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We study the quantum gravitational effects in spherically symmetric black hole spacetimes. The effective
guantum spacetime felt by a pointlike test mass is constructed by “renormalization group improving” the
Schwarzschild metric. The key ingredient is the running Newton constant which is obtained from the exact
evolution equation for the effective average action. The conformal structure of the quantum spacetime depends
on its ADM massM and it is similar to that of the classical Reissner-Nordstiack hole. FoM larger than,
equal to, and smaller than a certain critical miks the spacetime has two, one, and no hor{gprespec-
tively. Its Hawking temperature, specific heat capacity, and entropy are computed as a funddorit i
argued that the black hole evaporation stops wheapproached$/ ., which is of the order of the Planck mass.

In this manner a “cold” soliton-like remnant with the near-horizon geometry of AdS? is formed. As a
consequence of the quantum effects, the classical singularity: @tis either removed completely or it is at

least much milder than classically; in the first case the quantum spacetime has a smooth de Sitter core which
would be in accord with the cosmic censorship hypothesis evih<ifM,,.

PACS numbes): 97.60.Lf, 04.60-m, 11.10.Hi

I INTRODUCTION mixed state density matrig.s for the physics outside the

) ) ) i .~ horizon. Of course this does not mean that a pure state has
The Schwarzschild spacetime is the unique sphericallyglyed into a mixed state since the incomplete information

symmetric vacuum solution of Einstein’s equations. Under- rovided by still can be suoplemented by the information
standing the dynamics of this spacetime when quantum ef YPeft pp Y

fects of the geometry are switched on has always been one §Pntained inp about the degrees of freedom behind the ho-
the most challenging issues from the theoretical point ofizon. However, if the black hole evaporates completely
view. It is in fact very plausible that those effects will play a those parts of the spacetime which formerly were interior to
key role in the very late stages of the gravitational collapsén€ horizon disappear entirely, and there are no field degrees
as well as during the evaporation process of a Planck sizef freedom left which could “know” about the information
black hole. missing inpes. AS @ consequence, the initially pure quantum

According to the standard semiclassical scenario, a blacktatep seems to have evolved into a genuinely mixed state
hole of massM emits Hawking radiation at a temperature,‘) ;

which is inversely proportional th. During this process, in -~ ajternatively one could speculate that the evaporation is
addition to the radiation of energy to infinity, a negative-jncomplete, i.e., that it comes to an end when the Schwarzs-
energy flux through the horizon is produced. Thereby th&pig radius is close to the Planck length where the semiclas-
mass of the black hole is lowered and the temperature igjcq) results apply no longer. In this case the final state of the

increased. It is an open question whether this process Comi’F{awking evaporation might be some kind of “cold” rem-
ues until the entire mass of the black hole has been converteg, \t with a mass close to the Planck mass.

to radiation or whether it stops when the temperature is close |; is clear that the problem of the final state should be

to the Planck temperature where the semiclassical argumentg|qressed within a consistent theory of quantum gravity. The
are likely to break down. _ _standard semiclassical derivation of the Hawking tempera-
In the case of a complete evaporation a number of exotigyre quantizes only the matter field and treats the spacetime
physical processes such as violations of baryon and leptogetric as a fixed classical background. However, investigat-
number conservation or the “information paradox” could jng plack holes with a radius not too far above the Planck
occur[23]. Let us consider a quantum field on the black holejength we must be prepared that quantum fluctuations of the
spacetime whose initial state is described by a pure densifpetric play an important role. The standard perturbative
matrix p. If we trace over the field modes which are local- quantization of Einstein gravity is of little help here since it
ized inside the event horizon we are left with an effectiveleads to a non-renormalizable theory. Also the more ad-
vanced attempts at formulating a fundamental theory of
quantum gravity(string theory, loop quantum gravity, etc.
*Email address: abo@sunct.ct.astro.it do not provide us with a satisfactory answer J2f As a
"Email address: reuter@thep.physik.uni-mainz.de way out we propose in this paper to use the idea of the
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Wilsonian renormalization groufd] in order to study quan- Hence the evolution o’y from k; to k, is always well
tum effects in the Schwarzschild spacetime. defined even if the theory under consideration, when re-
Our basic tool will be a Wilson-type effective action garded as a fundamental theory, is not renormalizable.
I'{g,,] wherek is a scale parameter with the dimension of  In the following we consider Einstein gravity as an effec-
a mass. In a nutshell;,[g,,] is constructed in such a way tive field theory and we identify the standard Einstein-
that, when evaluated at tree level, it correctly describedilbert action with the average actiokiy . Here Ky is

gravitational phenomenawith all loop effects included some typical “observational scale” at which the classical
whose typical momenta are of the orderkofThe basic idea  tests of general relativity have confirmed the validity of the
is borrowed from the block spin transformations which areginstein-Hilbert action. In order to find an approximate so-
used in statistical mechanics in order to “coarse grain” spinjytion to the flow equation we assume that also for
configurations of lattice systems. In its simplest formulation,~ Kops, i.€., at higher momentd;, is well approximated by
when applied to a continuum field thed8-5]|, we are given g action of the Einstein-Hilbert form. The two parameters in
a field ¢(x) defined on a Euclidean spacetime with metricthjs action, Newton’s constant and the cosmological con-
9., and dimensiond. The averaged or “blocked” field stant, will depend ok, however, and the flow equation will

#(X) is defined by means of tell us how the running Newton consta@(k) and the run-
ning cosmological constaint(k) depend on the cutoff. Their
¢k(X)=f ddy\g(y) pr(X—y) B(Y), (1.1)  experimentally observed values ar&(k,d=G, and

N(Kgpd =Nog=~0. Since, at least within our approximation,
there is essentially no running of these parameters between
Kops (the scale of the solar system, $agnd cosmological
scales k~0) we may sek,,s~0 and identify the measured
grarameters witls(k=0) and\(k=0).
The key idea presented in this paper is to use the running
Newton constantG=G(k) in order to “renormalization
group improve” the Schwarzschild spacetime. This idea is
exp(—I'[P])= j Dl #]156(px— P)exp(— S ¢]). borrowed from particle physics. There it is a standard device
(1.2 in order to add the dominant quantum corrections to the Born
approximation of some scattering cross section, say. Our
The blocked field has a very intuitive physical interpretation:implementation of this scheme is similar to the renormaliza-
it is the field noticed by an observer who uses an experimertion group based derivation of the Uehling correction to the
tal apparatus of resolution Coulomb potential in massless QEB). One starts from the
classical potential energy,(r) =e?/4xr and replaces? by
I~k (1.9  the running gauge coupling in the one-loop approximation;

wherep(x—Y) is a smearing function that has support only
for [|x—y||<k™ 1. The “average action'T', governs the dy-
namics of the coarse-grained or macroscopic fieldlt is
obtained from the classical action by integrating over th
microscopic degrees of freedom or “fast variables”:

This observer sees the field evolving according to the effec- e2(k)=e(ko)[1—bIn(k/ky)]™L,  b=e?(ko)/6m2.

tive equation of motiorST" [P ]/ 6P (x)=0. (1.4)
For continuum field theories the functional integ(al2)

is not easy to deal with, and so we shall use an alternativghe crucial step is to identify the renormalization point

construction which leads to a functiondl, with similar  with the inverse of the distange This is possible because in

qualitative properties to the one discussed above. We use thige massless theonyis the only dimensionful quantity which

method of the “effective average actiorl”, which has been could define a scale. The result of this substitution reads
developed in Refd.6,7]. It is defined in a similar way to the

ordinary effective actiof’ but it has the additional feature of V(r)=— ez(rgl)[1+ bin(ry/r)+0O(e*)]/4nr, (1.5
a built-in infrared cutoff at the scale Quantum fluctuations

with momentap?>k? are integrated out in the usual way where the IR reference scaig= Lk, has to be kept finite in
while the effect of the large distance fluctuations W||If;) the massless theory. We emphasize that(Ed) is the cor-
<k?is not included iT". Hencel',, regarded as a function rect (one-loop, massles&Jehling potential which is usually
of k, describes a renormalization group trajectory in thederived by more conventional perturbative methfgls Ob-
space of all actions; it connects the classical act®n viously the position dependent renormalization group im-
=TI'\_.. to the ordinary effective actiof =T';_o. This tra-  provemente?—e?(k), kx1/r encapsulates the most impor-
jectory satisfies an exact functional renormalization grougant effects which the quantum fluctuations have on the
(or flow) equation. If one wants to quantize a fundamentalelectric field produced by a point charge.
theory with actionS one integrates this equation from the In this paper we propose to “improve” the Schwarzschild
initial point I'y=S down to I'=TI",_,. After appropriate metric by an analogous substitution. We replace the Newton
renormalizations one then lefs—oe. constant by its running counterp&@{k) with an appropriate
The flow equation can also be used in order to furthemposition-dependent scalk=k(r), where r is the radial
evolve (coarse graineffective field theory actions from one Schwarzschild coordinate. At large distances we shall have
scalek to another. In this case no limit such As-« above Kk(r)«1/r as in QED, but sinc& is dimensionful there will
needs to be taken, i.e., the ultraviolet cutoff is not removedbe deviations at small distances.
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This approach has also been used in Ref.where the _ _
impact of quantized gravity on the Cauchy horizon singular- Fk[gag]:(l&TG(k))_lf d%/g{—R(g)+ 2\ (k)}
ity occurring in a realistic gravitational collapse has been o
studied. In this work a perturbative approximation of the +S419.9], (2.7
function G(k) has been employed. In the present paper we
use instead an exact, non-perturbative solution to the evoluwhere G(k) and\ (k) denote the running Newton constant
tion equation forG(k) which follows from the “Einstein- and cosmological constant, respectively, &ygdis the clas-
Hilbert truncation.” sical background gauge fixing term. For truncations of this
Our main results about the quantum corrected Schwarzgype the flow equation reads
child spacetime are the following. For large masbkshe L
guantum effects are essentially negligible. Lowering the - 2 (2)f rav Ty — 1 rav
mass we find that the radius of the event horizon becomesatrk[g’g]_ETr[(K F(k )[g,g]+RE Toh~"aRr&™all
smaller and that at the same time a second, inner horizon _ _ _
develops out of ther(=0) singularity which is now timelike. =Trl(— M[g,9]+R¥TgD "o RTgll,
WhenM equals a certain critical madd ., which is of the (2.2
order of the Planck mass the two horizons coincide. For
<M, there is no horizon at all. The causal structure of thesavith
spacetimes is similar to the classical Reissner-Nordstro
spacetimes. It turns out that while the Hawking temperature t=Ink, (2.3
is proportional to 1M for very heavy black holes it vanishes
asM approached . from above. This leads to a scenario for
the evaporation process where the Hawking radiation i
“switched off” once the mass gets close M. This pic-
ture suggests that the final state of the evaporation could be
critical (extremal black hole withM =M.
The rest of this paper is organized as follows. In Sec. Il
we derive the running of the Newton constant from the

renormalization group equaton. n Sec. I the eorrect identy 0 S Pt B Or T o o ety
cation of the position dependent cutdt=Kk(r) is dis- 4o conditionsR(®)(0)=1 and R®(z)—~0 for z—~. For

cussed. In Sec. IV we reqormahzaﬂqn group improve ,the,explicit computations we use the exponential cutoff
eternal black hole spacetime and discuss its properties in

detail. In Sec. V we provide an effective matter interpretation RO)(z)=7expz)—1]"L. (2.9

of this spacetime. In Sec. VI the Hawking temperature is

derived and our scenario for the evaporation process is pref we insert Eq.(2.1) into Eq.(2.2) and project the flow onto
sented. In Sec. VII we obtain an expression for the thermothe subspace spanned by the Einstein-Hilbert truncation we
dynamic entropy of the quantum black hole, while in Sec.obtain a coupled system of differential equations for the di-
VIl we discuss the fate of ther&0) singularity. The con- mensionless Newton constant

clusions are contained in Sec. IX. In the Appendix we dis-

cuss some problems related to the statistical mechanical en- g(k)=k7?G(k) (2.9
tropy of the quantum black hole.

wherel'{?) stands for the Hessian &% with respect tay,,,,,
and M is the Faddeev-Popov ghost operator. The operators
R ¥ and R ¢" implement the IR cutoff in the graviton and
the ghost sector. They are defined in terms of a, to some
extent, arbitrary smooth functioR,(p?) «k?R(®(p?/k?) by
replacing the momentum squap# with the graviton and
ghost kinetic operator, respectively. Inside loops, they sup-
press the contribution of infrared modes with covariant mo-

and the dimensionless cosmological constan(k)
=\ (K)/K?:
Il. THE RUNNING NEWTON CONSTANT
dg=[d—2+ ny]g (2.6
In Ref.[7] the idea of the effective average actid)10]
has been used in order to formulate the quantization of 1
(d-dimensional, Euclideangravity and the evolution of dA=—(2—7)A+ 59(477)17d/2[2d(d+1)q’3/2(_2)\)
scale-dependent effective gravitational actidhgg,,,] by
means of an exact renormalization group equation. Further- ~ —8d®?,(0)—d(d+ 1) py®3,(—2)\)]. 2.7
more, in order to find approximate solutions to this equation,
the renormalization group flow in the infinite dimensional Here
space of all action functionals has been projected on the

2-dimensional subspace spanned by the operafgrsand _gBi(N)
JOR (“Einstein-Hilbert truncation’). Using the background 7n(g,N) = T-9B,(0) (2.9

gauge formalism with a background metﬁgv, this trunca-
tion of the “theory space” amounts to considering only ac-is the anomalous dimension of the operat@R, and the
tions of the form functionsB4(\) andB,(\) are given by
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2

1
Bi(\)=3(4m)' ¥ d(d+ 1)@y, (~2))—6d @1(0):%' ®%(0)=1 (2.17
X (d= 1)@ —2\) — 4dD,_1(0)—240F,(0)], ) i .
2.9 $3(0)=1, P50)= (2.18
! = d
Bo(N)=— 5 (4m)" ¥ d(d+1)Dj, 1(—21)-6d an
4( 77'2) 3 2
X(d=1)Pg(—2)\)], p 1- 144 Bz—g- (2.19

The evolution equatiof2.11) displays two fixed pointg, ,
B(g,)=0. There exists an infrared attractiV&aussian
fixed point atg'?=0 and an ultraviolet attractivénon-
Gaussiapnfixed point at

with the cutoff, i.e.,R(®)-dependent “threshold” functions

(p=1,2,...)
w R()(7)— 7RO
(I)p(W) F(ln)f dz2 1 (2)—2 2

[z+RO(z)+w]P’
(2.10

o= (220
R(O)(Z) “
[z+RO(z)+w]P’

~ 1 o

‘Dﬁ(W)=WJO dz 27+ This latter fixed point is a higher dimensional analog of the
Weinberg fixed poinf11] known from (2+ €)-dimensional

For further details about the effective average action in gravdravity- (Within the present framework it has been studied in

ity and the derivation of the above results we refef&p ]LI)'h UV fixed poi K i .
From now on we shall focus od=4. Furthermore, the e Ixed point separates a weak coupling regime

; ; uv
cosmological constant plays no role within the scope of ouf9<g;") from a strong coupling regime wherg>g," .
present investigation. We assume thatk? for all scales of Since theg function is positive forg < [0‘9*. ] an(_:i negayve
interest so that we may approximate=0 in the arguments otherwise, the renormalization group trajectories which re-
of B;(\) andB,(\). Thus the evolution is governed by the sult from Eq.(2.11) with Eq. (2.13 fall into the following

equation

dog(t
999 12+ palath = Ba(t),

with the anomalous dimension

B.g
1_ Bzg '

7n(g) =

and the beta function

!/

g2 9

The constant®8; andB, are given by

— 1 2 1
B1=B,(0)=— 3-[2403(0)—~ @1(0)],

— 1 32 1
B,=B2(0) = z—[1803(0)~521(0)].

We also define

1
(X)E__Bl,

5 o'=w+B,.

For the exponential cutoff2.4) we have explicitly

(2.10)

(2.12

(2.13

(2.19

(2.19

(2.19

three classes:

(i) Trajectories withg(k) <0 for all k. They are attracted
towardsg'® for k—0.

(ii) Trajectories Withg(k)>gfv for all k. They are at-
tracted towardg?" for k— .

(i) Trajectories withg(k) e[0,gY"] for all k. They are
attracted towardg*=0 for k—0 and towardsyy" for k
— 00,

Only the trajectories of typ€ii) are relevant for us. We
shall not allow for a negative Newton constant, and we also
discard solutions of typéi). They are in the strong coupling
region and do not connect to a perturbative large distance
regime. (See Ref[12] for a numerical investigation of the
phase diagram.

The differential equatiori2.11) with (2.13 can be inte-
grated analytically to yield

g _ 9(ko) (5)2
109" [1-w'glkg]™ ko ZP

but this expression cannot be solved &pr g(k) in closed
form. However, it is obvious that this solution interpolates
between the IR behaviog(k)=k? for k?>—0 and g(k)
—1/w’ for k—oo,

In order to obtain an approximate analytic expression for
the running Newton constant we observe that the ratitw
is actually very close to unity. Numerically one has
~1.2,B,~0.21, 0’ ~1.4,9YV~0.71 so that'/w~1.18 is
indeed close to 1. Replacing’'/w— 1 in Eq.(2.2]) yields a
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rather accurate approximation with the same general featuréds Ref. [13], Polyakov had conjectured an asymptotic run-
as the exact solution. In this case we can easily solve Eqing of precisely this form.

(2.2D):

ko) k?
g(k) = (ko)

~ ogkoklt [1-wgkgld 222

This function is anexact solution to the renormalization

IIl. IDENTIFICATION OF THE INFRARED CUTOFF

In the Introduction we identified the scakewith the in-
verse distance in order to derive the leading QED correction
to the Coulomb potential. In this section we discuss how in

group equation with the approximate anomalous dimensiof'® €@se of a black hole can be converted to a position-

7n=—2wg+0(g?) which is the first term in the perturba-
tive expansion of Eq(2.12):

Remarkably, for the trajector{2.22) the quantityB, g(k)
remains negligibly small for all values & It assumes its
largest value at the UV fixed point whei, gv¥=0.15.
Thus Eq.(2.22 provides us with a consistent approximation.

0

= —20( 1+n§1 (Bog)" (2.23

dependent quantity. We write this position-dependent IR cut-
off in the form

3

k(P)—m,

(3.9

whereé is a numerical constant to be fixed later a{(dP) is
the distance scale which provides the relevant cutoff for the
Newton constant when the test particle is located at the point
P of the black hole spacetime.

Using Schwarzschild coordinates, 8, ¢) and consider-

(This can also be checked by comparing to the numericghg spherically symmetric spacetimes, the symmetries of the

solution of Ref.[12].)
In terms of the dimensionful Newton constaf(k)
=g(k)/k? Eq. (2.22 reads

G(ko)

G0 = G ko (K= K2l

(2.29

From now on we shall sé¢;=0 for the reference scale. At
least within the Einstein-Hilbert truncatiog(k) does not

run any more between scales where the Newton constant was

determined experimentallyaboratory scale, scale of the so-
lar system, et¢.and k=0 (cosmological sca)e Therefore
we can identifyGy=G(ky=0) with the experimentally ob-
served value of the Newton constant. From

G(k)= (2.25

0
1+ (J)Gokz

we see that when we go to higher momentum sdal€xk)
decreases monotonically. For smialive have
G(k)=Go— wGzk?>+O(k%), (2.26

while for k2>G(§1 the fixed point behavior sets in a{k)
“forgets” its infrared value:

G(k)~ (2.27

wk?’

problem imply thatd(P) depends on the coordinate ofP
only, d=d(r).

If the test particle is far outside the horizon of the black
hole (r>2GyM) where the spacetime is almost flat we ex-
pect thatd(r) is approximately equal to. By comparison
with the work of Donoghud14] we shall see that this is
actually the case. As a consequence, the funddi@® nor-
malized such that

_d(r)
lim —=

r—o

1 (3.2

so that the constard fixes the asymptotic behavior

k(r)~r§ for r—oo, (3.3

Contrary to the situation in QED on flat spacetime, B33

is not a satisfactory identification &f=k(P) for arbitrary
points P. The reason is thad(P) should have a coordinate
independent meaning, while is simply one of the local
Schwarzschild coordinates. As a way out, we defiGE) to
be the proper distancdwith respect to the classical
Schwarzschild metrjcfrom the pointP to the center of the
black hole along some curv&

d(P)sz\/|d?|.

(3.9

There is still some ambiguity as for the correct identification

!In general we would expect that the IR asymptotics might changéf)f the spgcetlme pur\(é However, at Ieas’F in the sphgncally
when we include the running of the cosmological constant. In thiéymmetrIC case, it turns out that all physically plausible can-

case Eq.2.26 still gives the leading correction in an expansion
with respect tog=k?G, but since the cosmological constant is di-

didates lead to cutoffs with the same qualitative features.
We parametriz&€ asx*(\) wherex*=(t,r,6,¢) are the

mensionful this is not necessarily the same as an expansion withchwarzschild coordinates ands a(not necessarily affine

respect tok?. For a first numerical investigation of the impact the
cosmological constant has on the running@&fthe reader is re-
ferred to Souma12].

parameter along the curve. To start with, let us consider the
curve C=C(y, defined byt(\)=tg, r(\)=N\, 6(\)= 6y,
d(N)= g with X e[O,r (P)] wherer (P) is ther coordinate
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of P. This is, even beyond the horizon, a straight “radial” 2 1
line from the origin toP, at fixed values of, 6 and ¢. If we do(r =5 ——=r
restrict\ to the interval[r(Py),r(P)] with P, and P both 3 J2GM
outside the horizon whers?>0 then \/ds? is the ordinary
spatial proper distance between the poiRtsand P. The
definition (3.4) involves the modulus ofis’> and it general- 3 1|32
izes th|§ “dls_ta_nce” to thg case that_ atlleas.t one of the two kiay(1)= Eé‘/ZGOM(F) ) (3.12
points lies within the horizon whereis timelike. (See also

[15] for a discussion of this “distance)’ ' The explicit result
reads forr <2GyM

3/2, (311)

which leads to

Equationg3.11) and(3.12) are exact for all values of. It is
remarkable thadl,)(r) coincides precisely with the approxi-
r mation ford4(r), Eq.(3.7), which is valid for small values
d(1)(r)=2GoM arctany/ oM Vr(2GeM— r of r. This supports our assumption that close to the singular-
0 (35 ity (r—0) the correct cutoff behaves ir) o1/ 32,

' For large distances, the curv€g) andC,) lead to differ-
and forr>2GyM: entr dependencies of the cutofy; ) 1/, Kz 1/r¥2 Quite
generally, if a system possesses more than one typical mo-

r r mentum scalek(qy, Ky, Kz, ..., which can cut off the
d(1)(r)=7GoM +2GoM |”( \/ZGOM * \/ZGOM _1) running of some co(ug)ling(; )constant, it is the largest one
among those scales which provides the actual cutioff:
+r(r—2GoM). (3.6 =Max{ k1, Kz, Ky, . - .}. In the case at hand we have
. . . . K(1)>K(2) for r—co so that we must set=K)(r)>=1/r for
Note thatd(l)_(r) is continuous at the horizon. Equatit$ 6) large values of.
shows that indeedl;(r)=r+O(Inr) for r—oe. From Eq. The only properties of the functiok(r) which we shall
(3.5 we obtain forr —0 use in the following is that it varies agr)=1/r for r—
and ask(r)«1/r%? for r—0. This behavior can be further
r324 0(r5?), (3.7) confirmed by investigating different choices 6f For in-
V2GoM stance, a radial timelike geodesic with vanishing velocity at
some finite distance from the black hole or a geodesic with
which leads to the cutoff non-vanishing velocity at infinity, for small values fagain
32 reproduces Eq(3.7).
k(l)(r)%fm(l) for r—0. (3.9 _ While_: we used Sch\_/varzschild coordinates in the above
r discussion we emphasize that the same results can also be
ap ) ) B obtained using coordinate systerfssich as the Eddington-
Thisr =2 behavior has to be contrasted with the' depen-  Finyelstein coordinatesvhich do not become singular at the
dence of the “naive” cutoffk=¢/r. horizon.

Another plausible spacetime curgas the worldline of an It turns out that the qualitative features of the quantum
observer who falls into the black hole. We defi®eC(>) 10 corrected black hole spacetimes which we are going to con-
be the radial timelike geodesic of the Schwarzschild metricryct in the following are rather insensitive to the precise
with vanishing velocity at infinity. For this geodesic, the ob- manner in whictk(r) interpolates between ther#2 and the
server’s radial coordinateand proper timer are related by  1/r pehavior. Moreover, most of the general featufesri-

[15] zon structure, ettare even independent of the precise form
of k(r) for r—0. Usingk(r)«1/r” with » not necessarily
— TO:E 1 (3.9 equal to 3/2 leads to essentially the same picture. The only
3 \2G,M issue where the value ofis of crucial importance is the fate
of the singularity at =0 when quantum effects are switched
where the constant of integration is chosen such that) on.
=r,o. Equation(3.9) is valid both outside and inside the ho-  In concrete calculations we shall use the interpolating
rizon. Settingro=0= 75, we see that when the observer hasfunction
arrived atr =r (P), the remaining proper time it takes him or
her to reach the singularity is given by

2
dayr)=3

3/2 3/2
(rg==r=s

’

r3 172
d(r)= M) , (3.13

r+’)/GO

r(P)%2 (3.10

2 1
PI=3 Gom with d(r)=r[1+O(1k)] andd(r)=r¥%GoM +O(r5?)
0 for large and smalt’s, respectively. Fron€ .y andC,) we
From the point of view of this observer it is meaningless tohad obtained
consider times larger thdgm(P)| and, as a consequence, fre-
quencies smaller thar(P)| 1. This motivates the identifi- _ 9 (3.14
cationd,,(P) =|7(P)|, i.e., YT '
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but we shall treaty as a free parameter. Most of our results m;m, Go(my+my) . Goh

turn out to be very robust: qualitatively they are the same for V(r)=—=Go— T oy ¢t

all y>0. By settingy=0, the ansat£3.13 also allows us to

return to the “naive” cutoffk=1/r, i.e., tov=1. Except for (3.2
questions related to the singularity @t 0, eveny=0 will  \\here [16] ©=118/15r. The correction proportional to

lead to essentially the same qualitative properties of the im(mlJr my,)/r is a purely kinematic effect of classical general

proved black hole spacetime. relativity, while the quantum correction has precisely the

Upon inserting Eq(3.1) into the running Newton constant guy;ctyre we have predicted on the basis of the renormaliza-
(2.295 we obtiln the fgllowmg position-dependent Newton group. Comparing Eq3.20 to Eq. (3.21) allows us to
constantG(r)=G(k(r)):

determine the coefficienb by identifying

S s, o @0 Ior

(3.22

where Contrary to the factors and &2, their producto = w&2 has a

~ ) uniquely determined, measurable value.
W= (3.16 A priori the renormalization group analysis yiel@sas a
function of k rather tharr, and the functioriR, serves as a
mathematical model of an arbitrary, yet unspecified physical
Gl mechanism which cuts off the running & In the case at
(r)= _ of _ (3.17) hand, this mechanism is the finite distance between the test
r3+ wGy[r+ yGoM] particle and the black hole; it led to the ansktz&/d(r). In
general the information about the actual physical cutoff
At large distances, the leading correction to Newton’s conimechanism enters at two points:
stant is given by (@ The functionR, should be chosen so as to model the
actual physics as correctly as possible.
(b) Both the physical cutoff mechanism and the choice for
(3.18 Ry determine the relation betwednand other variables,
adapted to the concrete problem, which can parametrize the

For the ansat£3.13 this yields

G2 1
G(r):Go—wTQ—‘FO r—g .

For small distances— 0, it vanishes very rapidly: running of G (r, in our casg
This means that, within our approximation, tRg depen-
r3 dence of the correct identificatidk=k(r) should precisely
G(r)=—=——+0(r%. (3.19 compensate for th&, dependence o6 (k). We have seen
yoGoM that this is indeed what happens:and ¢ appear only in the

combinationw=w¢&?. The R, dependencies of» and &2
cancel in this product, and its unambiguous numerical value
can be read off from the known asymptotic form\af,(r).

The asymptotic behaviof3.18 can be used in order to fix

the numerical value ofo. The idea is to renormalization
group improve the classical Newton potentig(r)=
—Gomym,/r of two massesn; and m, at distancer by
replacing the constar@, with G(r). Within the approxima-
tion (3.18 we obtain

IV. IMPROVING THE ETERNAL BLACK HOLE
SPACETIME

A. The improved metric

Vino(F) = — G MM, _;%+ ., (320 We consider spherically symmetric, Lorentzian metrics of
P r r<c
the form
where we have reinstated factors/pfand ¢ for a moment. ds?’=—f(r)dt?+f(r) " tdr2+r2dQ? 4.1

We observe that our renormalization group approach predicts
a 1t2 correction to the 1/ potential. However, the value of wheredQ2=d6#?+ sirf6d¢? is the line element on the unit

the coefficientw= w&? cannot be obtained by renormaliza- two-sphere and(r) is an arbitrary “lapse function.” The
tion group arguments alone: the factris a non-universal most important example of a metric belonging to this class is
coefficient of theB function, i.e., it depends on the shape of the Schwarzschild metric with
the functionR(®), and alsc¢ is unknown as long as one does
not explicitly identify the specific cutoff for a concrete pro- f(r)= _,  2GoM
cess. (r) - fclasér)— 1 r . (4-2)

On the other hand, it was pointed out by Donoghiié]
that the standard perturbative quantization of Einstein gravityVhile the Schwarzschild spacetime is a solution of the
leads to a well-defined, finite prediction for the leading largevacuum Einstein equatioR,,,=0, we are not going to con-
distance correction to Newton’s potential. His result reads strainf(r) by any field equation in the following.
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In classical general relativity the metrié.1) with (4.2) is
interpreted as a property of a black hote the exterior of a Q= .
stap per se i.e., the metric is given a meaning even in the GoM?
absence of a test particle which probes it. Within our ap-
proach, we regaréiy,ssas a manner of encoding the classical The parametef) is a measure for the impact the quantum
dynamics of a test particle in the vicinity of some “central gravity effects have on the metric. Reinstating factorsi of
body” of massM. Because of the actual presence of the tesfor a moment we have«# andQ«#%. The classical limit is
particle, the system defines a physically relevant distanceecovered by settingl=0. We see immediately that very
scaled(r) which enters into the cutoff for the running Gf heavy black holesNl — ) essentially behave classically. In
It is our main assumption that, also beyond the Newtoniariact, defining the Planck mass Ioy,=G, > we have
limit, the leading quantum gravity effects in this system con-

w

4.9

sist of a position-dependent renormalization of the Newton m2
constant in Eq.4.2). More precisely, we assume that the Q:Z)—P', (4.9
guantum corrected geometry can be approximated by Eq. M?
(4.1) with
which shows that af) of order unity requiresvl to be not
2G(r)M much heavier thamp,.
f(r)=1- T (4.3 For x>0 the numerator and the denominator of the RHS
of Eqg. (4.6) have no common zeros; hencgis a zero of
whereG(r) is given by Eq.(3.17): f(r) if xo=ro/GgM is a zero ofB(x). In the classical case
(Q=0) we haveB.,, o(x) =x*(x—2) with its only nontrivial
2GoMr2 zeroxy,=2 corresponding to the familiar Schwarzschild ho-
f(ry=1- 3T = . (4.9 rizon atry=2GyM.
r°+ @Gl + yGoM] In the quantum case(X>0), B, (X) is a generic cubic

polynomial which has either one or three simple zéros

Let us now analyze the properties of the renormalization o’ req) axis. Since=xG,M must be positive, only zeros on
group improved spacetime defined by E4.4). First of all,  yhe positive reak axis ™ can correspond to a horizon. It is

for r—cc we have easy to see that for any value 9f and y, B(x) always has
precisely one zero on theegativereal axis: first we observe

) (4.5 thatB(0)= Q>0 andB(—«)= —o<0 which implies that
B(x) has at least one zero on the negative real axis. Further-

more, the derivativeB’ (x) =3x2—4x+ () is positive forx

For large distances, i.e., at order JWe recover the classical <0, j.e.,B is monotonically increasing fax<0. As a con-

Schwarzschild spacetime. The leading quantum correctioBequenceB has precisely one zero on the negative real axis.

appears at order i, since in the Newtonian approximation HenceB has either two simple zeros or no zeros at all on the

the potential is given by f(r)—1]/2, this correction is positive real axiR*, whereby the two simple zeros might

equivalent to the improved pOtentIQZQ which was inde- degenerate to form a Sing'e double zero.

pendently confirmed by Donoghue’s resi@t21). As we dis- The three cases are distinguished by the value of the dis-

cussed in Sec. Il already, matching the two results unamgriminant

biguously fixes the constaut to be w=w=118/157. Thus

our improved lapse functiofd.4) does not contain any free 3

parameter(Recall that the analysis of Sec. Ill fixesto be D,(Q)=(30-4)"+

y=9/2. However, to be as general as possible, we shall al-

low for an arbitraryy=0 in most of the calculationk. For D.(Q)<0 there are two simple zeros oit*, for
‘y L

D,(Q)=0 we have a double zero, and fbr,(2)>0 there
B. The horizons exists no zero oM. The discriminant can be factorized as

2GoM ~ Gy 1
1—(1)?2— +O 7|

f(ry=1- .

27 2
9Q+7yﬂ—8 . (4.10

Next we determine the structure of the horizons of the
improved spacetime. To this end we look for zeros of the D(Q)=270[Q~Qy (N[~ Qc(y)]. (41D
function f(r), Eq. (4.4), which is conveniently rewritten as

with
B(x)
R Qul(1)= 59y T2\ +2(0y+2- T y*= 57+ 5.
with the polynomialB given by (4.12
B(x)=B, o(X) =X3—2x%+Qx+ yQ, 4.7
Here double and triple zeros are counted as two or three simple
where zeros, respectively.

043008-8



RENORMALIZATION GROUP IMPROVED BLACK HOLE ...

B(z)

_1§ 1 1 1 1
0.0 0.5

2.5

FIG. 1. The functionB, o(x) with y=9/2 for different values
of . The regimeQ<Q. (Q1>Q,) corresponds to very heavy
(light) black holes.

The function(),(y) is not important except that it is nega-
tive for all y>0. As a consequence, the signDf({(1) de-
pends only on whethe® is smaller or larger than the critical
value Q: For Q<Q(y) the polynomialB, o has two
simple zerosx, and x_ on R* (x,>x_>0), for Q
>Q(y) it has no zero oM™, and forQ=0Q(v) the two
simple zeros merge into a single double zeroxat=x_
=X, . This situation is illustrated in Fig. 1.

By virtue of Eq.(4.8), the critical value for) defines a
critical value for the mass of the black hole:

w
Qe y)Go

1/2

Med y) = (4.13

For the preferred valug=9/2 we have
1
0 (9/2)= 3—2[85\/8—5\/1—3— 2819~0.20 (4.14

while for y=0 (“naive” cutoff koc1/r),

Q.(0)=1. (4.15
In any caseM, is a number of order unity timesp,.

The zerosx. or x. of B(x) are equivalent to zeros of
f(r) located at

r-=xX-GoM, ru=XGoMe.

(4.1

They correspond to horizons of the quantum corrected black

hole spacetime. For heavy black holdd ¥ M. ,Q0<Q)
we have an outer horizon at. and an inner horizon at_ .
The functionf(r) is positive, i.e., the vector field/dt is
timelike outside the outdeven) horizon (>r ) and inside
the inner horizon (<r _); in the region between the hori-
zons { _<r<r ) we havef(r)<O0 so thatd/ dt is spacelike.

For M> M, the outer horizon coincides essentially with the

classical Schwarzschild horizow (=~2GyM) while r_ is
very close to zero. When we decreddeand approactv

PHYSICAL REVIEW D62 043008

1.0

f(r) 0.5_-

0.0

-0.5F .

10

FIG. 2. The lapse functiori(r) for various mass values. The
dashed line shows,,s{r) of the classical Schwarzschild metric.

r.=r_=r. which corresponds to a double zero fofFor
very light black holes withM <M., the spacetime has no
horizon at all.

In Fig. 2 we plotf(r) for various masselsl. The values of
X, andx_ could be written down in closed form as a func-
tion of ) and vy, but the formulas are not very illuminating.
Instead, in Fig. 3, we represent them graphically.

C. The critical (extremal) black hole
and the Reissner-Nordstran analogy

Let us look in more detail at the “critical” black hole
with M=M,,. We know that for) =Q () the polynomial
B,,a(X) has a double zero at somg=x.(y)>0. Upon
inserting Eq.(4.12 into B%ch(x) and factorizing the result-
ing expression with respect toone finds the following ex-
plicit result:

1 3 1
Xcr(’y):Z\/’y+2\/9’y+ —Z’y+ E (4.17
In particular,
xt
I
:
05F | ]
[ |
0.0 . e
0.0 0.1 0.2 0.3

Q

FIG. 3. The zerox, andx_ for y=9/2 as a function of}.
Lowering M from infinity to M,  increases from zero t0,,,
X_ increases from zero t®., andx, decreases from 2 towards

from above, the outer horizon shrinks and the inner horizorx,,. The outer horizon shrinks and the inner horizon expands until

expands. Finally, foM =M., the two horizons coalesce at

they meet at,.
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Xe(0) =1, Mags(y) = v2b(y)M¢;, (4.29
1 whereb(y) is a complicated function which we shall not
Xl 912)= gl V1385-23]~1.28. write down here. In particular,
Using Eq.(4.16 the critical radius reads b(y=0)=1, (4.26
Z)G 1/2
0 = =
rcr('}’):Xcr(’y}( , (418) b(’y 9/2) 1.123... . (427)
Qely)
with x., andQ, given by Eq.(4.17) and Eq.(4.12, respec- It we put Mags=M andrq=GoM the metric (4.23 de-

scribes also the near-horizon geometry of an extremal
Reissner-Nordstm black hole of mas#1. However, in our
l%ase the relative magnitude of the Adshd the 3 curvature

is different. Fory=0, say, the Scurvature is given by the
radiusr ,,= GoM, as above, but the AgSurvature is deter-
mined byM ags= V2M,.

tively.

Some of the qualitative features of the quantum blac
hole are remarkably similar to those of a Reissner-Nordstro
spacetiméblack hole with charge). Its lapse function reads
(in appropriate units

2GoM  Gye?
r 'z (4.19 D. Large mass expansion of .

fra(r)=1-

It is instructive to look at the location of the horizons in
the limit of very heavy black holes. Sinc@=1/M?, the
2 large-mass expansion inM/corresponds to an expansion in
(420  powers ofQY2 Let us start by looking at the leading quan-
tum correction of the outer horizon. Classically we have
=2GgM or x, =2. By inserting an ansatz of the forr,
=2+¢,Q0+¢,Q%+ - - - into B(x,)=0 and combining equal
powers of() we can easily determine the coefficienfs In

In analogy with Eq(4.8) we introduce the parameter

e

QRNEW.

The Reissner-Nordstno spacetime has no horizon férgy
>1, two horizons with

XEN: riN/GOM —1+ m (4.21) leading order one finds, =2—2(2+y)Q+0(Q?) and
: i i 2+y) o 1
if Qry<1, and a single degenerate horizon at = 2GM— ( 46) +O<W>' (4.28
reN=GoM, (4.22

We see that the quantum correctedis indeed smaller than
its classical value. The leading correction is proportional to
M and itis independent of the value of Newton’s constant.

if Qgy equals its critical valu€lzy=1. We observe that, in
a sense, the renormalization group improved Schwarzschil

spacetime is similar to a Reissner-Nordetrdlack hole  tha prefactor of the M term is uniquely determined: the
whose charge is given by= '™ In particular, the “criti- arguments of Sec. Il yieldy=9/2 andw is fixed by the
cal” quantum black hole witiM =M, corresponds to the  maiching condition(3.22. We believe that Eq(4.28 is a
extremal charged black holdey=1). _ tparticularly accurate prediction of our approach.

Let us look more closely at the near-horizon geometry of | ot s now look at _ for M— . Classically, forQ=0,
the critical quantum black hoIe._If we expand aboetre, haveB(x) =x2(x— 2). When we switch o), the double
and introduce the new coordinatesr —r, we have at lead- zero atx=0 develops into 2 simple zeros, one on the nega-

ing order tive and the other on the positive real axis. The latter is the
— 2 s (approximate x_ we are looking for. As long afl<1 we
d2= r di2+ GoMags dr2+r2d02 havex_<1 and therefore we may neglect the cubic term in
| GoMapgs T e diis, B(x_)=0 relative to the quadratic one. The resulting equa-
(4.23  tionis easily solved:
where the mass parametdr,ys is defined b 1
P Ads Y x =20+ By+ 0], (4.29
1
(GOMAdS)izzzf”(rcr( Mla=a (4.24

The asymptotics of this result depends on whether0 or

. . . . . =0. Fory> h
The metric (4.23 is the Robinson-Bertotti metric for the y=0. Fory=0 we have

product of a two-dimensional anti—de Sitter space Adgh L = L

a two-sphere, Ads< S%. The parametel 545 determines the _t _ Yo 1 L
curvature of Ad$. Using Egs.(4.4), (4.12, and (4.17) it is X-=5V2y2+ 0= N5 +Ol w2/
obtained in the form (4.30
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Obviously x_ vanishes forM —c but because of its M

2M
behavior the actual radius =x_GyM approaches a univer- f(r)y=1— —r+0(r?) (y=0). (4.395
sal, nonzero limit: w
1 _ 1 This spacetime isot regular atr=0; there remains a cur-
r_=§\/27wGO+ O(M)' (4.31)  vature singularity at the origin. We shall come back to this
point in Sec. VIII.

Thus the inner horizon does not disappear even for infinitely
massive black holes. The situation would be differentfor
=0. Therex_=20+0(Q%? and While close tor =0 [where the use of our improvefdr)
is anyhow questionabjgthe physics implied by the quantum
e 1 corrected metric strongly depends on the parametethe
ro=-——+ O(—Z) (y=0), (4.32  essential features of the spacetime related to larger distances
2M M are fairly insensitive to the value of. In particular, it is easy
to see that the general pattern of horizdtvgo, one, or no

F. The special casey=0

which vanishes foM — . horizon, theirM dependence, efcis qualitatively the same
for all values ofy. Eveny=0 gives the same general picture
E. The de Sitter core as the preferred valug=9/2. Therefore some of the calcu-

. . : lations in the following sections will be performed for
We expect the improvet{(r) to be reliable as long asis — . oo
i o =0 which simplifies the algebra and leads to much more
not too close ta =0 where the renormalization effects be-

come strong and the quantum corrected geometry differs Sié[[ansparent results. For=0 we have, for instance,

nificantly from the classical one. Therefore E¢4.31) and X =1 /GM=1*+V1—0Q 43
(4.32 should be taken with a grain of salt, of course. How- =0 - ' (4.39
ever, if one takes Eq4.4) at face value even far—0, the

horizons(4.31), (4.32 acquire a very intriguing interpreta- Qe=1, Xg=1 (4.39
tion.
Expandingf (r) aboutr=0 one finds fory>0 M= Vol Gy, (4.38
—1_ -~ -1,2 3 —
f(r)=1-2(ywGg) r+0(r"). (4.33 o= /wGo. (4.39

. . _ 2 . .
Recalling that(4.1) with fqg(r)=1—Ar®/3 is the metric of ;5 amusing to see that the explicit formula for the location
de Sitter space we see that, at very small distances, the qUagy the horizons, Eq(4.36), coincides exactly with the corre-
tum corrected Schwarzschild spacetime looks like a de Sitteéponding expression for the Reissner-Nordstidack hole
space with an effective cosmological constant Eq.(4.21). Note also that because of Hd.37) the parameter
. Q) can be interpreted as the ratio
Ac=6(ywGo) (4.34

2
cr

(For y=9/2, A ~0.06m3,.) This result is quite remarkable Q= IVEl (y=0). (4.40
since there exist longstanding speculations in the literature

about a possible de Sitter core of realistic black h$lEg.

Those speculations were based upon purely phenomenologi- G. Geodesics and causal structure

cal considerations and no derivation from first principles has 1,4 global structure of our black hole spacetime is quite

been given so faf Instead, if the renormalization group im- giyiiar o the one of the Reissner-Nordstre¢harged black
proved metric is reliable also at very short distances, the dﬁole In particular, the =0 hypersurface is timelike now
Sitter core and in particular the regularity of the metrid at 114 penrose diagram of the spacetime is shown in Fig. 4 for

=0 is an automatic consequence. The validity of the im-\;~ \ it is clear from the location of the horizons that we
provedf(r) for r—0 will be discussed in detail in Sec. VIII. .5, distinguish the following main regions:

The de Sitter metri¢4.33 has a “cosmological” horizon land V :r.<r<oo
atrgs= V3/A¢. This value coincides precisely with the ap- || and Iv: r+,<r<r+
proximater _ of Eq. (4.31). The asymptotic de Sitter form Mand i’ 0<r<r_
(4.33 is obtained only '_f?’>0- For y=0 the expansion The features of the motion in such a spacetime are par-
starts with a term linear in: ticularly evident if we consider a test particle which moves
radially on a timelike geodesic. The equations of motion are
given by
SHowever, two-dimensional dilaton gravity has been shdts
. . . . dr
to contain nonsingular quantum black holes asymptotic to de Sitter -+ (52_ f(r))l/z (4.41)
space. dr - ) .
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It is thus possible to discuss the radial motion by the help of

simple mechanical arguments referring to.Flg In particu-

lar we use EQq.4.45 in order to determine the inflection

points, i.e., zero-velocity configurations whebgr)= ¢, and

where the sign in Eqg4.41) and(4.42 has to be changed.
There are basically three types of motions depending on

the value of&:

(i) £>® .- The motion is unbounded. It is a free falling
test particle that starts its motion in region I, crosses the
event horizonEH in Fig. 4 and eventually reaches=0 in
region Il in a finite amount of proper time, with non-zero
velocity and finite proper acceleration. It would thus cross
the inner horizonCH in Fig. 4 and continue its journey in
regions IV and V. This is for instance the pathiaFig. 4. It
should be noted that this behavior is unlike the Reissner-
Nordstran one. In that cas®(0)=c< and there is always an
inflection point in region Ill. The particle is thus bounced
away from the Reissner-Nordsimo central singularity at
some non-zero value of the radius, before continuing its mo-
tion in region IV.

(i) £€[0Pmal. The motion is bounded. Starting in re-
gions | it evolves into regions Il and Il and it eventually
continues in regions IV and V. Let us first consider the case

E<D,ax- Then there is an inflection point in region Il and
r=0 is avoided. A further inflection point is present in re-
) gion V where the trajectory reaches the same initial condi-
FIG. 4. Penrose conformal diagram of the quantum black holgjons as in region I. The situation is shown in Fig. 4 with the

spacetime. path b. If £=®,,, the inflection point is at=0. If y#0

this is also an equilibrium point since, as it follows from Eq.
=f(r)"YEX[E2—F(r)]¥?), (4.4  (4.49, the proper acceleration is zerd,(0)=0. The par-
dr ticle reaches the center in an infinite amount of proper time.

) , ) ) _If y=0 the proper acceleration at=0 is not zero,®’'(0)
where we have used Eddington-Finkelstein coordinates with =M dr=0 i ; ibri . i
v being the advanced time coordinate. Furthermérde- — _ — “'"™ andr==4 15 not an equiibrium configuration.

notes the constant of motion associated with the timelikeCIose to the origin the particle feels a repulsive force of

dv

Killing vector field &= &, strengthw/M.
(iii) £e[Pnin0]. The motion is bounded. It starts in re-
E=—¢& U, (4.43  gion Il where it has two inflection points and it continues

indefinitely in this region.
WhereU’u-iS the fOUr-VelOCity of a static observer. The choice It would be possib|e to study a|0ng similar lines Space”ke
of the sign in Eq.(4.41) and Eq.(4.42 depends upon and null geodesics as well as the<M,, cases, but we shall
whether the test particle is travelling on a path of decreasingot present this analysis here.
(=) orincreasing ) radiusr. From Eq.(4.41) we deduce The Penrose diagram of Fig. 4 was obtained within the
that the proper acceleration is approximation of a vanishing running cosmological constant.
If, at the UV scale, the bare cosmological constant is set to a

ﬂ: _ 1ot MGor (1~ wGor —20G5yM) value much smaller tham2,, a running\ does not change
dr* 2 ar (r¥+wGy[r+yGoM])% ' the qualitative structure of the horizons which we derived
(4.44  above. It might, however, modify the spacetime at large,
cosmological distances. Since in the present paper we are

wherefrom one sees that the radial motion is ruled by a&nly interested in the physics at Planckian distances we shall
Newton-type equation of motion with respect to the propemot investigate this issue here.

time 7. It contains the potential functio® (r)=3f(r) with
the propertiesb(0)=®(»)=3=d ., and ®;,<O0. If we
identify the “energy” of the motion with€=£2/2 we have
from Eq. (4.4])

V. EFFECTIVE MATTER INTERPRETATION
AND ENERGY CONDITIONS

Let us suppose that our quantum black hole has been gen-
l'r2+CI>(r)=Z (4.45 erated by an “effective” matter fluid that simulates the ef-
fect of the quantum fluctuations of the metric. We assume
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that this coupled gravity-matter system satisfies the conven- _877(;0,):(;%:(;;, (5.2)
tional Einstein equationsG,,=87G,T,,. The stress-
energy tensor of dnot necessarily classigaperfect fluid

with the symmetries of our spacetime reads 87TGOPL=GZ. (5.3

T¢g=diag —p,P;,P, ,P,). (5.9

It is thus possible to use the Einstein equations in order tdlereG,, is the Einstein tensor of the metié.1) with (4.4).
definethe components of “; in the following way A straightforward calculation shows that

1 MGyw(2r+3yGoM)
p=—Pi=g- = > (5.4
77'(I’ +wG0[r+’YGoM])

1 MGow(3r*+6r3GoyM —30G3y°M2—r20Gy—3wG?r yM)

= = (5.9
Yo 4w (r3+ @Gl 1+ yGoM])3
|
The total energy outside a given radius For M<M¢, we have seen from the discussion of Sec. lll
that no horizon is present and that, contrary to what happens
E(r)=4 N2 _ in cIasqcaI Re!ssner-Nordstmspacetlmes foﬂRN> 1., no
(r) TFJ’ p(r)riodr (5.6 naked singularity occur§or v>0). The spacetime, in this
case, resembles a soliton-like particle with a Planckian rest
is given by mass given by Eq(5.8. The energy of the fluid is then
~ localized in a cloud around=0 with ¢,E(r)<0 always,
E(r)= wGoM(r + yGoM) . andE(x»)=0.
(n= r3+ @Go[r + yGoM ] ' (5.7) It is possible to show that our “effective” fluid does not

meet all the requirements in order to be considered a classi-
This quantity is finite and positive definite for any value of cal fluid. In fact, it violates the dominant energy condition in

y. In particular we find the surprisingly simple result some regions, depending on the valueyofn particular, the
conditionP, —p=<0 is not always satisfied since it amounts
Ew=E(0)=M, (5.8 to

which identifies the total energy of the fluid with the mass of
the black hole. r*+3r3yGoM —3r?wGy— 8royGi3M=<0 (5.10
It is not difficult to realize that this “magic” equality is a
consequence of the boundary conditions set at spatial infin-
ity, f=1—2GoM/r+0O(1/r?), and of the behavior of at r which does not hold for some interval of values of the radial
=0. For every metric of the form(4.1), with an arbitrary ~ coordinate. For instance, for=0 the left hand side df5.10
function f(r), the definitions(5.2) and (5.6) lead to the ex- s positive wherr < \3wG,,.
pression In the improved black hole spacetimes there are also
1 . “zero gravity” hypersurfaces, where the Weyl and Ricci
T r ' curvatures are zero, in analogy to what has been found in
E(") Gy rlTlfr ds(sf(s))"~1] [18] in a phenomenological model with a de Sitter core. In
fact the “Coulombian” component of the Weyl tensor can

r h t
:M+_(f(r)_1)_ (5.9 be shown to be
2Gq
ObviouslyE(0) equalsM if rf(r)—0 whenr—0, and this 1 MGor (3r3—r3wGy—6r2wyGiM — w?yG3iM)
is always satisfied in our model, for any valueyofNote that 2= 73 B+ oG+ vGaMT3
in ordinary Schwarzschild spacetimes with ADM mads ( 0Gol I +7GoM]) (5.11)

sincer —rf(r)=2GyM, it follows that E;;;=0. In our pic-

ture the quantum effects can be interpreted as a nonszero

andP, . Itis thus remarkable that their global contribution is It should be noted that the Weyl curvature is regular at
exactly equal to the total mass of the spacetime. =0 where it is always zero. Similarly, the Ricci scalar reads
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40GoM (r*+3r3yGoM — 3r?wGy— 8r 0 yG3M — 6w y>GiM?)
(r3+ oGy[r + yGoM])3 '

(5.12

wherer is a function ofp now. Close to the horizonr(

) =r, or p=0) this metric simplifies considerably:
In general the location of zero-curvature hypersurfaces de-

pends on the value of and of the black hole mass. In the ds2~p2d 72+ dp2+r2dO2. (6.5
case ofy=0 one sees from the above expressions that at the -

radii r = VwGg/3 andr = \3wG, one or the other of the two  In writing down (6.5 we introduced the rescaled Euclidean
main scalar curvature invariants of our spacetime is zero. Itime
particular, forM <M, and y=0 the radius

~ 2

r=130G, (5.13 ™= Ben” ©.6

can be thought of as the characteristic length of the particleteaving aside thgidgz term for a moment, we see that
like soliton structure arising from the renormalization group(6.5) looks like the metric of a 2-dimensional Euclidean

improvement of the spacetime of a nearly Planckian blaclmane written in polar coordinates and p. For this to be

hole. - . . .
actually true,m must be considered an angular variable with

period 2. If Tis periodic with a period different from 2,
the space has a conical singularitypat 0. In order to avoid
this singularity we require the unrescaled timeao be an
A. The Euclidean manifold angle-like variable with perio@gy, 7€[0,8g4]. With this

Let us consider Lorentzian black hole metrics of the tyloeperiodic identification, Eq(6.4) defines a Euclidean metric
(4.1) with an essentially arbitrary functiof(r). For the time on what is referred to as the Euclidean black hole manifold.

2 2
being we only assume th&has a simple zero at some , |t Nas the topology oR"X S _
(f(r,)=04'(r.)+#0) and that it increases monotonically If we put quantized matter fields on the Euclidean black
from zero tof(=)=1 for r>r, . The behavior off(r) for hole spacetime, their Green’s functions inherit the periodic-

r<r . will not matter in the following. There exists a stan- ity in the time direction. Thus they appear to be thermal

dard method for associating a Euclidean black hole space(-sreen’S functions with the temperature given by

time to metrics of this typg21]. The first step is to perform 1

a “Wick rotation” by settingt=—ir and takingr real: TBH:ﬂg&':rf '(ry). (6.7)
T

ds2=f(r)d72+f(r) " tdr?+r2dQ2. (6.1)

VI. HAWKING TEMPERATURE AND BLACK HOLE
EVAPORATION

This is the Bekenstein-Hawking temperature for the general
This line element defines a Euclidean metric on the manifoldtlass of black holes with metrics of the typé 1.
coordinatized by f,r,6,¢) with r>r wheredsé is posi-
tive definite. In order to investigate the properties of this B. Temperature and specific heat

manifold we trade’ for a new coordinate defined by Equation (6.7) is an essentially “kinematic” statement

1 and its derivation does not assume any specific form of the
p= Z—,BBH\/f(r), (6.2  field equations for the metric. Hence we may apply it to the
m renormalization group improved Schwarzschild metric and
investigate how the quantum gravity effects modify the

with the constant Hawking temperature. By differentiating E@t.4) we find

4 1 Q 2y0
: (6.8

— . 6.3 I PR A
Pen= ) TelM)=g M| @ 5@

The new coordinate ranges from=0 to p=Bgy/27 corre-  wherex, and () are considered functions of. When we

sponding tor=r, andr—c, respectively. Thus the line gyiich off quantum gravity =0) or look at very heavy
element becomes black holes M — ) we have() =0 and recover the classical

o2 ) 2 result
d= 2(_) d2 o+ dp? 2d92,
S=p e T+{f’(r(p)) p>+1(p)

6.4

1
clas —
TYaSYM ) = ETNTR (6.9
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(In the present context, the term “classical” refers to the
usual “semiclassical” treatment with quantized matter fields
on a classical geometjyObviously the quantum corrected

Hawking temperature is always smaller than the classical

. class
one: Tpu<Tgy™

In order to be more explicit we continue our investigation
for the special valuey=0. Using Eqs(4.36 and(4.38 we
obtain

1 V1-Q
TBH(M):47TGOM TN (6.10
1 Jo(-0) 611

_47TG0Mcr 1+V1-0Q ,

with Q=M§,/M2. Equation(6.11) is quite similar, though
not identical to the corresponding expression for the tem
perature of the Reissner-Nordstidblack hole:

prv__ 1 17 D (6.12
BH 277-GONI (1+ \/l_QRN)ZI .
The large mass expansion ©f, reads
1 1[Mg\%2 1/ Mg\? s
TBH(M)‘W%‘Z(V) _§(V oM,
(6.13

with M2Z.=w/G,. Probably the first few terms of this series
are a rather precise prediction of our method because th

correspond to a spacetime which is only very weakly dis-

torted by quantum effects.
Let us look at what happens whihapproacheM ., from
above. We set

O=0y,—€=1-¢€ (6.19

and study the limite—0". Note that becaus®=M2/M?
for y=0,

(6.195

Expanding Eq(6.11) yields

_ e

TBH(M)_—47TG0Mcr

1
1— e+ Set 0(e¥?)| (6.16

or, to lowest order,

1
TBH(M)=4—~\/M7— M+ O(M2—=Mg). (6.17
mTw

We see thafl gy vanishes a$/ approaches its critical value
Mg, . This conclusion is true for any value of In fact, as
M M, the simple zero of atr , tends to become a double
zero, i.e.,f'(r,)—0, and thereforelgy,—0 by Eq. (6.7).
We emphasize, however, that the statement

PHYSICAL REVIEW D62 043008

0.40[

=3

.30;

0.20

M/Mcr
FIG. 5. The Hawking temperature of the quantum black hole
(multiplied by 47GoM,) as a function oM/M,. The maximum

femperature is reached fdk ,~1.2M,.

Ten(Mc)=0 (6.18
should always be understood in the sense of a Ivnit, M,
because strictly speaking the above derivation of the Hawk-
ing temperature does not apply for the critidalxtremal
black hole withM exactly equal tavl .

In Fig. 5 the Hawking temperature is plotted for the full
range of mass values. For large valuedvbfve recover the
classical 1M decay, and forM>M¢, the temperature in-
creases withM. The Hawking temperature reaches its maxi-

um for a certain masi o> M, which plays the role of
nother “critical” temperaturésee below. By definition,

dTa

d_M(Mcr):O-

(6.19

The Q value related tdVl ., will be denoted(),,; for y=0 it

reads
2
o= ( ) .

Differentiating (6.1 leads to) = (\/5—1)/2~0.62, which
yields Mo=MQ_,?~1.2M,. The maximum atM, is
surprisingly close tdM ., so that the drop from the peak value
of Tgy down to zero is rather steep.

Even though we do not have a full statistical mechanical
formalism with a partition function and a free energy func-
tional at our disposal, Eq5.8) suggests to identify the in-
ternal energyJ of the black hole with its total masd. Then
the standard thermodynamical relatio@,=(dU/JT)y
amounts to the following definition for the specific heat ca-
pacity of the black hole:

-

MCI‘

Mcr

Q (6.20

dMm

(6.2

From Eq.(6.11) we obtain
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30; CBH/41T(§I i ' ' ture reaches its maximum valdg(M.,). For even smaller
20k ! masses it drops very rapidly and it vanishes oheéehas
! reached its critical masdl ., which is of the order ofmpg,.
10E ! In the classical picture based up@§2°*1/M the black
| hole becomes continuously hotter during the evaporation
O J: process. In the above scenario, on the other hand, its tem-
! perature never exceedgy(M,,), and the evaporation pro-
-10F
3 : cess comes to a complete halt when the mass has reached
_205 i M_C,. This suggests that thg criticedr extremal black 'hole
: | E with M =M¢, could be the final state of the evaporation of a
-30E s : s ) 3 Schwarzschild black hole. If stable, the critical black hole
0.5 1.0 1.5 2.0 2.5 would indeed constitute a Planck-size remnant of burnt-out

M/M, macroscopic black holes. It is “cold” in the sense that
limy m_Ten(M) =0, so that it is stable at least against the
classical Hawking radiation mechanism as we know it.

It is interesting to see how long it takes a black hole with
the initial masaM; to reduce its mass to some final vaMe

FIG. 6. The specific heaBgy, in units of 47w as a function of
M/M¢ . The singularity occurs &¥l /M ~1.27.

Co g (1-Q)[1+y1-0]? via Hawking radiation. Stefan’s law provides us with a rough
BH 77‘”9[92+(1_29)(1+ 1-0)] estimate of the radiation power. The mass loss per unit

(6.22 proper time of an infinitely far away, static observer is ap-
proximately given by
The specific hea€gy is negative forM >I'\7ICr and becomes
positive for My<M<M,,. It has a singularity aM =M,
which signals a kind of phase transition at this value of the
mass. In Fig. 6Cgy is shown as a function dfl. For very
heavy black holes one has

M
- W=0'A(M)TBH(M)4. (6.25

Here o is a constant andi=4r2 is the area of the outer
horizon:
4

1+3
4

My 219 Moy
M

M/ 16

+O(M6)}
(6.23

In the limit M—o we recover the classical valuggas In the classic_azl case the above differential equation becomes
— —87G,M?2, and we observe that the leading quantum cor-——dM/dtx«M~<. It is easily integrated with the result that

. A . . . . 3 - .
rections make the already negative specific heat even mofly @ finite amount of timet(M;—0)=Mj is needed in
negative’ In the limit M\ M, the specific heat vanishes Order to completely radiate away the initial mass. The prob-

Copy= —87GoM?2
BHT B0 . (6.26

1
A(M)=8wegm2{1— SO+ V1-Q

according to lems such as the information paradox mentioned in the In-
troduction are particularly severe because the catastrophic

Coy=4moe[1+2\e+4e+0(¥?)] end point of the evolution Tgy—<) is reached within a

finite time.

M2 Looking at the quantum black hole now, we assume that

—dmo\]1- —S4. ... (6.24  theinitial massV; is already close t, so that we may use

2 the approximation(6.17) on the RHS of Eq(6.25:
C. Stopping the evaporation process _ d_M _ 0Go (Mz_ M2)+ L (6.27)
dt )3 er | '
From our result for the mass dependence of the (47w)

Bekenstein-Hawking temperature the following scenario forOb ouslv th diati d ikl
the black hole evaporation with the leading quantum correc: viously Ih€ radiation "power decreases quickly as

tion included emerges. As long as the black hole is ver%w\'\lc/lﬂ' IIR;[legrating Eq.(6.27) yields for the time to go
heavy the classical relatiofgyec 1/M is approximately valid. rom M; to M;:
The black hole radiates off energy, thereby lowering its mass

. s . ! ~ 1 1
and increasing its temperature. This tendency is counteracted  t(M,— M;)=16mw?c* -

by the quantum effects. The actual temperature stays always Mi—=Me Mi—M

below T332 Once the mass is as smallfds,, the tempera-

“ 6.29

We see that this time diverges ft;=M,,, i.e., it takes an
infinitely long time to reduce the mass from any givéh
“This is the same tendency as in the Weyl-gravity model of Refdown to the critical mass. Clearly the reason is that, because
[20], for instance. of the T# behavior, the radiation power becomes very small
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when we approach the “cold” critical black hole. In a cer- ' ' ' ' '
tain sense, this result is a reflection of the third law of black [ son-sou_y/2n5 1 1o} sa-sau )z
hole thermodynamics which states that it is impossible t0°%°°
achieve an exactly vanishing surface gravity, iles0, by 08}
any physical process.
The back reaction of the Hawking radiation on the metric 4°°°[ 1 osef
is neglected in the above arguments. We believe that mos
probably(contrary to the case of the classical Hawking black 04f 5)
hole) its inclusion would not lead to qualitative changes of 20001 * 1
the picture. The reason is thdM/dt is very small in both 0.2
the earlyand the latestage of the evaporation process, and
that in between its value is bounded above. . ” ” P
M/M M/M

VII. ENTROPY OF THE QUANTUM BLACK HOLE

L FIG. 7. (@ The entropyS(M)—S(M,,) in units of 27w as a
One of the most intriguing aspects of black hole thermo+,,«tion of M/My,. (b) The same functicén foM nearM.,.

dynamics is the entropy associated with the horizon of a
black hole. It is one of the central but as yet unresolved A oM\ 3 3/M.\2
questions if and how this entropy can be interpreted within a gy —s(m,,) = class 5 m In(—) <_Cf)

“microscopic” statistical mechanics by counting the number 4Gy M/ 2 8 M
of micro states which are inaccessible to our observation 5 4
[23]. Another important question is how the classical relation —— || +oM 6)}, (7.5
between the entropy and the surface area of the horizon 32\ M
Aclass with the classical areay,.=4m(2GoM)?2. For very heavy
SclaSS:4_GO (7.0 black holes we recover the classical entr@yssas the dif-

ference ofS(M) and the integration constaB{M ) whose

changes if quantunfgravity) effects are taken into account. value remains undetermined here. The leading quantum cor-

Our approach of renormalization group improving therection is proportional to Ill). Remarkably, very similar
Schwarzschild spacetime makes a definite prediction for théa(M) terms had been found with rather different methods
guantum correction of the entropy. The key ingredient is thd24]. While some of the earlier results were plagued by the
function Tgy=Tgy(M) which we obtained in Sec. VI. From presence of numerically undefined cutoffs, Efj4) is per-
general thermodynamics we know that the entrofy fectly finite. WhenM approachesvi, from above, the en-
=S(U,V, ...) satisfies §S/9U),,= 1/T. In the present con- tropy difference displays a square-root behavior:
text we identify the energy with the massaM, and since the
volume dependence plays no rol&=S(M) satisfies

~ 1
dS'dM=1/Tg(M). Upon integration we have S(M)=S(M) =47 1+ 5\/;+ O(e)

. (7.6

S(M)—S(M ) = JM dm’ , (7.2) In Fig. 7 the entropy is shown as a function Mf
MeTgu(M') The above calculation &(M) was within the framework
of “phenomenological” thermodynamics. For an attempt at
where the reference point was chosen to be the critical masthterpreting it within an underlying statistical mechanics we
For simplicity we continue the analysis for=0; inserting  refer to the Appendix.
the corresponding Hawking temperatiéell) into (7.2) we

obtain VIII. IS THERE A CURVATURE SINGULARITY AT =0

~ (1 dQ 1 We saw already that far—0 the renormalization group
S(M)_S(Mcr)zzwa'MZ'jMZF 1+ A-al improved black hole metric approaches to that of de Sitter
¢ (7.3 space. The quantum black hole seems to have a “de Sitter
core” of a similar type to the regular black holes which were
The integral yields foM =M, introduced in Ref[18] on a phenomenological basis. This
means in particular that the quantum corrected spacetime is
S(M)—S(Mg)=2mo[Q 1-Q(1+1-Q) completely regular, i.e., contrary to the ordinary Schwarzs-
child black hole it is free from any curvature singularity.
+artanh/1—-Q], (7.4 However, because the classical and the quantum geometries

are very different for —0 and the quantum effects play a
with Q=M2/M? on the RHS of Eq(7.4). Equation(7.4) is  dominant role there, it seems problematic to describe a pos-
our prediction for the quantum corrected entropy of the blaclsibly regular core as an “improvement” of the singular
hole geometry. Its larg®4 expansion reads Schwarzschild spacetime. Therefore some comments con-
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cerning the applicability of our approximation at very small 6C

distances are appropriate. R=—+-, (8.1
The regularity of the improved metric comes about be-

cause the t/behavior off ,,c&=1—2GyM/r is tamed by a c2

very fast vanishing of the Newton constant at small dis- RupeREPT= r—2+--~. (8.12

tances. Close to the core of the black hole we are in the

regime where the running d&(k) is governed by the UV

fixed point, G(k)~1/wk?, so that the position-dependent

Newton constant is approximately given by

Equation(8.10 shows that the square of the Weyl tensor is
regular for this metric. Even if, contrary to the
* Gggrimproved” spacetime, the Gygimproved” geom-
etry is singular at the origin, it is much less singular than it

G(r)=~wtd(r)%. (8.1)  was classically. For the Schwarzschild metric one has
It is important to keep in mind that the distance function GéMZ
d(r) depends on the classical metric which we are going to (RuvpoR*"%) sen=48—5—, (8.13

improve. In Sec. lll we started from the Schwarzschild back-

ground and found that for all sensible curgs
dscr)or?, 8.2
so that
G r)or. (8.3

Taking (8.3 literally means that the improved=1
—2G(r)M/r is of the de Sitter form % (consty? for r
—0.

with an additional factor of 1 compared to Eq(8.12).

Within the present framework, we have no criterion for
deciding whether the improvemer@,— G(r) should be
done withdg,, dgs, Or thed function of some unknown
metric interpolating between Schwarzschild and de Sitter.
This is a principal limitation of our approach. It appears
plausible thatf(r)~1—cr” for r—0 with the exponenw
somewhere in between the values resulting frdgg, im-
provement ¢=2) anddysimprovement ¢=1). Except for
v=2, the quantum black hole would have a curvature singu-

However, if the actual quantum geometry really was gdarity at its center then. A reliable calculation of the exponent

Sitter, there is no point in evaluatird(r) for the Schwarzs-
child background. In fact, if we calculate(r) for the de
Sitter metric the asymptotic behavior is different:

dyg(r)=~r.

Incidentally, this is precisely theé function which obtains by
setting y=0 in Eq. (3.13. Equation(8.4) entails that the
Newton constant vanishes more slowly than8m3):

(8.9

Gyg(r)or2. (8.5

Inserting (8.5) into f s We obtain a lapse function which

approaches =1 only linearly,

f(r)y=1—cr+0(r?). (8.6)
(Herec is a constant.
The metric with arf function of the general form
f(ry=1—cr?, (8.7

v seems to be extremely difficult, though. Nevertheless it is
probably a safe prediction that the central singularity is much
weaker than its classical counterpart. The reason is that we
found quantum gravity to be asymptotically free and that
near the UV fixed poinG (k)= 1/k?. In one way or another,
this k dependence must translate into a “switching off” of
the gravitational interaction at small distances.

The improvement withdys is equivalent to setting/=0
in the formulas of the previous sections. While the cages
=0 andy>0 are qualitatively different for—0, we saw
already that the other features of the quantum black holes
(horizons, Hawking radiation, entropy, etare essentially
the same in both cases.

IX. SUMMARY AND CONCLUSIONS

In this paper we used the method of the renormalization
group improvement in order to obtain a qualitative under-
standing of the quantum gravitational effects in spherically
symmetric black hole spacetimes.

As far as the structure of horizons is concerned, the quan-
tum effects are small for very heavy black holéd $mp).

wherec andv are constant has the exact curvature invariantsrhey have an event horizon at a radiuswhich is close to,

R=c(v+1)(v+2)r’ 2, (8.9
R,upo RO = (v =203+ 502+ 4)r2 4, (8.9
C2
MVPO — (o A\2( 4, D\2p2v—4
CvpsC v DA 2)%r2v4, (8.10

This means that the G grimproved” black hole of Eq(8.6)
has a curvature singularity at its center:

but always smaller than, the Schwarzschild radi,l.
Decreasing the mass of the black hole the event horizon
shrinks. There is also an inné€auchy horizon whose ra-
diusr _ increases aM decreases. Fdvl —» it assumes its
nonzerd(if y#0) minimal value. WheiM equals the critical
massM ., which is of the order of the Planck mass the two
horizons coincide. The near-horizon geometry of this critical
black hole is that of Ad$x S?. For M<M,, the spacetime
has no horizon at all.

While the exact fate of the singularity at=0 cannot be
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decided within our present approach, we argued that either the entropyS and similar thermodynamic quantities from it
is not present at all or it is at least much weaker than it T=1/8):

classical counterpart. In the first case the quantum spacetime

has a smooth de Sitter core so that we are in accord with the F=-TInZ, (A1)
cosmic censorship hypothesis everM M.

The conformal structure of the quantum black hole is very 5,0
similar to that of the classical Reissner-Nordsirspace- U=t ﬁlnz’ (A2)
time. In particular its { =0) hypersurface is timelike, in con-
tradistinction to the Schwarzschild case where it is spacelike. JF
In this respect the classical limfit— 0 is discontinuous, as is S=- T (A3)

the limit e—0 of the Reissner-Nordstno black hole.

The Hawking temperature of very heavy quantum black |n the original work of Gibbons and Hawking®2] the
holes is given by the semiclassicaMllaw. AsM decreases, partition function was taken to be the functional integral of
Tgy reaches a maximum & ,~1.2"M, and then drops to the pure Euclidean quantum gravity,

Tegy=0 atM=M_,. The specific heat capacity has a singu-
larity at M,. It is negative forM>M,, but positive for Z(B)=JDg.exp(~1[g)).

Me=>M=>M . We argued that the vanishing temperature ofyhere the integration is over all Euclidean metrics which are
the critical black hole leads to a termination of the evaporatime periodic with periogs. (Herel[g] denotes the Einstein-
tion process once the black hole has reduced its mabh t0 Hjbert action with the Gibbons-Hawking surface term in-

=M. This supports the idea of a cold, Planck-size remnangjyded) The saddle point approximation of the integral
as the final state of the evaporation. For an infinitely faryie|ds, to leading order,

away static observer this final state is reached afténfamte

time only. e
For M>My,,, the entropy of the quantum black hole is a Z(B)~ ésse % 1, (A4)
well defined, monotonically increasing function of the mass. Y90

For heavy black holes we recover the classical expression

« T : class :
AJ4G,. The leading quantum corrections are proportional to'!n€reé the “sum” is over all saddle pointgg =" of | with

IN(M/M.,). period B. Considering only saddle points of the Schwarzs-
In conclusion we believe that the idea of the renormaliza-child black hole type, the latter requirement means that only
tion group improvement which, in elementary particle phys-theé hole of massM=p/87G, is relevant. For this
ics, is already well known is a promising new tool in order to GiPbons-Hawking instanton,”Sgy equals the externally
study the influence of quantized gravity on the structure ofrescribed valuezo_B (“on-shell” approach. By using its
spacetime. In the present work we focused on black holeg@ction!=4mGoM®in —InZ=pF~I one can derive the en-

but it is clear that this approach has many more potentiali'® classical black hole thermodynamics.
applications such as the very early universe, for instance. |t S€ems plausible to assume that the exact quantum grav-
ity partition function in the Schwarzschild black hole sector

is of the form
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wherel'[g] is some effective action functional, ang is a
class.

'stationary point off’ with the same topology ag;

I' andg, are the quantum corrected versions @indg5=ss,

respectively. We set
APPENDIX A: THE STATISTICAL MECHANICAL

ENTROPY I'=1+T guant (A7)

Our previous corrlputation @(M) in Sec. Vil is within -~ g4 thatl g neencapsulates the quantum effe¢®he statisti-
the framework of “phenomenological” thermodynamics. ¢5| mechanics based upon the one-loop approximation
Ultimately one yvould like to derive this thermodynamics Fquam:% Indet(621/6g%) has already been developed to
from the staAt|st|caI mechanics based upon a fundamentglyme extenf24].) The partition function(A5) and the ther-
HamiltonianH which describes the microscopic degrees ofmodynamics derived from it contain quantum corrections of
freedom of both gravity and matter. The aim would be totwo types:
compute a partition function such @B)=Tr{exp(—BH)] (i) The saddle poingy, the metric of the “quantum black
and then to derive the free energy the internal energy,  hole,” differs from the classical instantagf®®.

043008-19



ALFIO BONANNO AND MARTIN REUTER PHYSICAL REVIEW D 62 043008

(i) In order to obtainBF, the metricgy is inserted intd” 1
rather tharl. V="16-G d*xoR, (A12)
Coming back to the renormalization group approach, it is 0/ Mpg
natural to identify the saddle poirg, with the Euclidean
version of the renormalization group improved Schwarzs- lg=—
child metric, Eq.(6.4) with (4.4), which is denotedy,, from 871Gy
now on. In this manner the quantum effects(df are ap- ] o
proximately taken into account. Howeveg,,, was obtained wherey andK are the metric and the extrinsic curvature on
by a direct improvement of a classicalutionrather than of ~ the boundaryd Mg at infinity (r—). (K, is the corre-
the classicahction Thus, within the framework used in the Sponding value for a flat metric. .
present paper, we do not know the functioffafor which The volume contribution is evaluated most easily by re-
Gimp IS an (approximatg saddle point and which would de- turnmg_to the orlglna.r coord-mate. Then, after performing
termine the partition function viéA5). The best we can do the trivial angle andr integrations,
in this situation is to tentatively neglect the quantum effects

f d3x\y(K—Ko), (A13)
&MB

of (ii), i.e., to assume theitq.uan[gimp] is much less important ly=— i mdr r2R(r), (A14)
thanlI[ginp] and to approximat€A5) by 4GoJr,
Z(B)~e " 'Gml (A8) whereR is the curvature scalar for the met(ig.1). It reads

(A15)

d2
G2 () =2

In the following we investigate ifA8) can give rise to an RN=-1
acceptable thermodynamics. We shall employ the “off-

shell” formalism (conical singularity methgddeveloped in 514 therefore the integréh14) feels the behavior of only

Ref.[25] to which we refer for further details. at the horizon and at infinity:
We evaluate the actionfor a general Euclidean metric of
the type (6.1) or (6.4) where f(r) is arbitrary to a large r. B, 1
extent. We only assume that it has a simple zero at some =855~ 2g ' (r)—5BM. (A16)
Its asymptotic behavior is required to be 0 0
The evaluation 0fA13) with (A9) proceeds as in the stan-
2GyM 1 dard casg22]:
f(r)y=1- +O(r—z> (A9)

1
ls=5BM. (A17)
for some fixed constaril. Furthermore, we assume that the

Euclidean timer in (6.4) is an angle-like, periodic variable Adding (A17) to (A16) cancels precisely the last term of
with period 3. Here$ is the argument of the partition func- (A1) which originated from the upper limit of the integral

tion. It has a prescribed value which in general does noga14) Using (6.3 the sum contains only data related to the
coincide with Bgy=4m/f'(r,). The corresponding Euclid- pqrizon

ean manifold is denoted; .
If we introduce the Zr-periodic rescaled time variable r, B A

Ireg:BZ_GO_EA]__GO, (A18)
- 2
=g (A1) \whereA=47%2 is its area.
For the metric(A11), the singular contribution
then, near the horizon, the met(i6.4) becomes 1
5 , I'sing= — FGOIM Bd4X\/§Rsinga (A19)
dsi~ 2(—) d72+dp?+r2d0?, All _ ,

==p BenH TR (AL1) with Rging* 8(p) has already been evaluated in H&6]. The

result is

which coincides with(6.5) only for the “on-shell” value 8 A

= Bgy. For B+# By the s_pgcef\{lﬁ has a conical singularity | sing= — ( 1— i) ) (A20)

at p=0, the angular deficit being=2m(1— 8/Bgy). As a Ber/ 4Gy

consequence, the curvature scalar 6m; has a delta- ) ] ]

function singularity ap=0. Adding (A20) to (A18) we obtain the complete action evalu-
The Einstein-Hilbert actioh=1 4+ | 5ing ON M 4 cONSists ated onM:

of a regular part and a singular part containing the contribu- A

tion from the delta-function singularity. The regular part _att _ (A21)

lieg=Iv+1s has a volume and a surface contribution, 2Gy 4Gy
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This is the result we wanted to derive. We emphasize that it A(M)
is valid for black holes with an essentially arbitr&ry) and, S= e (A23)
as a consequence, arbitrary ADM madésnd Hawking tem- 0
peratureT g, = Bap - Apart from the modified relation betwee# and M, this is

If we specialize for the renormalization group improved precisely the classical entropy. Itis clear from 826 that
Schwarzschild black hole of a given mass the action be-  (A23) differs from the correct resul?.4) already at the lead-

comes ing order of the largeévl corrections.
Thus we must conclude that the “statistical mechanics
ro(M) AM) entropy” (A23) fails to reproduce the quantum corrections
Lme] =B 55"~ a6, (A22)  contained in the “thermodynamical entropy7.4). The les-

son to be learned from this failure is that, at least as far as the

with r (M) and A(M) given by (4.36 and(6.26), respec- entropy is concerned, the quantum mechanical modification

tively. of the action froml to I' is essential. Improving only the

If we tentatively insert the actioA22) into (A8) and use saddle point gg'aSLgimp) but neglectingl’qyantis not suffi-

(A3) to calculate the entropy frofi~ g1l [Gimp] We obtain  cient in order to obtain a meaningful partition function.
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