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We study a Randall-Sundrum cosmological scenario consisting of a domain wall in anti—de Sitter space with
a strongly coupled larghl conformal field theory living on the wall. The AdS-CFT correspondence allows a
fully quantum mechanical treatment of this CFT, in contrast with the usual treatment of matter fields in
inflationary cosmology. The conformal anomaly of the CFT provides an effective tension which leads to a de
Sitter geometry for the domain wall. This is the analogue of Starobinsky’s four dimensional model of anomaly
driven inflation. Studying this model in a Euclidean setting gives a natural choice of boundary conditions at the
horizon. We calculate the graviton correlator using the Hartle-Hawking “no boundary” proposal and analyti-
cally continue to Lorentzian signature. We find that the CFT strongly suppresses metric perturbations on all but
the largest angular scales. This is true independently of how the de Sitter geometry arises, i.e., it is also true for
four dimensional Einstein gravity. Since generic matter would be expected to behave like a CFT on small
scales, our results suggest that tensor perturbations on small scales are far smaller than predicted by all
previous calculations, which have neglected the effects of matter on tensor perturbations.

PACS numbd(s): 98.80.Hw, 04.50+h, 04.62+v

[. INTRODUCTION and future horizons remain non-singular when pertuties
required for a well-defined boundary conditjothen they
must intersect at a finite distance from the wall. By contrast,
_Randall and SundrurRS) have suggesteflL] that four 0 st and future horizons do not intersect in theyRS ground
ngnspnal grawty. may be. recovered in t_he presence of aBiate but go off to infinity in AdS.
infinite fifth dimension provided that we live on @ domain  The RS horizons are like the horizons of extreme black
wall embedded in anti-de Sitter spa@dS). Their linear-  pgjes. When considering perturbations of black holes, one
ized analysis showed that there is a massless bound state g§rmally assumes that radiation can flow across the future
the graviton associated with such a wall as well as a conhorizon but that nothing comes out of the past horizon. This
tinuum of massive Kaluza-Klein modes. More recently, lin-is because the past horizon isn't really there, and should be
earized analyses have examined the spacetime produced fgplaced by the collapse that formed the black hole. To jus-
matter on the domain wall and concluded that it is in closetify a similar boundary condition on the Randall-Sundrum
agreement with four dimensional Einstein gravig;3]. past horizon, one needs to consider the initial conditions of
RS used horospherical coordinates based on slicing Adge universe.
into flat hypersurfaces. These horospherical coordinates The main contender for a theory of initial conditions is the
break down at the horizons shown in Fig. 1. An issue that'no boundary” proposdl[10] that the quantum state of the
has not received much attention so far is the role of boundaryniverse is given by a Euclidean path integral over compact
conditions at these Cauchy horizons in AdS. With stationarynetrics. The simplest way to implement this proposal for the
perturbations, one can impose the boundary conditions thatandall Sundrum idea is to take .the Euclidean version of the
the horizons remain regular. Indeed, without this boundaryv@ll to be a four sphere at which two balls of Adé&re
condition the solution for stationary perturbations is not wellloined together. In other words, take two balls in Ad&nd
defined. Even for non-perturbative departures from the R§IU€ them together along their four sphere boundaries. The

solution, like black holes, one can impose the boundary conresult is topologically a five sphere, with a delta function of
dition th:';tt the AdS horizéns remain regufd:5,2,6,7. Non- curvature on a four dimensional domain wall separating the

stationary perturbations on the domain wall. however Wi”two hemispheres. If one analytically continues to Lorentzian

. hary p o ' . ", .Signature, one obtains a four dimensional de Sitter hyperbo-
give rise to gravitational waves that cross the horizons. Th|1<,oid embedded in Lorentzian anti—de Sitter space, as shown
will tend to focus the null geodesic generators of the horizonin F'ig 2. The past and future RS horizons, are réplaced by
which will mean that they will intersect each other on sOomey,q hast and future light cones of the points at the centres of
caustic. Beyond the caustic, the null geodesics will not lie inha 1o balls. Note that the past and future horizons now

the horizon. However, null geodesic generators of the futurg,iersect each other and are non extreme, which means they
event horizon cannot have a future endpdBit and so the

endpoint must lie to the past. We conclude that if the past———

LIt has been shown that the Kaluza-KlékiK ) modes of RS give
rise to singular horizong9].

*Email address: S.W.Hawking@damtp.cam.ac.uk %Other approaches to quantum cosmology in the RS model have
"Email address: T.Hertog@damtp.cam.ac.uk been discussed ii1,12. Boundary conditions motivated by a Eu-
*Email address: H.S.Reall@damtp.cam.ac.uk clidean approach were also used & for a flat domain wall.
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FIG. 1. Carter-Penrose diagram of anti—de Sitter space with a FIG. 2. Anti—de Sitter space with a de Sitter domain wall. AdS

flat domain wall. The dotted line denotes timelike infinity and the I(Zadsrr?::inlir?;r: rssgfntﬁr)fllrl?niglil\i\gtrnfg:ﬁ b_?_lﬁgc:?rr)]/t (?:)r:zeshcg\:\l/rr]wdiir
arrows denote identifications. The heavy dots denote points at i P 9 Y. 9

finity. Note that the Cauchy horizons intersect at infinity. nthe horizon. The arrows denote identifications.

result probably extends to any inflationary model with suffi-
are stable to small perturbations. A perfectly spherical Euciently many matter fields. It has long been known that mat-
clidean domain wall will give rise to a four dimensional ter loops lead to short distance modifications of gravity. Our
Lorentzian universe that expands forever in an inflationarywork shows that these modifications can lead to observable
manner’ consequences in an inflationary scenario.

In order for a spherical domain wall solution to exist, the  Although we have carried out our calculations for the RS
tension of the wall must be larger than the value assumed byodel, we shall show that results for four dimensional Ein-
RS, who had a flat domain wall. We shall assume that mattestein gravity coupled to the CFT can be recovered by taking
on the wall increases its effective tension, permitting athe domain wall to be large compared with the AdS scale.
spherical solution. In Sec. lll, we consider a strongly coupledThus our conclusion that metric fluctuations are suppressed
largeN conformal field theoryCFT) on the domain wall. On  holds independently of the RS scenario.

a spherical domain wall, the conformal anomaly of the CFT The spherical domain wall considered in this paper ana-
increases the effective tension of the domain wall, makindytically continues to a Lorentzian de Sitter universe that

the spherical solution possible. The Lorentzian geometry is @nflates forever. However, Starobinsky9] showed that the

de Sitter universe with the conformal anomaly driving conformal anomaly driven de Sitter phase is unstable to evo-
inflation;* an idea introduced long ago by Starobingkg]. lution into a matter dominated universe. If such a solution

The no boundary proposal allows one to calculate unameould be obtained from a Euclidean instanton then it would
biguously the graviton correlator on the domain wall. In par-have anO(4) symmetry group, rather than ti@(5) sym-
ticular, the Euclidean path integral itself uniquely specifiesmetry of a spherical instanton. We shall study such models
the allowed fluctuation modes, because perturbations thdbr both the RS model and four dimensional Einstein gravity
have infinite Euclidean action are suppressed in the path irin a separate paper.
tegral. Therefore, in this framework, there is no need to im- The AdS-CFT corresponden¢20—-22 provides an ex-
pose by hand an additional, external prescription for theplanation of the RS behavitf23]. It relates the RS model to
vacuum state for each perturbation mode. In addition, than equivalent four dimensional theory consisting of general
AdS-CFT correspondence allows a fully quantum mechanirelativity coupled to a strongly interacting conformal field
cal treatment of the CFT, in contrast with the usual classicatheory and a logarithmic correction. Under certain circum-
treatment of matter fields in inflationary cosmology. stances, the effects of the CFT and logarithmic term are neg-

Finally, we analytically continue the Euclidean correlator ligible and pure gravity is recovered. We review this corre-
into the Lorentzian region, where it describes the spectrungpondence in Sec. Il.
of quantum mechanical vacuum fluctuations of the graviton In Sec. Il we present our calculation of the graviton cor-
field on an inflating domain wall with conformally invariant relator on the instanton and demonstrate how the result is
matter living on it. We find that the quantum loops of the continued to Lorentzian signature. Section IV contains our
large N CFT give spacetime a rigidity that strongly sup- conclusions and some speculations. This paper also includes
presses metric fluctuations on small scales. Since any mattexro appendices which contain technical details that we have
would be expected to behave like a CFT at small scales, thismitted from the text.

Il. RANDALL-SUNDRUM FROM AdS-CFT

3 . . . . .
Such inflationary brane-world solutions have been studied in The AdS-CFT corresponden¢@0-27 relates type 1B

[13-16,11. For a discussion of other cosmological aspects of theSu eraravity theorv in A StoaN=4 U(N) supercon-
RS model, se¢l7] and references therein. Perg y y > N (N) sup

A similar idea was recently discussed within the context of renor-
malization group flow in the AdS-CFT correspondeft8]. How-
ever, in that case the CFT was the CFT dual to the bulk AdS SThis was first pointed out in unpublished remarks of Maldacena
geometry, not a new CFT living on the domain wall. and Witten.
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formal field theory. Ifgyy is the coupling constant of this Gibbons-Hawking boundary term, which is necessary for a
theory then the 't Hooft parameter is defined to ke well-defined variational problerf80]:
=g%uN. The CFT parameters are related to the supergravity

parameters by20] Sep=— 1 fddeﬁK’ (2.6)
871G
I=\Y4g, (2.1
where K is the trace of the extrinsic curvature of the
13 2N? boundarf/ andh the determinant of the induced metric. The
G- . (2.2 first two counterterms are given by the followifig6—29

(we use the results ¢29] rotated to Euclidean signatyre

wherel is the string lengthl the AdS radius ané the five d—1
dimensional Newton constant. Note thatand N must be Si=——
large in order for stringy effects to be small. The CFT lives 87Gl
on the conformal boundary of AgSThe correspondence |
S T
= 1677G(d—2)f d%hR

d+/h, 2.7

takes the following form:

Z[h]= f d[glexpl — Syra[G]) 28

whereR now refers to the Ricci scalar of the boundary met-
ric. The third counterterm is

=f d[ ¢lexp(— Scer ¢:h])

y d
=exp(—Wce h]), (2.3 SS:lGﬂ'G(d—Z)Z(d—4)f ddx\/ﬁ(Rin'J_mRZ )

here Z[h] denotes the supergravity partition function in 2.9
AdS;. This is given by a path integral over all metrics in . . .
AdSs; which induce a given conformal equivalence class ofWhere Ri s Fhe. R'CC' tef?sor of the bounda.ry metric and
metricsh on the conformal boundary of AdSThe corre- boundary |nd|ce§,1 are ra|s'ed ‘f’m.d Iowgred with the bpund—
spondence relates this to the generating functidvigl+ of _arytrTetrlchij ) fTh'S etxpr?ssmtntls |II-de\1;:/r_1§]d 'fwt:t‘rlw, V\:,h'ctht

connected Green'’s functions for the CFT on this boundary'.S € case of most interest to us. With Just the nrst two
This functional is given by a path integral over the fields ofcounterterms, the grawtayonal acyon exhibits Io.ganthmlc di-
the CFT, denoted schematically ky. Other fields of the vergence$24-24 so a third term is needed. This term can-

supergravity theory can be included on the left hand side[,wt. be written so.Ier In terms Qf a polynomial in scalar n-
riants of the induced metric and curvature tensors; it

thhaensde s?g(te as sources for operators of the CFT on the rIgHr/ﬁakes explicit reference to the cutdife. the finite radius to

A problem with Eq.(2.3 as it stands is that the usual which the boundary is brought before taking the limit in

- I g ; hich it tends to infinity. The form of this term is the same
gravitational action in AdS is divergent, rendering the pathW . ;
integral ill-defined. A procedure for solving this problem was gs lEq.(2.9) W'rt]h the divergent rf]ac:)or ofdld— 4()j_repla(ziebd
developed if22,24—29. First one brings the boundary into 2Y |09®/p), whereR measure the boundary radius am

a finite radius. Next one adds a finite number of counterterm§°r2e”f'n'Fe rezngrmahzatlon length Shcafas CET
to the action in order to render it finite as the boundary is ollowing [23], we can now use the . correspon-

moved back off to infinity. These counterterms can be ex_dence to explain the behavior discovered by Randall and

pressed solely in terms of the geometry of the boundary. Thgun.drum. The(Euclidean RS model has the following ac-
total gravitational action for Adg ; becomes tion:

| 3

Syra=Sen+ Sant St St . (24) Srs=Sent Sont 25:+ Sn. (210

Here 25, is the action of a domain wall with tensiord (

—1)/(47Gl). The final term is the action for any matter

present on the domain wall. The domain wall tension can
cancel the effect of the bulk cosmological constant to pro-

) (2.5  duce a flat domain wall. However, we are interested in a
spherical domain wall so we assume that the matter on the
wall gives an extra contribution to the effective tension. We

the overall minus sign arises because we are considering a

Euclidean theory. The second term in the action is the——

The first term is the usual Einstein-Hilbert acfiowith a
negative cosmological constant:

d(d—1)

R+ 2

1
_ d+1
Sen 16776] d**Ix\g

"Our convention is the following. Let denote the outward unit
normal to the boundary. The extrinsic curvature is define& gs
5We use a positive signature metric and a curvature conventior h7h7V, n,, whereh; =35, —n,n" projects quantities onto the
for which a sphere has positive Ricci scalar. boundary.
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shall discuss a specific candidate for the matter on the waNggis given by Eq.(2.2). Strictly speaking, we are using an

later on. The wall separates two balls andB, of AdS. extended form of the AdS-CFT conjecture, which asserts that
We want to study quantum fluctuations of the metric onsupergravity theory in a finite region of AdS is dual to a CFT

the domain wall. Letg, denote the five dimensional back- on the boundary of that region with an ultraviolet cutoff

ground metric we have just described amgithe metric it  related to the radius of the boundarfhe path integral for

induces on the wall. Leh denote a metric perturbation on the metric perturbation becomes

the wall. If we wish to calculate correlators &f on the

domgtin wall then we are interested in a path integral of the Z[h]=exp(—2Wgrd hot+h]+2S;[ho+h]

form

+253[h0+h])J dl ¢lexp(— Syl ¢;ho+h]).
<hij(X)hir1r(X’)>=f dlh]Z[h]h;; ()i (X", (2.19

2.1
219 The RS model has been replaced by a CFT and a coupling to
where matter fields and the domain wall metric given by the action

—2S,[hy+h]—2S3[hg+h]+ S, [ ¢;hg+h]. (2.1

The remarkable feature of this expression is that the term
—2S, is precisely théEuclidean Einstein-Hilbert action for

Z[h]= L L dLogld plexp(—Spd 6o+ o9])

=exp(—2S;[hg+ h])f d[ ég]d[ ¢] four dimensionalgravity with a Newton constant given by
B1UB, the RS value
X exp = Senl Got 54] G,=Gll. (2.17)
—Senl ot 691 — Sl ¢:ho+ 1), (2.12

Therefore the RS model is equivalent to four dimensional

8g denotes a metric perturbation in the bulk that approache@ravity coupled to a CFT with corrections to gravity coming
h on the boundary ang denotes the matter fields on the from the third counterterm. This explains why gravity is

domain wall. The integrals in the two balls are independentrapped to the domain wall. _
so we can replace the path integral by At first sight this appears rather amazing. We started off

with a quite complicated five dimensional system and have
Z[h]=exp —2S,[hy+h]) argued that it is dual to four dimensional Einstein gravity
with some corrections and matter fields. However in order to
use this description, we have to know how to calculate with
the RS CFT. At present, the only way we know of doing this
is via AdS-CFT, i.e., going back to the five dimensional
. description. The point of the AdS-CFT argument is to ex-
x f dl #Jexp(=Sml #:ho 1), (213 plain why the RS “alternative to compactification” works
and also to explain the origin of the corrections to Einstein
whereB denotes either ball. We now takie=4 and use the gravity in the RS model. Note that if the matter on the do-
AdS-CFT correspondend@.3) to replace the path integral main wall dominates the RS CFT and the third counterterm
over &g by the generating functional for a conformal field then these can be neglected and a purely four dimensional
theory: description is adequate.

2

X de[5g]eXFi —Senl 9ot 091 — Sgul 9o+ 691)

de[ 5glexp — Sepl 9o+ 891 — Seul 9o+ 89]) lll. CFT ON THE DOMAIN WALL
A. Introduction

=exp(—Wrd ho+h]+S;[ho+h] Long ago, Starobinsky studied the cosmology of a uni-
+S[ho+h]+Ss[ho+h]), (2.14  verse containing conformally coupled mattgr9]. CFTs
generally exhibit a conformal anomaly when coupled to

we shall refer to this CFT as the RS CFT since it arises as th@ravity (for a review, se¢32]). Starobinsky gave a de Sitter

dual of the RS geometry. It has gauge gralfNgg), where ~ solution in which the anomaly provides the cosmological
constant. By analyzing homogeneous perturbations of this

model, he showed that the de Sitter phase is unstable but

P - could be long lived, eventually decaying to a Friedmann-
In principle, we should worry about gauge fixing and ghost CO”’Robertson-Walke(FR\N) cosmology
tributions to the gravitational action. A convenient gauge to use in '

the bulk is transverse traceless gauge. We shall only deal with met-

ric perturbations that also appear transverse and traceless on the

domain wall. The gauge fixing terms vanish for such perturbations °Evidence in support of this extended version of the duality was
and the ghosts only couple to these perturbations at higher ordergjiven in[31].
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In this section we will consider the RS analogue of Star- We are particularly interested in how perturbations of this
obinsky’s model by putting a CFT on the domain wall. On amodel would appear to inhabitants of the domain wall. Thus
spherical domain wall, the conformal anomaly provides thewe are interested in metric perturbations on the sphere
extra tension required to satisfy the Israel equations. It is
appealing to choose the new CFT to b&/a 4 superconfor- ds?= (RZS/” + hij)dx‘dxj. (3.9
mal field theory because then the AdS-CFT correspondence
makes calculations relatively eayThis requires that the Here }ij is the metric on a unit-sphere. We shall only
CFT is strongly coupled, in contrast with Starobinsky’s considertensorperturbations, for which;; is transverse and

. 1 ~
analy5|s_1. . . . L . traceless with respect tg; . In order to calculate correlators
Our five dimensiona(Euclidean action is the following: ¢ the metric perturbation, we need to know the action to
S=Scy+ Sep+ 25, + Werr. (3.1) _second_ o_rder in the perturbation. The_ m_ost difficu_lt part here
is obtainingWcgt to second order. This is the subject of the

We seek a solution in which two balls of Aggre separated N€Xt subsection.
by a spherical domain wall. Inside each ball, the metric can
be written B. CFT generating function

We want to work out the effect of the perturbation on the
CFT on the sphere. To do this we use AdS-CFT. Introduce a

fictional AdS region that fills in the sphere. LE{G be the

AdS radius and Newton constant of this region. We empha-

R=1 sinhy,. (3.3 size that this region has nothing to do with the regions of
AdS that “really” lie inside the sphere in the RS scenario.

The effective tension of the domain wall is given by the This new AdS region is bounded by the sphere. If we take
Israel equations as to zero then the sphere is effectively at infinity in AdS so we
can use AdS-CFT to calculate the generating functional of

the CFT on the sphere. In other wordsjs acting like a
cutoff in the CFT and taking it to zero corresponds to remov-
ing the cutoff. However the relation

ds’=12(dy?+sint? ydQ3), (3.2

with 0<y=<Yy,. The domain wall is ay =y, and has radius

Ueff:mcothyo. (3.9

The actual tension of the domain wall is .
3 2N2 39
3 =T .
7T 4nGl .9

I . . implies that ifl is taken to zero then we must also ta&eo
We therefore need a contribution to the effective tensmrkero sinceN is fixed (and large

from the CFT. This is provided by the conformal anomaly, For the unperturbed sphere, the metric in the new AdS
which takes the valug24-26 region is

(Ty=~— 3N _ 3.6 ds?=12(dy?+sini? yy;;dx'dx), (3.10
8R4 o
and the sphere is at=y, given by R=1 sinhy,. Note that
This contributes an effective tension(T)/4. We can now v .o a5] 0 sinceRis fixed. In order to use AdS-CFT for

obtain an equation for the radius of the domain wall: the perturbed sphere, we need to know how the perturbation
extends into the bulk. This is done by solving the linearized
R® [|R? N°G R* Einstein equations. It is always possible to choose a gauge in
13 |_2jL 1= E +|_4' (37 which the bulk metric perturbation takes the form
hi;(y,x)dx'dx, (3.11)

It is easy to see that this has a unique positive solutiomifor
We shall derive this equation directly from the action in Sec

e ‘whereh;; is transverse and traceless with respect to the met-

ric on the spherical spatial sections:

ij - =Vih. =

19Ve emphasize that this use of the AdS-CFT correspondence is 7 O0R; (Y0 =Vihij(y. ) =0, 312
independent of the use described above because this new CFT is,, = . . - .
unrelated to the RS CFT. Wltfl V denoting the covariant derivative defined by the met-

HNote that the conformal anomaly is the same at strong and weaRC 7;j - Since we are only dealing with tensor perturbations,
coupling[25] so any differences arising from strong coupling can this choice of gauge is consistent with the boundary sitting at
only show up when we perturb the system. constanty. If scalar metric perturbations were included then
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we would have to take account of a perturbation in the pofor boundary conditions at the horizon in Lorentzian space.
sition of the boundary. These issues are discussed in detail ifthe solution regular ag=0 is given by
Appendix A.

The linearized Einstein equations in the bulk &@ any sintP*2y
dimension foly)= WF(WZ(FH 1)/2,p+(d+1)/2,tankf y).
2 (3.18
2h = =
V= 12 s (3.13 This solution can also be written in terms of associated Leg-
endre functions:
whereu, v ared+ 1 dimensional indices. It is convenient to . (5—d)2p— (p+(d—1)/2)
expand the metric perturbation in terms of tensor spherical fo(y)=(sinhy) P_a+1z *~(coshy)
i (p) . -
harmonicsH;;’(x). These obey «(sinhy)® d)/ng/f(d_z)/z(COthy), (3.19
YIHP (x)=VHP(x)=0, (3.14  and the latter can be related to Legendre functiord/4fis
an integer, using
and they are tensor eigenfunctions of the Laplacian:
c Qm(Z)=(22—1)m’2% (3.20
VZH{P = (2—p(p+d—1)HP, (3.15 v dz" '
where p=2,3,.... We have suppressed extra labels The full solution for the metric perturbation is

k,I,m, ... on these harmonics. The harmonics are orthonor-
mal with respect to the obvious inner product. See Appendix s foy)
B and[33] for more details of their properties. The metric i (y, x) = 5 To(Yo)

| HIP06) [t 3o HP o).
perturbation can be written as a sum of separable perturba- (3.21)
tions of the form

We have a solution for the metric perturbation throughout

hij (¥, %) = fo(y)H{P(x). (3.16  the bulk region. The AdS-CFT correspondence can now be
used to give the generating functional of the CFT on the
Substituting this into Eq(3.13 gives perturbed sphere:
fo(y)+(d—4)cothyf(y)—(2(d—2) Werr=Sen+SgutSi+ S+ - (3.22
+[p(p+d—1)+2(d—3)]cosechy)f(y)=0. We shall give the terms on the right hand side def 4.
(3.17) The Einstein-Hilbert action with cosmological constant is
The roots of the indicial equation apet+2 and—p—d+3, _ 1 5 1_2
yielding two linearly independent solutions for eaphin SeH 167G d x\/§ Rt =5 (323

order to compute the generating functiokié -+ we have to
calculate the Euclidean action of these solutions. Howeverand perturbing this gives
because the latter solution goesyasP*9=3) at the origin
y=0 of the instanton, the corresponding fluctuation modes 1 s
have infinite Euclidean actiolf. Hence they are suppressed Spulk=— oG d°x\g
in the path integral. Therefore, in contrast to other methods
[2,3] where one requires(@atherad hog prescription for the 8 1 1
vacuum state of each perturbation mode, there is no need to x( —=+ —h#'v2h,,+ :ZhWhW)
impose boundary conditions by hand in our approach: the 4 2l
Euclidean path integral defines its own boundary conditions,

i ; i ; i 1 1
which automatically gives a unique Green function. The path - 4x\/— T AHRYe
. ! . . — v n*h"?V h
integral unambiguously specifies the allowed fluctuation 167G 2 wp
modes as those which vanish yt0. Note that boundary

conditions at the origin in Euclidean space replace the need n Zhypn“VMth), (3.24)

gvhere Greek indices are five dimensional and we are raising

1291 ; o
This can be seen by surrounding the origin by a small spher . . . . . .
! y surrouncing '9in By P ﬁnd lowering with the unperturbed five dimensional metric.

y=¢€ and calculating the surface terms in the actions that arise o

this sphere. They are the same as the surface terms in(Eg5) n=|d_y is the_ ur_lit normal to _the boundary arid is the
and (3.26 below, which are obviously divergent for the modes in covariant derivative defined with the unperturbed bulk met-

question. ric. yi;= Rz}ij is the unperturbed boundary metric. It is im-
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portant to keep track of all the boundary terms arising from ¢- 1Yo ) 12

integration by parts. Evaluating on shell gives

d4X\/—J’ dysintfy

ST, 5

sl o

167TG

YO hilh,, )
I ’

(3.2
. The

where we are now raising and lowering Witjﬂj
Gibbons-Hawking term is

Seu= X\/—( S|nh°’yocoshy0——h' ayhij |-
2’7TG
(3.26
The first counterterm is
3
S, = _J d*x
Y 87Gl Vr

313 - 1
:SwEJ d4X\/;(SIn|’f1yo—ﬁh”hij)- (3.27

The second counterterm is

— | d**yR
3277 f \/—

X\/_ 12 sintf _—h”h--
324G Yoo %sinfty,
+_;h”@2h-- . (3.29
414 sinkfy, N

Thus with only two counterterms we would have
3N%Q, R
824g|—_— J“\/—(——hah

Wepr=

1. (3 12 1
+I_—4h hij E_ 1+¥ +|_2?h hij

fiyo) 2 g PTD(PFT2+p(pF(p+2)(p+3)
14 g

— |
X —Iog(l/R)+—[p*+2p3—5p?—10p—2
AR g(l/R) 8R4[p p>—5p P

—p(p+1)(p+2)(p+3)(H(1)+ y(2)— (p/2
16

+2)— (pl2+5/2))]+ O %mg(ﬂR) . (3.3)

The psi function is defined by(z)=T"(2)/T'(2). Subititut—
ing into the action we find that the divergences lasO
cancel at ordeR?*/1* andR?/12. The term of ordet*/R* in

the above expansion makes a contribution to the finite part of

the action[along with a term from the square root in Eq.

(3.29]:

3N’Q, R

Iogl—_

N2
m (Jd4X \/—hkl(X )H(p)(X )

Wepr=

X (2p(p+1)(p+2)(p+3)log(I/R)+¥(p)),

(3.32
where
W(p)=p(p+1)(p+2)(p+3)[¢(p/2+5/2)
+(pl2+2) = §(2) — §(1)]
+p*+2p3—5p?—10p—6. (3.33

To cancel the logarithmic divergencesEsO, we have to

introduce a length scale defined byl_= ep and add a coun-
terterm proportional to log to cancel the divergence as
tends to zero. The counterterm is

1
Sy=— ” alogej d4x\/_< Y'R;; Rk|—§R2)
——_hiiV2h; (3.29 i
81°R? T
I = 1 -~
_ _ - _|ogef d4x\y| — 12+ = 2niin,
Q, is the area of a unit four-sphere and we have used Eq. 647G R*
(3.9). The expansion of h;; aty=y, is obtained from 2 L
— >hiV2h; +—h”%4h”D . (3.34
ayhi =2 ¢ "(y°) THPx f d*x’ VM (x Y HP (x") 2 4
(3.30 _ _ o
This term does indeed cancel the logarithmic divergence,
and leaving us with

043501-7



S. W. HAWKING, T. HERTOG, AND H. S. REALL PHYSICAL REVIEW D62 043501

3N2Q, R N2 of finite Euclidean action, i.eh is given in the bulk by Eq.

CFT™ >log—+ P (3.21). h' denotes a quantum fluctuation that vanishes at the
8w P 256m°R domain wall. The gravitational action splits into separate
2 contributions from the classical and quantum parts:
XE (fd“x \/_hk'(x YHP (x")
Sen+Seu=S[h]+S'[h'], (3.40
X (2p(p+1)(p+2)(p+3)log(p/R) + ¥ (p)). whereS, can be read off from Eq¢3.25 and (3.26 as
(3.39
31%0,
Note that varying/Vcg+ twice with respect td;; yields the So=— 57 G dysmh2 yo cost v,

expression for the transverse traceless part of the correlator
(Tij )Ty (X )> on a round four sphere. At largg this
behaves likep* logp, as expected from the flat space result f d4X\/—(—h' ayhij + yo hiih;;
[21]. In fact this correlator can be determined in closed form 167TG : |4 :
solely from the trace anomaly and symmetry (3.41)
considerationd® However, we shall be be interested in cal- '

culating cosmologically observable effects, for which ournote thatS’ cannot be converted to a surface term sinte

mode expansion is more useful. does not satisfy the Einstein equations. We shall not need the
explicit form for S’ since the path integral ovér' just con-
C. The total action tributes a factor of some determinaty to Z[ h]. We obtain

Recall that our five dimensional action is
Z[h]=Zyexp(—25,[ hg+h]—2S;[hg+h]—=Wcg hg+h]).

S= SEH+SGH+ 281+WCFT' (336) (342

In order to calculate correlators of the metric, we need tol Ne exponent is given by

evaluate the path integral
2Sg+2S;+Weet

Z[h]:fB |, droglexp(—S) _8PFa,
1 2 ’7TG

y
0dy sintfy cosity
0

=exp(—2Si[hg+h]—Wcgilhg+h
o 1[No+h]—=Wegrlho+h]) 30,R* 3N294 R

+aort - .og—

2
de[ag]exq—sEH[go+6g]—sGH[go+ 59])) .

2
(3.39 + |£4 2 ( f d*x’ \/;hk'(x’)H(kﬁ’)(X’)
p

Hereg, andh, refer to the unperturbed background metrics

in the bulk and on the wall respectively ahddenotes the E p(yo) N N?
metric perturbation on the wall. Many of the terms required X 327G +4cothyo—6 |+ —————
here can be obtiined f_rom results in the previous section by 4 p(yO) 256m° sinit y
simply replacingl and G with | andG. For example, from
Eq. (3.27) we obtain X(2p(p+1)(p+2)(p+3)log(p/R)+W¥(p))|.
313 = 1 (3.43

= i — —_hilp, :

Silho+h] 87wG X\/a( sinff yo 414 h h”)’ (3.39 We have kept the unperturbed action in order to demon-

strate how the conformal anomaly arises: it is simply the
wherey, is defined byR=1I sinhy,. The path integral over coefficient of the logR/p) term divided by the are ,R* of
&g is performed by splitting it into a classical and quantumthe sphere. If we set the metric perturbation to zero and vary
part: R in Eg. (3.43 (using R=I sinhy,) then we reproduce Eq.

3

ég=h+h’, (3.39 Having calculated?, we can now choose a convenient
value for the renormalization scaje If we were dealing
'B\L/jrely with the CFT then we could kegparbitrary. How-

er, since the third counterterfigq. (3.34)] involves the
square of the Weyl tensdthe integrand is proportional to
the difference of the Euler density and the square of the
13see[34] for a general discussion of such correlators on maxi-Weyl tensoy, we can expect pathologies to arise if this term
mally symmetric spaces. is present when we couple the CFT to gravity. In other

where the boundary perturbatitnis extended into the bulk
using the linearized Einstein equations and the requireme
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words, when coupled to gravity, different choicespofead  dimensional gravity to be recovered whéis>Ngs. We
to different theories. We shall choose the vafueR so that  shall now demonstrate this explicitly.

the third counter term exactly cancels the divergence in the First consider the radiuR of the domain wall given by
CFT, with no finite remainder and hence no residual curva£g. (3.7). It is convenient to write this in terms of the rank

ture squared terms in the action. Ngsof the RS CFT(given by|3/G=2N2d )
The (Euclidean graviton correlator can be read off from
the action as R® [R? N2 R* (3.49
—\/—+1= +—. A4
12872R4 13 V2 16NZg 1%
(P OORy (X)) = 77— 2 Wi (X )F(P.Yo) !
p=2 (3.44 If we assumeN>Ngs>1 then the solution is
where we have eliminatdd/G using Eq.(3.7). The function R N NZg O(NA N (3.50
is qi —= 1+ —+O(NgdN7)|. 5
F(p.Yyo) is given by | 2\2Ngs N2 rd
Yo o ,;(YO S ) ) )
F(p,yo) =€’°sinhy, m+4 cothyo—6 | +¥(p), Note that this impliesR>1, i.e., the domain wall is large
P

(3.45 compared with the anti—de Sitter length scale.
Now let’s turn to a four dimensional description in which
j,(x,x’) is defined as we are conside_ring a four sphere Wi.th no _interior. The only
matter present is the CFT. The metric is simply

and the bitensow"’

iji’

p) " — (P) (P) (yr
Vvi(ji’j’(xlx ) k,I,;,,_, H|] (X)Hi/j’(x )1 (346) dSZZRAZI’;’ijdXide, (35])
with the sum running over all the suppressed
k,I,m, ... of the tensor harmonics.

The appearance dfi? in the denominator in Eq(3.44
suggests that the CFT suppresses metric perturbations on
scales. This is misleading becau®also depends oN. The
function F(p,y,) has the following limiting forms for large
and small radius:

Iabel?/vhere R, remains to be determined. The action is the four
dimensional Einstein-Hilbert actiofwithout cosmological
constant together with Werr. There is no Gibbons-

wking term because there is no boundary. Without a met-
ric perturbation, the action is simply

— 4
lim F(p.yo) =V (p)+p2+3p+6,  (3.47) S= 1677G4f dhyR+ Weer
yo—»oc
30,R? . 3N?Q, Ry (352
i = = - 10 y .
yI;TOF(p,yo) V(p)+p+6. (3.48 4nG, | gn2 9,
F(p,yo) has poles ap=—4,-5-6,... with zeros be- whereG, is the four dimensional Newton constant. We want

tween each pair of negative integers starting—&8,—4.  to calculate the value d®, so we cannot choose=R, yet.
When we analytically continue to Lorentzian signature, wevarying R, gives

shall be particularly interested in zeros lying in the rapge

= —3/2. There is one such zero exactlypat 0, another near N2G,
p=0 and a third neap=— 3/2. For large radius, these extra Ri= e
zeros are gp~ — 0.054 andp~ — 1.48 while for small radius ™
they are ap~0.094 andp~ — 1.60. For intermediate radius . . )
they lie between these values, with the zeros crossingndN is large hencék, is much greater than the four dimen-

through—3/2 and 0 a/,~0.632 andy,~1.32 respectively. Sional Planck length. Substitutir@,=Gs/l, this reproduces
the leading order value fdR found above from the five di-

mensional calculation.
We can now go further and include the metric perturba-

We discussed in Sec. Il how the RS scenario reproducegon. The perturbed four dimensional Einstein-Hilbert action
the predictions of four dimensional gravity when the effectsijg
of matter on the domain wall dominates the effects of the RS
CFT. In our case we have a CFT on the domain wall. This 1
has action proportional tN?. The RS CFT is a similar CFT St=-
(but with a cutofj and therefore has action proportional to 167G,
NZs. Hence we can neglect it whéi>Ngs. The logarith- 1.
mic counterterm is also proportional f83s and therefore x(lZRﬁ— —hilh;+ —hl1v?h; |. (359
also negligible. We therefore expect the predictions of four Ra 4Ry

(3.53

D. Comparison with four dimensional gravity

f d4X\/;
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Adding the perturbed CFT gives E. Lorentzian correlator
In this subsection we shall show how the Euclidean cor-
3N2Q), 3N2Q, R, relator calculated above is analytically continued to give a
== > >—log— correlator for Lorentzian signature. We have put many of the
16w 8w p details in Appendix B but the analysis is still rather technical

2 so the reader may wish to skip to the final result, which is
given in EqQ.(3.66. The techniques used here were devel-
oped in[35-37.

+3 | [ @t aneoonpo
p

N2 Let us first introduce a new label' =i(p+3/2), so that
X|—— (p?+3p+6)+ — (2p(p+1 on the four sphere
64WG4R3(p p+6) 256772R3( p(p+1) )
VZHP =), HPY, (3.60
><(p+2)(p+3)|og(p/R4)+‘P(p))1. (359 wherep’=7i/2,9i/2, ... and
Npr=(p'2+17/4). (3.61)

Settingp=R,, we find that the graviton correlator for a four _
dimensional universe containing the CFT is Recall that there are extra labels on the tensor harmonics that

we have suppressed. The set of rank-two tensor eigenmodes
o on S* forms a representation of the symmetry group of the
<hij(X)hirjr(X’)>=8NzG§E Wi(jri))’j,(xyx/)[pz+3p+ 6 manifold. H_ence_ the surq. (BZ)] of the degenerate eigen-
p=2 functions with eigenvalua,, defines a maximally symmet-
ric bitensorW, ;. (1(Q,Q")), wherew(Q,Q) is the dis-
tance along the shortest geodesic between the points with
] ] ] ) polar angles() and )’. The expression of the bitensor in
This can be compared with the expression obtained from thgsyms of a set of fundamental bitensors wjihdependent

+¥(p)] L (3.56

five dimensional calculation, which can be written coefficient functions together with the relation between the
bitensors orS* and Lorentzian de Sitter space are obtained
(hi; () hjj(x")) in Appendix B.

The motivation for the unusual labelling is that, as dem-
onstrated in Appendix B, in terms of the lalggl the bitensor
on S* has exactly the same formal expression as the corre-
sponding bitensor on Lorentzian de Sitter space. This prop-
X[p?+3p+6+¥(p)+4p(p+1)(p+2)(p+3) erty will enable us to analytically continue the Euclidean
2 iz 2 pniPna—1 correlator into the Lorentzian region without Fourier decom-
X(NrgN“)log(Nrs/N) + O(NggN)]"*. (3.57) posing it. In other words, instead of imposing by hand a
prescription for the vacuum state of the graviton on each
We have expanded in terms of mode separately and propagating the individual modes into
the Lorentzian region, we compute the two-point tensor cor-
5 3 relator in real space, directly from the no boundary path in-
N_RS: 7l (3.58 tegral. Since the path integral unambiguously specifies the
N2 2N2G’ ' allowed fluctuation modes as those which vanish at the ori-
gin of the instantor(see discussion in Sec. Il))Bthis auto-
matically gives a unique Euclidean correlator. The technical
X . advantage of our method is that dealing directly with the real
GFG”Q thenN>NR5’ |.e.,R>I. There are corrections of space correlator makes the derivation independent of the
order (Nrd/N“)log(Ngs/N) coming from the RS CFT and the 06 ambiguities involved in the mode decomposit&f.
Iogarlthr_mc counterterm. I_n fgct, these corrections can be gb— We begin by continuing the graviton correlatpEq.
sorbed into the renormalization of the CFT on the domain3 447 optained via the five dimensional calculation. The
wall if, instead of choosing =R, we choose analytic continuation of the correlator for four dimensional
gravity [Eq. (3.56)] is completely analogous. In terms of the
2N§ new labelp’, the Euclidean correlata3.44 between two
p=R| 1- Vﬁog(NRS/N) . (3.59  points on the wall is given by

2n2

8N -
= [1+ONRIN1 S, W, ()

|2

The four and five dimensional expressions clearly agiee

The corrections to the four dimensional expression are thefhij(2)hirj (7))
of order NA¢/N2. We shall not give these correction terms 128724
explicitly although they are easily obtained from the exact _——~—"" " E W(D')"(M)G(p/’yo)—l (3.62

result(3.44). N2 S

joo
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where the largen limit. However as we deform the contour towards
the real axis, we encounter three extra poles in the posh
G(p",yo)=F(—ip'—3/2y,) factor, the pole ap’=3i/2 becoming a double pole due to
, the simple zero o5(p’,y,). In addition, we have to take in
— eYosinhy, gp’(VO) +4 cothy,— 6 account the two_ poles c!B_(p’,yo)*l atp’'=iAy. o
9p(Yo) For thep’=5i/2 pole, it fol(lgyzv)s from the normalization
A 13 12/ i of the tensor harmonics thaV;;,;7=0. Indirectly, this is a
T (p""—4ip™Hp"T/2=5ip’ ~63/16 consequence of the fact that sti]n—Z perturbations do not have
+(p'2+1/4)(p'2+ 94 [ y(—ip'I2+5/4) a dipole or monopole component. The meaning of the re-

(024 7/4 1 2 36 maining two poles of the tanhi# factor has been exten-
H(—ip' 2+ 71— y(1) - ¢(2)]), (363 sively discussed ifi37], where the continuation is described
of the two-point tensor fluctuation correlator from a four di-

(3.19. The functionG(p’,yo) is real and positive for all mensionalO(5) instanton into open de Sitter space. They
values ofp’ in the sum and for arbitrary,=0. represent non-physical contributions to the graviton propaga-

We have the Euclidean correlator defined as an infinitd©!» arising from the different nature of tensor harmonics on
sum. However, the eigenspace of the Laplacian on de Sitte? and on Lorentzian de Sitter space. In fact, a degeneracy
space suggests that the Lorentzian propagator is most nat@Ppears betweepy = 3i/2 andp{ =i/2 tensor harmonics and
rally expressed as an integral over rpal We must therefore respectivelyp, =5i/2 vector harmonics ang,=>5i/2 scalar
first analytically continue our result from imaginary to real harmonics ors*. More precisely, the tensor harmonics that

p’. The coefficienG(p’,yo) ~* of the bitensor is analytic in  ¢onstitute the bitensoi/{; 1y andWi},] " can be constructed
the upper half complex’-plane, apart from three simple om 5 vector(scalay quantity. Consequently, the contribu-
poles on the imaginary axis. One of them is alwayat fion to the correlator from the former pole is pure gauge,
=3i/2, regardless of the radius of the sphere. Let the posiyhjle the latter eigenmode should really be treated as a scalar
tion of the remaining two poles be writtgs =iAw(Yo). If  perturbation, using the perturbed scalar action. Henceforth
we take the radius of the domain wall to be large comparegye shall exclude them from the tensor spectrum. This leaves
with the AdS scale(which is necessary for corrections to s with the poles o6 (p’,y,) atp’ =iAy. If we deform the
four dimensional Einstein gravity to be smalihen'® 0 contour towards the real axis, we must compensate for them
<A(=3/2, with A;~0 andA,~3/2. SinceG(p’,yo) is real  py subtracting their residues from the integral. We will see
on the imaginaryp’-axis, the residues at these poles arethat these residues correspond to discrete “supercurvature”
purely imaginary. In order to extend the correlator into themodes in the Lorentzian tensor correlator.

complexp’-plane, we must also understand the continuation The contribution from the closing of the contour in the

of the bitensor itself. As shown in Appendix B, the condition ypper halfp’-plane vanishes. Hence our final result for the
of regularity at opposite points on the four sphere imposegclidean correlator reads

by the completeness relatiofEq. (B4)] is sufficient to

uniquely specify the analytic continuation W,(ﬁ)](,u) into

with gp,(y)=Q2,ip,,1,2(COthy), which follows from Eqg.

the complexp’-plane. The extended bitensor is defined by (hij ()i (7))

Egs.(B5), (B8), and(B11). —i64m2RA[ [+ )
Now we are able to write the sum in E¢3.62 as an -— f dp’ tanhp'WWi(jFi)/)J’(“)

integral along a contourC; encircling the pointsp’ N -

=7i/2,91/2, .. .ni/2, wheren tends to infinity. This yields 2

XG(p' yo) t+2m>, tanAmW Y ()
—i64m2R? k=1 i
(g (@) (@) = 7= | ap’ tanhp'm

1

XRegG(p’,Yo) LAY (3.69

<WED (WGP’ Yo) L (3.64

Since we know the analytic properties of the integrand in  The analytic continuation from a four sphere into Lorent-
the upper half complep’-plane, we can distort the contour zian closed de Sitter space is given by setting the polar angle
for thep’ integral to run along the real axis. At large imagi- (1= 7/2—it. Without loss of generality we may take=(},

naryp’ the integrand decays and the contribution vanishes i@nd » then continues tar/2—it. We then obtain the cor-
relator in de Sitter space where one point has been chosen as

the origin of the time coordinate.

4 we decrease the radius of the domain wall, then the poles 1he continuation of the b'tenscwi(ji /j(r) s given in

move away from each other. Their behavior follows from the dis-Appendix B. An extra subtlety arises if one wants to identify
cussion below Eqg3.47 and(3.48. Fory,<0.632, A, becomes the continued bitensor with the usual sum of tensor harmon-

slightly smaller than zero while foy,=<1.32, A, becomes slightly ics on de Sitter space. It turns out that in order to do so,
greater than 3/2. one must extract a factorieP?™/sinhp’z from its
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coefficient functions® We denote the final form of the biten- —_j tanhp’ in the integrand to giveP "/coshp’ . Further-
sor byWhi(‘?j?(,u(x,x’)), which is defined in the Appendix, more, since(—p’,yo) =G(p’.Yo), We can rewrite the cor-
Egs.(B5), (B8), and(B16). relator as an integral from 0 te. We finally obtain the

The extra factolieP”/sinhp’ 7w combines with the factor Lorentzian tensor Feynmatime-ordered correlator,

1287°R*
NZ
2 .
+ 73 tanA WP (n)ReG(p’ o) HiAy)
k=1

+ ’
(hyy OOy (X)) = “0 dp’ tanhp’ 7W;i(% (1) R(G(p’,y0) %)

iji’j

2n4 w 2
] [ AW RG0S, WA ReG (R ) iAW)
(3.6
|
L(p") comparing our result3.66) with the transverse traceless part

In this integral the bitenstiji ,j,(,u(x,x’)) may be written o ) i tourd nal d )
as the sum of the degenerate rank-two tensor harmonics ocﬁ t € graviton propagator In our-dimensional de Sitter
. o 2 spacetimg41]. On the four-sphere, this is easily obtained by
closed de Sitter space with eigenvalug = (p’“+17/4) of : : S - X ;
] o 2 varying the Einstein-Hilbert action with a cosmological con-
the Laplacian. Note that the normalization factQ, stant. In terms of the bitensor, this yields

=p’(4p'?+25)/487% of the bitensor is imaginary ap’

=iA, and the residues oB ! are also imaginary, so the i WP 0.0’

.. . . . iji ,J,(/.L( H ))
guantities in square brackets are all real. Both integrands |n<hij(Q)hi,j,(Qf)>:327,G4R2 E ,
Eq. (3.66 vanish ap’ — 0, so the correlator is well-behaved p'=7il2 Npr—2
in the infrared. (3.67)

For cosmological applications, one is usually interested in . )
the expectation of some quantity squared, like the microwav&/Nich continues to
background multipole moments. For this purpose, all that
matters is the symmetrized correlator, which is just the real hii (R (X)) = 327G 4R = dp WL(p’)( X))
part of the Feynman correlator. {hij ()i (X)) =32 G, 0 N —2 Wy p(XX7)).
Gravitational waves provide an extra source of time- P (3.69
dependence in the background in which the cosmic micro-
wave backgroundCMB) photons propagate. In particular, This can be compared with E(3.66. Note that(apart from
the contribution of gravitational waves to the CMB anisot- the pole atp’ =3i/2 corresponding to the gauge mode men-
ropy is given by the integral in the Sachs-Wolfe formula, tioned beforgthere are no supercurvature modes. We defer a
which is basically the integral along the photon trajectory ofdetailed discussion of the effect of the CFT on the tensor
the time derivative of the tensor perturbation. Hence the reperturbation spectrum in de Sitter space to the next section.
sulting microwave multipole moments can be directly de-
termined from the graviton correlator.
We can therefore understand the effect of the strongly V. CONCLUSION
coupled CFT on the microwave fluctuation spectrum by We have studied a Randall-Sundrum cosmological sce-
nario consisting of a domain wall in anti—-de Sitter space
with a largeN conformal field theory living on the wall. The

15The underlying reason is that there exist two independent bitengonformal anomaly of the CFT provides an effective tension

sors of the form defined by Eq@85) and (B8). Under the integral which leads to a de Sitter geometry for the domal_n wall. We
in the Lorentzian correlator, they are related by the factor@ve computed the spectrum of quantum mechanical vacuum

ieP7/sinhp’ . It follows from the continuation of the completeness fluctuations of the graviton field on the domain wall, accord-

relation[Eq. (B4)] that the sum of degenerate tensor harmonics or"d t0 Euclidean no boundary initial conditions. The Euclid-
de Sitter space equals the second independent bitensor, rather tH@@&n path integral unambiguously specifies the tensor cor-
the bitensor that we obtain by continuation fr@h Therefore, in  relator with no additional assumptions. This is the first
order to express the Lorentzian two-point tensor correlator in termgalculation of quantum fluctuations for RS cosmology.

of tensor harmonics, we must extract this factor from the bitensor. In the usual inflationary models, one considers the classi-
We refer the interested reader to the Appendix for the details.  cal action for a single scalar field. In that context, it is con-

!
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sistent to neglect quantum matter loops, on the grounds thatalar and tensor components.
they are small. On the other hand, in this paper we have Consider a ball of perturbed AdS with a spherical bound-

studied a strongly coupled largeCFT living on the domain gy | et| be the AdS length scale. Gaussian normal coordi-
wall, for which quantum loops of matter are important. By

using the AdS-CFT correspondence, we have performed nates are mtr_oduced by def_m_mg to be the geodesic dis-
fully quantum mechanical treatment of this CFT. The most:@nce of a point from the origin. The surfaces of constant
notable effect of the larghl CFT on the tensor spectrum is &€ spheres on which we introduce coordinatedn these
that it suppresses small scale fluctuations on the microwavePordinates the metric takes the form
sky. It can be seen from E@3.66) that the CFT yields a — . o o
(p’*Inp’)~* behavior for the graviton propagator at lange ds?=12(dy?+sintf yy;; (x)dx'dx) + hy; (y,x)dx'dx!.
(in agreement with the flat space results4®)]), instead of (A1)
the usualp’ ~? falloff [Eq. (3.69]. In other words, quantum _
loops of the CFT give spacetime a rigidity that strongly sup-1Ne ball of AdS has been perturbed, so the boundary will be
presses metric fluctuations on small scales. Note that this @t @ positiony=yq+£(x). _
true independently of how the de Sitter geometry arises, i.e. Let the induced metric perturbation on the boundary be
it is also true for four dimensional Einstein gravity. In addi- h;;(x). This can be decomposed into scalar, vector and ten-
tion, the coupling of the CFT to tensor perturbations givessor perturbations with respect to the round metric on the
rise to two additional discrete modes in the tensor spectrunsphere 39]:
Although this is a novel feature in the context of inflationary
tensor perturbations, it is not surprising. In conventional Ay () =By +2V 5xj) + ViV b+ ¥y 0, (A2)
open inflationary scenarios for instance, the coupling of sca-
lar field fluctuations with scalar metric perturbations intro- where we use hats to denote quantities defined on the sphere
duce_s a supercurvature mode Wlth_ an eigenvalue of the LQT.e. quantities that depend only of). ‘“9” is a transverse
placian close to the discrete de Sitter gauge meie35. <
The former discrete mode gt =i A,~3i/2 in Eq.(3.66 is traceless tgnsor on the sphere ands a transterse veA:ctor on

1
nothing else than the analogue of this well known supercurth® Sphere¢ andy are scalars on the spheyg.and ¢ can.
vature mode in the scalar fluctuation spectrum. The seconB® 9auged away by infinitesimal coordinate transformations
mode has an eigenvalue’ =iA,~0. Its interpretation is on the sphere of the forx=x'— 5'(x) — ' »(x) wherez' is
less clear, but it is clearly an effect of the matter on thetransverse. Therefore we shall assume fhaind ¢ vanish.

domain wall. However it hardly contributes to the correlator \gte that it is not possible to gauge awayor ¢. This paper
because tah,7 is very small. only deals with tensor perturbations so we shall assume that

The effect of the CFT on large scales is more difficult tothe scalarsy and £ are vanishing. The induced metric per-

?eunasrz)t:f)éo?reeclgijos[r‘eE Of(;%%)]c ?nnzﬁgﬁzwﬁ Zd;p?;iergsnggre turbation is then transverse and traceless and can be extended
g-(s. P regime. Y into the bulk as described in Sec. Ill. The scalars will be

speaking, however, long-wavelength tensor correlations Niscussed in our next paper
closed(or open models for inflation are very sensitive to the '
details of the underlying theory, as well as to the boundary

conditions at the instanton. Since tensor fluctuations do give APPENDIX B: MAXIMALLY SYMMETRIC BITENSORS

a substantial contribution to the large scale CMB anisotro- A maximally symmetric bitensofT is one for which
pies, this may provide an additional way to observationally «T—q for any isometryo of the maximally symmetric

distinguish different inflationary scenarip38. _ manifold. Any maximally symmetric bitensor may be ex-
Most matter fields can be expected to behave like a CFhanded in terms of a complete set of fundamental maximally

at small scales. Furthermore, fundamental theories such &§mmetric bitensors with the correct index symmetries. For
string theory predict the existence of a large number of matyctance

ter fields. Therefore, our results based on a quantum treat-

ment of a IargeN_CF_T may be accurate at small scales for Tiji i =ta(m) 95 Oirj +ta( wINGGj Ny

any matter. If this is the case then our result shows that

tensor perturbations at small angular scales are much smaller +ta3(w)[8ii 9 + Gji i 1+ ta(p)nininin;j

than predicted by calculations that neglect quantum effects

of matter fields. FUs()Lgi i N+ ninggirg ] (B1)
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This appendix demonstrates how a metric perturbation on The set of tensor eigenmodes 8h(or on de Sitter spage
the boundary of a ball of AdS is decomposed into vectorforms a representation of the symmetry group of the mani-

APPENDIX A: CHOICE OF GAUGE
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fold. It follows in particular that their sum over the parity 2
statesP={e,0} and the quantum numbeks |, andm on the a(M)=W(1p)(M)+§W§p)(M)
three sphere defines a maximally symmetric bitensoSbn
(or dS space[43]: 8 da(u)
B(pm)= (B6)

(Ap+8)sinu  du

Wi(jp,)i,j,(,u)= > qgfk’lm(g)qgf’j',”’k'mm')*, (B2)  Interms of a new argumeat= coS(u/2) (or its continuation
Pkim on de Sitter spagethe transversality and eigenvalue condi-
tions imply for a(z)

On S’ the labelp’ takes the value i72,9i/2, ... . It is re- d%a(z) da(z)
lated to a real labgb by p’=i(p+3/2). The ranges of the 2(1-2) — +[4—82]F=()\p,+8)a(z)
other labels are then®k<p, 0<I<k and—I<m=I. On d“z

de Sitter space there is a continuum of eigenvalpés (B7)
e[0,0). We will assume from now on that the eigenmodesand then for the coefficient functions
are normalized by the condition 6
W= — g[()\p, +28)z(1—2)—45/6]a(z)
[ A AL = 5 S 81 S 5
(B3) +E)[()\p,+8)z(1—z)(1—22)]ﬁ(z)
The completeness relation on the four sphere may then be W2=g (Ny +28)2(1—2)+ g)(l—z)— 20 a(2)
written as 507°°F 3 6
6
) tie - %[()\p,+8)z(1—z)(4—3z)],8(z) (B8)
y*(l/2)5lli,j,(Q_Q!)= 2 Wl(Jp’)i’j’(M(Qiﬂ’))-
p'=7i12 9
(B4) Wy =z [(\p +28)2(1-2) - 40/6]a(2)
Explicit formulas for the components of these tensors may be 9
. . . . o) — o[\ +8)2(1-2)(1-22)]8(2)
found in[33]. In this appendix we will determin iii 0 () 20
simultaneously on the four sphere and de Sitter space. Tnﬁith Ny =(p'2+17/4)
ponstruction of'the analogous bitgnsor%anng’ is given Nothe that Eq(B7) is precisely the hypergeometric dif-
in [44] and their relation is described [87]. ferential equation, which has a pair of independent solutions

The bitensoNVi(ip,)i,j,(,u) has some additional properties 4(z) anda(1—z) where
arising from its construction in terms of the transverse and
traceless tensor harmoniagP™™. The tracelessness of

W), allows one to eliminate two of the coefficient func- Qp' is @ constant. The solution fg8(2) follows from Eq.

a(2)=Q, F1(7/2+ip'7/2—ip'42).  (BY)

tions in Eq.(B1). It may then be written as (B6) and is given by
B(2)=Qp oF1(92—ip’,9/12+ip’,52). (B10)
Wi(j':i)’f)jf(ﬂ)zwg.p,)[gij —4nin;][girj —4n;n;] We will determine below which solution corresponds to the
, bitensor defined by EqB2).
+wWP[4n;g)) N+ 4 ;] Our discussion so far applies to eith&t or de Sitter
o) space. We now specialize to the caseSbfand will later
+wy [Gii’gjjr + Qi 9ijr —2Nigi+j/N; obtain results for de Sitter space by analytic continuation.

The hypergeometric functions o®* may be expressed in
terms of Legendre polynomials in cps(Eq. [15.4.19 in
[45)),

_Znirgijnjr+8ninjnirnjr]. (BS)

This expression is traceless on either the index paior _ 3 343
i’j’. The requirement that the bitensor be transverse  ®(#)=QpLl(H)2%(sinu) P _j) ;, (—cosu),

W) — i i _
ViwP ), =0 and the eigenvalue condition V¢ ,6’(,u)=Qprl“(5)24(sin,u)_4P_‘1‘,2+ip,(—COS,u).

iji’j’

—)\p,)Wi(j’i,/)j/=0 impose additional constraints on the re- (B11)

maining coefficient fU”Ctioanp )(M)-.TO solve these con- The solutions for(z) andB(z) are singular az=1 (i.e. for
straint equatlons it is convenient to introduce the new Vallcoincident points 0@4) for generic values Op’_ However,
ables onS* (in de Sitter spacey is replaced bym/2—iu) for the values ofp’ corresponding to the eigenvalues of the
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Laplacian onS*, they are regular everywhere @t. Simi-  We shall conclude this Appendix by describing in detail the
larly, «(1—2) and 8(1—2z) are generically singular for an- subtleties of this analytic continuation at the level of the
tipodal points onS* and regular for these special values of bitensor.

p’_ For these Specia| Va|u(z) anda(l_z) are no |Onger To perform the Contin!.lation to de.Sitter Space- we note
linearly independent but related by a factor of 1)("*1)/2  that the geodesic separa_tuanons4 continues tor/2—it, so
wheren=—2ip’=7,9,11 . .. . This follows from the rela- 2= s(1+i sinht) on de Sitter space. The continuation of the
tion (Eq.[8.2.3 in [45]) hypergeometric functioneB11) yields

, a(2)=T(4)2%cosht) *P_}, ., (~isinht),
P/:( - Z) =¢ VWP/VL(Z) - ;eilﬂﬂSir[W(V—’— M)]Q/];L(Z)’ ,8(2) :F(5)24(Cosht)74piﬁlz+ip,( —j sinht).
(B12) (B16)

However, an extra subtlety arises if one wants to identify
%)Ee continued bitensor with the usual sum of tensor harmon-

" and the h o f _ d G b s on de Sitter space. In particular, in order for the bitensor
p’ and the y;;g)rgeometnc unctions reduce to Gegenbaugy ., rrespond to the usual sum of rank-two tensor harmonics

polynomialsC{/',(1—2z). We have a choice between us- g the realp’-axis, one must choose the second solution
ing a(z) anda(1-2) in the bitensor for these valuespf.  4(1-2) to the hypergeometric equation, rather thafz)
However, to obtain the Lorentzian correlator, we had to eXthat enters in the continued bitensor. This is easily seen by
press the discrete suB.62 as a contour integral. Since the performing the continuation on the completeness relation
Euclidean correlator obeys a differential equation with a[Eq. (B4)], which should continue to an integral ovpf
delta function source at =0, we must maintain regularity from O to of the Lorentzian bitensor, defined as the sum
of the integrand ap = 7 when extending the bitensor in the (B2) over the degenerate tensor harmonics on de Sitter space.
complexp’-plane. In other words, for geneni, we need to  Writing Eq. (B4) as a contour integral and continuing to
work with the solutiona(z), rather thenw(1—2z). We shall ~ Lorentzian de Sitter space yields
therefore choose(z), since this is the solution that we will g~ WS, (x—x")
analytically continue. "
The above conditions leave the overall normalization of te , i ,
the bitensor undetermined. To fix the normalization constant = f_oc dp’ tanhp’ Wi, (w(X,X")).
Qp , consider the biscalar quantity

where the second term vanishes for=7i/2,9i/2, ... . In
fact, the hypergeometric series terminates for these values

(B17)

g''gll 'Wi(jﬁ’ ,)J-,(,u)= 1208P") — WP + 24w Clearly this is not the correct completeness relation accord-
(B13) ing to the equivalent definitioiB2) of the bitensor on de
Sitter space. But let us relate the continued bitensor in Eq.
In the coincident limit)— Q' andz—1 this yields (B17) to the independent bitensor in which the solutions
a(1-2z) enter. This can be done by applying E§12) to
the Legendre polynomials in EGB16). By closing the con-
Wi(jp/)ij(Q,Q): > qi(jp’)Pk'm(Q)q(P')P'miJ(Q)* tour in the upper halp’-plane, one sees there is no contri-
Pkim bution to the integraland indeed to the tensor correlgtor
from the second term in EqB12), because its prefactor
cancels the cosH (p’ 7)-factor in Eq.(B17), making the in-
) ] tegrand analytic in the upper haff’-plane (up to gauge
Since F(0)=1 we havea(1)=Q, (—1)**"2 By inte-  modes. Hence, under the integral both solutions are simply
grating over the four-sphere and using the normalizatione|ated by the factoreP™. In addition one needs to extract
condition (B3) on the tensor harmonics one obtains, for the sinh ! p’ 7-factor'® from Q,' . The completeness relation
=-2ip'=79,11... then becomes

=—72a(1). (B14)

+ ..
H 12 ’ 12 - ij "o ' i ’

o, P/(4p7PF25 _p't4ptr2s o g A8 (x—x )—fo dp" WY (pryirjr (e (x.X)),

P 48m2(—1)A*W2 4872 sinhp’ (B19)

We conclude that the properties of the bitensor appearingnd the hypergeometric funi(j:tlom{l—z) andB(1-2) that
in the tensor correlator completely determine its form. Noticeonstitute the final bitensd, ), ;. (u(x,x")) are given by
that in terms of the labep’ we have obtained a unified
functional description of the bitensor o8 and de Sitter
space. However, its explicit form is very different in the two  **Remember thaQ,, gained the factor sinit p'7 because we
cases because the lakgl takes on different values. It is have chosen the solutian(z) on the four sphere. The correct nor-
precisely this description that has enabled us in Sec. Il tanalization constant for the independent bitensor, obtained from the
analytically continue the correlator from the Euclidean in-normalization condition on the tensor harmonics, is ttfe,;],
stanton into de Sitter space without Fourier decomposing it=sinhp’ 7Qy, .
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a(1-2)=Q, T'(4)2%cosht) P}, (i sinht),

B(1-2)=Q, I'(5)2*(cosht) *P_1,,, .. (i sinht),
(B19)

PHYSICAL REVIEW D62 043501

with Q= p’ (4p’2+ 25)/48m°.

On the reab’—axis,WiLji(‘,’j’?(M) equals the sunB2) of the

degenerate rank-two tensor harmonics on closed de Sitter

space with eigenvalulep,=(p’2+ 17/4) of the Laplacian.
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