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Brane new world
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We study a Randall-Sundrum cosmological scenario consisting of a domain wall in anti–de Sitter space with
a strongly coupled largeN conformal field theory living on the wall. The AdS-CFT correspondence allows a
fully quantum mechanical treatment of this CFT, in contrast with the usual treatment of matter fields in
inflationary cosmology. The conformal anomaly of the CFT provides an effective tension which leads to a de
Sitter geometry for the domain wall. This is the analogue of Starobinsky’s four dimensional model of anomaly
driven inflation. Studying this model in a Euclidean setting gives a natural choice of boundary conditions at the
horizon. We calculate the graviton correlator using the Hartle-Hawking ‘‘no boundary’’ proposal and analyti-
cally continue to Lorentzian signature. We find that the CFT strongly suppresses metric perturbations on all but
the largest angular scales. This is true independently of how the de Sitter geometry arises, i.e., it is also true for
four dimensional Einstein gravity. Since generic matter would be expected to behave like a CFT on small
scales, our results suggest that tensor perturbations on small scales are far smaller than predicted by all
previous calculations, which have neglected the effects of matter on tensor perturbations.

PACS number~s!: 98.80.Hw, 04.50.1h, 04.62.1v
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I. INTRODUCTION

Randall and Sundrum~RS! have suggested@1# that four
dimensional gravity may be recovered in the presence o
infinite fifth dimension provided that we live on a doma
wall embedded in anti–de Sitter space~AdS!. Their linear-
ized analysis showed that there is a massless bound sta
the graviton associated with such a wall as well as a c
tinuum of massive Kaluza-Klein modes. More recently, l
earized analyses have examined the spacetime produce
matter on the domain wall and concluded that it is in clo
agreement with four dimensional Einstein gravity@2,3#.

RS used horospherical coordinates based on slicing
into flat hypersurfaces. These horospherical coordina
break down at the horizons shown in Fig. 1. An issue t
has not received much attention so far is the role of bound
conditions at these Cauchy horizons in AdS. With station
perturbations, one can impose the boundary conditions
the horizons remain regular. Indeed, without this bound
condition the solution for stationary perturbations is not w
defined. Even for non-perturbative departures from the
solution, like black holes, one can impose the boundary c
dition that the AdS horizons remain regular@4,5,2,6,7#. Non-
stationary perturbations on the domain wall, however, w
give rise to gravitational waves that cross the horizons. T
will tend to focus the null geodesic generators of the horiz
which will mean that they will intersect each other on som
caustic. Beyond the caustic, the null geodesics will not lie
the horizon. However, null geodesic generators of the fut
event horizon cannot have a future endpoint@8# and so the
endpoint must lie to the past. We conclude that if the p
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and future horizons remain non-singular when perturbed1 ~as
required for a well-defined boundary condition! then they
must intersect at a finite distance from the wall. By contra
the past and future horizons do not intersect in the RS gro
state but go off to infinity in AdS.

The RS horizons are like the horizons of extreme bla
holes. When considering perturbations of black holes,
normally assumes that radiation can flow across the fu
horizon but that nothing comes out of the past horizon. T
is because the past horizon isn’t really there, and should
replaced by the collapse that formed the black hole. To j
tify a similar boundary condition on the Randall-Sundru
past horizon, one needs to consider the initial conditions
the universe.

The main contender for a theory of initial conditions is t
‘‘no boundary’’ proposal2 @10# that the quantum state of th
universe is given by a Euclidean path integral over comp
metrics. The simplest way to implement this proposal for
Randall Sundrum idea is to take the Euclidean version of
wall to be a four sphere at which two balls of AdS5 are
joined together. In other words, take two balls in AdS5, and
glue them together along their four sphere boundaries.
result is topologically a five sphere, with a delta function
curvature on a four dimensional domain wall separating
two hemispheres. If one analytically continues to Lorentz
signature, one obtains a four dimensional de Sitter hyper
loid, embedded in Lorentzian anti–de Sitter space, as sh
in Fig. 2. The past and future RS horizons, are replaced
the past and future light cones of the points at the centre
the two balls. Note that the past and future horizons n
intersect each other and are non extreme, which means

1It has been shown that the Kaluza-Klein~KK ! modes of RS give
rise to singular horizons@9#.

2Other approaches to quantum cosmology in the RS model h
been discussed in@11,12#. Boundary conditions motivated by a Eu
clidean approach were also used in@3# for a flat domain wall.
©2000 The American Physical Society01-1
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S. W. HAWKING, T. HERTOG, AND H. S. REALL PHYSICAL REVIEW D62 043501
are stable to small perturbations. A perfectly spherical E
clidean domain wall will give rise to a four dimension
Lorentzian universe that expands forever in an inflation
manner.3

In order for a spherical domain wall solution to exist, t
tension of the wall must be larger than the value assume
RS, who had a flat domain wall. We shall assume that ma
on the wall increases its effective tension, permitting
spherical solution. In Sec. III, we consider a strongly coup
largeN conformal field theory~CFT! on the domain wall. On
a spherical domain wall, the conformal anomaly of the C
increases the effective tension of the domain wall, mak
the spherical solution possible. The Lorentzian geometry
de Sitter universe with the conformal anomaly drivin
inflation,4 an idea introduced long ago by Starobinsky@19#.

The no boundary proposal allows one to calculate una
biguously the graviton correlator on the domain wall. In p
ticular, the Euclidean path integral itself uniquely specifi
the allowed fluctuation modes, because perturbations
have infinite Euclidean action are suppressed in the path
tegral. Therefore, in this framework, there is no need to
pose by hand an additional, external prescription for
vacuum state for each perturbation mode. In addition,
AdS-CFT correspondence allows a fully quantum mecha
cal treatment of the CFT, in contrast with the usual class
treatment of matter fields in inflationary cosmology.

Finally, we analytically continue the Euclidean correlat
into the Lorentzian region, where it describes the spectr
of quantum mechanical vacuum fluctuations of the gravi
field on an inflating domain wall with conformally invarian
matter living on it. We find that the quantum loops of th
large N CFT give spacetime a rigidity that strongly su
presses metric fluctuations on small scales. Since any m
would be expected to behave like a CFT at small scales,

3Such inflationary brane-world solutions have been studied
@13–16,11#. For a discussion of other cosmological aspects of
RS model, see@17# and references therein.

4A similar idea was recently discussed within the context of ren
malization group flow in the AdS-CFT correspondence@18#. How-
ever, in that case the CFT was the CFT dual to the bulk A
geometry, not a new CFT living on the domain wall.

FIG. 1. Carter-Penrose diagram of anti–de Sitter space wi
flat domain wall. The dotted line denotes timelike infinity and t
arrows denote identifications. The heavy dots denote points a
finity. Note that the Cauchy horizons intersect at infinity.
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result probably extends to any inflationary model with su
ciently many matter fields. It has long been known that m
ter loops lead to short distance modifications of gravity. O
work shows that these modifications can lead to observa
consequences in an inflationary scenario.

Although we have carried out our calculations for the R
model, we shall show that results for four dimensional E
stein gravity coupled to the CFT can be recovered by tak
the domain wall to be large compared with the AdS sca
Thus our conclusion that metric fluctuations are suppres
holds independently of the RS scenario.

The spherical domain wall considered in this paper a
lytically continues to a Lorentzian de Sitter universe th
inflates forever. However, Starobinsky@19# showed that the
conformal anomaly driven de Sitter phase is unstable to e
lution into a matter dominated universe. If such a soluti
could be obtained from a Euclidean instanton then it wo
have anO(4) symmetry group, rather than theO(5) sym-
metry of a spherical instanton. We shall study such mod
for both the RS model and four dimensional Einstein grav
in a separate paper.

The AdS-CFT correspondence@20–22# provides an ex-
planation of the RS behavior5 @23#. It relates the RS model to
an equivalent four dimensional theory consisting of gene
relativity coupled to a strongly interacting conformal fie
theory and a logarithmic correction. Under certain circu
stances, the effects of the CFT and logarithmic term are n
ligible and pure gravity is recovered. We review this corr
spondence in Sec. II.

In Sec. III we present our calculation of the graviton co
relator on the instanton and demonstrate how the resu
continued to Lorentzian signature. Section IV contains o
conclusions and some speculations. This paper also inclu
two appendices which contain technical details that we h
omitted from the text.

II. RANDALL-SUNDRUM FROM AdS-CFT

The AdS-CFT correspondence@20–22# relates type IIB
supergravity theory in AdS53S5 to aN54 U(N) supercon-

n
e

-

S 5This was first pointed out in unpublished remarks of Maldace
and Witten.

a

n-

FIG. 2. Anti–de Sitter space with a de Sitter domain wall. Ad
is drawn as a solid cylinder, with the boundary of the cylind
~dashed line! representing timelike infinity. The light cone shown
the horizon. The arrows denote identifications.
1-2
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BRANE NEW WORLD PHYSICAL REVIEW D62 043501
formal field theory. IfgY M is the coupling constant of thi
theory then the ’t Hooft parameter is defined to bel
5gY M

2 N. The CFT parameters are related to the supergra
parameters by@20#

l 5l1/4l s , ~2.1!

l 3

G
5

2N2

p
, ~2.2!

wherel s is the string length,l the AdS radius andG the five
dimensional Newton constant. Note thatl and N must be
large in order for stringy effects to be small. The CFT liv
on the conformal boundary of AdS5. The correspondenc
takes the following form:

Z@h#[E d@g#exp~2Sgrav@g# !

5E d@f#exp~2SCFT@f;h# !

[exp~2WCFT@h# !, ~2.3!

here Z@h# denotes the supergravity partition function
AdS5. This is given by a path integral over all metrics
AdS5 which induce a given conformal equivalence class
metrics h on the conformal boundary of AdS5. The corre-
spondence relates this to the generating functionalWCFT of
connected Green’s functions for the CFT on this bounda
This functional is given by a path integral over the fields
the CFT, denoted schematically byf. Other fields of the
supergravity theory can be included on the left hand s
these act as sources for operators of the CFT on the r
hand side.

A problem with Eq.~2.3! as it stands is that the usu
gravitational action in AdS is divergent, rendering the pa
integral ill-defined. A procedure for solving this problem w
developed in@22,24–29#. First one brings the boundary int
a finite radius. Next one adds a finite number of counterte
to the action in order to render it finite as the boundary
moved back off to infinity. These counterterms can be
pressed solely in terms of the geometry of the boundary.
total gravitational action for AdSd11 becomes

Sgrav5SEH1SGH1S11S21•••. ~2.4!

The first term is the usual Einstein-Hilbert action6 with a
negative cosmological constant:

SEH52
1

16pGE dd11xAgS R1
d~d21!

l 2 D ~2.5!

the overall minus sign arises because we are consideri
Euclidean theory. The second term in the action is

6We use a positive signature metric and a curvature conven
for which a sphere has positive Ricci scalar.
04350
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Gibbons-Hawking boundary term, which is necessary fo
well-defined variational problem@30#:

SGH52
1

8pGE ddxAhK, ~2.6!

where K is the trace of the extrinsic curvature of th
boundary7 andh the determinant of the induced metric. Th
first two counterterms are given by the following@26–29#
~we use the results of@29# rotated to Euclidean signature!:

S15
d21

8pGlE ddxAh, ~2.7!

S25
l

16pG~d22!
E ddxAhR,

~2.8!

whereR now refers to the Ricci scalar of the boundary m
ric. The third counterterm is

S35
l 3

16pG~d22!2~d24!
E ddxAhS Ri j R

i j 2
d

4~d21!
R2D ,

~2.9!

where Ri j is the Ricci tensor of the boundary metric an
boundary indicesi , j are raised and lowered with the boun
ary metrichi j . This expression is ill-defined ford54, which
is the case of most interest to us. With just the first tw
counterterms, the gravitational action exhibits logarithmic
vergences@24–26# so a third term is needed. This term ca
not be written solely in terms of a polynomial in scalar i
variants of the induced metric and curvature tensors
makes explicit reference to the cutoff~i.e. the finite radius to
which the boundary is brought before taking the limit
which it tends to infinity!. The form of this term is the sam
as Eq.~2.9! with the divergent factor of 1/(d24) replaced
by log(R/r), whereR measure the boundary radius andr is
some finite renormalization length scale.

Following @23#, we can now use the AdS-CFT correspo
dence to explain the behavior discovered by Randall
Sundrum. The~Euclidean! RS model has the following ac
tion:

SRS5SEH1SGH12S11Sm . ~2.10!

Here 2S1 is the action of a domain wall with tension (d
21)/(4pGl). The final term is the action for any matte
present on the domain wall. The domain wall tension c
cancel the effect of the bulk cosmological constant to p
duce a flat domain wall. However, we are interested in
spherical domain wall so we assume that the matter on
wall gives an extra contribution to the effective tension. W

n

7Our convention is the following. Letn denote the outward uni
normal to the boundary. The extrinsic curvature is defined asKmn

5hm
r hn

s¹rns , where hm
n 5dm

n 2nmnn projects quantities onto the
boundary.
1-3
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S. W. HAWKING, T. HERTOG, AND H. S. REALL PHYSICAL REVIEW D62 043501
shall discuss a specific candidate for the matter on the
later on. The wall separates two ballsB1 andB2 of AdS.

We want to study quantum fluctuations of the metric
the domain wall. Letg0 denote the five dimensional back
ground metric we have just described andh0 the metric it
induces on the wall. Leth denote a metric perturbation o
the wall. If we wish to calculate correlators ofh on the
domain wall then we are interested in a path integral of
form8

^hi j ~x!hi 8 j 8~x8!&5E d@h#Z@h#hi j ~x!hi 8 j 8~x8!,

~2.11!

where

Z@h#5E
B1øB2

d@dg#d@f#exp~2SRS@g01dg# !

5exp~22S1@h01h# !E
B1øB2

d@dg#d@f#

3exp~2SEH@g01dg#

2SGH@g01dg#2Sm@f;h01h# !, ~2.12!

dg denotes a metric perturbation in the bulk that approac
h on the boundary andf denotes the matter fields on th
domain wall. The integrals in the two balls are independ
so we can replace the path integral by

Z@h#5exp~22S1@h01h# !

3S E
B
d@dg#exp~2SEH@g01dg#2SGH@g01dg# ! D 2

3E d@f#exp~2Sm@f;h01h# !, ~2.13!

whereB denotes either ball. We now taked54 and use the
AdS-CFT correspondence~2.3! to replace the path integra
over dg by the generating functional for a conformal fie
theory:

E
B
d@dg#exp~2SEH@g01dg#2SGH@g01dg# !

5exp~2WRS@h01h#1S1@h01h#

1S2@h01h#1S3@h01h# !, ~2.14!

we shall refer to this CFT as the RS CFT since it arises as
dual of the RS geometry. It has gauge groupU(NRS), where

8In principle, we should worry about gauge fixing and ghost co
tributions to the gravitational action. A convenient gauge to use
the bulk is transverse traceless gauge. We shall only deal with
ric perturbations that also appear transverse and traceless o
domain wall. The gauge fixing terms vanish for such perturbati
and the ghosts only couple to these perturbations at higher ord
04350
ll

e

s

t

e

NRS is given by Eq.~2.2!. Strictly speaking, we are using a
extended form of the AdS-CFT conjecture, which asserts
supergravity theory in a finite region of AdS is dual to a CF
on the boundary of that region with an ultraviolet cuto
related to the radius of the boundary.9 The path integral for
the metric perturbation becomes

Z@h#5exp~22WRS@h01h#12S2@h01h#

12S3@h01h# !E d@f#exp~2Sm@f;h01h# !.

~2.15!

The RS model has been replaced by a CFT and a couplin
matter fields and the domain wall metric given by the act

22S2@h01h#22S3@h01h#1Sm@f;h01h#. ~2.16!

The remarkable feature of this expression is that the te
22S2 is precisely the~Euclidean! Einstein-Hilbert action for
four dimensionalgravity with a Newton constant given b
the RS value

G45G/ l . ~2.17!

Therefore the RS model is equivalent to four dimensio
gravity coupled to a CFT with corrections to gravity comin
from the third counterterm. This explains why gravity
trapped to the domain wall.

At first sight this appears rather amazing. We started
with a quite complicated five dimensional system and ha
argued that it is dual to four dimensional Einstein grav
with some corrections and matter fields. However in orde
use this description, we have to know how to calculate w
the RS CFT. At present, the only way we know of doing th
is via AdS-CFT, i.e., going back to the five dimension
description. The point of the AdS-CFT argument is to e
plain why the RS ‘‘alternative to compactification’’ work
and also to explain the origin of the corrections to Einst
gravity in the RS model. Note that if the matter on the d
main wall dominates the RS CFT and the third counterte
then these can be neglected and a purely four dimensi
description is adequate.

III. CFT ON THE DOMAIN WALL

A. Introduction

Long ago, Starobinsky studied the cosmology of a u
verse containing conformally coupled matter@19#. CFTs
generally exhibit a conformal anomaly when coupled
gravity ~for a review, see@32#!. Starobinsky gave a de Sitte
solution in which the anomaly provides the cosmologic
constant. By analyzing homogeneous perturbations of
model, he showed that the de Sitter phase is unstable
could be long lived, eventually decaying to a Friedman
Robertson-Walker~FRW! cosmology.-

n
t-

the
s
rs.

9Evidence in support of this extended version of the duality w
given in @31#.
1-4
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BRANE NEW WORLD PHYSICAL REVIEW D62 043501
In this section we will consider the RS analogue of St
obinsky’s model by putting a CFT on the domain wall. On
spherical domain wall, the conformal anomaly provides
extra tension required to satisfy the Israel equations. I
appealing to choose the new CFT to be aN54 superconfor-
mal field theory because then the AdS-CFT corresponde
makes calculations relatively easy.10 This requires that the
CFT is strongly coupled, in contrast with Starobinsky
analysis.11

Our five dimensional~Euclidean! action is the following:

S5SEH1SGH12S11WCFT . ~3.1!

We seek a solution in which two balls of AdS5 are separated
by a spherical domain wall. Inside each ball, the metric c
be written

ds25 l 2~dy21sinh2 ydVd
2!, ~3.2!

with 0<y<y0. The domain wall is aty5y0 and has radius

R5 l sinhy0 . ~3.3!

The effective tension of the domain wall is given by t
Israel equations as

se f f5
3

4pGl
cothy0 . ~3.4!

The actual tension of the domain wall is

s5
3

4pGl
. ~3.5!

We therefore need a contribution to the effective tens
from the CFT. This is provided by the conformal anoma
which takes the value@24–26#

^T&52
3N2

8p2R4
. ~3.6!

This contributes an effective tension2^T&/4. We can now
obtain an equation for the radius of the domain wall:

R3

l 3
AR2

l 2
115

N2G

8p l 3
1

R4

l 4
. ~3.7!

It is easy to see that this has a unique positive solution foR.
We shall derive this equation directly from the action in S
III C.

10We emphasize that this use of the AdS-CFT correspondenc
independent of the use described above because this new C
unrelated to the RS CFT.

11Note that the conformal anomaly is the same at strong and w
coupling @25# so any differences arising from strong coupling c
only show up when we perturb the system.
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We are particularly interested in how perturbations of t
model would appear to inhabitants of the domain wall. Th
we are interested in metric perturbations on the sphere

ds25~R2ĝ i j 1hi j !dxidxj . ~3.8!

Here ĝ i j is the metric on a unitd-sphere. We shall only
considertensorperturbations, for whichhi j is transverse and
traceless with respect toĝ i j . In order to calculate correlator
of the metric perturbation, we need to know the action
second order in the perturbation. The most difficult part h
is obtainingWCFT to second order. This is the subject of th
next subsection.

B. CFT generating function

We want to work out the effect of the perturbation on t
CFT on the sphere. To do this we use AdS-CFT. Introduc
fictional AdS region that fills in the sphere. Letl̄ ,Ḡ be the
AdS radius and Newton constant of this region. We emp
size that this region has nothing to do with the regions
AdS that ‘‘really’’ lie inside the sphere in the RS scenari
This new AdS region is bounded by the sphere. If we takl̄
to zero then the sphere is effectively at infinity in AdS so w
can use AdS-CFT to calculate the generating functiona
the CFT on the sphere. In other words,l̄ is acting like a
cutoff in the CFT and taking it to zero corresponds to remo
ing the cutoff. However the relation

l̄ 3

Ḡ
5

2N2

p
, ~3.9!

implies that if l̄ is taken to zero then we must also takeḠ to
zero sinceN is fixed ~and large!.

For the unperturbed sphere, the metric in the new A
region is

ds25 l̄ 2~dy21sinh2 yĝ i j dxidxj !, ~3.10!

and the sphere is aty5y0 given by R5 l̄ sinhy0. Note that
y0→` as l̄ →0 sinceR is fixed. In order to use AdS-CFT fo
the perturbed sphere, we need to know how the perturba
extends into the bulk. This is done by solving the lineariz
Einstein equations. It is always possible to choose a gaug
which the bulk metric perturbation takes the form

hi j ~y,x!dxidxj , ~3.11!

wherehi j is transverse and traceless with respect to the m
ric on the spherical spatial sections:

ĝ i j ~x!hi j ~y,x!5¹̂ ihi j ~y,x!50, ~3.12!

with ¹̂ denoting the covariant derivative defined by the m
ric ĝ i j . Since we are only dealing with tensor perturbatio
this choice of gauge is consistent with the boundary sitting
constanty. If scalar metric perturbations were included th

is
is

ak
1-5
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S. W. HAWKING, T. HERTOG, AND H. S. REALL PHYSICAL REVIEW D62 043501
we would have to take account of a perturbation in the
sition of the boundary. These issues are discussed in det
Appendix A.

The linearized Einstein equations in the bulk are~for any
dimension!

¹2hmn52
2

l̄ 2
hmn , ~3.13!

wherem,n ared11 dimensional indices. It is convenient t
expand the metric perturbation in terms of tensor spher
harmonicsHi j

(p)(x). These obey

ĝ i j Hi j
(p)~x!5¹̂ iHi j

(p)~x!50, ~3.14!

and they are tensor eigenfunctions of the Laplacian:

¹̂2Hi j
(p)5„22p~p1d21!…Hi j

(p) , ~3.15!

where p52,3, . . . . We have suppressed extra labe
k,l ,m, . . . on these harmonics. The harmonics are orthon
mal with respect to the obvious inner product. See Appen
B and @33# for more details of their properties. The metr
perturbation can be written as a sum of separable pertu
tions of the form

hi j ~y,x!5 f p~y!Hi j
(p)~x!. ~3.16!

Substituting this into Eq.~3.13! gives

f p9~y!1~d24!cothy fp8~y!2„2~d22!

1@p~p1d21!12~d23!#cosech2 y…f p~y!50.

~3.17!

The roots of the indicial equation arep12 and2p2d13,
yielding two linearly independent solutions for eachp. In
order to compute the generating functionalWCFT we have to
calculate the Euclidean action of these solutions. Howe
because the latter solution goes asy2(p1d23) at the origin
y50 of the instanton, the corresponding fluctuation mod
have infinite Euclidean action.12 Hence they are suppresse
in the path integral. Therefore, in contrast to other meth
@2,3# where one requires a~ratherad hoc! prescription for the
vacuum state of each perturbation mode, there is no nee
impose boundary conditions by hand in our approach:
Euclidean path integral defines its own boundary conditio
which automatically gives a unique Green function. The p
integral unambiguously specifies the allowed fluctuat
modes as those which vanish aty50. Note that boundary
conditions at the origin in Euclidean space replace the n

12This can be seen by surrounding the origin by a small sph
y5e and calculating the surface terms in the actions that arise
this sphere. They are the same as the surface terms in Eqs.~3.25!
and ~3.26! below, which are obviously divergent for the modes
question.
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for boundary conditions at the horizon in Lorentzian spa
The solution regular aty50 is given by

f p~y!5
sinhp12 y

coshp y
F„p/2,~p11!/2,p1~d11!/2,tanh2 y….

~3.18!

This solution can also be written in terms of associated L
endre functions:

f p~y!}~sinhy!(52d)/2P2(d11)/2
2„p1(d21)/2…~coshy!

}~sinhy!(42d)/2Qp1(d22)/2
d/2 ~cothy!, ~3.19!

and the latter can be related to Legendre functions ifd/2 is
an integer, using

Qn
m~z!5~z221!m/2

dmQn

dzm
. ~3.20!

The full solution for the metric perturbation is

hi j ~y,x!5(
p

f p~y!

f p~y0!
Hi j

(p)~x!E ddx8Aĝhkl~x8!Hkl
(p)~x8!.

~3.21!

We have a solution for the metric perturbation througho
the bulk region. The AdS-CFT correspondence can now
used to give the generating functional of the CFT on
perturbed sphere:

WCFT5SEH1SGH1S11S21•••. ~3.22!

We shall give the terms on the right hand side ford54.
The Einstein-Hilbert action with cosmological constant

SEH52
1

16pḠ
E d5xAgS R1

12

l̄ 2 D , ~3.23!

and perturbing this gives

Sbulk52
1

16pḠ
E d5xAg

3S 2
8

l̄ 2
1

1

4
hmn¹2hmn1

1

2 l̄ 2
hmnhmnD

2
1

16pḠ
E d4xAgS 2

1

2
nmhnr¹nhmr

1
3

4
hnrnm¹mhnrD , ~3.24!

where Greek indices are five dimensional and we are rais
and lowering with the unperturbed five dimensional metr
n5 ldy is the unit normal to the boundary and¹ is the
covariant derivative defined with the unperturbed bulk m
ric. g i j 5R2ĝ i j is the unperturbed boundary metric. It is im

re
n
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portant to keep track of all the boundary terms arising fr
integration by parts. Evaluating on shell gives

SEH5
l̄ 3

2pḠ
E d4xAĝE

0

y0
dy sinh4 y

2
l̄ 3

16pḠ
E d4xAĝS 3

4 l̄ 4
hi j ]yhi j 2

cothy0

l̄ 4
hi j hi j D ,

~3.25!

where we are now raising and lowering withĝ i j . The
Gibbons-Hawking term is

SGH52
l̄ 3

2pḠ
E d4xAĝS sinh3 y0 coshy02

1

8 l̄ 4
hi j ]yhi j D .

~3.26!

The first counterterm is

S15
3

8pḠ l̄
E d4xAg

5
3 l̄ 3

8pḠ
E d4xAĝS sinh4 y02

1

4 l̄ 4
hi j hi j D . ~3.27!

The second counterterm is

S25
l̄

32pḠ
E d4xAgR

5
l̄ 3

32pḠ
E d4xAĝS 12 sinh2 y02

2

l̄ 4 sinh2 y0

hi j hi j

1
1

4 l̄ 4 sinh2 y0

hi j ¹̂2hi j D . ~3.28!

Thus with only two counterterms we would have

WCFT5
3N2V4

8p2
log

R

l̄
2

l̄ 3

16pḠ
E d4xAĝS 2

1

4 l̄ 4
hi j ]yhi j

1
1

l̄ 4
hi j hi j S 3

2
2A11

l̄ 2

R2D 1
1

l̄ 2R2
hi j hi j

2
1

8 l̄ 2R2
hi j ¹̂2hi j D . ~3.29!

V4 is the area of a unit four-sphere and we have used
~3.9!. The expansion of]yhi j at y5y0 is obtained from

]yhi j 5(
p

f p8~y0!

f p~y0!
Hi j

(p)~x!E d4x8Aĝhkl~x8!Hkl
(p)~x8!

~3.30!

and
04350
q.

f p8~y0!

f p~y0!
521

l̄ 2

2R2
~p11!~p12!1p~p11!~p12!~p13!

3
l̄ 4

4R4
log~ l̄ /R!1

l̄ 4

8R4
@p412p325p2210p22

2p~p11!~p12!~p13!„c~1!1c~2!2c~p/2

12!2c~p/215/2!…#1OS l̄ 6

R6
log~ l̄ /R!D . ~3.31!

The psi function is defined byc(z)5G8(z)/G(z). Substitut-
ing into the action we find that the divergences asl̄ →0
cancel at orderR4/ l̄ 4 andR2/ l̄ 2. The term of orderl̄ 4/R4 in
the above expansion makes a contribution to the finite par
the action@along with a term from the square root in E
~3.29!#:

WCFT5
3N2V4

8p2
log

R

l̄

1
N2

256p2R4 (
p

S E d4x8Aĝhkl~x8!Hkl
(p)~x8! D 2

3„2p~p11!~p12!~p13!log~ l̄ /R!1C~p!…,

~3.32!

where

C~p!5p~p11!~p12!~p13!@c~p/215/2!

1c~p/212!2c~2!2c~1!#

1p412p325p2210p26. ~3.33!

To cancel the logarithmic divergences asl̄ →0, we have to
introduce a length scaler defined byl̄ 5er and add a coun-
terterm proportional to loge to cancel the divergence ase
tends to zero. The counterterm is

S352
l̄ 3

64pḠ
logeE d4xAgS g ikg j l Ri j Rkl2

1

3
R2D

52
l̄ 3

64pḠ
logeE d4xAĝS 2121

1

R4 F2hi j hi j

2
3

2
hi j ¹̂2hi j 1

1

4
hi j ¹̂4hi j G D . ~3.34!

This term does indeed cancel the logarithmic divergen
leaving us with
1-7
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WCFT5
3N2V4

8p2
log

R

r
1

N2

256p2R4

3(
p

S E d4x8Aĝhkl~x8!Hkl
(p)~x8! D 2

3„2p~p11!~p12!~p13!log~r/R!1C~p!….

~3.35!

Note that varyingWCFT twice with respect tohi j yields the
expression for the transverse traceless part of the corre
^Ti j (x)Ti 8 j 8(x8)& on a round four sphere. At largep, this
behaves likep4 log p, as expected from the flat space res
@21#. In fact this correlator can be determined in closed fo
solely from the trace anomaly and symmet
considerations.13 However, we shall be be interested in ca
culating cosmologically observable effects, for which o
mode expansion is more useful.

C. The total action

Recall that our five dimensional action is

S5SEH1SGH12S11WCFT . ~3.36!

In order to calculate correlators of the metric, we need
evaluate the path integral

Z@h#5E
B1øB2

d@dg#exp~2S!

5exp~22S1@h01h#2WCFT@h01h# !

3S E
B
d@dg#exp~2SEH@g01dg#2SGH@g01dg# ! D 2

.

~3.37!

Hereg0 andh0 refer to the unperturbed background metr
in the bulk and on the wall respectively andh denotes the
metric perturbation on the wall. Many of the terms requir
here can be obtained from results in the previous section
simply replacingl̄ and Ḡ with l and G. For example, from
Eq. ~3.27! we obtain

S1@h01h#5
3l 3

8pGE d4xAĝS sinh4 y02
1

4l 4
hi j hi j D , ~3.38!

wherey0 is defined byR5 l sinhy0. The path integral over
dg is performed by splitting it into a classical and quantu
part:

dg5h1h8, ~3.39!

where the boundary perturbationh is extended into the bulk
using the linearized Einstein equations and the requirem

13See@34# for a general discussion of such correlators on ma
mally symmetric spaces.
04350
tor

t

r

o

y

nt

of finite Euclidean action, i.e.,h is given in the bulk by Eq.
~3.21!. h8 denotes a quantum fluctuation that vanishes at
domain wall. The gravitational action splits into separa
contributions from the classical and quantum parts:

SEH1SGH5S0@h#1S8@h8#, ~3.40!

whereS0 can be read off from Eqs.~3.25! and ~3.26! as

S052
3l 3V4

2pG E
0

y0
dy sinh2 y0 cosh2 y0

1
l 3

16pGE d4xAĝS 1

4l 4
hi j ]yhi j 1

cothy0

l 4
hi j hi j D .

~3.41!

Note thatS8 cannot be converted to a surface term sinceh8
does not satisfy the Einstein equations. We shall not need
explicit form for S8 since the path integral overh8 just con-
tributes a factor of some determinantZ0 to Z@h#. We obtain

Z@h#5Z0exp~22S0@h01h#22S1@h01h#2WCFT@h01h# !.
~3.42!

The exponent is given by

2S012S11WCFT

52
3l 3V4

pG E
0

y0
dy sinh2 y cosh2 y

1
3V4R4

4pGl
1

3N2V4

8p2
log

R

r

1
1

l 4 (
p

S E d4x8Aĝhkl~x8!Hkl
(p)~x8! D 2

3F l 3

32pG S f p8~y0!

f p~y0!
14 cothy026D 1

N2

256p2 sinh4 y0

3„2p~p11!~p12!~p13!log~r/R!1C~p!…G .

~3.43!
We have kept the unperturbed action in order to dem

strate how the conformal anomaly arises: it is simply t
coefficient of the log(R/r) term divided by the areaV4R4 of
the sphere. If we set the metric perturbation to zero and v
R in Eq. ~3.43! ~using R5 l sinhy0) then we reproduce Eq
~3.7!.

Having calculatedR, we can now choose a convenie
value for the renormalization scaler. If we were dealing
purely with the CFT then we could keepr arbitrary. How-
ever, since the third counterterm@Eq. ~3.34!# involves the
square of the Weyl tensor~the integrand is proportional to
the difference of the Euler density and the square of
Weyl tensor!, we can expect pathologies to arise if this ter
is present when we couple the CFT to gravity. In oth

-

1-8
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words, when coupled to gravity, different choices ofr lead
to different theories. We shall choose the valuer5R so that
the third counter term exactly cancels the divergence in
CFT, with no finite remainder and hence no residual cur
ture squared terms in the action.

The ~Euclidean! graviton correlator can be read off from
the action as

^hi j ~x!hi 8 j 8~x8!&5
128p2R4

N2 (
p52

`

Wi ji 8 j 8
(p)

~x,x8!F~p,y0!21

~3.44!

where we have eliminatedl 3/G using Eq.~3.7!. The function
F(p,y0) is given by

F~p,y0!5ey0 sinhy0S f p8~y0!

f p~y0!
14 cothy026D 1C~p!,

~3.45!

and the bitensorWi ji 8 j 8
(p) (x,x8) is defined as

Wi ji 8 j 8
(p)

~x,x8!5 (
k,l ,m, . . .

Hi j
(p)~x!Hi 8 j 8

(p)
~x8!, ~3.46!

with the sum running over all the suppressed lab
k,l ,m, . . . of the tensor harmonics.

The appearance ofN2 in the denominator in Eq.~3.44!
suggests that the CFT suppresses metric perturbations o
scales. This is misleading becauseR also depends onN. The
function F(p,y0) has the following limiting forms for large
and small radius:

lim
y0→`

F~p,y0!5C~p!1p213p16, ~3.47!

lim
y0→0

F~p,y0!5C~p!1p16. ~3.48!

F(p,y0) has poles atp524,25,26, . . . with zeros be-
tween each pair of negative integers starting at23,24.
When we analytically continue to Lorentzian signature,
shall be particularly interested in zeros lying in the rangep
>23/2. There is one such zero exactly atp50, another near
p50 and a third nearp523/2. For large radius, these ext
zeros are atp'20.054 andp'21.48 while for small radius
they are atp'0.094 andp'21.60. For intermediate radiu
they lie between these values, with the zeros cross
through23/2 and 0 aty0'0.632 andy0'1.32 respectively.

D. Comparison with four dimensional gravity

We discussed in Sec. II how the RS scenario reprodu
the predictions of four dimensional gravity when the effe
of matter on the domain wall dominates the effects of the
CFT. In our case we have a CFT on the domain wall. T
has action proportional toN2. The RS CFT is a similar CFT
~but with a cutoff! and therefore has action proportional
NRS

2 . Hence we can neglect it whenN@NRS. The logarith-
mic counterterm is also proportional toNRS

2 and therefore
also negligible. We therefore expect the predictions of fo
04350
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dimensional gravity to be recovered whenN@NRS. We
shall now demonstrate this explicitly.

First consider the radiusR of the domain wall given by
Eq. ~3.7!. It is convenient to write this in terms of the ran
NRS of the RS CFT~given by l 3/G52NRS

2 /p)

R3

l 3
AR2

l 2
115

N2

16NRS
2

1
R4

l 4
. ~3.49!

If we assumeN@NRS@1 then the solution is

R

l
5

N

2A2NRS
F11

NRS
2

N2
1O~NRS

4 /N4!G . ~3.50!

Note that this impliesR@ l , i.e., the domain wall is large
compared with the anti–de Sitter length scale.

Now let’s turn to a four dimensional description in whic
we are considering a four sphere with no interior. The o
matter present is the CFT. The metric is simply

ds25R4
2ĝ i j dxidxj , ~3.51!

whereR4 remains to be determined. The action is the fo
dimensional Einstein-Hilbert action~without cosmological
constant! together with WCFT . There is no Gibbons-
Hawking term because there is no boundary. Without a m
ric perturbation, the action is simply

S52
1

16pG4
E d4xAgR1WCFT

52
3V4R4

2

4pG4
1

3N2V4

8p2
log

R4

r
, ~3.52!

whereG4 is the four dimensional Newton constant. We wa
to calculate the value ofR4 so we cannot chooser5R4 yet.
Varying R4 gives

R4
25

N2G4

4p
, ~3.53!

andN is large henceR4 is much greater than the four dimen
sional Planck length. SubstitutingG45G5 / l , this reproduces
the leading order value forR found above from the five di-
mensional calculation.

We can now go further and include the metric perturb
tion. The perturbed four dimensional Einstein-Hilbert acti
is

SEH
(4)52

1

16pG4
E d4xAĝ

3S 12R4
22

2

R4
2

hi j hi j 1
1

4R4
2

hi j ¹̂2hi j D . ~3.54!
1-9
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Adding the perturbed CFT gives

S52
3N2V4

16p2
1

3N2V4

8p2
log

R4

r

1(
p

S E d4x8Aĝhkl~x8!Hkl
(p)~x8! D 2

3F 1

64pG4R4
2 ~p213p16!1

N2

256p2R4
4
„2p~p11!

3~p12!~p13!log~r/R4!1C~p!…G . ~3.55!

Settingr5R4, we find that the graviton correlator for a fou
dimensional universe containing the CFT is

^hi j ~x!hi 8 j 8~x8!&58N2G4
2(

p52

`

Wi ji 8 j 8
(p)

~x,x8!@p213p16

1C~p!#21. ~3.56!

This can be compared with the expression obtained from
five dimensional calculation, which can be written

^hi j ~x!hi 8 j 8~x8!&

5
8N2G2

l 2
@11O~NRS

2 /N2!# (
p52

`

Wi ji 8 j 8
(p)

~x,x8!

3@p213p161C~p!14p~p11!~p12!~p13!

3~NRS
2 /N2!log~NRS/N!1O~NRS

2 /N2!#21. ~3.57!

We have expanded in terms of

NRS
2

N2
5

p l 3

2N2G
. ~3.58!

The four and five dimensional expressions clearly agree~for
G45G/ l ) whenN@NRS, i.e.,R@ l . There are corrections o
order (NRS

2 /N2)log(NRS/N) coming from the RS CFT and th
logarithmic counterterm. In fact, these corrections can be
sorbed into the renormalization of the CFT on the dom
wall if, instead of choosingr5R, we choose

r5RS 12
2NRS

2

N2
log~NRS/N!D . ~3.59!

The corrections to the four dimensional expression are t
of order NRS

2 /N2. We shall not give these correction term
explicitly although they are easily obtained from the ex
result ~3.44!.
04350
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E. Lorentzian correlator

In this subsection we shall show how the Euclidean c
relator calculated above is analytically continued to give
correlator for Lorentzian signature. We have put many of
details in Appendix B but the analysis is still rather technic
so the reader may wish to skip to the final result, which
given in Eq. ~3.66!. The techniques used here were dev
oped in@35–37#.

Let us first introduce a new labelp85 i (p13/2), so that
on the four sphere

¹̂2Hi j
(p8)5lp8Hi j

(p8) , ~3.60!

wherep857i /2,9i /2, . . . and

lp85~p82117/4!. ~3.61!

Recall that there are extra labels on the tensor harmonics
we have suppressed. The set of rank-two tensor eigenm
on S4 forms a representation of the symmetry group of t
manifold. Hence the sum@Eq. ~B2!# of the degenerate eigen
functions with eigenvaluelp8 defines a maximally symmet
ric bitensorW(p8) i 8 j 8

i j
„m(V,V8)…, wherem(V,V8) is the dis-

tance along the shortest geodesic between the points
polar anglesV and V8. The expression of the bitensor i
terms of a set of fundamental bitensors withm-dependent
coefficient functions together with the relation between
bitensors onS4 and Lorentzian de Sitter space are obtain
in Appendix B.

The motivation for the unusual labelling is that, as de
onstrated in Appendix B, in terms of the labelp8 the bitensor
on S4 has exactly the same formal expression as the co
sponding bitensor on Lorentzian de Sitter space. This pr
erty will enable us to analytically continue the Euclide
correlator into the Lorentzian region without Fourier deco
posing it. In other words, instead of imposing by hand
prescription for the vacuum state of the graviton on ea
mode separately and propagating the individual modes
the Lorentzian region, we compute the two-point tensor c
relator in real space, directly from the no boundary path
tegral. Since the path integral unambiguously specifies
allowed fluctuation modes as those which vanish at the
gin of the instanton~see discussion in Sec. III B!, this auto-
matically gives a unique Euclidean correlator. The techni
advantage of our method is that dealing directly with the r
space correlator makes the derivation independent of
gauge ambiguities involved in the mode decomposition@37#.

We begin by continuing the graviton correlator@Eq.
~3.44!# obtained via the five dimensional calculation. Th
analytic continuation of the correlator for four dimension
gravity @Eq. ~3.56!# is completely analogous. In terms of th
new labelp8, the Euclidean correlator~3.44! between two
points on the wall is given by

^hi j ~V!hi 8 j 8~V8!&

5
128p2R4

N2 (
p857i /2

i`

Wi ji 8 j 8
(p8)

~m!G~p8,y0!21 ~3.62!
1-10
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where

G~p8,y0!5F~2 ip823/2,y0!

5ey0 sinhy0S gp8
8 ~y0!

gp8~y0!
14 cothy026D

1„p8424ip831p82/225ip8263/16

1~p8211/4!~p8219/4!@c~2 ip8/215/4!

1c~2 ip8/217/4!2c~1!2c~2!#…, ~3.63!

with gp8(y)5Q2 ip821/2
2 (cothy), which follows from Eq.

~3.19!. The functionG(p8,y0) is real and positive for all
values ofp8 in the sum and for arbitraryy0>0.

We have the Euclidean correlator defined as an infin
sum. However, the eigenspace of the Laplacian on de S
space suggests that the Lorentzian propagator is most n
rally expressed as an integral over realp8. We must therefore
first analytically continue our result from imaginary to re
p8. The coefficientG(p8,y0)21 of the bitensor is analytic in
the upper half complexp8-plane, apart from three simpl
poles on the imaginary axis. One of them is always atp8
53i /2, regardless of the radius of the sphere. Let the p
tion of the remaining two poles be writtenpk85 iLk(y0). If
we take the radius of the domain wall to be large compa
with the AdS scale~which is necessary for corrections
four dimensional Einstein gravity to be small! then14 0
,Lk<3/2, with L1;0 andL2;3/2. SinceG(p8,y0) is real
on the imaginaryp8-axis, the residues at these poles a
purely imaginary. In order to extend the correlator into t
complexp8-plane, we must also understand the continuat
of the bitensor itself. As shown in Appendix B, the conditio
of regularity at opposite points on the four sphere impo
by the completeness relation@Eq. ~B4!# is sufficient to

uniquely specify the analytic continuation ofWi ji 8 j 8
(p8) (m) into

the complexp8-plane. The extended bitensor is defined
Eqs.~B5!, ~B8!, and~B11!.

Now we are able to write the sum in Eq.~3.62! as an
integral along a contourC1 encircling the points p8
57i /2,9i /2, . . .ni/2, wheren tends to infinity. This yields

^hi j ~V!hi 8 j 8~V8!&5
2 i64p2R4

N2 E
C1

dp8 tanhp8p

3Wi ji 8 j 8
(p8)

~m!G~p8,y0!21. ~3.64!

Since we know the analytic properties of the integrand
the upper half complexp8-plane, we can distort the contou
for the p8 integral to run along the real axis. At large imag
naryp8 the integrand decays and the contribution vanishe

14If we decrease the radius of the domain wall, then the po
move away from each other. Their behavior follows from the d
cussion below Eqs.~3.47! and~3.48!. For y0<0.632, L1 becomes
slightly smaller than zero while fory0<1.32, L2 becomes slightly
greater than 3/2.
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the largen limit. However as we deform the contour toward
the real axis, we encounter three extra poles in the coshp8p
factor, the pole atp853i /2 becoming a double pole due t
the simple zero ofG(p8,y0). In addition, we have to take in
account the two poles ofG(p8,y0)21 at p85 iLk .

For thep855i /2 pole, it follows from the normalization
of the tensor harmonics thatWi ji 8 j 8

(5i /2)
50. Indirectly, this is a

consequence of the fact that spin-2 perturbations do not h
a dipole or monopole component. The meaning of the
maining two poles of the tanhp8p factor has been exten
sively discussed in@37#, where the continuation is describe
of the two-point tensor fluctuation correlator from a four d
mensionalO(5) instanton into open de Sitter space. Th
represent non-physical contributions to the graviton propa
tor, arising from the different nature of tensor harmonics
S4 and on Lorentzian de Sitter space. In fact, a degener
appears betweenpt853i /2 andpt85 i /2 tensor harmonics and
respectivelypv855i /2 vector harmonics andps855i /2 scalar
harmonics onS4. More precisely, the tensor harmonics th

constitute the bitensorsW(3i /2)
i j i 8 j 8 andW( i /2)

i j i 8 j 8 can be constructed
from a vector~scalar! quantity. Consequently, the contribu
tion to the correlator from the former pole is pure gaug
while the latter eigenmode should really be treated as a sc
perturbation, using the perturbed scalar action. Hencef
we shall exclude them from the tensor spectrum. This lea
us with the poles ofG(p8,y0) at p85 iLk . If we deform the
contour towards the real axis, we must compensate for th
by subtracting their residues from the integral. We will s
that these residues correspond to discrete ‘‘supercurvatu
modes in the Lorentzian tensor correlator.

The contribution from the closing of the contour in th
upper halfp8-plane vanishes. Hence our final result for t
Euclidean correlator reads

^hi j ~V!hi 8 j 8~V8!&

5
2 i64p2R4

N2 F E
2`

1`

dp8 tanhp8pWi ji 8 j 8
(p8)

~m!

3G~p8,y0!2112p(
k51

2

tanLkpW
i ji 8 j 8

( iLk)
~m!

3Res„G~p8,y0!21; iLk…G . ~3.65!

The analytic continuation from a four sphere into Loren
zian closed de Sitter space is given by setting the polar a
V5p/22 i t . Without loss of generality we may takem5V,
and m then continues top/22 i t . We then obtain the cor-
relator in de Sitter space where one point has been chose
the origin of the time coordinate.

The continuation of the bitensorWi ji 8 j 8
(p8) (m) is given in

Appendix B. An extra subtlety arises if one wants to ident
the continued bitensor with the usual sum of tensor harm
ics on de Sitter space. It turns out that in order to do
one must extract a factoriepp/sinhp8p from its

s
-
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coefficient functions.15 We denote the final form of the biten

sor by Wi ji 8 j 8
L(p8)

„m(x,x8)…, which is defined in the Appendix
Eqs.~B5!, ~B8!, and~B16!.

The extra factoriepp/sinhp8p combines with the factor
s
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04350
2 i tanhp8p in the integrand to giveep8p/coshp8p. Further-
more, sinceG(2p8,y0)5Ḡ(p8,y0), we can rewrite the cor-
relator as an integral from 0 tò . We finally obtain the
Lorentzian tensor Feynman~time-ordered! correlator,
^hi j ~x!hi 8 j 8~x8!&5
128p2R4

N2 F E
0

1`

dp8 tanhp8pWi ji 8 j 8
L(p8)

~m!R„G~p8,y0!21
…

1p(
k51

2

tanLkpW
i ji 8 j 8

L( iLk)
~m!Res„G~p8,y0!21; iLk…G

1 i
128p2R4

N2 F E
0

1`

dp8Wi ji 8 j 8
L(p8)

~m!R„G~p8,y0!21
…2p(

k51

2

W
i ji 8 j 8

L( iLk)
~m!Res„G~p8,y0!21; iLk…G .

~3.66!
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In this integral the bitensorWi ji 8 j 8
L(p8)

„m(x,x8)… may be written
as the sum of the degenerate rank-two tensor harmonic
closed de Sitter space with eigenvaluelp85(p82117/4) of

the Laplacian. Note that the normalization factorQ̃p8
5p8(4p82125)/48p2 of the bitensor is imaginary atp8
5 iLk and the residues ofG21 are also imaginary, so th
quantities in square brackets are all real. Both integrand
Eq. ~3.66! vanish asp8→0, so the correlator is well-behave
in the infrared.

For cosmological applications, one is usually interested
the expectation of some quantity squared, like the microw
background multipole moments. For this purpose, all t
matters is the symmetrized correlator, which is just the r
part of the Feynman correlator.

Gravitational waves provide an extra source of tim
dependence in the background in which the cosmic mic
wave background~CMB! photons propagate. In particula
the contribution of gravitational waves to the CMB aniso
ropy is given by the integral in the Sachs-Wolfe formu
which is basically the integral along the photon trajectory
the time derivative of the tensor perturbation. Hence the
sulting microwave multipole momentsCl can be directly de-
termined from the graviton correlator.

We can therefore understand the effect of the stron
coupled CFT on the microwave fluctuation spectrum

15The underlying reason is that there exist two independent bi
sors of the form defined by Eqs.~B5! and ~B8!. Under the integral
in the Lorentzian correlator, they are related by the fac
iepp/sinhp8p. It follows from the continuation of the completene
relation @Eq. ~B4!# that the sum of degenerate tensor harmonics
de Sitter space equals the second independent bitensor, rathe
the bitensor that we obtain by continuation fromS4. Therefore, in
order to express the Lorentzian two-point tensor correlator in te
of tensor harmonics, we must extract this factor from the biten
We refer the interested reader to the Appendix for the details.
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comparing our result~3.66! with the transverse traceless pa
of the graviton propagator in four-dimensional de Sit
spacetime@41#. On the four-sphere, this is easily obtained
varying the Einstein-Hilbert action with a cosmological co
stant. In terms of the bitensor, this yields

^hi j ~V!hi 8 j 8~V8!&532pG4R2 (
p857i /2

i` Wi ji 8 j 8
(p8)

„m~V,V8!…

lp822
,

~3.67!

which continues to

^hi j ~x!hi 8 j 8~x8!&532pG4R2E
0

1` dp8

lp822
Wi ji 8 j 8

L(p8)
„m~x,x8!….

~3.68!

This can be compared with Eq.~3.66!. Note that~apart from
the pole atp853i /2 corresponding to the gauge mode me
tioned before! there are no supercurvature modes. We defe
detailed discussion of the effect of the CFT on the ten
perturbation spectrum in de Sitter space to the next sect

IV. CONCLUSION

We have studied a Randall-Sundrum cosmological s
nario consisting of a domain wall in anti–de Sitter spa
with a largeN conformal field theory living on the wall. The
conformal anomaly of the CFT provides an effective tens
which leads to a de Sitter geometry for the domain wall. W
have computed the spectrum of quantum mechanical vac
fluctuations of the graviton field on the domain wall, accor
ing to Euclidean no boundary initial conditions. The Eucli
ean path integral unambiguously specifies the tensor
relator with no additional assumptions. This is the fi
calculation of quantum fluctuations for RS cosmology.

In the usual inflationary models, one considers the cla
cal action for a single scalar field. In that context, it is co

n-

r

n
han
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sistent to neglect quantum matter loops, on the grounds
they are small. On the other hand, in this paper we h
studied a strongly coupled largeN CFT living on the domain
wall, for which quantum loops of matter are important. B
using the AdS-CFT correspondence, we have performe
fully quantum mechanical treatment of this CFT. The m
notable effect of the largeN CFT on the tensor spectrum
that it suppresses small scale fluctuations on the microw
sky. It can be seen from Eq.~3.66! that the CFT yields a
(p84 ln p8)21 behavior for the graviton propagator at largep8
~in agreement with the flat space results of@40#!, instead of
the usualp822 falloff @Eq. ~3.68!#. In other words, quantum
loops of the CFT give spacetime a rigidity that strongly su
presses metric fluctuations on small scales. Note that th
true independently of how the de Sitter geometry arises,
it is also true for four dimensional Einstein gravity. In add
tion, the coupling of the CFT to tensor perturbations giv
rise to two additional discrete modes in the tensor spectr
Although this is a novel feature in the context of inflationa
tensor perturbations, it is not surprising. In conventio
open inflationary scenarios for instance, the coupling of s
lar field fluctuations with scalar metric perturbations intr
duces a supercurvature mode with an eigenvalue of the
placian close to the discrete de Sitter gauge mode@42,35#.
The former discrete mode atp85 iL1;3i /2 in Eq. ~3.66! is
nothing else than the analogue of this well known superc
vature mode in the scalar fluctuation spectrum. The sec
mode has an eigenvaluep85 iL2;0. Its interpretation is
less clear, but it is clearly an effect of the matter on t
domain wall. However it hardly contributes to the correla
because tanL2p is very small.

The effect of the CFT on large scales is more difficult
quantify because of the complicatedp8-dependence of the
tensor correlator@Eq. ~3.66!# in the low-p8 regime. Generally
speaking, however, long-wavelength tensor correlations
closed~or open! models for inflation are very sensitive to th
details of the underlying theory, as well as to the bound
conditions at the instanton. Since tensor fluctuations do g
a substantial contribution to the large scale CMB aniso
pies, this may provide an additional way to observationa
distinguish different inflationary scenarios@38#.

Most matter fields can be expected to behave like a C
at small scales. Furthermore, fundamental theories suc
string theory predict the existence of a large number of m
ter fields. Therefore, our results based on a quantum tr
ment of a largeN CFT may be accurate at small scales
any matter. If this is the case then our result shows t
tensor perturbations at small angular scales are much sm
than predicted by calculations that neglect quantum effe
of matter fields.
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APPENDIX A: CHOICE OF GAUGE

This appendix demonstrates how a metric perturbation
the boundary of a ball of AdS is decomposed into vect
04350
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scalar and tensor components.
Consider a ball of perturbed AdS with a spherical boun

ary. Let l̄ be the AdS length scale. Gaussian normal coor
nates are introduced by definingl̄ y to be the geodesic dis
tance of a point from the origin. The surfaces of constany
are spheres on which we introduce coordinatesxi . In these
coordinates the metric takes the form

ds25 l̄ 2
„dy21sinh2 yĝ i j ~x!dxidxj

…1hi j ~y,x!dxidxj .
~A1!

The ball of AdS has been perturbed, so the boundary will
at a positiony5y01j(x).

Let the induced metric perturbation on the boundary
ĥi j (x). This can be decomposed into scalar, vector and
sor perturbations with respect to the round metric on
sphere@39#:

ĥi j ~x!5 û i j 12¹̂ ( i x̂ j )1¹̂ i¹̂ j f̂1ĝ i j ĉ, ~A2!

where we use hats to denote quantities defined on the sp
~i.e. quantities that depend only onx). û i j is a transverse
traceless tensor on the sphere andx̂ i is a transverse vector o
the sphere.f̂ and ĉ are scalars on the sphere.x̂ i andf̂ can
be gauged away by infinitesimal coordinate transformati
on the sphere of the formxi5 x̃i2h i( x̃)2] ih( x̃) whereh i is
transverse. Therefore we shall assume thatx̂ and f̂ vanish.
Note that it is not possible to gauge awayĉ or j. This paper
only deals with tensor perturbations so we shall assume
the scalarsĉ and j are vanishing. The induced metric pe
turbation is then transverse and traceless and can be exte
into the bulk as described in Sec. III. The scalars will
discussed in our next paper.

APPENDIX B: MAXIMALLY SYMMETRIC BITENSORS

A maximally symmetric bitensorT is one for which
s* T50 for any isometrys of the maximally symmetric
manifold. Any maximally symmetric bitensor may be e
panded in terms of a complete set of fundamental maxim
symmetric bitensors with the correct index symmetries. F
instance

Ti ji 8 j 85t1~m!gi j gi 8 j 81t2~m!n( igj )( i 8nj 8)

1t3~m!@gii 8gj j 81gji 8gi j 8#1t4~m!ninjni 8nj 8

1t5~m!@gi j ni 8nj 81ninjgi 8 j 8#. ~B1!

The coefficient functionst j (m) depend only on the distanc
m(V,V8) along the shortest geodesic from the pointV to
the point V8. ni 8(V,V8) and ni(V,V8) are unit tangent
vectors to the geodesics joiningV andV8 andgi j 8(V,V8) is

the parallel propagator along the geodesic, i.e.,Vigi
j 8 is the

vector atV8 obtained by parallel transport ofVi along the
geodesic fromV to V8 @43#.

The set of tensor eigenmodes onS4 ~or on de Sitter space!
forms a representation of the symmetry group of the ma
1-13
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fold. It follows in particular that their sum over the parit
statesP5$e,o% and the quantum numbersk, l , andm on the
three sphere defines a maximally symmetric bitensor onS4

~or dS space! @43#:

W(p8) i 8 j 8
i j

~m!5 (
Pklm

qPklm
(p8) i j ~V!qi 8 j 8

(p8)Pklm
~V8!* . ~B2!

On S4 the labelp8 takes the value 7i /2,9i /2, . . . . It is re-
lated to a real labelp by p85 i (p13/2). The ranges of the
other labels are then 0<k<p, 0< l<k and2 l<m< l . On
de Sitter space there is a continuum of eigenvaluesp8
P@0,̀ ). We will assume from now on that the eigenmod
are normalized by the condition

E Agd4VqPklm
(p8) i j qP8k8 l 8m8 i j

(p9)* 5dp8p9dPP8d l l 8dmm8 .

~B3!

The completeness relation on the four sphere may then
written as

g2(1/2)d i j
i 8 j 8~V2V8!5 (

p857i /2

1 i`

W(p8) i 8 j 8
i j

„m~V,V8!….

~B4!

Explicit formulas for the components of these tensors may

found in @33#. In this appendix we will determineWi ji 8 j 8
(p8) (m)

simultaneously on the four sphere and de Sitter space.
construction of the analogous bitensor onS3 andH3 is given
in @44# and their relation is described in@37#.

The bitensorW(p8) i 8 j 8
i j (m) has some additional propertie

arising from its construction in terms of the transverse a
traceless tensor harmonicsqi j

(p)Pklm . The tracelessness o

Wi ji 8 j 8
(p8) allows one to eliminate two of the coefficient fun

tions in Eq.~B1!. It may then be written as

Wi ji 8 j 8
(p8)

~m!5w1
(p8)@gi j 24ninj #@gi 8 j 824ni 8nj 8#

1w2
(p8)@4n( igj )( i 8nj 8)14ninjni 8nj 8#

1w3
(p8)@gii 8gj j 81gji 8gi j 822nigi 8 j 8nj

22ni 8gi j nj 818ninjni 8nj 8#. ~B5!

This expression is traceless on either the index pairi j or
i 8 j 8. The requirement that the bitensor be transve

¹ iWi j i 8 j 8
(p8)

50 and the eigenvalue condition (¹2

2lp8)W(p8)
i j i 8 j 850 impose additional constraints on the r

maining coefficient functionswj
(p8)(m). To solve these con

straint equations it is convenient to introduce the new v
ables onS4 ~in de Sitter space,m is replaced byp/22 i m̃)
04350
s

be

e
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d

e
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a~m!5w1
(p)~m!1

2

3
w3

(p)~m!

b~m!5
8

~lp18!sinm

da~m!

dm
. ~B6!

In terms of a new argumentz5cos2(m/2) ~or its continuation
on de Sitter space! the transversality and eigenvalue cond
tions imply for a(z)

z~12z!
d2a~z!

d2z
1@428z#

da~z!

dz
5~lp818!a~z!

~B7!

and then for the coefficient functions

w152
6

5
@~lp8128!z~12z!245/6#a~z!

1
6

20
@~lp818!z~12z!~122z!#b~z!

w25
9

5 F ~lp8128!z~12z!1
20

3
~12z!2

20

6 Ga~z!

2
6

20
@~lp818!z~12z!~423z!#b~z! ~B8!

w35
9

5
@~lp8128!z~12z!240/6#a~z!

2
9

20
@~lp818!z~12z!~122z!#b~z!

with lp85(p82117/4).
Notice that Eq.~B7! is precisely the hypergeometric dif

ferential equation, which has a pair of independent soluti
a(z) anda(12z) where

a~z!5Qp8 2F1~7/21 ip8,7/22 ip8,4,z!. ~B9!

Qp8 is a constant. The solution forb(z) follows from Eq.
~B6! and is given by

b~z!5Qp8 2F1~9/22 ip8,9/21 ip8,5,z!. ~B10!

We will determine below which solution corresponds to t
bitensor defined by Eq.~B2!.

Our discussion so far applies to eitherS4 or de Sitter
space. We now specialize to the case ofS4 and will later
obtain results for de Sitter space by analytic continuati
The hypergeometric functions onS4 may be expressed in
terms of Legendre polynomials in cosm ~Eq. @15.4.19# in
@45#!,

a~m!5Qp8G~4!23~sinm!23P21/21 ip8
23

~2cosm!,

b~m!5Qp8G~5!24~sinm!24P21/21 ip8
24

~2cosm!.
~B11!

The solutions fora(z) andb(z) are singular atz51 ~i.e. for
coincident points onS4) for generic values ofp8. However,
for the values ofp8 corresponding to the eigenvalues of th
1-14



-
of

s
u

s-

ex
e
a

e

ll

o
a

io

rin
ic
d

o

I t
in

he
he

ote

e

tify
on-
sor
nics
ion

by
ion

m
ace.

to

rd-

Eq.
ns

ri-
r
r

ply
t

n

r-
the

BRANE NEW WORLD PHYSICAL REVIEW D62 043501
Laplacian onS4, they are regular everywhere onS4. Simi-
larly, a(12z) andb(12z) are generically singular for an
tipodal points onS4 and regular for these special values
p8. For these special values,a(z) anda(12z) are no longer
linearly independent but related by a factor of (21)(n11)/2

wheren522ip857,9,11, . . . . This follows from the rela-
tion ~Eq. @8.2.3# in @45#!

Pn
m~2z!5einpPn

m~z!2
2

p
e2 impsin@p~n1m!#Qn

m~z!,

~B12!

where the second term vanishes forp857i /2,9i /2, . . . . In
fact, the hypergeometric series terminates for these value
p8 and the hypergeometric functions reduce to Gegenba
polynomialsCn27/2

(7/2) (122z). We have a choice between u
ing a(z) anda(12z) in the bitensor for these values ofp8.
However, to obtain the Lorentzian correlator, we had to
press the discrete sum~3.62! as a contour integral. Since th
Euclidean correlator obeys a differential equation with
delta function source atm50, we must maintain regularity
of the integrand atm5p when extending the bitensor in th
complexp8-plane. In other words, for genericp8, we need to
work with the solutiona(z), rather thena(12z). We shall
therefore choosea(z), since this is the solution that we wi
analytically continue.

The above conditions leave the overall normalization
the bitensor undetermined. To fix the normalization const
Qp8 , consider the biscalar quantity

gii 8gj j 8Wi ji 8 j 8
(p8)

~m!512w1
(p8)26w2

(p8)124w3
(p8) .

~B13!

In the coincident limitV→V8 andz→1 this yields

Wi j
(p8) i j ~V,V!5 (Pklm

qi j
(p8)Pklm~V!q(p8)Plmi j~V!*

5272a~1!. ~B14!

Since F(0)51 we havea(1)5Qp8(21)(11n)/2. By inte-
grating over the four-sphere and using the normalizat
condition ~B3! on the tensor harmonics one obtains, forn
522ip857,9,11, . . .

Qp85
ip8~4p82125!

48p2~21!(11n)/2
5

p8~4p82125!

48p2 sinhp8p
. ~B15!

We conclude that the properties of the bitensor appea
in the tensor correlator completely determine its form. Not
that in terms of the labelp8 we have obtained a unifie
functional description of the bitensor onS4 and de Sitter
space. However, its explicit form is very different in the tw
cases because the labelp8 takes on different values. It is
precisely this description that has enabled us in Sec. II
analytically continue the correlator from the Euclidean
stanton into de Sitter space without Fourier decomposing
04350
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We shall conclude this Appendix by describing in detail t
subtleties of this analytic continuation at the level of t
bitensor.

To perform the continuation to de Sitter space we n
that the geodesic separationm on S4 continues top/22 i t , so
z5 1

2 (11 i sinht) on de Sitter space. The continuation of th
hypergeometric functions~B11! yields

a~z!5G~4!23~cosht !23P21/21 ip8
23

~2 i sinht !,

b~z!5G~5!24~cosht !24P21/21 ip8
24

~2 i sinht !.
~B16!

However, an extra subtlety arises if one wants to iden
the continued bitensor with the usual sum of tensor harm
ics on de Sitter space. In particular, in order for the biten
to correspond to the usual sum of rank-two tensor harmo
on the realp8-axis, one must choose the second solut
a(12z) to the hypergeometric equation, rather thana(z)
that enters in the continued bitensor. This is easily seen
performing the continuation on the completeness relat
@Eq. ~B4!#, which should continue to an integral overp8
from 0 to ` of the Lorentzian bitensor, defined as the su
~B2! over the degenerate tensor harmonics on de Sitter sp
Writing Eq. ~B4! as a contour integral and continuing
Lorentzian de Sitter space yields

g2(1/2)d i j
i 8 j 8~x2x8!

5E
2`

1`

dp8 tanhp8pW(p8) i 8 j 8
i j

„m~x,x8!….

~B17!

Clearly this is not the correct completeness relation acco
ing to the equivalent definition~B2! of the bitensor on de
Sitter space. But let us relate the continued bitensor in
~B17! to the independent bitensor in which the solutio
a(12z) enter. This can be done by applying Eq.~B12! to
the Legendre polynomials in Eq.~B16!. By closing the con-
tour in the upper halfp8-plane, one sees there is no cont
bution to the integral~and indeed to the tensor correlato!
from the second term in Eq.~B12!, because its prefacto
cancels the cosh21 (p8p)-factor in Eq.~B17!, making the in-
tegrand analytic in the upper halfp8-plane ~up to gauge
modes!. Hence, under the integral both solutions are sim
related by the factoriepp. In addition one needs to extrac
the sinh21 p8p-factor16 from Qp8 . The completeness relatio
then becomes

g2(1/2)d i j
i 8 j 8~x2x8!5E

0

1`

dp8WL(p8) i 8 j 8
i j

„m~x,x8!…,

~B18!

and the hypergeometric functionsa(12z) andb(12z) that
constitute the final bitensorWL(p8) i 8 j 8

i j
„m(x,x8)… are given by

16Remember thatQp8 gained the factor sinh21 p8p because we
have chosen the solutiona(z) on the four sphere. The correct no
malization constant for the independent bitensor, obtained from

normalization condition on the tensor harmonics, is thenQ̃p8
5sinhp8pQp8 .
1-15
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a~12z!5Q̃p8G~4!23~cosht !23P21/21 ip8
23

~ i sinht !,

b~12z!5Q̃p8G~5!24~cosht !24P21/21 ip8
24

~ i sinht !,
~B19!
ys
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04350
with Q̃p85p8(4p82125)/48p2.

On the realp8-axis,Wi ji 8 j 8
L(p8)(m) equals the sum~B2! of the

degenerate rank-two tensor harmonics on closed de S
space with eigenvaluelp85(p82117/4) of the Laplacian.
@1# L. Randall and R. Sundrum, Phys. Rev. Lett.83, 4690~1999!.
@2# J. Garriga and T. Tanaka, Phys. Rev. Lett.84, 2778~2000!.
@3# S. B. Giddings, E. Katz, and L. Randall, J. High Energy Ph

03, 023 ~2000!.
@4# A. Chamblin, S. W. Hawking, and H. S. Reall, Phys. Rev.

61, 065007~2000!.
@5# R. Emparan, G. T. Horowitz, and R. C. Myers, J. High Ener

Phys.01, 007 ~2000!.
@6# R. Emparan, G. T. Horowitz, and R. C. Myers, J. High Ener

Phys.01, 021 ~2000!.
@7# A. Chamblin, C. Csaki, J. Erlich, and T. J. Hollowood, Phy

Rev. D ~to be published!, hep-th/0002076.
@8# S. W. Hawking and G. F. R. Ellis,The Large Scale Structure

of Space-Time~Cambridge University Press, Cambridge, E
gland, 1973!.

@9# A. Chamblin and G. W. Gibbons, Phys. Rev. Lett.84, 1090
~2000!.

@10# J. B. Hartle and S. W. Hawking, Phys. Rev. D28, 2960
~1983!.

@11# J. Garriga and M. Sasaki, Phys. Rev. D~to be published!,
hep-th/9912118.

@12# K. Koyama and J. Soda, gr-qc/0001033.
@13# H. A. Chamblin and H. S. Reall, Nucl. Phys.B562, 133

~1999!.
@14# N. Kaloper, Phys. Rev. D60, 123506~1999!.
@15# T. Nihei, Phys. Lett. B465, 81 ~1999!.
@16# H. B. Kim and H. D. Kim, Phys. Rev. D61, 064003~2000!.
@17# C. Csaki, M. Graesser, L. Randall, and J. Terning, Phys. R

D ~to be published!, hep-ph/9911406.
@18# S. Nojiri, S. D. Odintsov, and S. Zerbini, Phys. Rev. D~to be

published!, hep-th/0001192.
@19# A. Starobinsky, Phys. Lett.91B, 99 ~1980!.
@20# J. Maldacena, Adv. Theor. Math. Phys.2, 231 ~1998!.
@21# S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Le

B 428, 105 ~1998!.
@22# E. Witten, Adv. Theor. Math. Phys.2, 253 ~1998!.
.

.

v.

.

@23# S. S. Gubser, hep-th/9912001.
@24# A. Tseytlin and H. Liu, Nucl. Phys.B533, 88 ~1998!.
@25# M. Heneningson and K. Skenderis, J. High Energy Phys.07,

023 ~1998!.
@26# M. Henningson and K. Skenderis, Fortschr. Phys.48, 125

~2000!.
@27# V. Balasubramanian and P. Kraus, Commun. Math. Phys.208,

413 ~1999!.
@28# R. Emparan, C. V. Johnson, and R. C. Myers, Phys. Rev. D60,

104001~1999!.
@29# P. Kraus, F. Larsen, and R. Siebelink, Nucl. Phys.B563, 259

~1999!.
@30# G. W. Gibbons and S. W. Hawking, Phys. Rev. D15, 2752

~1977!.
@31# L. Susskind and E. Witten, hep-th/9805114.
@32# M. Duff, Class. Quantum Grav.11, 1387~1994!.
@33# A. Higuchi, J. Math. Phys.28, 1553~1987!.
@34# H. Osborn and G. Shore, Nucl. Phys.B571, 287 ~2000!.
@35# S. Gratton and N. Turok, Phys. Rev. D60, 123507~1999!.
@36# T. Hertog and N. Turok, astro-ph/9903075.
@37# S. W. Hawking, T. Hertog, and N. Turok, Phys. Rev. D~to be

published!, hep-th/0003016.
@38# S. Gratton, T. Hertog, and N. Turok, Phys. Rev. D~to be

published!, astro-ph/9907212.
@39# J. M. Stewart, Class. Quantum Grav.7, 1169~1990!.
@40# E. Tomboulis, Phys. Lett.70B, 361 ~1977!.
@41# B. Allen and M. Turyn, Nucl. Phys.B292, 813 ~1987!.
@42# K. Yamamoto, M. Sasaki, and T. Tanaka, Phys. Rev. D54,

5031 ~1996!.
@43# B. Allen and T. Jacobson, Commun. Math. Phys.103, 669

~1986!.
@44# B. Allen, Phys. Rev. D51, 5491~1995!.
@45# Handbook of Mathematical Functions, edited by M.

Abramowitz and I. Stegun, Natl. Bur. Stand.~U.S.! ~U.S.
GPO, Washington, DC, 1972!.
1-16


