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Inflationary Affleck-Dine scalar dynamics and isocurvature perturbations
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We consider the evolution of the Affleck-Dine scalar duribgerm andF-term inflation and solve the
combined slow-roll equations of motion. We show that for a typical case, where both the Affleck-Dine scalar
and inflaton initially have large values, Drterm inflation the Affleck-Dine scalar is driven to a fixed value,
with only a very slight dependence on the numbeedbldings. As a result, there is a definite prediction for
the ratio of the baryonic isocurvature perturbation to the adiabatic perturbation. In mirdmdl)( Affleck-

Dine baryogenesis the relative isocurvature contribution to the CMB angular power spectrum amplitude is
predicted to be in the range 0.01-0.1, which can account for present large-scale structure observations and
should be observable by Planck. In a very general case, scale invariance of the adiabatic perturbations from the
Affleck-Dine scalar imposes a lower bound of about 0.01dfer4. Ford=6 the isocurvature perturbation may

just be observable, although this is less certain. We also corfsitegm inflation and show that the magnitude

of the baryonic isocurvature perturbation is fixed by the valul diiring inflation. For typical values df the
isocurvature perturbation could be close to present observational limits.

PACS numbes): 98.80.Cq, 12.60.Jv

[. INTRODUCTION order H? corrections to its mass squar8l], which would
prevent slow rolling and produce a highly non-scale invari-
With a detailed study of the cosmic microwave back-ant spectrum of perturbations. Althoudb-term inflation
ground (CMB) planned over the coming decadlg], it is  models have the disadvantage that the inflaton field must
important to consider the possible implications for particlestart at values close to the Planck scale in order to provide
physics models. The interaction of the particle physics modesufficient inflation[7,9,10, which requires suppression of
with the model of inflation may generate a CMB which de- Planck-scale corrections to the potential, they nevertheless
viates from that expected on the basis of inflation alone. Wéave become the favoured class of SUSY inflation models.
have previously discussed such a cé2e)], the minimal  F-term inflation models generically have dangerous okfer
supersymmetric standard mod®@SSM) with Affleck-Dine  corrections to the inflaton mass squaf#d] (and to the mass
baryogenesi$4,5] in the context ofD-term inflation[6,7]. squared terms of all other scalars, in particular the AD sca-
Affleck-Dine baryogenesis is a very natural and effectivelar). However, these corrections might be avoided for the
candidate for the origin of the baryon asymmetry in syperdinflaton as a result of accidental cancellations, a special
symmetry(SUSY) models, in particular in the MSSM, where choice of the superpotential and idar potential[12], or
it is the only known candidate in the absence of electroweakadiative corrections to the inflatdi3]. We do not, how-
baryogenesis, for which only a small window of Higgs bosonever, expect the cancellation to simultaneously apply to any
mass remaing8]. In the context ofD-term inflation, the other scalars, and so we expect that in the casE-wfrm
Affleck-Dine scalar provides a second source of adiabatiénflation, unlikeD-term inflation, the AD scalar will have an
perturbations, and requiring that the deviation from scaleorderH? correction to its mass squared term. Because of the
invariance due to the Affleck-Dine scalar is acceptably smaltlifferent mass squared terms during inflation, the dynamics
imposes an upper bound on the magnitude of the Affleckof the AD scalar in the two cases will be quite different, with
Dine scalar, which in turn translates into a lower bound oncorrespondingly different consequences for the isocurvature
the isocurvature perturbations associated with quantum flugerturbations.

tuations of the phase of the Affleck-Dine fidl@]. The spec- The paper is organized as follows. In Sec. Il we consider
trum of CMB perturbations thus provides a feasible testingthe case oD-term inflation. We first discuss the slow-rolling
bench for Affleck-Dine baryogenesis. dynamics of the AD scalar and the inflaton. We then discuss

In this paper we wish to consider the dynamical evolutionthe adiabatic perturbations, obtaining an upper bound on the
of the Affleck-Dine(AD) scalar during inflation more gen- magnitude of the AD scalar from scale-invariance of the
erally and in more detail. SUSY inflation models are broadlyadiabatic perturbations. We next discuss the isocurvature
of two types,D-term orF-term, depending on the source of perturbations, predicting their magnitude for the case where
the vacuum energy driving inflatiofi7]. D-term inflation the AD scalar and inflaton have initially large values and
models have the advantage that the inflaton does not receiveore generally obtaining a lower bound from the adiabatic

perturbation upper bound. In Sec. Il we consider the case of

F-term inflation, showing that when the CMB perturbations
*Email address: enqvist@pcu.helsinki.fi leave the horizon the AD scalar is likely to be close to the
TEmail address: mcdonald@physics.gla.ac.uk minimum of its potential and that the magnitude of the
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isocurvature perturbations is then fixed by the valueHof
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models, theB violating operators have even dimensiah,

during inflation. In Sec. IV we discuss our conclusions. In an=4, 6, ... . Wewill refer to thed=4 case as minimal AD

Appendix we briefly review Affleck-Dine baryogenesis.

Il. D-TERM INFLATION
A. Slow-roll dynamics of the Affleck-Dine scalar

D-term inflation[6] is a form of hybrid inflation[14],
driven by the energy density of a Fayet-llliopoulDsterm.

The inflatonSis coupled to fields oppositely charged under a

Fayet-llliopoulosU(1)g, via the superpotential term

W=\Sy, . ()
The tree-level scalar potential, including tb¢1)s, D-term,
is then

V:|)\|2(|¢+¢7|2+|S¢+|2+|S¢7|2)

2
+ (g =P+ @
where £ is the FI term andy is the U(1)g, coupling. The
global minimum of the potential is &=0, ¢, =0, ¢y_=¢.
However, forS>S;,;;=g&/\, the minimum is aty, =
=0 and there is a non-zero energy density=g2&*/2.
There will be anS potential, however, from 1-loop correc-
tions. Thus forS> S, the inflaton potential is given bj6]

SZ

@
whereQ is a renormalization scale for the radiative correc-
tion. £ is fixed by the observed CMB fluctuatioh5] to be
6.6x 10" GeV[16]. The total number oé-foldings of infla-
tion, N, remaining at a given value &when the potential is
dominated by the inflaton is related &by

g’

)

g'¢!
V(S)=V,+ an V, , (3

gN1/2M
T 2n

(4)

where M=Mp,/\/87 is the mass scale of supergravity
(SUGRA) corrections. The time when the observable CMB
perturbations were formed corresponds\ter 50.

The scalar potential for the AD fiel®d= ¢e'?/\/2 along
an F- and D-flat direction of dimensioml is given by

2| B[ D)

M 2(d=3) )

V(g)=

corresponding to a non-renormalizable superpotential ter
of the form W=\®9%dM9"2 lifting the flat direction. The
coupling \ is unknown, but if the physical strength of the
non-renomalizable interactions is set by the SUGRA shhle
then we expect that~1/(d—1)! [9]. In practice, the super-
potential term lifting the flat direction is also tlieandCP

violating operator responsible for AD baryogenesis, inducing

a baryon asymmetry in the coherently oscillatihgconden-
sate (see Appendix For the case oR-parity conserving

baryogenesis.

For large initial values otp, S~O(M), the dynamics is
first dominated by(¢). For sufficiently largeg the effec-
tive mass squared of thg field, V' (#), becomes larger than
H2. This occurs onceb> ¢, where

(6)

If ¢;>dy, ¢ will initially rapidly oscillate in its potential,
with an amplitude damped as=<a %M, wherea is the scale
factor[17]. However, this period will end before the onset of
inflaton domination and typically after less than 10
e-foldings of inflation. The system then enters the regime
where both¢ and S are slowly rolling.

The slow-rolling dynamics of the scalar fields is given by
the solution of

2(d-1)/2(d~2)
PH= (6(2d—2)(2d—3) V20D
X g2d=2)\y (d=4)/(d-2)

«Q

1/(d—2)
3

1/2

; V()

3M?

)

whereWV =S, ¢. By taking the ratio of the equations for
and S we obtain

d¢ 16m*(d—1)\*p*"¥s

JS 2d*294§4M 2(d-3) (8)
which has the general solution
$=hil1+agp?® (S-S,
167%(d—2)(d—1)\?
ag= , 9

2d—2M 2(d—3)g4§4

where¢; andS; are the initial values at the onset of inflation.
We observe two features of this solution. First, silgeds
large compared with the value 8fat N=50, we see that for

sufficiently large¢; the value of¢ at late times idixed by
S:
1 1/(2d—4) 1

This is true if ;> ¢, , otherwise¢ simply remains aip; .
econdly, we can relatg to the total number oé-foldings

rﬁuring theV(S) dominated period of inflation. In general, for

sufficiently large ¢»;, we could have an initial period of
V(¢) dominated inflation. We can show, however, that dur-
ing this periodS does not significantly change fro&. The
potential is dominated by (¢) once ¢> ¢5, where

\/EM(d—:%)/(d—l)(

g?é
bs= \ (d-1)

2

1/2(d-1)
1
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¢s is generally less thagy , therefore¢ will be slow roll-
ing duringV(S) domination.

From Eq.(9) we find that the condition fo& to change
significantly fromS; at a given value ofp is given by

1

a1/2

1)d—2
d

¢

S< (12

Thus the condition fo6to change significantly during(¢)
dominated inflation is given by Eq12) with ¢= ¢g,

2(d-2)/2(d-1) gd/(d=1) £2/(d= 1) (d=3)/(d—1)
A \L(d-1)

S<S§ ¢~
(13

SinceS; . is small compared wittv, whereas the value &
required to generate 50e-foldings of inflation, Sgg
=g/50M/(27) , is close toM, it follows that S, (>Ss)
will generally be larger thars,, and so the inflaton will
remain atS; until the Universe becomes inflaton dominated.
In this case the total number effoldings of inflation during
inflaton domination is given by Ng, where S
=(g/2r)NZ?M. Therefore, if¢;> ¢, , ¢ at N=~50 will be

given by

The dependence ONg is quite weak; for the case af=4
(d=6) Affleck-Dine baryogenesis,$, «Ng** (Ng*?).
Thus if there is not an extremely large numberedbldings
of inflation during inflaton domination compared with the

1 1/(d-2)

aq

2w
gMNE?

b

) 1/(2d—4)
(14
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By directly solving the slow-roll equations fap and S we
can show that the total number effoldings of inflation is
given by

2 2a2

S AT
SV S s
4(d-1) M2 g?m?

whereN, is the number o&-foldings duringV(¢) domina-
tion if ¢;>¢5. From this we see that thé(S) dominated
contribution to the total number @ foldings will dominate
if

1

~ 2(d- DD 40

Ns

SinceNg>50, this will be satisfied so long asis not very
small[for example, if\~1/(d—1)!]. In this case the value
of ¢ when the CMB perturbations are formed, which in turn
fixes the magnitude of the isocurvature perturbation, will be
determined by theéotal number ofe-foldings of inflation,
NT%NS'

B. Adiabatic perturbations from the Affleck-Dine scalar

The potential for the AD scalar is far from flat, and so if
the magnitude of the AD scalar is large it will cause a large
deviation of the adiabatic perturbation from scale-invariance.
This will impose an upper limit on the magnitude of the AD
scalar at 50e-foldings.

The deviations from scale-invariance are characterized by
the spectral index, defined so that the density perturbation of
present wave numbésis of the form&p/pock™ 1’2 on re-
entering the horizon, whell&]

n=1+27—6e. (19)

minimum N~50 necessary for the flathess of the Universe

(i.e. Sis not very large compared withl), we can essen-
tially fix the value of ¢, . In this case we will be able to

For the case of a single inflaton and € are given by the
standard expressiong,20]

predictthe magnitude of the baryonic isocurvature perturba-

tion.
It is interesting to speculate on the likely initial values of
¢ and S. The initial value ofSis likely to be arbitrary in

D-term inflation models, because the potential must be vergnd
flat even to values of the order of the Planck scale. This is

because, as noted abo is close to the Planck scale, in

which case we expect Planck scale suppressed superpotential

terms to become importan(This is the flatness problem of
D-term inflation model$9,10].) A flat potential can be main-
tained by imposing a symmetry dB (e.g. anR-symmetry

V"

= 2—S
n=M Ve (19

M2 [ V§\?
€= AR (20)

whereVg=V(S), Vg=4dV/3S, ... .In order to discuss the
influence of the AD scalar, we must generalize these expres-

[9,18)) to prevent these dangerous Planck suppresssed ternsons to the case of two scalar fields. For a potential of the

so eliminating any potental f& beyond the 1-loop logarith-

form V=V(S)+V(¢) we find that

mic term. In this case there is no obvious energy density

constraint on the initial value o8 For V(¢), the energy
density rapidly increases asapproache$/l. We might then
impose a “chaotic inflation” -type initial conditiony( ¢;)
~M* [19]. This would give

J2M

bi~ Nk (19

2

7= VAVE+ VAV,

(VEHV)V
2(Vi+ v;,,)(vgvg%v;;,v;f)
(VE+V)

(21)

and
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M2 (V&+ V:ﬁ)(Vé2+V’2 C. Isocurvature perturbations from the Affleck-Dine scalar

€= (VLt+ V)V 2V ' (22 Isocurvature perturbations of the baryon number arise
ST e from the AD scalar if the angular direction is effectively
masslessi.e. mass small compared with) during and after
inflation. The resulting perturbations will be unsuppressed
until the baryon number forms. This in turn requires that
1 there are no ordeH corrections to the SUSY-breaking
n=——— (23)  Aterms. In the effective softly broken MSSM at scateM,
2N suchA-terms can arise only from terms with linear couplings
of the inflaton superfield to gauge-invariant operators of
and MSSM superfieldsp;, for example,

For the case oD-term inflation, ifV,<Vg andV}<Vg,
we obtain the conventional results

o° 11 Fs
(24) o | PISWHH.c oWt H.c. (31)

€= .
327°N

(The main contribution to scale-dependence therefore comed

from #.) In general, deviation from scale-invariance due to

the AD scalar first arises wheviy,> Vg, with V;<Vg and 1 _

V,,<Vs being still satisfied. In this case we can expantb Mf d20d26Se] ¢+ H.c.~
obtain corrections to the conventioriadterm inflation case,

F&F 4, &
M

+Hec (32

" P In the case oD-term inflation, the inflaton cannot induce an

VS V¢V¢ . . . . . _ .

> M2 (25)  A-term either duringr after inflation, sincé=s=0 in general

Vs VgV§ [9]. More generally, if there is a symmetry preventing a lin-
ear coupling ofS then orderH A-terms can also be elimi-

Thus the deviation of the spectral index from scale invari-nated, even ir--term inflation models.

n~M?

ance due to the AD scalar is The baryon number from AD baryogenesis is generated at
H~mg,s,~100 GeV(wheremg,s, is the mass scale of the
2 :;V;sMZ gravity-mediated soft SUSY breaking terfil]), when the
Ang~————"—. (260  A-term can introduc® andCP violation into the coherently
VsVs oscillating AD scalaf4,5,22. If the phase of the AD scalar

o ] . relative to the real directioridefined by theA-term) is 6,
Requiring thatAn | <K (present CMB observations imply then the baryon number density(see Appendix
that n=1.2+0.3[15]; in the following we will useK <0.2

[7]) imposes an upper bound af nB%msusﬁ)gsm 20, (39
1/(4d—7)
b< ¢c=kd<— gP/4d=7))\ ~4/(4d=7) where ¢, is the amplitude of the coherent oscillationstHat
N ~Mgysy. Thus
X §8/(4d77)M(4d715)/(4d77), (27) 5”5 - 250 o
ng tan(26)’ (34
where
22(d-1) 1/(4d—7) 50 is generated as u_suaI by quantum fluctuations of the AD
kd:( (28) field at horizon crossing,
128m(d—1)%(2d—23)
H
For the case of minimal=4 Affleck-Dine baryogenesis we o0~ 270’ (35

obtain

corresponding to fluctuations of the AD scalar orthogonal to

1/9
¢C:0_5:< \%) (95N 4e8M) YO~ 10' Gev, (29) the radial direction. Thus
ong H

while for d=6 baryogenesis e mptan2d)’ (36)

117
—0.77 — 5\ ~4£8M Y17 1017 GeV. (30 The isocurvature perturbation of the CMB is then given by
be 7(\/N) (°A 7M7) (30) (2.23.24
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sl wl 2M 2v'(9) (also consistent with recent observations of high-redshift su-
a=|2= _(—) (37)  pernovad27]), Kanazaweet al. [24] conclude thata must
5 3\V(Stan20)¢ be less than 0.0¥.In addition, they show that the COBE-

P L ) normalized best fit to large-scale structusg) in a flat Uni-
whered’, is the perturbation in the photon energy density due,grse with expansion rate parameter0.7 (in accordance

to isocurvature perturbations arﬁ@ is the perturbation due \ith recent observationss given bya~0.03+0.01.(Large-
to adiabatic perturbations. For purely baryonic isocurvaturecale structure cannot be understood on the basis of CDM
perturbations with adiabatic perturbations aloneThis is exactly in the

Q range expected from minimal=4 AD baryogenesis in the
== (3g)  context ofD-term inflation. Thus isocurvature perturbations
QO from AD baryogenesis may already have been observed, al-
though this conclusion very much depends on accepting the
COBE normalization.

In any case, future CMB observations by the Microwave
Anisotropy Probe(MAP) will be able to probe down tar

(O]

where() is the ratio of the energy density in baryons to the
critical energy density and},, the corresponding ratio for
total matter density. For the case Dfterm inflation this

gives ~0.1, whilst Planckwith CMB polarization measurements
1 goM should be able to see isocurvature perturbations as small as
a=—— (39 0.04[29]. Thus for the case of minimaldE4) AD baryo-
67 pNY2tan26) genesis, if inflation i¥-term then there is a good chance that
Planck will be able to observe isocurvature perturbations.
whereN~50.

: ) For higher dimension AD baryogenesi$=6) it is less cer-
Introducing the upper bound o# from the requirement tain, but if ¢ is an order of magnitude below the upper bound

that the deviations from the spectral index due to the ADyom adiabatic perturbations we could still observe the
scalar are acceptably small then gives, der4, isocurvature perturbations.

All this assumes tha$ can take any value. This is true if

a>acz3-3“’(9)‘)4/9 (40)  $i<®x . in which cases remains at its initial valuep .
K¥%tan(26)’ However, we have seen that the dynamics of the AD field
during D-term inflation implies that if¢;> ¢, then ¢ will
and ford=6, equal¢, atN~50. In this case we can fix the magnitude of

the isocurvature perturbation. Fat=4, N~50 and (,,

_0-18w(g3)\)4/17 = 0.4 the magnitude of the isocurvature perturbation is given

a>a.= . 41)
c KYtan(26) ( by
L N 1/4( )\)1/2
The range ofQlg allowed by nucleosynthesis is 0.006 a=a %(0_17_1_03)(_5 9 _ (44)
=5=0.036[25], where we have taken expansion rate pa- * 50/ tan(26)

rameterh to be in the range 0£6h=<0.87[26]. Thus, for ) o
Q,=0.4(in keeping with supernova distance measurementéFor_Qm: 1 this should be multiplied by 0. 4Ford=6 and

[27]) andK =0.2 we obtain ford=4 QAn=0.4,
49 1/8 g3/4)\ 1/4
ac=(0.06—0.36)%, (42) a=a, ~(4.4<10 3_2.6x10 2)(% m
(45)
and ford=6
If g,A=0.1 then for thed=4 case we expectr, ~0.01
- (g3\)47 —0.1, which is likely to be observable, with the value of the
a.=(3.0<10 3—0-018tar(—20)- (43 isocurvature perturbation being about three times the lower

bound expected from the adiabatic perturbation. Fordhe
(The lower limits above should be multiplied by 0.4 for the =6 case the isocurvature perturbation may just be observ-
case),,=1. Thus if, for exampleg~\~0.1 and tan(2) gble if the baryon asymmetry is close to the upper bound
<1, we would obtain a lower bound=10"2 for d=4 and  imposed by nucleosynthesis agd\ and ¢ take on favour-
a=10"2for d=6. ably large and small values, respectively.

It is interesting to note that present observations of the It is important that we can fix the isocurvature perturba-
CMB combined with large-scale structure from cold darktion to be not much larger than the lower bound coming from
matter(CDM) require thate<0.1[23,24]. In particular, us-
ing Cosmic Background ExplordlCOBE) normalized per-
turbations combined with the value ofg (the rms of the  ikanazaweet al. define to be the ratio of the power spectra of
density field on a scale of S.Mﬂ)‘ﬁ'om x-ray observations of  the isocurvature to the adiabatic perturbation. This must be multi-
the local cluster together with the value of the shape paranplied by 16/25 in order to obtain values consistent with our defini-
eter "'~Q,,h=0.25-0.05 [28]) from the galaxy survey tion of « [29].
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adiabatic perturbations. This is because there is typically &his has the solution
very small range of values @b over which the isocurvature
perturbation is less than the present observational limit,
=<0.1, but larger than the adiabatic perturbation lower bound,
a=0.01 ford=4. If ¢ was more than an order of magnitude
below its adiabatic upper bound, we would expect to havelhus so long asit>1, i.e., there is a significant number of
seen the isocurvature perturbation already, and in generatfoldings of inflation beforeN~50, the AD field will be
there is no reason for the value ¢f to be close to the damped to be exponentially close to the minimum of its po-
adiabatic upper bound. However, we have shown that théential.
case wher&and ¢ have large initial valueg‘chaotic infla- In general, it is likely that the initial value @b will not be
tion” initial conditions) provides a natural explanation for a close to¢,,. However, we can show that deviation of the
small but potentially observable value of the isocurvatureadiabatic perturbation from scale-invariance imposes that the
perturbation. value of the potential all~50 cannot be very much larger
than¢,,. To see this, suppose thatis initially much larger
. F-TERM INFLATION than ¢, and consider the contribution @ to the spectral
index. During inflation the invariand= dp/(p+p) is given

2 Q2 : i _ H "
(i) the absence of ordé#? corrections to the mass squared by 5213/(¢ +S9. S|n.c2e ¢. \2”," not be slow-rolling [V"(¢)
terms of the AD scalar during inflation ard) the absence > H°] we must haves™- ¢ in order to have a nearly scale-

of orderH corrections to thed-terms both during and after Invariant spectrum. We can also assume that comes

inflation. As discussed in the Introduction, models based ofn0stly from quantum perturbations for ti¥field, as thes
F-term inflation must assume that the problem of ordér ~ field is_not effectively massless. Thereforgx[V(¢)

corrections to the mass squared of the inflaton has beett V(S))*%V'(S). The deviation from scale-invariance due

solved. In this case we can still have isocurvature perturbal® the ¢ field is then

tions associated with the Affleck-Dine scalaithere are no ,

orderH corrections to thé\-terms, which will be the case if An.—— 2dé_ 3V(4) ¢ 50
there is a symmetry forbidding a linear coupling of the infla- §dN  V(¢)+V(S) N

ton superfield to gauge-invariant operators made of MSSM

superfields, e.g., a discrete symme®s —S or anR sym-  FOr ¢>én, the ¢ field will be rapidly oscillating in its po-
metry. However, in the case &tterm inflation we expect in  tential and the change in the amplitude gf over an
general that the AD scalar will have an orde? mass €folding due to damping by expansion will beg/IN~
squared term during inflation. If this correction were positive — ¢- Therefore requiring thafAn /<K imposes an upper
in sign, the minimum of the potental would be =0 and  bound oné,

the AD field would be damped to be exponentially close to 12d-1)

¢=0 by the end of inflation, preventing AD baryogenesis. ¢<( Kd ) JZH Y- D (@-2)/e- 1)

Sp=6pe?Mt:  a= %( —3+9—4k). (49)

The results for the case @i-term inflation are based on

Thus the ordeH? correction must be negative. This wiik 6(d—1)\2
the value of the AD scalar during inflation to be at tie (51)
# 0 minimum of its potential, which is essentially fixed By
andd. This in turn will fix the magnitude of the isocurvature Thus
perturbation inF-term inflation.
During F-term inflation, the potential of the AD scalar is ) (d)lfz(d—l)

Kl/(2d—2)> ( \/me ) 1/(d—1)(d—2)

given by b6 U(2a—4) H
CH2¢2 (52)
Viotal( )= — 2 +V(e), (46)
Ford=4,
where V(¢) is the wusual potential from the non- 0.8/ M\ 6
renormalizible superpotential term ape:1. The minimum is_' - (53)
is at ¢m 4\ H ] 7
pd—2c | M4 while for d=6
(lsm: 5 (HZMZ(d_3))1/(2d_4). (47)
Let us first note that if¢ is close to ¢y, (|8¢|=|d ém  c¥8\ H ’

— ¢l = ¢m) then inflation will damps¢ to be close to zero.
The equation of motion for perturbations around the mini-where we have useld=0.2. Therefore for typical values of
mum is H during inflation, scale-invariance of the density perturba-
_ tions implies thatp at N~50 cannot be much more than an
5¢p+3HSp=—kH?25¢; k=(2d—4)c=1. (48 order of magnitude greater thah,. Since there is no reason
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for ¢ to be close to this upper limit wheM~50, it is most by Planck. To find precisely the expected limit one should
likely that ¢ will be close to¢,, when the CBR is formed. perform a simultaneous fit of all the relevant cosmological
Given that¢~ ¢, the isocurvature perturbation is given parameters to the simulated data. One should take properly
by into account the correlation between adiabatic and isocurva-
ture perturbations, as well as the degneracy between isocur-
2_(” L (55  Vvature and tensor perturbations, which can be resolved by the
3 tan20)6,¢m’ polarization datd29]. We should also like to point out the
AD isocurvature fluctuations are not Gaussian, a fact which
can be used to further constrain the amplitudes and hence
r‘\A‘D baryogenesis.
In the case of-term inflation, the value of the AD scalar
when the CMB goes beyond the horizon will most likely be
A2 112 at the minimum of its potential, as determined by the nega-
a=(3.1-18.6 X 1% U—(M) (56)  tive orderH? correction to its mass squared term. Thus if
c*an(26) there is an isocurvature perturbatiowhich is possible if
there are no ordet corrections to thé\-terms, which simply
requires that there is no linear coupling of tAsuperfield to

a~=

wheres,=38T/T~3x 10" is the value of the CBR energy
density perturbatiofil]. Therefore giverH andd, the value
of ¢, and so the magnitude of the isocurvature perturbatio
is essentially fixed. Fod=4 and(},,=0.4 we find

while for d=6

N\ V4 H\ 3/4 MSSM fields, its magnitude will be fixed bg and the value
a=(29-17T4HX10° ————— M) . (57  of H during inflation. Ford=4 (d=6) AD baryogenesis,
c%an(26) H=10"°M (10 “M) is necessary for the isocurvature per-

If we require thate=0.1 in order that the isocurvature per- turbations to be consistent with current observations (
=0.1). For reasonable values Hf the isocurvature pertur-

turbation has not been observed at present, these impose .
per bounds H/M=10"7/x (for d=4) and H/M LBjatlons can be large enough to be observable by Planck,

=10"5/\Y3 (for d=6). Thus for typical values of the although, unlike the case dd-term inflation, there is no

isocurvature perturbation in tHeterm inflation case can be str?/\r;g reason t? ec;gpect ob(ﬁ}%afle pgr;lurtpatlons. fod
close to present observational limits. € previously CISCusse -lerm inflation case 1o

=6 AD baryogenesis with the formation of late decaying
V. CONCLUSIONS Q-balls of baryon numbef30]. This variant of AD baryo-
' genesis, ‘B-ball Baryogenesis’[30,31,1§, is a natural pos-

We have considered the dynamics of an Affleck-Dine ScaSib“ity in the MSSM. In this case the baryonic isocurvature
lar in the MSSM in the context ob- and F-term inflation ~ perturbations ofi=6 AD baryogenesis are amplified by be-
models and the associated adiabatic and baryonic isocurvéld transferred to dark matter neutralinos via late decay of
ture perturbations. In the case Dfterm inflation, if the AD  the B-balls, and are naturally in the observable range. So
scalar is initially large(as one would expect if the fields Observation of isocurvature perturbations by Planck, com-
obeyed chaotic inflation-like initial conditionghen¢ at the ~ bined with the observation of a deviation of the adiabatic
time when the CMB goes beyond the horizon will be essenperturbation from scale invariance as predictedbyerm
tially fixed, with a weak dependence on the total number ofinflation, would indicate in the context of the MSSM either
e-foldings of inflation. In this case we can predict the mag-d=4 AD baryogenesfswith conventional thermal relic neu-
nitude of the isocurvature perturbation. bx4 AD baryo-  tralino dark mattef32] or d=6 AD baryogenesis with non-
genesis this will be typically in the range=0.01-0.1 and  thermal neutralino dark matter from late-decayiBeballs
is likely to be observable by Planck. This is also consistent31,33. . . .
with the valuea=0.03*+0.01 for which a mixed adiabatic Clearly the observation of isocurvature perturbations by
and isocurvature perturbation spectrum can account for largglanck, together with a deviation of the density perturbations
scale structure observations of, the shape parametdt from scale-invariance consistent witD-term inflation,
and the present expansion rat‘e;(l? (the latter |mp||es would have profound implications for both inflation and the
from I" that(),,~0.4, consistent with observations of type la 0rigin of the baryon asymmetry. Indeed, the fact that the
supernovag which cannot be understood on the basis ofexpected magnitude of the isocurvature perturbations from
adiabatic perturbations alone. Therefore isocurvature fluctugl=4 AD baryogenesis is consistent with present observa-
tions from D-term inflationti=4 AD baryogenesis may al- ftions of large-scale structure may already be indirectly tell-
ready have been indirectly observed. ing us something fundamental about the nature of inflation

More generally, deviation of the adiabatic perturbation@nd the baryon asymmetry, which hopefully will be clarified
from scale-invariance due to the AD scalar imposes an uppé"y direct observations of the denSIty perturbatlons by Planck.
bound on the magnitude of the AD scalar, which in turn
imposes a lower bound on the isocurvature perturbation. For
d=4 AD baryogenesis, the lower bound aris greater than  2in D-term inflation modelsi=4 AD baryogenesis can be pre-
0.01 for typical values of the unknown parameters, agairtvented by thermalization if thes_ field rapidly decays to MSSM
suggesting that the isocurvature perturbation can influencgelds[9]. This depends upon the coupling of tite andSfields to
large-scale structure formation and is likely to be observabléhe MSSM sector.
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At the very least, some forms of AD baryogenesis can bewill concentrate on the negativel? correction) The AD

ruled out by the forthcoming CMB observations. scalar sits at the minimum of its potential urtik~mg,s,, at
which time its mass squared term becomes dominated by the
ACKNOWLEDGMENTS gravity-mediated term and changes sign and the AD scalar

. , beings to coherently oscillate about its new minimum at
This work has been supported by the Academy of Finland,erg~ TheA-term is dependent upon the phase of the AD
under the contract 101-35224, the PPARIK) and by the  fig|q and so can induce andC P violation in the coherently
European Union TMR network ERBFMRX-CT-970122.  q¢illating AD field. In the absence of ordercorrections to
the A-terms, the initial phas@ of the AD field (relative to
APPENDIX: AFFLECK-DINE BARYOGENESIS the real direction as defined by teterm) is random and so
typically ~1. When the AD field starts to oscillate &t
~Mgsy, theA-term is of the same order of magnitude as the
mass squared term, and so #eéerm will cause the mass of
V(D) ~(m2 .~ cH?)|P|? the scalars along the real and imaginary direction to differ by

The full scalar potential along a flat direction of the
MSSM in the early Universe has the foifs,11]

i O(mgysy - As a result, these will oscillate with a phase dif-
A2 @[2@-D A NP ferenced~1. After a few expansion times, the amplitude of
2@ 3) a3 Hc.], (Al the oscillations will become damped by the expansion of the
p P Universe and theA-term, which is proportional to a large

where mg,s, is the gravity-mediated SUSY breaking mass power of ¢, will become negligible, so fixing th& asym-
term, typically of the order of 100 GeV. In both- and metry in the AD condensate. Tli2asymmetry is given by
F-term inflation, once inflation ends and the inflaton begins , .

to coherently oscillate about the minimum of its potential the ng=i(®'®-o'D). (A2)
AD scalar will have an ordeH? correction to its mass

squared term(In D-term inflation this is becauseg is non- ~ With ¢=(¢1_+i¢>2_)/\/§, where ¢,= ¢, cos@)sin(msf)
zero wherS#0 [9].) In order to have an unsuppressed value?Nd $2= ¢, Sin(@)sin(ms,sf+4), the baryon asymmetry is
of ¢ at H~mg,s,, the orderH? correction should be nega- therefore given by

tive. (In fact, in D-term inflation models, fotc| less than

about 0.5 it is possible to have a positi& correction and _ msusy‘ﬁi : :
X Ng~ ——/——Sin 20 siné. (A3)
still generate the observed baryon asymmgs4j. Here we 2
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