given, for
The plan of the paper will be the following. In the next ¢onvenience, in terms of the gravitational poteritalwhich
section(Sec. 1), we recall the basic definitions of isocurva- can pe directly related té, through Poisson’s equation
ture and adiabatic perturbations and introduce hybrid pertursee the Appendix
bations. Then, Sec. Il will discuss the notion of correlation  ap isocurvature perturbation, as indicated by its name,
between isocurvature and adiabatic perturbations. In Sec. Myorresponds to a perturbation for which the gravitational po-
we will begin the systematic analysis of the correlated hybridential perturbation is zertor approximately zeno To get a
perturbations by considering the long wavelength modesyontrivial isocurvature perturbation, one must therefore have
which can be solved analytically. Section V is devoted to theseyeral components and at least one nonvanishing entropy
numerical investigation for all cosmological scales. Fi”a"y’perturbatiorSA 5. ForN species, there will be one adiabatic
we present our conclusions in Sec. VI. There is also an apypde andN—1 independent isocurvature modébere is
pendix, which details the evolution equations and gives thesq the possibility to have velocity-type isocurvature modes;

full solution for the long wavelength modes. se€[18)). It is to be noticed that the adiabatic or isocurvature
character of perturbations is not time invariant. In the cos-
Il. ADIABATIC AND ISOCURVATURE PERTURBATIONS mological context, when one talks about adiabatic or isocur-

In this section, we will define precisely the notion of adia- vature perturbations, one implicitly assumes that this prop-

batic and isocurvature perturbations, and introduce the nota%rgcﬁ?]:fasﬁsogiz t?n t&?'ﬁ:‘éi;t%fe?; wﬁer?fr:?w:\t)glgi th

tion that will be used throughout this paper. Only perturba- °ep g

tions of the scalar type will be considered here. of the perturbat'lon was much Iarggr than_ the Hubble radius.
The perturbations of the spacetime geometry will be de- In the following, we shall consider primordial perturba-

scribed by two scalar potentiafs and ¥, which appear in tions which are hybrid, i.e., which are a sum of adiabatic and
the linear perturbation of theflat) Friédmann-Lem?nne- isocurvature modes. In order to simplify the exploration of

. the parameter space, we will restrict our attention to the case
Robertson-WalketFLRW) metric, of perturbations for which all entropy perturbations within
ds?=—a?(7)(1+2®)dn?+a%(n)(1—2¥) s, dx'dx/, three of the species are zero whereas the last speGieay,
(1) departs from adiabaticity. This means that three of the four
species will satisfy the above relatiod) while the contrast
a choice which corresponds to the longitudinal gaugey  density for the remaining specie§ will be written in the

the conformal time and; is the Kronecker symbgpl form
For matter, we will consider four different species: two
relativistic species, photons and massless neutrinos; two non- Ox —S+ 5 )
relativistic species, baryons and CDM. Their respective en- 1+wy @
ergy density contrasts will be denotedl,, J,, J,, and
5c (8a=38palpn). an expression which defines the isocurvature perturb&jon

Before defining adiabatic and isocurvature perturbationsassociated with the species Varying X, one can construct
let us introduce the idea of entropy perturbation, which carfour hybrid perturbations of this type.
be defined for any pair of componemsand B by the ex-

pression Ill. CORRELATIONS
Sn,  ong In cosmology, perturbations are treated as homogeneous
A*BEn__n_’ (2 and isotropic random fields. It is convenient to deal with
A B

them in Fourier space rather than ordinary space, and all

wheren, represents the particle number density for the Speguamities defined previously.can be transformgd into their
fourier components, according to the relatigince we

ciesA. When the equation of state for a given species is suc K onlv in f
thatw=p/p = const, then one can reexpress the entropy per/ork only in flat space
turbation in terms of the density contrast in the form 3

o 0 € v (2m?®

e X (x). (6)

M= Tiw, Ttwg

Primordial perturbations are usually assumed to be Gauss-
By definition, an adiabatior isentropi¢ perturbation corre- ian, in which case their statistical properties can be summa-
sponds to the case where all the entropy perturbations amized simply in terms of their power spectrum, defined for a
zero. For our four components, this can be expressed as quantityf by

043504-2



CORRELATED MIXTURES OF ADIABATIC AND . .. PHYSICAL REVIEW D62 043504

<fkf:,>:2ﬂ'2k73pf(k) S(k—k'). 7) IV. LONG WAVELENGTH ANALYSIS

As shown in the Appendix, it is possible to solve analyti-
When primordial perturbations are described bgveral cally the evolution of the long wavelength perturbations. To-
quantities such as would be the case if one has a mixture ofally correlated perturbations can be defined by two primor-
adiabatic and isocurvature perturbations, one can also defindial quantities: the gravitational potential perturbation deep
for any pair of random fieldéandg, a covariance spectrum in the radiation era, denotebl, and the entropy perturbation,

Ct (k) by the following expression: denotedS, (the indexX depends on the species which de-
parts from adiabaticity as explained in Seg. lit is then
m(fkg:,>=27-rzk’3cf'g(k) S(k—k"). (8)  possible, using the expressions of the Appendix, to compute

observational quantities at the time of last scattering as func-
The correlation betweefiand g can also be expressed in tions of the two primordial quantitied and Sy for scales

terms of acorrelation spectrun'fif,g(k) obtained by normal- IargI:]err:'han th? Hubble .rI?dius at the tim;a ﬁf last scattering
izing C; 4(K): n this section, we will use, _mstead of the energy density
' contrastss, defined previously in the longitudinal gau@b,
the slightly redefined energy density contrgsksfined in the
Ci,g(K) 9) flat-slicing gaugge

VP(K) Py (k)
A,=68,-4¥, A,=65,—4V,

In the present work, we are especially interested in the (12
possible correlation between adiabatic and isocurvature pri- Ap=68,—3¥, A,=5,—3V.
mordial perturbations, i.e'éq)'s(k). Until very recently, only
independent mixtures, i.e., with vanishing correlation, wereThe reason to use these quantities is essentially that the con-
considered in the literature. This statistical independenceervation equations look much simplesee the Appendix

Cr g(k)=

means that the quantitieB and S can be expressed as Moreover, it is to be noticed that, with these new density
contrasts, the definitions of adiabatic and isocurvature fluc-
d=Pi%,, S=Pi%,, (10) tuations keep exactly the same form. In other words, a purely

adiabatic perturbation, as defined by E4), will also be

wheree, ande, areindependentormalized centered Gauss- characterized by

ian random fields [i.e., such that (e(k))=0,

(ei(k)ef (k'))y=6;6(k—k'), for i,j=1,2], and where the .33

subscriptk is implicit, as will be the case in the rest of this Ab_A°_4AV_4A7_A(6‘)' (13

paper. With the assumptiofl0), one obtains immediately

vanishing covariance and correlation spectra. For a mixed perturbation, with the speciésieviating from
However, as was shown in a specific model of double;giabaticity, the same relation will hold for the three species

inflation [10], one can also envisage models of the earlysther thanX, and the density of the latter will be given by
universe whereorrelatedprimordial perturbations are gen-

erated. To be more specific, this would be the case if one
imagines several independent stochastic processes taking
place in the early universe, which contributeth to adia- 1+wy
batic and isocurvature perturbations, i.e., such that

Ax

:Sx+A(a) . (14)

Our purpose will now be to express the observable quantities

for long wavelength modes, namely, the gravitational poten-
cp:E die, S=Z Se;, (1) tial in the matter era and the temperature anisotropies, in
' ' terms of the primordial quantitie® and S,. This will be
possible by using the two following relations, which are
demonstrated in the Appendix. The first relation gives the
metric perturbation in terms of the primordial density con-
"Wast, during the radiation era,

where thee; areindependennhormalized centered Gaussian
random fields. In the specific example [df0], there were
two independent random fields, generated by the quantu
fluctuations of two scalar fields.

In the present article, our goal will be to study systemati-
cally the consequences of tatally correlated mixtureof ®
adiabatic and isocurvature perturbations, i.e., primordial per-
turbations which can be written in terms of osgleran- 5
dom field. Of course, the consequences of more general ini- +=(9-4QRP)QRPA |
tial conditions can then be obtained by simply adding the 5 v
spectra(to get the total density power spectrum or the total
temperature fluctuation multipole spectrumf several to- the second one being the analogous equation during the mat-
tally correlated initial conditions. ter era:

1 -1

CI):—Z

il

4
* RD
3+59,,

4
RD RD
2(1— =08 )Q7 A,

, (15
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1 1
Prmaner= — 5 (2 ApT QA (16 Disor=—5 XSk, X=b,c. (22)

Note that, in the above equatior®;° and5° are taken in  For a photon-type mixed perturbation, one finds

the radiation era, where&> andQY® correspond to their

values in the matter era. 1 ( 1 fQRD
5 14

— RD
Our hybrid perturbations can be specified either by the q)isoc_g a5°s,, (23

pair (Ci),SX) or the pair QA ,),Sx), the relation between the
two following immediately from the relatior{15). For a  and finally, for a neutrino-type hybrid perturbation, one gets
purely adiabatic perturbation, it is easy to see, using(Es),

that 1
Disoc=5(9- 4077 QS . (24)
3 4 RD| 1 3
2 5 The decompositiori21) expresses the fact that a primordial

isocurvature perturbation will also contribute, the matter
For a mixed perturbation, there will be in general an addi-erg, to the potential perturbation, whereas it is of course not
tional term proportional t&y . In the case of the baryons and the case in the radiation era. This illustrates, once more, that
CDM, the expression fod, is the same as the adiabatic the separation between adiabatic and isocurvature modes is
case, simply becaus®, andA. do not appear in Eq15.  not conserved during the time evolution.
For the relativistic species, one obtains Let us now evaluate the contribution of the primordial
perturbations to the CMB temperature anisotropies, here
only for large angular scales since we are restricted to long
wavelength perturbations. Neglecting a local monopole and
dipole contribution, the temperature anisotropies, due to sca-

3 4 - 4
A@=- 5(3+ gﬂfD)CD— ( 1- ngD)ijDSy

=a® +8,S, (18) lar perturbations, are approximatively given (sge[20,21])
for a photon-type hybrid perturbation and AT 1 , - -
?:ZAyLss+(‘D+‘1’)Lss_e'ai(VLss)+f (P+W)d\,
3(. 4 ~ 1 LSS
__° FARD| & T /0_ 41()RDy RD (25
A 2(3+59v )(I) 5(9 407°)Q7°S,
- wheree' is a spatial unit vector corresponding to the direc-
=ad®+4,S, (19 tion of observation, the subscript LSS indicates that the
_ ) ) guantities are evaluated at the last scattering surface, an over-
for a neutrino-type hybrid perturbation. dot denotes derivation with respect to the conformal time

Substituting in Eq(16) the expressions o, andAc in 4/ is today’s conformal time, and the integral in the last term
terms ofA ;) andSy, thus in terms ofb andSy, itis then ~ runson the photon line of sight. The contribution due to the
possible to find the gravitational potential perturbation dur-first two terms is usually called the Sachs-Wal&W) term,
ing the matter era. For a purely adiabatic perturbation, ongvhile the third term is called the Doppler term and the last
finds one the integrated Sachs-WolfiSW) term. In general, but

not always(see the pathological cases bejotihe SW term

3 4 ool is dominant for large angular scales. In terms of our vari-
Pagiar= 75| 3t 5| P (200 ables, the SW term can be written
i i i AT 1 1
One_recogmzes th(_e stand_ard transfer coefﬂc!ent of 9/10 if (_ —CA 4 D+T=ZA +20, (26)
one ignores the anisotropic pressure of neutrifse, e.g., T/gw 4 4

[19]). Here, we have its generalization, which is numerically

very close to 1, when the anisotropic pressure is taken intqyhere the quantities are evaluated at the last scattering sur-

account. For a hybrid perturbation, the gravitational potentiaface, assuming that last scattering occurs well in the matter

perturbation during the matter era will be of the form era (in this caseW=®). Using the expressions obtained
above, it is now possible to express the SW term as a func-

tion of the primordial perturbationé) and Sy. As for the

_ ~ gravitational potential perturbation, one can decompose this
where ® ., COrresponds to the term proportional ®,  erm into

which is, in all cases, given by the same expres§iiy, and

D =D ,giast Pisoc, (21)

® o IS the term proportional t&y, whose explicit expres- AT AT AT
sion depends on the particular species considered. For bary- (?) = (— + —) , (27
ons and CDM, its form is simply sw adiab isoc
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where the adiabatic component is the term proportioné& to 10000 P
and the isocurvature component is proportionalSga For -
all types of hybrid perturbations, the adiabatic term is the - 1000 ]
same: e :
& 100 =
AT 1 4 . e ]
— ==[3+-0%"|0. 28 < ]
10 577 = i 1
adiab +
. . . =4 Total 1
Note that one haAT/T ga5= P agiad3, Which is reminiscent LE o Sachs. Wolfe B
of the standard(adiabati¢ Sachs-Wolfe term. As for the I
isocurvature term, it will depend on the particular type of 0.1 ——t ""'1'0 I 1(']0 i "1'0'00
perturbation. For hybrid perturbations which are baryon or p

CDM isocurvature, one finds
FIG. 1. CMB anisotropies in the pure adiabatic mode=Q0).

The solid line represents the tof@lcalaj contribution. The Sachs-
, X=b,c. (29 wolfe, Doppler, and integrated Sachs-Wolfe contributions are, re-
isoc spectively, represented by long-dashed, short-dashed, and dotted
lines. At large angular scaldbow 1), the total amplitude is essen-
ntiaIIy due to the Sachs-Wolfe contribution.

:_EQQ{'D

-

Note that, for baryons and CDM, one has the relatio
(ATI/T) o= 2Pisoc, and by comparison with the similar re-

lation for the adiabatic terms, one recognizes the standargOntributions We have used, as usual, the angular power

statement in the literature that pure isocurvature perturbas- ; ; .
i ectrum for the temperature anisotropies, defined b
tions (of the baryon or CDM typeproduce large scale tem- P P P y

perature fluctuation§ times biggertthan pure adiabatic per- C,TT=(|a|Tm|2), (32)
turbations. For the photon isocurvature hybrid perturbation,
one will get where thea,Tm are the multipole coefficients that appear in

the decomposition into spherical harmonics of the tempera-

Y, (30) ture fluctuations, i.e.,

AT\ 1] 9 4
2 o la_TOoRDL T/ ORD\2
(T>m 156~ £ AP+ s (Qf7?[s

whereas, for the neutrino isocurvature hybrid perturbation, ?=2 al Yim- (33
the expression is

AT 1 . In the case of hybrid perturbations, we will be somehow
(?) =%(9—4QV )Q,S,. (31)  between these two extreme situations. For convenience, let
isoc us parametrize the hybrid perturbations Yoywhich is de-

fined by the relation
V. NUMERICAL ANALYSIS

The present section will be devoted to predictions of tem- S=\0, (34)

perature anisotropies, as well as the large scale structure
power spectrum, for primordial correlated hybrid adiabatic
and isocurvature perturbations. We will keep fixed a certain
number of parameters{),=0, Qy=1, h;;;=0.5, Q,

=0.05; three species of massless nondegenerate neutrinc
(leading to Q5°=1/1+(21/8)(4/11§*]=0.595 andQ}"

=1-0%5P=0.405); and standard recombination. The pri-
mordial perturbations will be assumed to be scale invariant.

1000

100

%)

(4K

10

1E-

00+ 1)CeT2 2m

Total J
—-=-- Sachs-Wolfe K
--- Doppler S

A. Temperature anisotropies 001

. . . R 1
As far as temperature anisotropies are concerned, isocur g L i,

vature perturbations can be distinguished from pure isocur- 10 100 1000

vature perturbations by a much larger plateau, as explaineu ¢

in the previous section, with the consequence that all the g, 2. cMB anisotropies in the pure isocurvature CDM model
acoustic peaks will appear smaller than this plateau. To Show, = + ). The solid line represents the total scalar contribution.
these two extreme behaviors we have plotted in Fig. 1 thghe Sachs-WolféSW), Doppler, and integrated Sachs-Wolfe con-
case of pure adiabatic initial conditions and, in Fig. 2, thetributions are, respectively, represented by long-dashed, short-
case of pure CDM-type isocurvature initial conditions. Wedashed, and dotted lines. Note that the power at large s¢aves)
have also plotted, in each case, the SW, Doppler, and ISWé higher than at the degree scale.
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100000 p—r—r—rrrry ———rrr —— 1000 ===~ — ——rrr
10000 _ r
L %
ES | 100 | 3
E 1000 E E E
S - = : ]
& & ]
R 100 =
+ + 10 -
= = 3 3
= ) - -
WE o x=000 oM Aq E e A= 4.99 ]
————— A =997 i
— A=t
1 1 Loaaaaal L gl " a1l
10 100 1000
‘ ?

FIG. 3. CMB anisotropies in CDM-type correlated hybrid mod- ~ FIG. 5. CMB anisotropies in CDM-type correlated hybrid mod-
els for various values of the parameter The highest curve is €ls for large(positive values of the parameter. The solid curve
studied in more detail in Fig. 8, the dotted curve represents théepresents the pure isocurvature case of Fig. 2. Note that the height
(standardl adiabatic case, and the lowest represents the pure isocuf the acoustic peaks with respect to the Sachs-Wolfe plateau varies
vature case shown in Fig. 2. Note that the height of the acoustiglowly in this range of values fox.
peaks with respect to the Sachs-Wolfe plateau varies wijthc-

cording to Eq.(42). In some sens®& is the analogue, in the independent case, of
\ since the square of both quantities corresponds to the ratio
and which will quantify how far we are from a purely adia- of the power spectra. But of courge can be only positive.
batic model. The cask=0 corresponds to pure adiabatic The way these curves are obtained is also different. Whereas
initial conditions, whereas the limit whede goes to infinity  for the correlated mixtures one implements hybrid initial
corresponds to pure isocurvature perturbationscan be  conditions from the beginning and one runs the Boltzmann
positive or negative. To be more specific, one can call th&ode onceper mode), in the case of independent mixtures
hybrid perturbations we are studyimgrrelatedwhenA>0  one runs the code first with purely adiabatic initial condi-
andanticorrelatedwhen\ <0. In Figs. 3—5, we have plotted tions, then a second time with purely isocurvature initial con-
the total temperature anisotropy as a function of the multiditions, and the finaC, are obtained by a weighted sum of
pole indexl for various values of the parameter(for COM-  the C, obtained from each run. As a consequence, the first
type hybrid perturbationsand keeping the same normaliza- acoustic peak, as well as the subsequent ones, will always
tion at large angular scales. appear lower, relative to the plateau, in the hybrid case than
To emphasize the difference between correlated hybrigh the purely adiabatic case.
perturbations and independent hybrid perturbations, which The behavior of the, for the correlated hybrid models is
have been considered in the literature, we have plotted, iguite different when one increases the isocurvature propor-
Fig. 6, the total temperature anisotropy for independent hytion. For anticorrelated perturbations, ies:0, the behavior
brid initial conditions. The curves are parametrized by theis what is expected naively: the amplitude of the peaks de-
numberR, which is defined by

10000 ———rrrrry — —

PP=RP§%. (35) F

o1
& 1000 g
=} E
100000 p—r——Trrrry — — Ty 5 = r
E 3 &
F 3 < i
- : ‘gj’ 100 g 3
— O 3 3
& 10000 3 = s 3
=2 E 3 iy [ e R = 0.00 ]
& X ] T WF-.-.- R =0.95 5
= E----- R =499 E
o 100E 3 E ~-- R =0.97 3
S 3 E F —— R=+0 1
- F 1 1 Lo aaal AT EEE | 1 a1 gl
< [ = A=0.95 ] 10 100 1000
¥ 10F A=136 e\ .
E — 2=212 (AR
E - A =3.65 \ ] . L )
o e =499 1 FIG. 6. CMB anisotropies in independeincorrelateg hybrid
1 v eal N a1l L gl .
10 ) 100 1000 CDM-type models for various values of the paramé&®efThe low-

est, solid curve represents the pure isocurvature case of Fig. 2 (

=), and the highest, dotted curve represents the adiabatic case
FIG. 4. CMB anisotropies in CDM-type correlated hybrid mod- (R=0). We have chosen fdk the same numerical values as for

els for various values of the parameter The two highest curves in Figs. 3—5. Note the significant difference between the correlated

are studied in more details in Figs. 7 and 8. and the independent cases especially in the region wRexe=1.
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10000 =TTy 100000 ¢
E Total
[ -————- SDachsl—VVolfe AN P L
L ... LetNe S [ 4

. RN 10000
1000 k= ISW L [

1000

100 F

(4 DCTE 2 (i)
=
<
T
Y
AN
|
(0 + 1)C 12/ 2m (uK?)

10 E,« - L -

-~ l"~,. E = 10 -

10 100 1000 10 100 1000
2 £

FIG. 7. CMB anisotropies in a CDM-type correlated hybrid  FIG. 8. CMB anisotropies in a CDM-type correlated hybrid
model (with A=1.36). The solid line represents the totatalay model (with A =0.95). The solid line represents the total contribu-
contribution. The Sachs-WolféSW), Doppler, and integrated tion. The Sachs-Wolf¢SW), Doppler, and integrated Sachs-Wolfe
Sachs-Wolfe contributions are, respectively, represented by longdSW) contributions are, respectively, represented by long-dashed,
dashed, short-dashed, and dotted lines. The pararnetas been short-dashed, and dotted lines. The parameteas been chosen so
chosen so that the SW contribution cancels at lowest order. In thithat the SW and ISW contributions almost cancel each other at
case, the low multipole power is no longer dominated by the SWowest order. In this case, the low multipole power is dominated by
contribution, but rather by the ISW contribution. the Doppler contribution, which is not flat at low multipoles.

creases, relative to the plateau, with a higher proportion of Although at this stage we have discussed and illustrated
isocurvature perturbations, as illustrated in Fig. 3, with theonly the CDM correlated hybrid case, a similar behavior ap-
curves lower than the adiabatic case. But the evolution ipears for the three other types of correlated hybrid perturba-
more complicated when one considers correlated models¢ions, but with noticeable differences. We have systemati-
i.e., withA>0. Starting from the adiabatic case£0) and cally explored the parameter space for the four types of
increasing\ slowly, one begins with a phase where the am-correlated hybrid initial conditions and measured the pre-
plitude of the peaks will increase with respect to the plateauglicted height of the first acoustic peak with respect to the
as illustrated by the curves above the adiabatic one in Fig. Jlateau. The results are given in Fig. 9. Here, we have
If one goes on increasing, one reaches a critical value, adopted a different parametrization of the hybrid correlated
beyond which the peaks will now diminish with increasing perturbations so that one can represent easily all cases. We
\, as illustrated by the curves of Fig. 4. have defined an angular varialdg so that our initial con-
One can understand this surprising behavior if one goeditions for the density contrasts are of the form
back to the results of the previous section. In the case of

CDM hybrid perturbations, one can evaluate the SW plateau, Ax _ An —sing A+X 3
using Eqs(28) and(29), 1+wy costx, 1+w, Sinex., . (37
AT 1 4 2 - which implies
), =Ll gar)-gamle. o
SW SX:(COtax_l)A(a) . (38)

and therefore there is indeed a critical value Xofor which  Of course, this paramet#k can be related to the parameter
the SW plateau is suppressed, which explains the relativR. Let us write

height of the peaks. In fact, things are slightly more compli-

cated, because when the SW term is suppressed, due to this Aqy=a®+ BxSx, (39)
special choice of initial conditions, the other terms which

contribute to the anisotropies cannot be neglected any longefhere the subscript for the coefficieniBy refers to the type
Figure 7 shows in particular that the plateau can be due esf hybrid mode we are considering.is the same for all four
sentially to the ISW effect. Note that the valde=1.36 for  types and is given by the coefficient in E4.7). By is zero
which this effect was numerically obtained is slightly differ- for the CDM and baryon modes and is given by the second
ent from the value one would deduce from E86). Thisis  term on the right hand side in Eq&L8) and (19) for the
because Eq(36) was obtained by supposing that the lastphoton and neutrino cases, respectively. The relation be-
scattering surface is completely in the matter-dominated eraween\ y and 6y is then

which is not the case since the radiation-to-matter transition

occurs not very long before recombination. One can also (cotbx—1)a
adjust the initial conditions so that the large scale anisotro- Ax:l—(cotﬁx— 1)Bx
pies will be dominated by the Doppler term, in which case

there is no longer a plateau on large scales, but an increasirig the region nea¥= w/4 (corresponding to the pure adia-
slope as can be seen in Fig. 8. batic case and where all curves cnpssis easy to see that

(40)
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FIG. 9. Ratio of the height of the first acoustic peak to the height  F|G. 10. Position of the two first acoustic peaks in the four types
of the Sachs-WolféSW) plateau for the four types of hybrid mod- of hybrid models. As explained in Fig. 9, the first acoustic peak is
els. The height of the SW plateau is obtained by averaging thejefined as the first maximum of the multipole anisotropy spectrum
power betweerl =2 and|=25, which correspond to the angular for |=100. In some case®& 3 for the isocurvature baryon model,
scales explored by COBE. We have defined the “first acousticg~0.5 for the isocurvature photon model, ame=1.2 for the
peak” as the first maximum of the multipole anisotropy spectrumisocurvature CDM modg| the first peak disappears in the low mul-
for 1=100. Each ratio peaks at a high value 30) which roughly  tipole region, and the “new” first peak becomes the “former”
corresponds to the moment where the SW plateau disapfEses second one. In some other cases, the peaks is smeared in the power
Eq. (42); in practice, this occurs when the SW and ISW contribu- spectrum and disappears, as is the case for the first acoustic peak in
tions cancel at low multipolgs The four curves intersect &  the isocurvature neutrino model &=1.2 and até=1.7 for the
=ml4, as expected, since this value corresponds to the pure adigecond one.
batic casdsee Eq.(38)]. As 6 varies, the position on thleaxis of
the first acoustic peak slightly shifts to the left or to the riggdge  the isocurvature proportion is stronger in the CDM case. In
also Fig. 10. In some cases, the peak goes belewl00. In this  the photon and neutrino cases, the coefficigris positive
case the “new” first acoustic peak position islat200-300, and  and therefore only anticorrelated perturbations can lead to an
its height is different, hence the discontinuities in the curves. increase of the peak. Moreovéx,>b,,, and similarly to the

) . heavy species, the response to the increasei®ftronger in
the relation betweent and\ is the same for the four types of {he photon case than in the neutrino case. A consequence of
perturbations and is given numerically by these results is that, potentially, the correlated hybrid pertur-
_ _ bations in the CDM and photon cases will be more strongly
A=2a(6—m/4)=9.900~ ml4). (4D constrained by the CMB measurements than the baryon and

Let us see what happens when one deviates from the puf§ULrino cases. _ . _ _
adiabatic case. In the baryon case, the first peak will increase !t IS @lso important, in the spirit of putting constraints on

for correlated mixtures and decrease for anticorrelated mixthis type of modes, to see the position of the two Doppler

tures, as in the CDM case, although in a much more modeR€aks on the axis. We have plotted in Fig. 10 the positions

ate way. On the contrary, in the photon and neutrino case® the first and second acoustic peaks. Near the pure adia-
the first peak will start to increase fanticorrelatedpertur- ~ P&UC case, the behavior is once more strongly pronounced in
bations. Moreover, the evolution in the neutrino case idh® €DM and photon cases. In this region, in the CDM case,

slower than in the photon case. correlated hybrid perturbations tend to displace the peaks to
All these results can be understood rather easily with thémallerl whereas anticorrelated perturbations push the peaks
analytical results of the previous section. Indeed, in all cased? higherl. The same behavior, but very attenuated, seems to

the SW anisotropy term can be written in the form apply to the ba_lryon and neutrino cases. In contrast, i_n the
photon case, highdrcorrespond to correlated perturbations

AT - and lowerl to anticorrelated perturbations.
=] =(at byAx)P, (42) Another important feature of the acoustic peaks is the
sw impact of the isocurvature part on the amplitude of the sec-

where the special case of CDM is given just above. Theond peak. Figure 11 gives the evolution of the relative am-

coefficienta is the same for all four cases, as was shown ipPlitude of the second peak with respect to the first peak,

the previous section. Therefore, the evolution of the SW playvhen one varies the coefficieht for the four types of per-

teau will be determined by the coefficieby which is dif- turbations. As before, in the vicinity of the pure adiabatic

ferent in each case. For baryon and CDM perturbations, th oint, the effects_ are more important in the CDM and pho-
coefficientb is negative, which explains why the increase of ons cases than in the two other cases.

the first peak(or equivalently the decrease of the plateau
corresponds to correlated & 0) perturbations when one de-
viates from the pure adiabatic case. Moreoyeg>|by| be- In the previous subsection, we have analyzed the CMB
cause().> (1, and therefore the response to the increase ofluctuations. Another important part of the observational data

B. Power spectrum
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FIG. 11. Relative heights of the first two acoustic peaks for the

FIG. 13. Matter power spectra in the CDM-type hybrid models

four types of hybrid models. The various discontinuities of the fourfor various values of the parameter All the curves have been
curves originate from the discontinuities in the peak positions, exnormalized to COBE.

plained and illustrated in Fig. 10.

cause of additional complications such as the bias effect.
Moreover, the signatures due to pure adiabatic perturbation‘@
and pure isocurvature perturbations, respectively, are easiaP
to distinguish in the CMB anisotropies than in the matter
power spectrum. But nevertheless the LSS power spectrum
a useful tool, at least to check the overall amplitude of the>

perturbations.

which can be solved to give

comes from the large scale structures. However, it is more
difficult to infer precise information from the large scale
structure data as from the expected CMB measurements, be-

AC: ALnit_ sz

lfd)dd’
aaﬂn,

(44)

hereA™ is the initial value for the CDM density contrast,
that it will evolve towards values with sign opposite to
that of &, that is, of the same sign as, . Moreover, the
shortest wavelengths will evolve rapidly enough and change
ign whereas the longest wavelengths will not, so that the
CDM power spectrum should exhibit a sign change. For a

To illustrate the power spectra corresponding to corred\Ven mode, this sign change occurs all the more rapidly as
lated hybrid perturbations, we have plotted in Figs. 12—14the initial CDM density contrast is small as compareditp

the power spectrétaking the gravitational potential pertur-
bation as reference variable the case of CDM-type corre-

lated hybrid perturbations, for various values)of

Some interesting behavior occurs for large values\ of

that is, whem is small. Plotting the matter power spectrum,
it is therefore natural to expect that the wave number at

which it is zero is all the more small asis small. This is

When\=a, it is easy to see using E¢40) that the CDM
and the baryon density contrasts have initially opposite signs.

The CDM density contrast evolvésee Eqs(Al),(A2)] ac-

cording to the equation
A +HA = — KD,

100000

(43

what we can check in Fig. 14.

C. CMB polarization

Although CMB polarization has not yet been measured

and is expected to be difficult to measure, it can provide a lot

10000 £

1000 £

—y 1000

10

100 F

of additional information concerning the cosmological per-
turbations and the cosmological paramef@d. This is why

o 1 %> 1
2 100 3 g
= ] = 01§ y
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= 3 = o0 b l y :
% 1 - = 4 % ]
3 0.001 ] J
o R & ; A=4.99 } i ]
’ 3 0.0001  A=17.05 j 3
5 J [ A =997 H ]
0.01 [ - le05 E A =17.02 : -
L 1 [ ——— A =4 ! ]
.001 P 1e-06 C " 1 | el | " Ll "
0.0001 10 0.0001 0.001 0.01 0.1 1 10

FIG. 12. Matter power spectra in the CDM-type hybrid models

FIG. 14. Matter power spectra in the CDM-type hybrid models

for various values of the parametgr All the curves have been for high values of the parametar. All the curves have been nor-
normalized to COBE. Note that the overall amplitude, as well as thenalized to COBE. Note that one the power spectrum goes to zero
position of the maximum, varies witk. for a critical scale, which depends on the value\of
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we will consider briefly the consequence of correlated hybrid 1000
perturbations on the CMB polarization. The polarization can 100
be decomposefl2] into E-mode polarization an®-mode . 10
polarization, and we shall define, in addition to the tempera- < !
ture angular power spectrum, tiemode angular power g 01
spectra = o
S 0.001
C|EE5<|a|Em|2) (45) :_ 0.0001

z} le-05 .

and the correlation spectrum 1e-06 7
1e-07

ET_ / Tx 5E e e 1l sl el
Cr =(amam), (46) e 08 10 100 1000

¢
where theaj, correspond here to the same coefficients as o _ o _
those defined in Eq(33), which gives the correlation be- FIG. 15. CMB polarization anisotropies in the CDM-type hybrid
tween the temperature and tBemode polarization. Scalar- models for various values of the parameteWe have represented
type perturbations do not contribute to tBemode polariza- the_ spectrum for the same v_alues)ofas in Fig. 3(but we have
tion. As an illustration, we have plotted th&-mode omitted two of them for clarity The amplitude of the spectrum

polarization anisotropy spectrum for various valuesiof de.creas.es and the peaks ;hn‘t o the ”ghF as one goes from the

. . . .adiabatic caseN=0, dotted ling to the pure isocurvature cask (
Two features in these curves are obvious. First, the ampli- N
tude of th larization vari well th ition of the +oo0, solid line, as the spectrum closely follows that of the Dop-
ude ot the polarization varies, as well as tn€ position of t&, o ., hibution to the temperature anisotropy spect(see Figs.
first peak in the spectrum. This can be understood by looking 4 3

at the Boltzmann equation for the photon fluid. Before the

last scattering s.urfacel, Thomson diffusi.on iTQ‘ important, an%bservations with this type of model, but rather to focus on
the photon anisotropic stress approximatively obeys th(aSome qualitative interesting consequences of correlated hy-

equation brid perturbations. This is why we have considered only a
subclass of models, which are extreme in the sense that they
o=V, (47) are totally correlated and simple because they are described
7 by only two parameters. If one wishes to compare hybrid
models with observations, one should consider ghe of

where k stands for the differential Thomson opacity, andspectra of the type we have obtaineb explained in Sec.
Vy, is the photon-baryon plasma velocity. Thus, the photor!! ),_ which means that the adiaba_ltic and isocurv_atL_Jre pertur-
anisotropic strespwhich is proportional to th&-type polar-  bations would then be only partially correlatéthis is the
ization; see Eqs(62), (63), (77) of [23]] is proportional to ~ case in the specific model 10]). . .
the photon dipole, and theFE are proportional to the Dop- Th_e present data are still too imprecise to be _abIe to d'IS-
pler contribution of the CMB temperature anisotropy Spec_tmgwsh _th|s km_d of correlated hybrid pertu_rbatlon, but it
trum. Therefore, the position and height of the peaks vary fof"@y be interesting to know how much precise data would
both spectra in the same way with These results are rep- constrain these modes. In practice, it might turn out to be a
resented in Fig. 15 and the cross-correlation spectrum be-
tween temperature and polarization can be found in Fig. 16.

1000
100 F

VI. CONCLUSION w0k

uK?)

In the present work, our goal has been to analyze thex L
effects of correlated hybrid adiabatic and isocurvature per-§> [
turbations on observational quantities, in particular the CMB & 01 F
anisotropies. We have isolated four “elementary” modes, +  E
corresponding to a deviation from adiabaticity of one of the =

four standard specie@hotons, neutrinos, baryons, CDM 0.001 3
each type of these elementary modes is characterized by onl o0 Lo nant 0 0 0wt 0 00 ui
two parameters§ andA ). One could, of course, general- 10 100 1000

ize our analysis by relaxing the adiabatic ratios among the ¢

three remaining species, but at the price of requiring four g 16 cMB temperature-polarization cross-correlation spec-
parameters. _ trum in the CDM-type hybrid models for various values of the
We have shown, in the case of these elementary modegarameten. As in Fig. 15, we have represented the spectrum for
that correlation leads to very specific effects on the CMBthe same values of as in Fig. 3 and have omitted two of them for
anisotropies and on large scale structure which do not appeafarity. The amplitude of the spectrum decreases and the peaks shift
in the case of independent mixtures. to the right as one goes from the adiabatic case @, dotted ling
In this paper, our purpose was not to directly confrontto the pure isocurvature cask £ + =, solid line.
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difficult task to disentangle the presence of such modes in [ k2 9 3

3H
the data, unless one assumes a specific early universe modet: | 72 + 5 (1w =5 ; Qx| Ax— 7 (1w Vx|,
(A3)
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APPENDIX: EVOLUTION OF PERTURBATIONS where o, represents the anisotropic stress due to the neutri-

_ _ _ _ _nos(which thus require a description beyond the perfect fluid
In this appendix, we derive the evolution of all quantities approximation. To get the evolution ofr,, one must use a
for long wavelengths, i.escales outside the Hubble radius higher moment of the Boltzmann equatitsee[24]),
k<aH. The whole system of equations, in a notation slightly

different from the one adopted here, can be found, for ex-
ample, in[24].
Let us first introduce the system of equations governing

the evolution of the matter perturbations, which relate thevhere other terms on the right hand side have been ne-
density contrasts of the four species to the scalar componeftected.

4|(V A5
_E—) v ( )

g,=

of their velocities(denoted by ). We first have four equa- [0 order to solve the above equations for long wave-
tions of conservation, one for each of the four species, whichengths, itis convenient to consider an expansion of all quan-
read(in Fourier space tities in terms of the small parametkr, so that one will
A have
A,=3kv,, X=XO+ XDk p+ X (kp)?+- - - . (A6)
A —KV The Euler equationsA2) then enable us to express the first
¢ "l order velocity term as a function of the zeroth order density
4 and gravitational potentials:
A= §kvby, 1
V= — ZA(yO)_\p(O)_q)(O),
Ap=KVyp,, (A1)
®(0)
where a prime denotes a derivative with respect to the con- V(Cl)= - T+ Hy'

formal time » and whereVy,,, is the velocity common to the
baryon and photon fluids, which are coupled until last scat- Q. A0 20 VO 4 (40,430,
tering. We then have three Euler equations, two for the in- Vf)17)= -7 20 7+3 1+ H YQ .
dependent fluids of CDM and neutrinos, and one for the y+3( e
baryon-photon fluid:

(A7)

The zeroth order components of the velocities are as usual
, set to zero; otherwise, one would get a divergence on the
right hand side of Eq(A3) (unless there is a special cancel-
Vo= —HV — Kk lation of the type mentioned ifL8]).
¢ ¢ ' Using Egs.(A4) and(A5) at lowest order, one gets

V,=—k

14

A, ¥+ P
Z'ﬁ‘ + _O'D

Ve 4
Vb)'_ 4Qy+3QbHVb7 O —pO=— gQV'HzﬂzVS}l), (A8)
40, 'Ay i . ) ,
— k4Q 3012 +¥|—kd, (A2) and substituting the above expressmn\ﬁﬁ , one finds the
y bl following relation betweenp(® and ¥ (©):

whereH is the comoving Hubble parameter defined Ry 4 4

=a'/a. In the last equation, the coefficiens, are time 1+EQ'/HZ’]Z)(D(O):(l_§QVH2’72)\I’(O)
dependent since the ratio of the energy density of a given
species with respect to the critical energy density, will
change with time.

To close the above system of equations, one needs the
Einstein equations, which express the metric perturbations iBubstituting in Poisson’s equati¢A3), at lowest order, the
terms of the matter perturbations. Only two components oexpressions obtained above for the velocities, and using Eq.
the Einstein equations are useful, the other ones being redufA9), one finally gets the following cumbersome equation,
dant, and they are the Poisson equation, relating®(® to the four species densities:

1
— gQ,,’HZnZA(VO). (A9)
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340 +0) 1+ 20,y2 |+ A3 Toh a0 [1-20 2|+ -0 [1- 20,2
—1(3+9,+Q,) +§ Y +4Q7+3Qb(1+y) y 130y Ty +1+y | 1T g Y
H0)
+8yQV}
_ 2
1 5va
40 (1+y) +304(1+2y) 4 40,430,
— A0 (0, 2y ©41-0 y3 >
Podo Fele T T aa,ary) N B aa ey
y2] Q,AQ
+14Hy+(3+0,-30,) 5| ——, (A10)
1—§Q,,y2

wherey="H 7. While this expression yields the evolution of the gravitational potential perturbation during the whole evolution
of the universe from the deep radiation era until the last scattering, it will be sufficient for our present purpose to retain from
this equation only its asymptotic forms in the radiation era and the matter era. In the radiation=draand .,
<Q,,Q,, so that the above expression simplifies to give

1
0=_Z
® 4

4 -1
beto)

4 0, 2 0)
2(1-£0,]Q,A0+ £(9-40,)0,49|. (A11)

In the matter eray=2 and(},,Q,<Q,(y, so that one finds

PO=— %(QbAf,O)Jr QAD). (A12)
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