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Renormalization group improved black hole spacetimes
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We study the quantum gravitational effects in spherically symmetric black hole spacetimes. The effective
quantum spacetime felt by a pointlike test mass is constructed by ‘‘renormalization group improving’’ the
Schwarzschild metric. The key ingredient is the running Newton constant which is obtained from the exact
evolution equation for the effective average action. The conformal structure of the quantum spacetime depends
on its ADM massM and it is similar to that of the classical Reissner-Nordstro¨m black hole. ForM larger than,
equal to, and smaller than a certain critical massM cr the spacetime has two, one, and no horizon~s!, respec-
tively. Its Hawking temperature, specific heat capacity, and entropy are computed as a function ofM. It is
argued that the black hole evaporation stops whenM approachesM cr which is of the order of the Planck mass.
In this manner a ‘‘cold’’ soliton-like remnant with the near-horizon geometry of AdS23S2 is formed. As a
consequence of the quantum effects, the classical singularity atr 50 is either removed completely or it is at
least much milder than classically; in the first case the quantum spacetime has a smooth de Sitter core which
would be in accord with the cosmic censorship hypothesis even ifM,M cr .

PACS number~s!: 97.60.Lf, 04.60.2m, 11.10.Hi
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I. INTRODUCTION

The Schwarzschild spacetime is the unique spheric
symmetric vacuum solution of Einstein’s equations. Und
standing the dynamics of this spacetime when quantum
fects of the geometry are switched on has always been on
the most challenging issues from the theoretical point
view. It is in fact very plausible that those effects will play
key role in the very late stages of the gravitational collap
as well as during the evaporation process of a Planck
black hole.

According to the standard semiclassical scenario, a b
hole of massM emits Hawking radiation at a temperatu
which is inversely proportional toM. During this process, in
addition to the radiation of energy to infinity, a negativ
energy flux through the horizon is produced. Thereby
mass of the black hole is lowered and the temperatur
increased. It is an open question whether this process co
ues until the entire mass of the black hole has been conve
to radiation or whether it stops when the temperature is c
to the Planck temperature where the semiclassical argum
are likely to break down.

In the case of a complete evaporation a number of ex
physical processes such as violations of baryon and le
number conservation or the ‘‘information paradox’’ cou
occur@23#. Let us consider a quantum field on the black ho
spacetime whose initial state is described by a pure den
matrix r̂. If we trace over the field modes which are loca
ized inside the event horizon we are left with an effect
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mixed state density matrixr̂eff for the physics outside the
horizon. Of course this does not mean that a pure state
evolved into a mixed state since the incomplete informat

provided byr̂eff still can be supplemented by the informatio

contained inr̂ about the degrees of freedom behind the h
rizon. However, if the black hole evaporates complet
those parts of the spacetime which formerly were interior
the horizon disappear entirely, and there are no field deg
of freedom left which could ‘‘know’’ about the information

missing inr̂eff . As a consequence, the initially pure quantu

stater̂ seems to have evolved into a genuinely mixed st

r̂eff .
Alternatively one could speculate that the evaporation

incomplete, i.e., that it comes to an end when the Schwa
child radius is close to the Planck length where the semic
sical results apply no longer. In this case the final state of
Hawking evaporation might be some kind of ‘‘cold’’ rem
nant with a mass close to the Planck mass.

It is clear that the problem of the final state should
addressed within a consistent theory of quantum gravity. T
standard semiclassical derivation of the Hawking tempe
ture quantizes only the matter field and treats the space
metric as a fixed classical background. However, investig
ing black holes with a radius not too far above the Plan
length we must be prepared that quantum fluctuations of
metric play an important role. The standard perturbat
quantization of Einstein gravity is of little help here since
leads to a non-renormalizable theory. Also the more
vanced attempts at formulating a fundamental theory
quantum gravity~string theory, loop quantum gravity, etc!
do not provide us with a satisfactory answer yet@2#. As a
way out we propose in this paper to use the idea of
©2000 The American Physical Society08-1
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Wilsonian renormalization group@1# in order to study quan-
tum effects in the Schwarzschild spacetime.

Our basic tool will be a Wilson-type effective actio
Gk@gmn# wherek is a scale parameter with the dimension
a mass. In a nutshell,Gk@gmn# is constructed in such a wa
that, when evaluated at tree level, it correctly descri
gravitational phenomena,with all loop effects included,
whose typical momenta are of the order ofk. The basic idea
is borrowed from the block spin transformations which a
used in statistical mechanics in order to ‘‘coarse grain’’ s
configurations of lattice systems. In its simplest formulatio
when applied to a continuum field theory@3–5#, we are given
a field f(x) defined on a Euclidean spacetime with met
gmn and dimensiond. The averaged or ‘‘blocked’’ field
fk(x) is defined by means of

fk~x!5E ddyAg~y!rk~x2y!f~y!, ~1.1!

whererk(x2y) is a smearing function that has support on
for uux2yuu,k21. The ‘‘average action’’Gk governs the dy-
namics of the coarse-grained or macroscopic fieldF. It is
obtained from the classical action by integrating over
microscopic degrees of freedom or ‘‘fast variables’’:

exp~2Gk@F#!5E D@f#d~fk2F!exp~2S@f#!.

~1.2!

The blocked field has a very intuitive physical interpretatio
it is the field noticed by an observer who uses an experim
tal apparatus of resolution

l;k21. ~1.3!

This observer sees the field evolving according to the ef
tive equation of motiondGk@F#/dF(x)50.

For continuum field theories the functional integral~1.2!
is not easy to deal with, and so we shall use an alterna
construction which leads to a functionalGk with similar
qualitative properties to the one discussed above. We use
method of the ‘‘effective average action’’Gk which has been
developed in Refs.@6,7#. It is defined in a similar way to the
ordinary effective actionG but it has the additional feature o
a built-in infrared cutoff at the scalek. Quantum fluctuations
with momentapm

2 .k2 are integrated out in the usual wa
while the effect of the large distance fluctuations withpm

2

,k2 is not included inGk . HenceGk , regarded as a function
of k, describes a renormalization group trajectory in t
space of all actions; it connects the classical actionS
5Gk→` to the ordinary effective actionG5Gk50. This tra-
jectory satisfies an exact functional renormalization gro
~or flow! equation. If one wants to quantize a fundamen
theory with actionS one integrates this equation from th
initial point GL5S down to G5Gk50. After appropriate
renormalizations one then letsL→`.

The flow equation can also be used in order to furt
evolve ~coarse grain! effective field theory actions from on
scalek to another. In this case no limit such asL→` above
needs to be taken, i.e., the ultraviolet cutoff is not remov
04300
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Hence the evolution ofGk from k1 to k2 is always well
defined even if the theory under consideration, when
garded as a fundamental theory, is not renormalizable.

In the following we consider Einstein gravity as an effe
tive field theory and we identify the standard Einste
Hilbert action with the average actionGkobs

. Here kobs is
some typical ‘‘observational scale’’ at which the classic
tests of general relativity have confirmed the validity of t
Einstein-Hilbert action. In order to find an approximate s
lution to the flow equation we assume that also fork
.kobs, i.e., at higher momenta,Gk is well approximated by
an action of the Einstein-Hilbert form. The two parameters
this action, Newton’s constant and the cosmological c
stant, will depend onk, however, and the flow equation wi
tell us how the running Newton constantG(k) and the run-
ning cosmological constantl(k) depend on the cutoff. Thei
experimentally observed values areG(kobs)5G0 and
l(kobs)5l0'0. Since, at least within our approximation
there is essentially no running of these parameters betw
kobs ~the scale of the solar system, say! and cosmological
scales (k'0) we may setkobs50 and identify the measure
parameters withG(k50) andl(k50).

The key idea presented in this paper is to use the runn
Newton constantG5G(k) in order to ‘‘renormalization
group improve’’ the Schwarzschild spacetime. This idea
borrowed from particle physics. There it is a standard dev
in order to add the dominant quantum corrections to the B
approximation of some scattering cross section, say.
implementation of this scheme is similar to the renormali
tion group based derivation of the Uehling correction to t
Coulomb potential in massless QED@8#. One starts from the
classical potential energyVcl(r )5e2/4pr and replacese2 by
the running gauge coupling in the one-loop approximatio

e2~k!5e2~k0!@12b ln~k/k0!#21, b[e2~k0!/6p2.
~1.4!

The crucial step is to identify the renormalization pointk
with the inverse of the distancer. This is possible because i
the massless theoryr is the only dimensionful quantity which
could define a scale. The result of this substitution reads

V~r !52e2~r 0
21!@11b ln~r 0 /r !1O~e4!#/4pr , ~1.5!

where the IR reference scaler 0[1/k0 has to be kept finite in
the massless theory. We emphasize that Eq.~1.5! is the cor-
rect ~one-loop, massless! Uehling potential which is usually
derived by more conventional perturbative methods@8#. Ob-
viously the position dependent renormalization group i
provemente2→e2(k), k}1/r encapsulates the most impo
tant effects which the quantum fluctuations have on
electric field produced by a point charge.

In this paper we propose to ‘‘improve’’ the Schwarzsch
metric by an analogous substitution. We replace the New
constant by its running counterpartG(k) with an appropriate
position-dependent scalek5k(r ), where r is the radial
Schwarzschild coordinate. At large distances we shall h
k(r )}1/r as in QED, but sinceG is dimensionful there will
be deviations at small distances.
8-2
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This approach has also been used in Ref.@9# where the
impact of quantized gravity on the Cauchy horizon singul
ity occurring in a realistic gravitational collapse has be
studied. In this work a perturbative approximation of t
function G(k) has been employed. In the present paper
use instead an exact, non-perturbative solution to the ev
tion equation forG(k) which follows from the ‘‘Einstein-
Hilbert truncation.’’

Our main results about the quantum corrected Schwa
child spacetime are the following. For large massesM the
quantum effects are essentially negligible. Lowering
mass we find that the radius of the event horizon beco
smaller and that at the same time a second, inner hor
develops out of the (r 50) singularity which is now timelike.
When M equals a certain critical massM cr which is of the
order of the Planck mass the two horizons coincide. ForM
,M cr there is no horizon at all. The causal structure of th
spacetimes is similar to the classical Reissner-Nordst¨m
spacetimes. It turns out that while the Hawking temperat
is proportional to 1/M for very heavy black holes it vanishe
asM approachesM cr from above. This leads to a scenario f
the evaporation process where the Hawking radiation
‘‘switched off’’ once the mass gets close toM cr . This pic-
ture suggests that the final state of the evaporation could
critical ~extremal! black hole withM5M cr .

The rest of this paper is organized as follows. In Sec
we derive the running of the Newton constant from t
renormalization group equation. In Sec. III the correct ide
tification of the position dependent cutoffk5k(r ) is dis-
cussed. In Sec. IV we ‘‘renormalization group improve’’ th
eternal black hole spacetime and discuss its propertie
detail. In Sec. V we provide an effective matter interpretat
of this spacetime. In Sec. VI the Hawking temperature
derived and our scenario for the evaporation process is
sented. In Sec. VII we obtain an expression for the therm
dynamic entropy of the quantum black hole, while in S
VIII we discuss the fate of the (r 50) singularity. The con-
clusions are contained in Sec. IX. In the Appendix we d
cuss some problems related to the statistical mechanica
tropy of the quantum black hole.

II. THE RUNNING NEWTON CONSTANT

In Ref. @7# the idea of the effective average action@6,10#
has been used in order to formulate the quantization
(d-dimensional, Euclidean! gravity and the evolution of
scale-dependent effective gravitational actionsGk@gmn# by
means of an exact renormalization group equation. Furt
more, in order to find approximate solutions to this equati
the renormalization group flow in the infinite dimension
space of all action functionals has been projected on
2-dimensional subspace spanned by the operatorsAg and
AgR ~‘‘Einstein-Hilbert truncation’’!. Using the background
gauge formalism with a background metricḡmn , this trunca-
tion of the ‘‘theory space’’ amounts to considering only a
tions of the form
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Gk@g,ḡ#5„16pG~k!…21E ddxAg$2R~g!12l̄~k!%

1Sgf@g,ḡ#, ~2.1!

whereG(k) and l̄(k) denote the running Newton consta
and cosmological constant, respectively, andSgf is the clas-
sical background gauge fixing term. For truncations of t
type the flow equation reads

] tGk@g,ḡ#5
1

2
Tr†~k22Gk

(2)@g,ḡ#1R k
grav@ ḡ# !21] tR k

grav@ ḡ#‡

2Tr†~2M@g,ḡ#1R k
gh@ ḡ# !21] tR k

gh@ ḡ#‡,

~2.2!

with

t[ ln k, ~2.3!

whereGk
(2) stands for the Hessian ofGk with respect togmn ,

andM is the Faddeev-Popov ghost operator. The opera
R k

grav andR k
gh implement the IR cutoff in the graviton an

the ghost sector. They are defined in terms of a, to so
extent, arbitrary smooth functionRk(p2)}k2R(0)(p2/k2) by
replacing the momentum squarep2 with the graviton and
ghost kinetic operator, respectively. Inside loops, they s
press the contribution of infrared modes with covariant m
mentap,k. The functionR(0)(z),z[p2/k2, has to satisfy
the conditionsR(0)(0)51 and R(0)(z)→0 for z→`. For
explicit computations we use the exponential cutoff

R(0)~z!5z@exp~z!21#21. ~2.4!

If we insert Eq.~2.1! into Eq.~2.2! and project the flow onto
the subspace spanned by the Einstein-Hilbert truncation
obtain a coupled system of differential equations for the
mensionless Newton constant

g~k![kd22G~k! ~2.5!

and the dimensionless cosmological constantl(k)
[l̄(k)/k2:

] tg5@d221hN#g ~2.6!

] tl52~22hN!l1
1

2
g~4p!12d/2@2d~d11!Fd/2

1 ~22l!

28dFd/2
1 ~0!2d~d11!hNF̃d/2

1 ~22l!#. ~2.7!

Here

hN~g,l!5
gB1~l!

12gB2~l!
~2.8!

is the anomalous dimension of the operatorAgR, and the
functionsB1(l) andB2(l) are given by
8-3
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B1~l![
1

3
~4p!12d/2@d~d11!Fd/221

1 ~22l!26d

3~d21!Fd/2
2 ~22l!24dFd/221

1 ~0!224Fd/2
2 ~0!#,

~2.9!

B2~l![2
1

6
~4p!12d/2@d~d11!F̃d/221

1 ~22l!26d

3~d21!F̃d/2
2 ~22l!#,

with the cutoff, i.e.,R(0)-dependent ‘‘threshold’’ functions
(p51,2, . . . )

Fn
p~w!5

1

G~n!
E

0

`

dz zn21
R(0)~z!2zR(0)8~z!

@z1R(0)~z!1w#p
,

~2.10!

F̃n
p~w!5

1

G~n!
E

0

`

dz zn21
R(0)~z!

@z1R(0)~z!1w#p
.

For further details about the effective average action in gr
ity and the derivation of the above results we refer to@7#.

From now on we shall focus ond54. Furthermore, the
cosmological constant plays no role within the scope of
present investigation. We assume thatl̄!k2 for all scales of
interest so that we may approximatel'0 in the arguments
of B1(l) andB2(l). Thus the evolution is governed by th
equation

dg~ t !

dt
5@21hN#g~ t !5b„g~ t !…, ~2.11!

with the anomalous dimension

hN~g!5
B1g

12B2g
, ~2.12!

and the beta function

b~g!52g
12v8g

12B2g
. ~2.13!

The constantsB1 andB2 are given by

B1[B1~0!52
1

3p
@24F2

2~0!2F1
1~0!#, ~2.14!

B2[B2~0!5
1

6p
@18F̃2

2~0!25F̃1
1~0!#. ~2.15!

We also define

v[2
1

2
B1 , v8[v1B2 . ~2.16!

For the exponential cutoff~2.4! we have explicitly
04300
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F1
1~0!5

p2

6
, F2

2~0!51 ~2.17!

F̃1
1~0!51, F̃2

2~0!5
1

2
~2.18!

and

v5
4

p S 12
p2

144D , B25
2

3p
. ~2.19!

The evolution equation~2.11! displays two fixed pointsg* ,
b(g* )50. There exists an infrared attractive~Gaussian!
fixed point at g

*
IR50 and an ultraviolet attractive~non-

Gaussian! fixed point at

g
*
UV5

1

v8
. ~2.20!

This latter fixed point is a higher dimensional analog of t
Weinberg fixed point@11# known from (21e)-dimensional
gravity. ~Within the present framework it has been studied
@7#.!

The UV fixed point separates a weak coupling regim
(g,g

*
UV) from a strong coupling regime whereg.g

*
UV .

Since theb function is positive forgP@0,g
*
UV# and negative

otherwise, the renormalization group trajectories which
sult from Eq.~2.11! with Eq. ~2.13! fall into the following
three classes:

~i! Trajectories withg(k),0 for all k. They are attracted
towardsg

*
IR for k→0.

~ii ! Trajectories withg(k).g
*
UV for all k. They are at-

tracted towardsg
*
UV for k→`.

~iii ! Trajectories withg(k)P@0,g
*
UV# for all k. They are

attracted towardsg
*
IR50 for k→0 and towardsg

*
UV for k

→`.
Only the trajectories of type~iii ! are relevant for us. We

shall not allow for a negative Newton constant, and we a
discard solutions of type~ii !. They are in the strong coupling
region and do not connect to a perturbative large dista
regime.~See Ref.@12# for a numerical investigation of the
phase diagram.!

The differential equation~2.11! with ~2.13! can be inte-
grated analytically to yield

g

~12v8g!v/v8
5

g~k0!

@12v8g~k0!#v/v8 S k

k0
D 2

, ~2.21!

but this expression cannot be solved forg5g(k) in closed
form. However, it is obvious that this solution interpolat
between the IR behaviorg(k)}k2 for k2→0 and g(k)
→1/v8 for k→`.

In order to obtain an approximate analytic expression
the running Newton constant we observe that the ratiov8/v
is actually very close to unity. Numerically one hasv
'1.2, B2'0.21, v8'1.4, g

*
UV'0.71 so thatv8/v'1.18 is

indeed close to 1. Replacingv8/v→1 in Eq. ~2.21! yields a
8-4
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rather accurate approximation with the same general feat
as the exact solution. In this case we can easily solve
~2.21!:

g~k!5
g~k0!k2

vg~k0!k21@12vg~k0!#k0
2 . ~2.22!

This function is anexact solution to the renormalization
group equation with the approximate anomalous dimens
hN522vg1O(g2) which is the first term in the perturba
tive expansion of Eq.~2.12!:

hN522vgF11 (
n51

`

~B2g!nG . ~2.23!

Remarkably, for the trajectory~2.22! the quantityB2 g(k)
remains negligibly small for all values ofk. It assumes its
largest value at the UV fixed point whereB2 g

*
UV50.15.

Thus Eq.~2.22! provides us with a consistent approximatio
~This can also be checked by comparing to the numer
solution of Ref.@12#.!

In terms of the dimensionful Newton constantG(k)
[g(k)/k2 Eq. ~2.22! reads

G~k!5
G~k0!

11vG~k0!@k22k0
2#

. ~2.24!

From now on we shall setk050 for the reference scale. A
least within the Einstein-Hilbert truncation,G(k) does not
run any more between scales where the Newton constant
determined experimentally~laboratory scale, scale of the so
lar system, etc.! and k'0 ~cosmological scale!. Therefore
we can identifyG0[G(k050) with the experimentally ob-
served value of the Newton constant. From

G~k!5
G0

11vG0k2 ~2.25!

we see that when we go to higher momentum scalesk, G(k)
decreases monotonically. For smallk we have1

G~k!5G02vG0
2k21O~k4!, ~2.26!

while for k2@G0
21 the fixed point behavior sets in andG(k)

‘‘forgets’’ its infrared value:

G~k!'
1

vk2 . ~2.27!

1In general we would expect that the IR asymptotics might cha
when we include the running of the cosmological constant. In
case Eq.~2.26! still gives the leading correction in an expansio
with respect tog5k2G, but since the cosmological constant is d
mensionful this is not necessarily the same as an expansion
respect tok2. For a first numerical investigation of the impact th
cosmological constant has on the running ofG, the reader is re-
ferred to Souma@12#.
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In Ref. @13#, Polyakov had conjectured an asymptotic ru
ning of precisely this form.

III. IDENTIFICATION OF THE INFRARED CUTOFF

In the Introduction we identified the scalek with the in-
verse distance in order to derive the leading QED correc
to the Coulomb potential. In this section we discuss how
the case of a black holek can be converted to a position
dependent quantity. We write this position-dependent IR c
off in the form

k~P!5
j

d~P!
, ~3.1!

wherej is a numerical constant to be fixed later andd(P) is
the distance scale which provides the relevant cutoff for
Newton constant when the test particle is located at the p
P of the black hole spacetime.

Using Schwarzschild coordinates (t,r ,u,f) and consider-
ing spherically symmetric spacetimes, the symmetries of
problem imply thatd(P) depends on ther coordinate ofP
only, d5d(r ).

If the test particle is far outside the horizon of the bla
hole (r @2G0M ) where the spacetime is almost flat we e
pect thatd(r ) is approximately equal tor. By comparison
with the work of Donoghue@14# we shall see that this is
actually the case. As a consequence, the functiond is nor-
malized such that

lim
r→`

d~r !

r
51 ~3.2!

so that the constantj fixes the asymptotic behavior

k~r !'
j

r
for r→`. ~3.3!

Contrary to the situation in QED on flat spacetime, Eq.~3.3!
is not a satisfactory identification ofk5k(P) for arbitrary
pointsP. The reason is thatd(P) should have a coordinat
independent meaning, whiler is simply one of the local
Schwarzschild coordinates. As a way out, we defined(P) to
be the proper distance~with respect to the classica
Schwarzschild metric! from the pointP to the center of the
black hole along some curveC:

d~P!5E
C
Auds2u. ~3.4!

There is still some ambiguity as for the correct identificati
of the spacetime curveC. However, at least in the sphericall
symmetric case, it turns out that all physically plausible ca
didates lead to cutoffs with the same qualitative features

We parametrizeC asxm(l) wherexm5(t,r ,u,f) are the
Schwarzschild coordinates andl is a ~not necessarily affine!
parameter along the curve. To start with, let us consider
curve C[C(1) defined by t(l)5t0 , r (l)5l, u(l)5u0 ,
f(l)5f0 with lP@0,r (P)# wherer (P) is ther coordinate

e
s

ith
8-5
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of P. This is, even beyond the horizon, a straight ‘‘radia
line from the origin toP, at fixed values oft,u andf. If we
restrict l to the interval@r (P0),r (P)# with P0 and P both
outside the horizon whereds2.0 then*Ads2 is the ordinary
spatial proper distance between the pointsP0 and P. The
definition ~3.4! involves the modulus ofds2 and it general-
izes this ‘‘distance’’ to the case that at least one of the t
points lies within the horizon wherer is timelike. ~See also
@15# for a discussion of this ‘‘distance.’’! The explicit result
reads forr ,2G0M

d(1)~r !52G0M arctanA r

2G0M2r
2Ar ~2G0M2r !

~3.5!

and for r .2G0M :

d(1)~r !5pG0M12G0M lnSA r

2G0M
1A r

2G0M
21D

1Ar ~r 22G0M !. ~3.6!

Note thatd(1)(r ) is continuous at the horizon. Equation~3.6!
shows that indeedd1(r )5r 1O(lnr) for r→`. From Eq.
~3.5! we obtain forr→0

d(1)~r !5
2

3

1

A2G0M
r 3/21O~r 5/2!, ~3.7!

which leads to the cutoff

k(1)~r !5
3

2
jA2G0M S 1

r D 3/2

for r→0. ~3.8!

This r 23/2 behavior has to be contrasted with ther 21 depen-
dence of the ‘‘naive’’ cutoffk5j/r .

Another plausible spacetime curveC is the worldline of an
observer who falls into the black hole. We defineC[C(2) to
be the radial timelike geodesic of the Schwarzschild me
with vanishing velocity at infinity. For this geodesic, the o
server’s radial coordinater and proper timet are related by
@15#

t2t05
2

3

1

A2G0M
~r 0

3/22r 3/2!, ~3.9!

where the constant of integration is chosen such thatr (t0)
5r 0. Equation~3.9! is valid both outside and inside the ho
rizon. Settingr 0505t0, we see that when the observer h
arrived atr 5r (P), the remaining proper time it takes him o
her to reach the singularity is given by

ut~P!u5
2

3

1

A2G0M
r ~P!3/2. ~3.10!

From the point of view of this observer it is meaningless
consider times larger thanut(P)u and, as a consequence, fr
quencies smaller thanut(P)u21. This motivates the identifi-
cationd(2)(P)5ut(P)u, i.e.,
04300
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d(2)~r !5
2

3

1

A2G0M
r 3/2, ~3.11!

which leads to

k(2)~r !5
3

2
jA2G0M S 1

r D 3/2

. ~3.12!

Equations~3.11! and~3.12! are exact for all values ofr. It is
remarkable thatd(2)(r ) coincides precisely with the approx
mation ford(1)(r ), Eq. ~3.7!, which is valid for small values
of r. This supports our assumption that close to the singu
ity ( r→0) the correct cutoff behaves ask(r )}1/r 3/2.

For large distances, the curvesC(1) andC(2) lead to differ-
ent r dependencies of the cutoff:k(1)}1/r , k(2)}1/r 3/2. Quite
generally, if a system possesses more than one typical
mentum scale,k(1) , k(2) , k(3) , . . . , which can cut off the
running of some coupling constant, it is the largest o
among those scales which provides the actual cutoffk
5Max$ k(1) , k(2) , k(3) , . . . %. In the case at hand we hav
k(1)@k(2) for r→` so that we must setk5k(1)(r )}1/r for
large values ofr.

The only properties of the functionk(r ) which we shall
use in the following is that it varies ask(r )}1/r for r→`
and ask(r )}1/r 3/2 for r→0. This behavior can be furthe
confirmed by investigating different choices ofC. For in-
stance, a radial timelike geodesic with vanishing velocity
some finite distance from the black hole or a geodesic w
non-vanishing velocity at infinity, for small values ofr, again
reproduces Eq.~3.7!.

While we used Schwarzschild coordinates in the abo
discussion we emphasize that the same results can als
obtained using coordinate systems~such as the Eddington
Finkelstein coordinates! which do not become singular at th
horizon.

It turns out that the qualitative features of the quantu
corrected black hole spacetimes which we are going to c
struct in the following are rather insensitive to the prec
manner in whichk(r ) interpolates between the 1/r 3/2 and the
1/r behavior. Moreover, most of the general features~hori-
zon structure, etc.! are even independent of the precise fo
of k(r ) for r→0. Using k(r )}1/r n with n not necessarily
equal to 3/2 leads to essentially the same picture. The o
issue where the value ofn is of crucial importance is the fate
of the singularity atr 50 when quantum effects are switche
on.

In concrete calculations we shall use the interpolat
function

d~r !5S r 3

r 1gG0M D 1/2

, ~3.13!

with d(r )5r @11O(1/r )# andd(r )5r 3/2/AgG0M1O(r 5/2)
for large and smallr ’s, respectively. FromC(1) andC(2) we
had obtained

g5
9

2
, ~3.14!
8-6
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but we shall treatg as a free parameter. Most of our resu
turn out to be very robust: qualitatively they are the same
all g.0. By settingg50, the ansatz~3.13! also allows us to
return to the ‘‘naive’’ cutoffk}1/r , i.e., ton51. Except for
questions related to the singularity atr 50, eveng50 will
lead to essentially the same qualitative properties of the
proved black hole spacetime.

Upon inserting Eq.~3.1! into the running Newton constan
~2.25! we obtain the following position-dependent Newto
constantG(r )[G„k(r )…:

G~r !5
G0d~r !2

d~r !21ṽG0

, ~3.15!

where

ṽ[vj2. ~3.16!

For the ansatz~3.13! this yields

G~r !5
G0r 3

r 31ṽG0@r 1gG0M #
. ~3.17!

At large distances, the leading correction to Newton’s c
stant is given by

G~r !5G02ṽ
G0

2

r 2 1OS 1

r 3D . ~3.18!

For small distancesr→0, it vanishes very rapidly:

G~r !5
r 3

gṽG0M
1O~r 4!. ~3.19!

The asymptotic behavior~3.18! can be used in order to fix
the numerical value ofṽ. The idea is to renormalization
group improve the classical Newton potentialV(r )5
2G0m1m2 /r of two massesm1 and m2 at distancer by
replacing the constantG0 with G(r ). Within the approxima-
tion ~3.18! we obtain

Vimp~r !52G0

m1m2

r F12ṽ
G0\

r 2c3 1•••G , ~3.20!

where we have reinstated factors of\ and c for a moment.
We observe that our renormalization group approach pred
a 1/r 3 correction to the 1/r potential. However, the value o
the coefficientṽ5vj2 cannot be obtained by renormaliz
tion group arguments alone: the factorv is a non-universal
coefficient of theb function, i.e., it depends on the shape
the functionR(0), and alsoj is unknown as long as one doe
not explicitly identify the specific cutoff for a concrete pro
cess.

On the other hand, it was pointed out by Donoghue@14#
that the standard perturbative quantization of Einstein gra
leads to a well-defined, finite prediction for the leading lar
distance correction to Newton’s potential. His result read
04300
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V~r !52G0

m1m2

r F12
G0~m11m2!

2c2r
2v̂

G0\

r 2c3 1•••G ,
~3.21!

where @16# v̂5118/15p. The correction proportional to
(m11m2)/r is a purely kinematic effect of classical gener
relativity, while the quantum correction}\ has precisely the
structure we have predicted on the basis of the renorma
tion group. Comparing Eq.~3.20! to Eq. ~3.21! allows us to
determine the coefficientṽ by identifying

ṽ5v̂[
118

15p
. ~3.22!

Contrary to the factorsv andj2, their productṽ5vj2 has a
uniquely determined, measurable value.

A priori the renormalization group analysis yieldsG as a
function of k rather thanr, and the functionRk serves as a
mathematical model of an arbitrary, yet unspecified phys
mechanism which cuts off the running ofG. In the case at
hand, this mechanism is the finite distance between the
particle and the black hole; it led to the ansatzk5j/d(r ). In
general the information about the actual physical cut
mechanism enters at two points:

~a! The functionRk should be chosen so as to model t
actual physics as correctly as possible.

~b! Both the physical cutoff mechanism and the choice
Rk determine the relation betweenk and other variables
adapted to the concrete problem, which can parametrize
running ofG (r , in our case!.

This means that, within our approximation, theRk depen-
dence of the correct identificationk5k(r ) should precisely
compensate for theRk dependence ofG(k). We have seen
that this is indeed what happens:v andj appear only in the
combinationṽ5vj2. The Rk dependencies ofv and j2

cancel in this product, and its unambiguous numerical va
can be read off from the known asymptotic form ofVimp(r ).

IV. IMPROVING THE ETERNAL BLACK HOLE
SPACETIME

A. The improved metric

We consider spherically symmetric, Lorentzian metrics
the form

ds252 f ~r !dt21 f ~r !21dr21r 2dV2, ~4.1!

wheredV2[du21sin2udf2 is the line element on the uni
two-sphere andf (r ) is an arbitrary ‘‘lapse function.’’ The
most important example of a metric belonging to this clas
the Schwarzschild metric with

f ~r !5 f class~r ![12
2G0M

r
. ~4.2!

While the Schwarzschild spacetime is a solution of t
vacuum Einstein equationRmn50, we are not going to con
strain f (r ) by any field equation in the following.
8-7
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In classical general relativity the metric~4.1! with ~4.2! is
interpreted as a property of a black hole~or the exterior of a
star! per se, i.e., the metric is given a meaning even in t
absence of a test particle which probes it. Within our a
proach, we regardf classas a manner of encoding the classic
dynamics of a test particle in the vicinity of some ‘‘centr
body’’ of massM. Because of the actual presence of the t
particle, the system defines a physically relevant dista
scaled(r ) which enters into the cutoff for the running ofG.
It is our main assumption that, also beyond the Newton
limit, the leading quantum gravity effects in this system co
sist of a position-dependent renormalization of the New
constant in Eq.~4.2!. More precisely, we assume that th
quantum corrected geometry can be approximated by
~4.1! with

f ~r !512
2G~r !M

r
, ~4.3!

whereG(r ) is given by Eq.~3.17!:

f ~r !512
2G0Mr 2

r 31ṽG0@r 1gG0M #
. ~4.4!

Let us now analyze the properties of the renormalizat
group improved spacetime defined by Eq.~4.4!. First of all,
for r→` we have

f ~r !512
2G0M

r S 12ṽ
G0

r 2 D1OS 1

r 4D . ~4.5!

For large distances, i.e., at order 1/r , we recover the classica
Schwarzschild spacetime. The leading quantum correc
appears at order 1/r 3; since in the Newtonian approximatio
the potential is given by@ f (r )21#/2, this correction is
equivalent to the improved potential~3.20! which was inde-
pendently confirmed by Donoghue’s result~3.21!. As we dis-
cussed in Sec. III already, matching the two results una
biguously fixes the constantṽ to be ṽ5v̂5118/15p. Thus
our improved lapse function~4.4! does not contain any fre
parameter.~Recall that the analysis of Sec. III fixesg to be
g59/2. However, to be as general as possible, we shal
low for an arbitraryg>0 in most of the calculations.!

B. The horizons

Next we determine the structure of the horizons of
improved spacetime. To this end we look for zeros of
function f (r ), Eq. ~4.4!, which is conveniently rewritten as

f ~r !5
B~x!

B~x!12x2 U
x5r /G0M

~4.6!

with the polynomialB given by

B~x![Bg,V~x!5x322x21Vx1gV, ~4.7!

where
04300
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n

n
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e
e

V[
ṽ

G0M2
. ~4.8!

The parameterV is a measure for the impact the quantu
gravity effects have on the metric. Reinstating factors o\

for a moment we haveṽ}\ andV}\. The classical limit is
recovered by settingV50. We see immediately that ver
heavy black holes (M→`) essentially behave classically. I
fact, defining the Planck mass bymPl[G0

21/2 we have

V5ṽ
mPl

2

M2
, ~4.9!

which shows that anV of order unity requiresM to be not
much heavier thanmPl .

For x.0 the numerator and the denominator of the RH
of Eq. ~4.6! have no common zeros; hencer 0 is a zero of
f (r ) if x05r 0 /G0M is a zero ofB(x). In the classical case
(V50) we haveBg,0(x)5x2(x22) with its only nontrivial
zerox052 corresponding to the familiar Schwarzschild h
rizon at r 052G0M .

In the quantum case (V.0), Bg,V(x) is a generic cubic
polynomial which has either one or three simple zeros2 on
the real axis. Sincer[xG0M must be positive, only zeros o
the positive realx axisR1 can correspond to a horizon. It i
easy to see that for any value ofV andg, B(x) always has
precisely one zero on thenegativereal axis: first we observe
thatB(0)5gV.0 andB(2`)52`,0 which implies that
B(x) has at least one zero on the negative real axis. Furt
more, the derivativeB8(x)53x224x1V is positive forx
,0, i.e.,B is monotonically increasing forx,0. As a con-
sequence,B has precisely one zero on the negative real a
HenceB has either two simple zeros or no zeros at all on
positive real axisR1, whereby the two simple zeros migh
degenerate to form a single double zero.

The three cases are distinguished by the value of the
criminant

Dg~V!5~3V24!31S 9V1
27

2
gV28D 2

. ~4.10!

For Dg(V),0 there are two simple zeros onR1, for
Dg(V)50 we have a double zero, and forDg(V).0 there
exists no zero onR1. The discriminant can be factorized a

Dg~V!527V@V2V1~g!#@V2Vcr~g!#, ~4.11!

with

Vcr~g!5
1

8
~9g12!Ag12A9g122

27

8
g22

9

2
g1

1

2
.

~4.12!

2Here double and triple zeros are counted as two or three sim
zeros, respectively.
8-8
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The functionV1(g) is not important except that it is nega
tive for all g.0. As a consequence, the sign ofDg(V) de-
pends only on whetherV is smaller or larger than the critica
value Vcr : For V,Vcr(g) the polynomialBg,V has two
simple zerosx1 and x2 on R1 (x1.x2.0), for V
.Vcr(g) it has no zero onR1, and forV5Vcr(g) the two
simple zeros merge into a single double zero atx15x2

[xcr . This situation is illustrated in Fig. 1.
By virtue of Eq. ~4.8!, the critical value forV defines a

critical value for the mass of the black hole:

M cr~g!5F ṽ

Vcr~g!G0
G1/2

. ~4.13!

For the preferred valueg59/2 we have

Vcr~9/2!5
1

32
@85A85A1322819#'0.20 ~4.14!

while for g50 ~‘‘naive’’ cutoff k}1/r ),

Vcr~0!51. ~4.15!

In any caseM cr is a number of order unity timesmPl .
The zerosx6 or xcr of B(x) are equivalent to zeros o

f (r ) located at

r 65x6G0M , r cr5xcrG0M cr . ~4.16!

They correspond to horizons of the quantum corrected b
hole spacetime. For heavy black holes (M.M cr ,V,Vcr)
we have an outer horizon atr 1 and an inner horizon atr 2 .
The function f (r ) is positive, i.e., the vector field]/]t is
timelike outside the outer~event! horizon (r .r 1) and inside
the inner horizon (r ,r 2); in the region between the hor
zons (r 2,r ,r 1) we havef (r ),0 so that]/]t is spacelike.
For M@M cr the outer horizon coincides essentially with t
classical Schwarzschild horizon (r 1'2G0M ) while r 2 is
very close to zero. When we decreaseM and approachM cr
from above, the outer horizon shrinks and the inner horiz
expands. Finally, forM5M cr , the two horizons coalesce a

FIG. 1. The functionBg,V(x) with g59/2 for different values
of V. The regimeV,Vcr (V.Vcr) corresponds to very heav
~light! black holes.
04300
k

n

r 15r 2[r cr which corresponds to a double zero off. For
very light black holes withM,M cr the spacetime has n
horizon at all.

In Fig. 2 we plotf (r ) for various massesM. The values of
x1 andx2 could be written down in closed form as a fun
tion of V andg, but the formulas are not very illuminating
Instead, in Fig. 3, we represent them graphically.

C. The critical „extremal… black hole
and the Reissner-Nordström analogy

Let us look in more detail at the ‘‘critical’’ black hole
with M5M cr . We know that forV5Vcr(g) the polynomial
Bg,V(x) has a double zero at somexcr[xcr(g).0. Upon
inserting Eq.~4.12! into Bg,Vcr

(x) and factorizing the result-
ing expression with respect tox one finds the following ex-
plicit result:

xcr~g!5
1

4
Ag12A9g122

3

4
g1

1

2
. ~4.17!

In particular,

FIG. 2. The lapse functionf (r ) for various mass values. Th
dashed line showsf class(r ) of the classical Schwarzschild metric.

FIG. 3. The zerosx1 and x2 for g59/2 as a function ofV.
Lowering M from infinity to M cr , V increases from zero toVcr ,
x2 increases from zero toxcr , and x1 decreases from 2 toward
xcr . The outer horizon shrinks and the inner horizon expands u
they meet atr cr .
8-9
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xcr~0!51,

xcr~9/2!5
1

8
@A13A85223#'1.28.

Using Eq.~4.16! the critical radius reads

r cr~g!5xcr~g!S ṽG0

Vcr~g!
D 1/2

, ~4.18!

with xcr andVcr given by Eq.~4.17! and Eq.~4.12!, respec-
tively.

Some of the qualitative features of the quantum bla
hole are remarkably similar to those of a Reissner-Nordst¨m
spacetime~black hole with chargee). Its lapse function reads
~in appropriate units!

f RN~r !512
2G0M

r
1

G0e2

r 2 . ~4.19!

In analogy with Eq.~4.8! we introduce the parameter

VRN[
e2

G0M2 . ~4.20!

The Reissner-Nordstro¨m spacetime has no horizon forVRN
.1, two horizons with

x6
RN5r 6

RN/G0M516A12VRN ~4.21!

if VRN,1, and a single degenerate horizon at

r cr
RN5G0M , ~4.22!

if VRN equals its critical valueVRN51. We observe that, in
a sense, the renormalization group improved Schwarzsc
spacetime is similar to a Reissner-Nordstro¨m black hole
whose charge is given bye5ṽ1/2. In particular, the ‘‘criti-
cal’’ quantum black hole withM5M cr corresponds to the
extremal charged black hole (VRN51).

Let us look more closely at the near-horizon geometry
the critical quantum black hole. If we expand aboutr 5r cr

and introduce the new coordinater̄[r 2r cr we have at lead-
ing order

ds252S r̄

G0MAdS
D 2

dt21S G0MAdS

r̄
D 2

dr̄21r cr
2 dV2,

~4.23!

where the mass parameterMAdS is defined by

~G0MAdS!225
1

2
f 9„r cr~g!…uV5Vcr(g) ~4.24!

The metric ~4.23! is the Robinson-Bertotti metric for th
product of a two-dimensional anti–de Sitter space AdS2 with
a two-sphere, AdS23S2. The parameterMAdS determines the
curvature of AdS2. Using Eqs.~4.4!, ~4.12!, and~4.17! it is
obtained in the form
04300
k
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MAdS~g!5A2/b~g!M cr , ~4.25!

where b(g) is a complicated function which we shall no
write down here. In particular,

b~g50!51, ~4.26!

b~g59/2!51.123 . . . . ~4.27!

If we put MAdS5M and r cr5G0M the metric ~4.23! de-
scribes also the near-horizon geometry of an extre
Reissner-Nordstro¨m black hole of massM. However, in our
case the relative magnitude of the AdS2 and the S2 curvature
is different. Forg50, say, the S2 curvature is given by the
radiusr cr5G0M cr as above, but the AdS2 curvature is deter-
mined byMAdS5A2M cr .

D. Large mass expansion ofrÁ

It is instructive to look at the location of the horizons
the limit of very heavy black holes. SinceV}1/M2, the
large-mass expansion in 1/M corresponds to an expansion
powers ofV1/2. Let us start by looking at the leading qua
tum correction of the outer horizon. Classically we haver 1

52G0M or x152. By inserting an ansatz of the formx1

521c1V1c2V21••• into B(x1)50 and combining equa
powers ofV we can easily determine the coefficientscj . In
leading order one findsx1522 1

4 (21g)V1O(V2) and

r 152G0M2
~21g!ṽ

4M
1OS 1

M3D . ~4.28!

We see that the quantum correctedr 1 is indeed smaller than
its classical value. The leading correction is proportional
1/M and it is independent of the value of Newton’s consta
The prefactor of the 1/M term is uniquely determined: th
arguments of Sec. III yieldg59/2 and ṽ is fixed by the
matching condition~3.22!. We believe that Eq.~4.28! is a
particularly accurate prediction of our approach.

Let us now look atr 2 for M→`. Classically, forV50,
we haveB(x)5x2(x22). When we switch onV, the double
zero atx50 develops into 2 simple zeros, one on the ne
tive and the other on the positive real axis. The latter is
~approximate! x2 we are looking for. As long asV!1 we
havex2!1 and therefore we may neglect the cubic term
B(x2)50 relative to the quadratic one. The resulting equ
tion is easily solved:

x25
1

4
AV@AV1A8g1V#. ~4.29!

The asymptotics of this result depends on whetherg.0 or
g50. Forg.0 we have

x25
1

2
A2gV1O~V!5A gṽ

2G0

1

M
1OS 1

M2D .

~4.30!
8-10
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Obviously x2 vanishes forM→` but because of its 1/M
behavior the actual radiusr 25x2G0M approaches a univer
sal, nonzero limit:

r 25
1

2
A2gṽG01OS 1

M D . ~4.31!

Thus the inner horizon does not disappear even for infini
massive black holes. The situation would be different fog
50. Therex25 1

2 V1O(V3/2) and

r 25
ṽ

2M
1OS 1

M2D ~g50!, ~4.32!

which vanishes forM→`.

E. The de Sitter core

We expect the improvedf (r ) to be reliable as long asr is
not too close tor 50 where the renormalization effects b
come strong and the quantum corrected geometry differs
nificantly from the classical one. Therefore Eqs.~4.31! and
~4.32! should be taken with a grain of salt, of course. Ho
ever, if one takes Eq.~4.4! at face value even forr→0, the
horizons~4.31!, ~4.32! acquire a very intriguing interpreta
tion.

Expandingf (r ) aboutr 50 one finds forg.0

f ~r !5122~gṽG0!21r 21O~r 3!. ~4.33!

Recalling that~4.1! with f dS(r )512Lr 2/3 is the metric of
de Sitter space we see that, at very small distances, the q
tum corrected Schwarzschild spacetime looks like a de S
space with an effective cosmological constant

Leff56~gṽG0!21 ~4.34!

~For g59/2, Leff'0.06mPl
2 .! This result is quite remarkabl

since there exist longstanding speculations in the litera
about a possible de Sitter core of realistic black holes@17#.
Those speculations were based upon purely phenomeno
cal considerations and no derivation from first principles h
been given so far.3 Instead, if the renormalization group im
proved metric is reliable also at very short distances, the
Sitter core and in particular the regularity of the metric ar
50 is an automatic consequence. The validity of the i
provedf (r ) for r→0 will be discussed in detail in Sec. VIII

The de Sitter metric~4.33! has a ‘‘cosmological’’ horizon
at r dS5A3/Leff. This value coincides precisely with the a
proximater 2 of Eq. ~4.31!. The asymptotic de Sitter form
~4.33! is obtained only ifg.0. For g50 the expansion
starts with a term linear inr:

3However, two-dimensional dilaton gravity has been shown@19#
to contain nonsingular quantum black holes asymptotic to de S
space.
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f ~r !512
2M

ṽ
r 1O~r 2! ~g50!. ~4.35!

This spacetime isnot regular atr 50; there remains a cur
vature singularity at the origin. We shall come back to th
point in Sec. VIII.

F. The special casegÄ0

While close tor 50 @where the use of our improvedf (r )
is anyhow questionable#, the physics implied by the quantum
corrected metric strongly depends on the parameterg; the
essential features of the spacetime related to larger dista
are fairly insensitive to the value ofg. In particular, it is easy
to see that the general pattern of horizons~two, one, or no
horizon, theirM dependence, etc.! is qualitatively the same
for all values ofg. Eveng50 gives the same general pictu
as the preferred valueg59/2. Therefore some of the calcu
lations in the following sections will be performed forg
50 which simplifies the algebra and leads to much m
transparent results. Forg50 we have, for instance,

x65r 6 /G0M516A12V, ~4.36!

Vcr51, xcr51 ~4.37!

M cr5Aṽ/G0, ~4.38!

r cr5AṽG0. ~4.39!

It is amusing to see that the explicit formula for the locati
of the horizons, Eq.~4.36!, coincides exactly with the corre
sponding expression for the Reissner-Nordstro¨m black hole,
Eq. ~4.21!. Note also that because of Eq.~4.37! the parameter
V can be interpreted as the ratio

V5
M cr

2

M2
~g50!. ~4.40!

G. Geodesics and causal structure

The global structure of our black hole spacetime is qu
similar to the one of the Reissner-Nordstro¨m charged black
hole. In particular, ther 50 hypersurface is timelike now
The Penrose diagram of the spacetime is shown in Fig. 4
M.M cr . It is clear from the location of the horizons that w
can distinguish the following main regions:

I and V : r 1,r ,`
II and IV: r 2,r ,r 1

III and III8: 0,r ,r 2

The features of the motion in such a spacetime are p
ticularly evident if we consider a test particle which mov
radially on a timelike geodesic. The equations of motion
given by

dr

dt
56„E 22 f ~r !…1/2, ~4.41!er
8-11



i

lik

ce

in

y
e

of

.
on

g
the

o
ss

er-

d

o-

-
ly
se

d
e-
di-

he

q.

e.

.
of

-
s

ike
l

the
nt.

to a

ed
ge,

are
hall

gen-
f-
me

o

ALFIO BONANNO AND MARTIN REUTER PHYSICAL REVIEW D 62 043008
dv
dt

5 f ~r !21
„E6@E 22 f ~r !#1/2

…, ~4.42!

where we have used Eddington-Finkelstein coordinates w
v being the advanced time coordinate. FurthermoreE de-
notes the constant of motion associated with the time
Killing vector field jm5dv

m ,

E52jmum, ~4.43!

whereum is the four-velocity of a static observer. The choi
of the sign in Eq. ~4.41! and Eq. ~4.42! depends upon
whether the test particle is travelling on a path of decreas
(2) or increasing (1) radiusr. From Eq.~4.41! we deduce
that the proper acceleration is

d2r

dt2 52
1

2

] f ~r !

]r
52

MG0r ~r 32ṽG0r 22ṽG0
2gM !

~r 31ṽG0@r 1gG0M # !2
,

~4.44!

wherefrom one sees that the radial motion is ruled b
Newton-type equation of motion with respect to the prop
time t. It contains the potential functionF(r )5 1

2 f (r ) with
the propertiesF(0)5F(`)5 1

2 [Fmax and Fmin,0. If we
identify the ‘‘energy’’ of the motion withĒ5E 2/2 we have
from Eq. ~4.41!

1

2
ṙ 21F~r !5 Ē. ~4.45!

FIG. 4. Penrose conformal diagram of the quantum black h
spacetime.
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It is thus possible to discuss the radial motion by the help
simple mechanical arguments referring to Fig. 2 . In particu-
lar we use Eq.~4.45! in order to determine the inflection
points, i.e., zero-velocity configurations whereF(r )5 Ē, and
where the sign in Eqs.~4.41! and ~4.42! has to be changed

There are basically three types of motions depending
the value ofĒ:

~i! Ē.Fmax. The motion is unbounded. It is a free fallin
test particle that starts its motion in region I, crosses
event horizon~EH in Fig. 4! and eventually reachesr 50 in
region III in a finite amount of proper time, with non-zer
velocity and finite proper acceleration. It would thus cro
the inner horizon~CH in Fig. 4! and continue its journey in
regions IV and V. This is for instance the path a! in Fig. 4. It
should be noted that this behavior is unlike the Reissn
Nordström one. In that caseF(0)5` and there is always an
inflection point in region III. The particle is thus bounce
away from the Reissner-Nordstro¨m central singularity at
some non-zero value of the radius, before continuing its m
tion in region IV.

~ii ! ĒP@0,Fmax#. The motion is bounded. Starting in re
gions I it evolves into regions II and III and it eventual
continues in regions IV and V. Let us first consider the ca
Ē,Fmax. Then there is an inflection point in region III an
r 50 is avoided. A further inflection point is present in r
gion V where the trajectory reaches the same initial con
tions as in region I. The situation is shown in Fig. 4 with t
path b!. If Ē5Fmax the inflection point is atr 50. If gÞ0
this is also an equilibrium point since, as it follows from E
~4.45!, the proper acceleration is zero,F8(0)50. The par-
ticle reaches the center in an infinite amount of proper tim
If g50 the proper acceleration atr 50 is not zero,F8(0)
52ṽ/M , and r 50 is not an equilibrium configuration
Close to the origin the particle feels a repulsive force
strengthṽ/M .

~iii ! ĒP@Fmin,0#. The motion is bounded. It starts in re
gion II where it has two inflection points and it continue
indefinitely in this region.

It would be possible to study along similar lines spacel
and null geodesics as well as theM<M cr cases, but we shal
not present this analysis here.

The Penrose diagram of Fig. 4 was obtained within
approximation of a vanishing running cosmological consta
If, at the UV scale, the bare cosmological constant is set
value much smaller thanmPl

2 , a runningl̄ does not change
the qualitative structure of the horizons which we deriv
above. It might, however, modify the spacetime at lar
cosmological distances. Since in the present paper we
only interested in the physics at Planckian distances we s
not investigate this issue here.

V. EFFECTIVE MATTER INTERPRETATION
AND ENERGY CONDITIONS

Let us suppose that our quantum black hole has been
erated by an ‘‘effective’’ matter fluid that simulates the e
fect of the quantum fluctuations of the metric. We assu

le
8-12
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that this coupled gravity-matter system satisfies the conv
tional Einstein equationsGmn58pG0Tmn . The stress-
energy tensor of a~not necessarily classical! perfect fluid
with the symmetries of our spacetime reads

Ta
b5diag~2r,Pr ,P' ,P'!. ~5.1!

It is thus possible to use the Einstein equations in orde
definethe components ofTa

b in the following way
of

o

fi

ro
is

04300
n-

to

28pG0r5Gt
t5Gr

r , ~5.2!

8pG0P'5Gu
u . ~5.3!

HereGmn is the Einstein tensor of the metric~4.1! with ~4.4!.
A straightforward calculation shows that
r52Pr5
1

4p

MG0ṽ~2r 13gG0M !

~r 31ṽG0@r 1gG0M # !2
~5.4!

P'5
1

4p

MG0ṽ~3r 416r 3G0gM23ṽG0
3g2M22r 2ṽG023ṽG2rgM !

~r 31ṽG0@r 1gG0M # !3
~5.5!
III
ens

rest

t
ssi-
in

ts

ial

lso
ci
d in
In
n

t
ds
The total energy outside a given radiusr,

E~r !54pE
r

`

r~r 8!r 82dr8 ~5.6!

is given by

E~r !5
ṽG0M ~r 1gG0M !

r 31ṽG0@r 1gG0M #
. ~5.7!

This quantity is finite and positive definite for any value
g. In particular we find the surprisingly simple result

Etot[E~0!5M , ~5.8!

which identifies the total energy of the fluid with the mass
the black hole.

It is not difficult to realize that this ‘‘magic’’ equality is a
consequence of the boundary conditions set at spatial in
ity, f 5122G0M /r 1O(1/r 2), and of the behavior off at r
50. For every metric of the form~4.1!, with an arbitrary
function f (r ), the definitions~5.2! and ~5.6! lead to the ex-
pression

E~r !52
1

G0
lim
r̂→`

E
r

r̂
ds@„s f~s!…821#

5M1
r

2G0
„f ~r !21…. ~5.9!

ObviouslyE(0) equalsM if r f (r )→0 whenr→0, and this
is always satisfied in our model, for any value ofg. Note that
in ordinary Schwarzschild spacetimes with ADM massM,
since r 2r f (r )52G0M , it follows that Etot50. In our pic-
ture the quantum effects can be interpreted as a non-zer
andP' . It is thus remarkable that their global contribution
exactly equal to the total mass of the spacetime.
f

n-

For M,M cr we have seen from the discussion of Sec.
that no horizon is present and that, contrary to what happ
in classical Reissner-Nordstro¨m spacetimes forVRN.1, no
naked singularity occurs~for g.0). The spacetime, in this
case, resembles a soliton-like particle with a Planckian
mass given by Eq.~5.8!. The energy of the fluid is then
localized in a cloud aroundr 50 with ] rE(r ),0 always,
andE(`)50.

It is possible to show that our ‘‘effective’’ fluid does no
meet all the requirements in order to be considered a cla
cal fluid. In fact, it violates the dominant energy condition
some regions, depending on the values ofg. In particular, the
conditionP'2r<0 is not always satisfied since it amoun
to

r 413r 3gG0M23r 2ṽG028r ṽgG0
2M<0 ~5.10!

which does not hold for some interval of values of the rad
coordinate. For instance, forg50 the left hand side of~5.10!

is positive whenr<A3ṽG0.
In the improved black hole spacetimes there are a

‘‘zero gravity’’ hypersurfaces, where the Weyl and Ric
curvatures are zero, in analogy to what has been foun
@18# in a phenomenological model with a de Sitter core.
fact the ‘‘Coulombian’’ component of the Weyl tensor ca
be shown to be

C252
1

3

MG0r ~3r 52r 3ṽG026r 2ṽgG0
2M2ṽ2gG0

3M !

~r 31ṽG0@r 1gG0M # !3

~5.11!

It should be noted that the Weyl curvature is regular ar
50 where it is always zero. Similarly, the Ricci scalar rea
8-13
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R52
4ṽG0M ~r 413r 3gG0M23r 2ṽG028r ṽgG0

2M26ṽg2G0
3M3!

~r 31ṽG0@r 1gG0M # !3
. ~5.12!
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In general the location of zero-curvature hypersurfaces
pends on the value ofg and of the black hole mass. In th
case ofg50 one sees from the above expressions that at

radii r 5AṽG0/3 andr 5A3ṽG0 one or the other of the two
main scalar curvature invariants of our spacetime is zero
particular, forM,M cr andg50 the radius

r 5A3ṽG0 ~5.13!

can be thought of as the characteristic length of the parti
like soliton structure arising from the renormalization gro
improvement of the spacetime of a nearly Planckian bl
hole.

VI. HAWKING TEMPERATURE AND BLACK HOLE
EVAPORATION

A. The Euclidean manifold

Let us consider Lorentzian black hole metrics of the ty
~4.1! with an essentially arbitrary functionf (r ). For the time
being we only assume thatf has a simple zero at somer 1 ,
( f (r 1)50,f 8(r 1)Þ0) and that it increases monotonical
from zero to f (`)51 for r .r 1 . The behavior off (r ) for
r ,r 1 will not matter in the following. There exists a stan
dard method for associating a Euclidean black hole spa
time to metrics of this type@21#. The first step is to perform
a ‘‘Wick rotation’’ by setting t52 i t and takingt real:

dsE
25 f ~r !dt21 f ~r !21dr21r 2dV2. ~6.1!

This line element defines a Euclidean metric on the manif
coordinatized by (t,r ,u,f) with r .r 1 wheredsE

2 is posi-
tive definite. In order to investigate the properties of th
manifold we trader for a new coordinater defined by

r5
1

2p
bBHAf ~r !, ~6.2!

with the constant

bBH[
4p

f 8~r 1!
. ~6.3!

The new coordinate ranges fromr50 to r5bBH/2p corre-
sponding tor 5r 1 and r→`, respectively. Thus the line
element becomes

dsE
25r2S 2p

bBH
D 2

dt21F f 8~r 1!

f 8~r ~r!!
G 2

dr21r ~r!2dV2,

~6.4!
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where r is a function ofr now. Close to the horizon (r
5r 1 or r50) this metric simplifies considerably:

dsE
2'r2dt̂21dr21r 1

2 dV2. ~6.5!

In writing down ~6.5! we introduced the rescaled Euclidea
time

t̂[
2p

bBH
t. ~6.6!

Leaving aside ther 1
2 dV2 term for a moment, we see tha

~6.5! looks like the metric of a 2-dimensional Euclidea
plane written in polar coordinatest̂ and r. For this to be
actually true,t̂ must be considered an angular variable w
period 2p. If t̂ is periodic with a period different from 2p,
the space has a conical singularity atr50. In order to avoid
this singularity we require the unrescaled timet to be an
angle-like variable with periodbBH , tP@0,bBH#. With this
periodic identification, Eq.~6.4! defines a Euclidean metri
on what is referred to as the Euclidean black hole manifo
It has the topology ofR23S2.

If we put quantized matter fields on the Euclidean bla
hole spacetime, their Green’s functions inherit the period
ity in the time direction. Thus they appear to be therm
Green’s functions with the temperature given by

TBH5bBH
215

1

4p
f 8~r 1!. ~6.7!

This is the Bekenstein-Hawking temperature for the gene
class of black holes with metrics of the type~4.1!.

B. Temperature and specific heat

Equation ~6.7! is an essentially ‘‘kinematic’’ statemen
and its derivation does not assume any specific form of
field equations for the metric. Hence we may apply it to t
renormalization group improved Schwarzschild metric a
investigate how the quantum gravity effects modify t
Hawking temperature. By differentiating Eq.~4.4! we find

TBH~M !5
1

8pG0M F12
V

x1
2 2

2gV

x1
3 G , ~6.8!

wherex1 and V are considered functions ofM. When we
switch off quantum gravity (ṽ50) or look at very heavy
black holes (M→`) we haveV50 and recover the classica
result

TBH
class~M !5

1

8pG0M
. ~6.9!
8-14
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~In the present context, the term ‘‘classical’’ refers to t
usual ‘‘semiclassical’’ treatment with quantized matter fie
on a classical geometry.! Obviously the quantum correcte
Hawking temperature is always smaller than the class
one:TBH,TBH

class.
In order to be more explicit we continue our investigati

for the special valueg50. Using Eqs.~4.36! and ~4.38! we
obtain

TBH~M !5
1

4pG0M

A12V

11A12V
, ~6.10!

5
1

4pG0M cr

AV~12V!

11A12V
, ~6.11!

with V5M cr
2 /M2. Equation~6.11! is quite similar, though

not identical to the corresponding expression for the te
perature of the Reissner-Nordstro¨m black hole:

TBH
RN5

1

2pG0M

A12VRN

~11A12VRN!2
. ~6.12!

The large mass expansion ofTBH reads

TBH~M !5
1

8pG0M F12
1

4 S M cr

M D 2

2
1

8S M cr

M D 4

1O~M 26!G ,
~6.13!

with M cr
2 5ṽ/G0. Probably the first few terms of this serie

are a rather precise prediction of our method because
correspond to a spacetime which is only very weakly d
torted by quantum effects.

Let us look at what happens whenM approachesM cr from
above. We set

V5Vcr2e512e ~6.14!

and study the limite→01. Note that becauseV5M cr
2 /M2

for g50,

e512
M cr

2

M
. ~6.15!

Expanding Eq.~6.11! yields

TBH~M !5
Ae

4pG0M cr
F12Ae1

1

2
e1O~e3/2!G ~6.16!

or, to lowest order,

TBH~M !5
1

4pṽ
AM22M cr1O~M22M cr!. ~6.17!

We see thatTBH vanishes asM approaches its critical valu
M cr . This conclusion is true for any value ofg. In fact, as
M↘M cr the simple zero off at r 1 tends to become a doubl
zero, i.e., f 8(r 1)→0, and thereforeTBH→0 by Eq. ~6.7!.
We emphasize, however, that the statement
04300
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TBH~M cr!50 ~6.18!

should always be understood in the sense of a limitM↘M cr
because strictly speaking the above derivation of the Ha
ing temperature does not apply for the critical~extremal!
black hole withM exactly equal toM cr .

In Fig. 5 the Hawking temperature is plotted for the fu
range of mass values. For large values ofM we recover the
classical 1/M decay, and forM.M cr the temperature in-
creases withM. The Hawking temperature reaches its ma
mum for a certain massM̃ cr.M cr which plays the role of
another ‘‘critical’’ temperature~see below!. By definition,

dTBH

dM
~M̃ cr!50. ~6.19!

TheV value related toM̃ cr will be denotedṼcr ; for g50 it
reads

Ṽcr5S M cr

M̃ cr
D 2

. ~6.20!

Differentiating~6.11! leads toṼcr5(A521)/2'0.62, which
yields M̃ cr5M crṼcr

21/2'1.27M cr . The maximum atM̃ cr is
surprisingly close toM cr so that the drop from the peak valu
of TBH down to zero is rather steep.

Even though we do not have a full statistical mechani
formalism with a partition function and a free energy fun
tional at our disposal, Eq.~5.8! suggests to identify the in
ternal energyU of the black hole with its total massM. Then
the standard thermodynamical relationCV5(]U/]T)V
amounts to the following definition for the specific heat c
pacity of the black hole:

CBH5
dM

dTBH
5S dTBH

dM D 21

. ~6.21!

From Eq.~6.11! we obtain

FIG. 5. The Hawking temperature of the quantum black h
~multiplied by 4pG0M cr) as a function ofM /M cr . The maximum

temperature is reached forM̃ cr'1.27M cr .
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CBH524pṽ
~12V!@11A12V#2

V@V21~122V!~11A12V!#
.

~6.22!

The specific heatCBH is negative forM.M̃ cr and becomes
positive for M cr,M,M̃ cr . It has a singularity atM5M̃ cr
which signals a kind of phase transition at this value of
mass. In Fig. 6,CBH is shown as a function ofM. For very
heavy black holes one has

CBH528pG0M2F11
3

4 S M cr

M D 2

1
19

16S M cr

M D 4

1O~M 26!G
~6.23!

In the limit M→` we recover the classical valueCBH
class

528pG0M2, and we observe that the leading quantum c
rections make the already negative specific heat even m
negative.4 In the limit M↘M cr the specific heat vanishe
according to

CBH54pṽAe@112Ae14e1O~e3/2!#

54pṽA12
M cr

2

M2
1••• . ~6.24!

C. Stopping the evaporation process

From our result for the mass dependence of
Bekenstein-Hawking temperature the following scenario
the black hole evaporation with the leading quantum corr
tion included emerges. As long as the black hole is v
heavy the classical relationTBH}1/M is approximately valid.
The black hole radiates off energy, thereby lowering its m
and increasing its temperature. This tendency is countera
by the quantum effects. The actual temperature stays alw
belowTBH

class. Once the mass is as small asM̃ cr , the tempera-

4This is the same tendency as in the Weyl-gravity model of R
@20#, for instance.

FIG. 6. The specific heatCBH in units of 4pṽ as a function of

M /M cr . The singularity occurs atM̃ cr /M cr'1.27.
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ture reaches its maximum valueTBH(M̃ cr). For even smaller
masses it drops very rapidly and it vanishes onceM has
reached its critical massM cr , which is of the order ofmPl .

In the classical picture based uponTBH
class}1/M the black

hole becomes continuously hotter during the evapora
process. In the above scenario, on the other hand, its t
perature never exceedsTBH(M̃ cr), and the evaporation pro
cess comes to a complete halt when the mass has rea
M cr . This suggests that the critical~or extremal! black hole
with M5M cr could be the final state of the evaporation of
Schwarzschild black hole. If stable, the critical black ho
would indeed constitute a Planck-size remnant of burnt-
macroscopic black holes. It is ‘‘cold’’ in the sense th
limM↘Mcr

TBH(M )50, so that it is stable at least against t
classical Hawking radiation mechanism as we know it.

It is interesting to see how long it takes a black hole w
the initial massM i to reduce its mass to some final valueM f
via Hawking radiation. Stefan’s law provides us with a rou
estimate of the radiation power. The mass loss per u
proper time of an infinitely far away, static observer is a
proximately given by

2
dM

dt
5sA~M !TBH~M !4. ~6.25!

Heres is a constant andA54pr 1
2 is the area of the oute

horizon:

A~M !58pG0
2M2F12

1

2
V1A12VG . ~6.26!

In the classical case the above differential equation beco
2dM/dt}M 22. It is easily integrated with the result tha
only a finite amount of timet(M i→0)}M i

3 is needed in
order to completely radiate away the initial mass. The pr
lems such as the information paradox mentioned in the
troduction are particularly severe because the catastro
end point of the evolution (TBH→`) is reached within a
finite time.

Looking at the quantum black hole now, we assume t
the initial massM i is already close toM cr so that we may use
the approximation~6.17! on the RHS of Eq.~6.25!:

2
dM

dt
5

sG0

~4pṽ!3
~M22M cr

2 !1•••. ~6.27!

Obviously the radiation power decreases quickly
M↘M cr . Integrating Eq.~6.27! yields for the time to go
from M i to M f :

t~M i→M f!516p3ṽ2s21S 1

M f2M cr
2

1

M i2M cr
D .

~6.28!

We see that this time diverges forM f5M cr , i.e., it takes an
infinitely long time to reduce the mass from any givenM i
down to the critical mass. Clearly the reason is that, beca
of the T4 behavior, the radiation power becomes very sm

f.
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when we approach the ‘‘cold’’ critical black hole. In a ce
tain sense, this result is a reflection of the third law of bla
hole thermodynamics which states that it is impossible
achieve an exactly vanishing surface gravity, i.e.,T50, by
any physical process.

The back reaction of the Hawking radiation on the met
is neglected in the above arguments. We believe that m
probably~contrary to the case of the classical Hawking bla
hole! its inclusion would not lead to qualitative changes
the picture. The reason is thatdM/dt is very small in both
the earlyand the latestage of the evaporation process, a
that in between its value is bounded above.

VII. ENTROPY OF THE QUANTUM BLACK HOLE

One of the most intriguing aspects of black hole therm
dynamics is the entropy associated with the horizon o
black hole. It is one of the central but as yet unresolv
questions if and how this entropy can be interpreted withi
‘‘microscopic’’ statistical mechanics by counting the numb
of micro states which are inaccessible to our observa
@23#. Another important question is how the classical relat
between the entropy and the surface area of the horizon

Sclass5
Aclass

4G0
~7.1!

changes if quantum~gravity! effects are taken into accoun
Our approach of renormalization group improving t

Schwarzschild spacetime makes a definite prediction for
quantum correction of the entropy. The key ingredient is
functionTBH5TBH(M ) which we obtained in Sec. VI. From
general thermodynamics we know that the entropyS
5S(U,V, . . . ) satisfies (]S/]U)V51/T. In the present con-
text we identify the energyU with the massM, and since the
volume dependence plays no roleS5S(M ) satisfies
dS/dM51/TBH(M ). Upon integration we have

S~M !2S~M cr!5E
Mcr

M dM8

TBH~M 8!
, ~7.2!

where the reference point was chosen to be the critical m
For simplicity we continue the analysis forg50; inserting
the corresponding Hawking temperature~6.11! into ~7.2! we
obtain

S~M !2S~M cr!52pṽE
Mcr

2 /M2

1 dV

V2 F11
1

A12V
G .

~7.3!

The integral yields forM>M cr

S~M !2S~M cr!52pṽ@V21A12V~11A12V!

1artanhA12V#, ~7.4!

with V[M cr
2 /M2 on the RHS of Eq.~7.4!. Equation~7.4! is

our prediction for the quantum corrected entropy of the bla
hole geometry. Its large-M expansion reads
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S~M !2S~M cr!5
Aclass

4G0
12pṽF lnS 2M

M cr
D2

3

2
2

3

8S M cr

M D 2

2
5

32S M cr

M D 4

1O~M 26!G , ~7.5!

with the classical areaAclass54p(2G0M )2. For very heavy
black holes we recover the classical entropySclassas the dif-
ference ofS(M ) and the integration constantS(M cr) whose
value remains undetermined here. The leading quantum
rection is proportional to ln(M). Remarkably, very similar
ln(M) terms had been found with rather different metho
@24#. While some of the earlier results were plagued by
presence of numerically undefined cutoffs, Eq.~7.4! is per-
fectly finite. WhenM approachesM cr from above, the en-
tropy difference displays a square-root behavior:

S~M !2S~M cr!54pṽAeF11
1

2
Ae1O~e!G . ~7.6!

In Fig. 7 the entropy is shown as a function ofM.
The above calculation ofS(M ) was within the framework

of ‘‘phenomenological’’ thermodynamics. For an attempt
interpreting it within an underlying statistical mechanics w
refer to the Appendix.

VIII. IS THERE A CURVATURE SINGULARITY AT rÄ0

We saw already that forr→0 the renormalization group
improved black hole metric approaches to that of de Si
space. The quantum black hole seems to have a ‘‘de S
core’’ of a similar type to the regular black holes which we
introduced in Ref.@18# on a phenomenological basis. Th
means in particular that the quantum corrected spacetim
completely regular, i.e., contrary to the ordinary Schwar
child black hole it is free from any curvature singularit
However, because the classical and the quantum geome
are very different forr→0 and the quantum effects play
dominant role there, it seems problematic to describe a p
sibly regular core as an ‘‘improvement’’ of the singula
Schwarzschild spacetime. Therefore some comments

FIG. 7. ~a! The entropyS(M )2S(M cr) in units of 2pṽ as a
function of M /M cr . ~b! The same function forM nearM cr .
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cerning the applicability of our approximation at very sm
distances are appropriate.

The regularity of the improved metric comes about b
cause the 1/r behavior off class5122G0M /r is tamed by a
very fast vanishing of the Newton constant at small d
tances. Close to the core of the black hole we are in
regime where the running ofG(k) is governed by the UV
fixed point, G(k)'1/vk2, so that the position-depende
Newton constant is approximately given by

G~r !'ṽ21d~r !2. ~8.1!

It is important to keep in mind that the distance functi
d(r ) depends on the classical metric which we are going
improve. In Sec. III we started from the Schwarzschild ba
ground and found that for all sensible curvesC,

dSch~r !}r 3/2, ~8.2!

so that

GSch~r !}r 3. ~8.3!

Taking ~8.3! literally means that the improvedf 51
22G(r )M /r is of the de Sitter form 12(const)r 2 for r
→0.

However, if the actual quantum geometry really was
Sitter, there is no point in evaluatingd(r ) for the Schwarzs-
child background. In fact, if we calculated(r ) for the de
Sitter metric the asymptotic behavior is different:

ddS~r !'r . ~8.4!

Incidentally, this is precisely thed function which obtains by
setting g50 in Eq. ~3.13!. Equation~8.4! entails that the
Newton constant vanishes more slowly than in~8.3!:

GdS~r !}r 2. ~8.5!

Inserting ~8.5! into f class we obtain a lapse function whic
approachesf 51 only linearly,

f ~r !512cr1O~r 2!. ~8.6!

~Herec is a constant.!
The metric with anf function of the general form

f ~r !512crn, ~8.7!

wherec andn are constant has the exact curvature invaria

R5c~n11!~n12!r n22, ~8.8!

RmnrsRmnrs5c2~n422n315n214!r 2n24, ~8.9!

CmnrsCmnrs5
c2

144
~n21!2~n22!2r 2n24. ~8.10!

This means that the ‘‘GdS-improved’’ black hole of Eq.~8.6!
has a curvature singularity at its center:
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R5
6c

r
1•••, ~8.11!

RmnrsRmnrs58
c2

r 2 1•••. ~8.12!

Equation~8.10! shows that the square of the Weyl tensor
regular for this metric. Even if, contrary to th
‘‘ GSch-improved’’ spacetime, the ‘‘GdS-improved’’ geom-
etry is singular at the origin, it is much less singular than
was classically. For the Schwarzschild metric one has

~RmnrsRmnrs!Sch548
G0

2M2

r 6 , ~8.13!

with an additional factor of 1/r 4 compared to Eq.~8.12!.
Within the present framework, we have no criterion f

deciding whether the improvementG0→G(r ) should be
done with dSch, ddS, or the d function of some unknown
metric interpolating between Schwarzschild and de Sit
This is a principal limitation of our approach. It appea
plausible thatf (r )'12crn for r→0 with the exponentn
somewhere in between the values resulting fromdSch im-
provement (n52) andddS improvement (n51). Except for
n52, the quantum black hole would have a curvature sin
larity at its center then. A reliable calculation of the expone
n seems to be extremely difficult, though. Nevertheless i
probably a safe prediction that the central singularity is mu
weaker than its classical counterpart. The reason is tha
found quantum gravity to be asymptotically free and th
near the UV fixed pointG(k)}1/k2. In one way or another
this k dependence must translate into a ‘‘switching off’’ o
the gravitational interaction at small distances.

The improvement withddS is equivalent to settingg50
in the formulas of the previous sections. While the caseg
50 andg.0 are qualitatively different forr→0, we saw
already that the other features of the quantum black ho
~horizons, Hawking radiation, entropy, etc.! are essentially
the same in both cases.

IX. SUMMARY AND CONCLUSIONS

In this paper we used the method of the renormalizat
group improvement in order to obtain a qualitative und
standing of the quantum gravitational effects in spherica
symmetric black hole spacetimes.

As far as the structure of horizons is concerned, the qu
tum effects are small for very heavy black holes (M@mPl).
They have an event horizon at a radiusr 1 which is close to,
but always smaller than, the Schwarzschild radius 2G0M .
Decreasing the mass of the black hole the event hori
shrinks. There is also an inner~Cauchy! horizon whose ra-
dius r 2 increases asM decreases. ForM→` it assumes its
nonzero~if gÞ0) minimal value. WhenM equals the critical
massM cr which is of the order of the Planck mass the tw
horizons coincide. The near-horizon geometry of this criti
black hole is that of AdS23S2. For M,M cr the spacetime
has no horizon at all.

While the exact fate of the singularity atr 50 cannot be
8-18
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decided within our present approach, we argued that eith
is not present at all or it is at least much weaker than
classical counterpart. In the first case the quantum space
has a smooth de Sitter core so that we are in accord with
cosmic censorship hypothesis even ifM,M cr .

The conformal structure of the quantum black hole is v
similar to that of the classical Reissner-Nordstro¨m space-
time. In particular its (r 50) hypersurface is timelike, in con
tradistinction to the Schwarzschild case where it is spacel
In this respect the classical limit\→0 is discontinuous, as is
the limit e→0 of the Reissner-Nordstro¨m black hole.

The Hawking temperature of very heavy quantum bla
holes is given by the semiclassical 1/M law. AsM decreases
TBH reaches a maximum atM̃ cr'1.27M cr and then drops to
TBH50 at M5M cr . The specific heat capacity has a sing
larity at M̃ cr . It is negative forM.M̃ cr , but positive for
M̃ cr.M.M cr . We argued that the vanishing temperature
the critical black hole leads to a termination of the evapo
tion process once the black hole has reduced its mass tM
5M cr . This supports the idea of a cold, Planck-size remn
as the final state of the evaporation. For an infinitely
away static observer this final state is reached after aninfinite
time only.

For M.M cr , the entropy of the quantum black hole is
well defined, monotonically increasing function of the ma
For heavy black holes we recover the classical expres
A/4G0. The leading quantum corrections are proportiona
ln(M/Mcr).

In conclusion we believe that the idea of the renormali
tion group improvement which, in elementary particle phy
ics, is already well known is a promising new tool in order
study the influence of quantized gravity on the structure
spacetime. In the present work we focused on black ho
but it is clear that this approach has many more poten
applications such as the very early universe, for instance
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APPENDIX A: THE STATISTICAL MECHANICAL
ENTROPY

Our previous computation ofS(M ) in Sec. VII is within
the framework of ‘‘phenomenological’’ thermodynamic
Ultimately one would like to derive this thermodynami
from the statistical mechanics based upon a fundame
HamiltonianĤ which describes the microscopic degrees
freedom of both gravity and matter. The aim would be
compute a partition function such asZ(b)5Tr@exp(2bĤ)#
and then to derive the free energyF, the internal energyU,
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the entropyS and similar thermodynamic quantities from
(T[1/b):

F52T ln Z, ~A1!

U5T2
]

]T
ln Z, ~A2!

S52
]F

]T
. ~A3!

In the original work of Gibbons and Hawking@22# the
partition function was taken to be the functional integral
the pure Euclidean quantum gravity,

Z~b!5*Dgmnexp~2I @g# !,

where the integration is over all Euclidean metrics which
time periodic with periodb. ~HereI @g# denotes the Einstein
Hilbert action with the Gibbons-Hawking surface term i
cluded.! The saddle point approximation of the integr
yields, to leading order,

Z~b!' (
g0

class
e2I [g0

class] , ~A4!

where the ‘‘sum’’ is over all saddle pointsg0
class of I with

period b. Considering only saddle points of the Schwarz
child black hole type, the latter requirement means that o
the hole of massM5b/8pG0 is relevant. For this
‘‘Gibbons-Hawking instanton,’’bBH equals the externally
prescribed value ofb ~‘‘on-shell’’ approach!. By using its
action I 54pG0M2 in 2 ln Z5bF'I one can derive the en
tire classical black hole thermodynamics.

It seems plausible to assume that the exact quantum g
ity partition function in the Schwarzschild black hole sect
is of the form

Z~b!5e2G[g0] , ~A5!

whereG@g# is some effective action functional, andg0 is a
stationary point ofG with the same topology asg0

class:

dG

dgmn
@g0#50. ~A6!

G andg0 are the quantum corrected versions ofI andg0
class,

respectively. We set

G5I 1Gquant ~A7!

so thatGquantencapsulates the quantum effects.~The statisti-
cal mechanics based upon the one-loop approxima
Gquant5

1
2 ln det(d2I /dg2) has already been developed

some extent@24#.! The partition function~A5! and the ther-
modynamics derived from it contain quantum corrections
two types:

~i! The saddle pointg0, the metric of the ‘‘quantum black
hole,’’ differs from the classical instantong0

class.
8-19
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~ii ! In order to obtainbF, the metricg0 is inserted intoG
rather thanI.

Coming back to the renormalization group approach, i
natural to identify the saddle pointg0 with the Euclidean
version of the renormalization group improved Schwar
child metric, Eq.~6.4! with ~4.4!, which is denotedgimp from
now on. In this manner the quantum effects of~i! are ap-
proximately taken into account. However,gimp was obtained
by a direct improvement of a classicalsolutionrather than of
the classicalaction. Thus, within the framework used in th
present paper, we do not know the functionalG for which
gimp is an ~approximate! saddle point and which would de
termine the partition function via~A5!. The best we can do
in this situation is to tentatively neglect the quantum effe
of ~ii !, i.e., to assume thatGquant@gimp# is much less importan
than I @gimp# and to approximate~A5! by

Z~b!'e2I [gimp] . ~A8!

In the following we investigate if~A8! can give rise to an
acceptable thermodynamics. We shall employ the ‘‘o
shell’’ formalism ~conical singularity method! developed in
Ref. @25# to which we refer for further details.

We evaluate the actionI for a general Euclidean metric o
the type ~6.1! or ~6.4! where f (r ) is arbitrary to a large
extent. We only assume that it has a simple zero at somer 1 .
Its asymptotic behavior is required to be

f ~r !512
2G0M

r
1OS 1

r 2D ~A9!

for some fixed constantM. Furthermore, we assume that th
Euclidean timet in (6.4) is an angle-like, periodic variabl
with periodb. Hereb is the argument of the partition func
tion. It has a prescribed value which in general does
coincide withbBH[4p/ f 8(r 1). The corresponding Euclid
ean manifold is denotedMb .

If we introduce the 2p-periodic rescaled time variable

t̂[
2p

b
t ~A10!

then, near the horizon, the metric~6.4! becomes

dsE
2'r2S b

bBH
D 2

dt̂21dr21r 1
2 dV2, ~A11!

which coincides with~6.5! only for the ‘‘on-shell’’ valueb
5bBH . For bÞbBH the spaceMb has a conical singularity
at r50, the angular deficit beingd52p(12b/bBH). As a
consequence, the curvature scalar onMb has a delta-
function singularity atr50.

The Einstein-Hilbert actionI[I reg1I sing on Mb consists
of a regular part and a singular part containing the contri
tion from the delta-function singularity. The regular pa
I reg[I V1I S has a volume and a surface contribution,
04300
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I V52
1

16pG0
E

M b

d4xAgR, ~A12!

I S52
1

8pG0
E

]M b

d3xAg~K2K0!, ~A13!

whereg andK are the metric and the extrinsic curvature
the boundary]Mb at infinity (r→`). (K0 is the corre-
sponding value for a flat metric.!

The volume contribution is evaluated most easily by
turning to the originalr coordinate. Then, after performin
the trivial angle andt integrations,

I V52
b

4G0
E

r 1

`

dr r 2R~r !, ~A14!

whereR is the curvature scalar for the metric~6.1!. It reads

R~r !52
1

r 2 F d2

dr2 „r
2f ~r !…22G ~A15!

and therefore the integral~A14! feels the behavior off only
at the horizon and at infinity:

I V5b
r 1

2G0
2

b

4G0
r 1

2 f 8~r 1!2
1

2
bM . ~A16!

The evaluation of~A13! with ~A9! proceeds as in the stan
dard case@22#:

I S5
1

2
bM . ~A17!

Adding ~A17! to ~A16! cancels precisely the last term o
~A16! which originated from the upper limit of the integra
~A14!. Using ~6.3! the sum contains only data related to t
horizon,

I reg5b
r 1

2G0
2

b

bBH

A
4G0

, ~A18!

whereA[4p2r 1
2 is its area.

For the metric~A11!, the singular contribution

I sing52
1

16pG0
E

M b

d4xAgRsing, ~A19!

with Rsing}d(r) has already been evaluated in Ref.@26#. The
result is

I sing52S 12
b

bBH
D A

4G0
. ~A20!

Adding ~A20! to ~A18! we obtain the complete action evalu
ated onMb :

I 5b
r 1

2G0
2

A
4G0

. ~A21!
8-20
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This is the result we wanted to derive. We emphasize th
is valid for black holes with an essentially arbitraryf (r ) and,
as a consequence, arbitrary ADM massM and Hawking tem-
peratureTBH5bBH

21 .
If we specialize for the renormalization group improv

Schwarzschild black hole of a given massM, the action be-
comes

I @gimp#5b
r 1~M !

2G0
2

A~M !

4G0
, ~A22!

with r 1(M ) andA(M ) given by ~4.36! and ~6.26!, respec-
tively.

If we tentatively insert the action~A22! into ~A8! and use
~A3! to calculate the entropy fromF'b21I @gimp# we obtain
ys

y

04300
it
S5

A~M !

4G0
. ~A23!

Apart from the modified relation betweenA and M, this is
precisely the classical entropy. It is clear from Eq.~6.26! that
~A23! differs from the correct result~7.4! already at the lead-
ing order of the large-M corrections.

Thus we must conclude that the ‘‘statistical mechan
entropy’’ ~A23! fails to reproduce the quantum correctio
contained in the ‘‘thermodynamical entropy’’~7.4!. The les-
son to be learned from this failure is that, at least as far as
entropy is concerned, the quantum mechanical modifica
of the action fromI to G is essential. Improving only the
saddle point (g0

class→gimp) but neglectingGquant is not suffi-
cient in order to obtain a meaningful partition function.
and
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