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CMB anisotropy in compact hyperbolic universes. II. COBE maps and limits
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The measurements of CMB anisotropy have opened up a window for probing the global topology of the
universe on length scales comparable to, and even beyond, the Hubble radius. For compact topologies, the two
main effects on the CMB are:~1! the breaking of statistical isotropy in characteristic patterns determined by the
photon geodesic structure of the manifold and~2! an infrared cutoff in the power spectrum of perturbations
imposed by the finite spatial extent. We calculate the CMB anisotropy in compact hyperbolic universe models
using theregularized method of imagesdescribed in detail in the preceding paper, including the line-of-sight
‘‘integrated Sachs-Wolfe’’ effect, as well as the last-scattering surface terms. We calculate the Bayesian
probabilities for a selection of models by confronting our theoretical pixel–pixel temperature correlation
functions with the COBE-DMR data. Our results demonstrate that strong constraints on compactness arise: if
the universe is small compared to the horizon size, correlations appear in the maps that are irreconcilable with
the observations. This conclusion is qualitatively insensitive to the matter content of the universe, in particular,
the presence of cosmological constant. If the universe is of comparable size to the ‘‘horizon,’’ the likelihood
function is very dependent upon orientation of the manifold w.r.t. the sky. While most orientations may be
strongly ruled out, it sometimes happens that for a specific orientation the predicted correlation patterns are
preferred over those for the conventional infinite models. The full Bayesian analysis we use is the most
complete statistical test that can be done on the cosmic background explorer maps, taking into account all
possible signals and their variances in the theoretical skies, in particular the high degree of anisotropic corre-
lation that can exist. We also show that standard visual measures for comparing theoretical predictions with the
data such as the isotropized power spectrumCl are not so useful in small compact spaces because of enhanced
cosmic variance associated with the breakdown of statistical isotropy.

PACS number~s!: 98.70.Vc, 04.20.Gz, 98.80.Cq
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I. INTRODUCTION

The cosmic microwave background anisotropy is c
rently the most promising observational probe of the glo
spatial structure of the universe on length scales near to
even somewhat beyond the ‘‘horizon’’ scale (;cH0

21). As
suggested by the concept of inflation, this relatively smo
Hubble volume that we observe is perhaps a tiny patch o
extremely inhomogeneous and complex spatial manifo
The complexity could involve nontrivial topology~multiple
connectivity! on these ultra-large scales. Within a gene
program to address the observability of such a diverse glo
structure, a more well defined and tractable path would b
restrict oneself to spaces of uniform curvature@locally homo-
geneous and isotropic Friedmann–Robertson–Wa
~FRW! models# but with nontrivial topology; in particular,
compact spaces which have additional theoretical motiva
@1–5,9–11#. For Euclidean~uniform zero curvature! or hy-
perbolic ~uniform negative curvature! geometry, compact-
ness necessarily implies nontrivial topology. Much recent
trophysical data suggest the cosmological density param
in matter is subcritical@6#, Vm,1. Recently the presence o
a significant cosmological constant~or, more generally, an
exotic smooth component of matter! has been indicated b
the high redshift supernova searches@7# and in studies com-
bining large and intermediate angle cosmic microwave ba
ground ~CMB! anistropy data with observations of clust
abundances and large scale galaxy clustering@8#. If this com-
ponent does not compensate for the deficit from unity,V0
5Vm1VL,1, this would imply a hyperbolic spatial geom
0556-2821/2000/62~4!/043006~21!/$15.00 62 0430
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etry for the universe; the additional requirement of compa
ness then ushers into considerationtopologically compact
hyperbolic (CH) universes, a field much richer in possibili-
ties than the compact spaces with flat geometry whenV0 is
exactlyunity.

In a universe with nontrivial global spatial topology, th
multiple connectivity of the space could lead to observa
characteristic angular correlation patterns in the CMB anis
ropy arising directly from multiple imaging of the sourc
terms that give rise to the anisotropy in the CMB. Moreov
the modified structure of the eigenmodes in such spaces
plies that angular correlations would differ from the pred
tions in the simply connected space with identical geome
~the latter plays the role of theuniversal coverof the multi-
ply connected space!, even in the absence of multiple imag
ing of the sources. In particular, compact universes can
support modes whose characteristic length scale exceed
linear size of the space; consequently, the inferred powe
fluctuations in compact models at large scales would app
suppressed relative to the power on the universal cove
space. A more subtle effect is the angular dependence o
theoretical temperature variance which reflects generic in
mogeneity in the topologically compact spaces.

Paper I@9# describes theregularized method of images, a
general technique that we developed@10,11# for computing
the spatial correlations in a universe with nontrivial topo
ogy. In this paper we shall apply the method to calculate
angular correlation of CMB anisotropies in CH univer
models. The angular correlation between the CMB tempe
ture fluctuations in two directions in the sky completely e
©2000 The American Physical Society06-1
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codes the CMB anisotropy predictions of any model t
postulates Gaussian primordial fluctuations. Using the
correlation function information on the cosmic backgrou
explorer~COBE!–differential microwave radiometer~DMR!
data, we have obtained limits on the size of flat torus u
verse models that are a factor of 2 sharper than obta
from the angular power spectrum alone@12#. The main result
was that the volume of the compact universe is constrai
to be comparable to or larger than that of the observa
universe. In@10#, we proposed on the basis of simple arg
ments that compact universes with hyperbolic geome
should be expected to respect similar constraints. We h
now carried out the full Bayesian analysis on accurate C
correlation predictions in a large selection of CH univers
and can demonstrate that essential features of our ge
constraint is borne out. In this paper we describe the de
of our CMB correlation computation, highlight the gener
correlation features in the compact spaces, describe
method of comparison to data and present the resulting
straints from COBE–DMR using the examples of a large a
a small CH universe. A compilation of our constraints on t
flat torus models and a large selection of CH models will
presented in a separate publication@13#.

The outline of this paper is as follows: In Sec. II w
recapitulate that the angular correlation function of CM
anisotropy on large angular scales, that predominantly ar
through both surface and integrated Sachs–Wolfe effe
can be related to spatial correlations of the gravitational
tential on the three-space hypersurface at the epoch of
scattering. This is a useful simplification in terms of comp
tational costs for calculating the CMB correlation in compa
spaces using our method. Although we restrict our calcu
tions here to large angular scales, Appendix A discusses
implementation of the method of images to calculate
CMB anisotropies at smaller angular scales. In Sec. III,
describe the computation of the angular correlation funct
of CMB anisotropy in CH models. The section also includ
a quick review of some useful notions about compact spa
and the main result describing the regularized method
images from paper I@9#.

In Sec. IV, we discuss some of the typical correlati
features in the CMB anisotropy that arise in compact u
verse models. We show that their origin is more readily u
derstood by viewing the compact space as a tessellatio
H3 by the finite domains. In Sec. V, we present our results
full Bayesian probability analyses of large angle CMB a
isotropy predictions for two CH models using the four ye
COBE–DMR data. In Appendix A, we show how to go b
yond the Sachs–Wolfe effects to treat all aspects of C
anisotropy using the method of images in compact space
high resolution CMB experiments. In Appendix B, we dem
onstrate that a by-product of the statistical anisotropy of
CMB inherent in compact universe models is a considera
enhanced cosmic variance in the~isotropized! angular power
spectrumCl which completely characterizes the noncomp
Gaussian models. This emphasizes that the pattern reco
tion aspect of the complete Bayesian testing of a mode
essential to get the best constraints on allowed size of
compact space.
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II. CMB ANISOTROPY

In the standard picture, the CMB that we observe is
Planckian distribution of relic photons which decoupled fro
matter at a redshift' 1100. These photons have free
propagated over a distanceRLS , comparable to the ‘‘hori-
zon’’ size, a function of cosmological parameters. In a no
flat model the other length scale is curvature radiusdc given
by (c/H0)/Au12V0u. In a matter dominated (V05Vm) cos-
mology, RLS'2dc arctanhA12V0. For the adiabatic fluc-
tuations we consider here, the dominant contribution to
anisotropy in the CMB temperature measured with wid
angle beams (uFWHM*2°V0

1/2) comes from the cosmologica
metric perturbations through the Sachs–Wolfe effect.
though in this work we restrict our attention to large bea
size and the Sachs–Wolfe effect, in Appendix A we sh
how effects which contribute to the CMB anisotropy at fin
resolution can also be incorporated in the method of imag

Adiabatic cosmological metric perturbations can be e
pressed in terms of a scalar gravitational potentialF(x,t).
The dynamical equation forF(x,t) allows for separation of
the spatial and temporal dependence in the linear regim1

F(x,t)5„F(t)1E(t)…F(x), whereF(x) is the field con-
figuration on the three-hypersurface of constant time, wh
amplitude is determined by the physics of the early univer
We use as our time variable dimensionless conformal timt,
expressed in units of the curvature radiusdc . Time depen-
dence of the potential at the matter dominated stage is
scribed by the growing modeF(t) and the decaying mode
E(t). In terms of the usual growth factorD(t) for linear
density perturbations,F5D/a, wherea is the scale factor.
The relative amplitude of the modes is determined by
matching condition at the moment tEQ

'0.004h21A12V0/V0 of transition from extremely relativ-
istic to nonrelativistic domination of the energy density. Th
givesE(tEQ)'F(tEQ)/9.

In this paper, we concentrate our study on open mat
dominated models with zero cosmological constant,V0
5Vm,1, for which the growing mode evolves as@14#

F~t!5
5 sinht~sinht23t!120~cosht21!

~cosht21!3 ~1!

in the matter dominated phase,t.tEQ. A nonzero cosmo-
logical constant can be trivially incorporated in our analy
by using the appropriate solution forF(t).

We write the Sachs–Wolfe formula for the CMB tem
perature fluctuation,DT(q̂), in a directionq̂, in terms of the
growing mode FLS(x) of the potential at the three
hypersurface of constant timet5tLS , when the last scatter
ing of CMB photons took place,FLS(x)5F(tLS)F(x):2

1At the scales appropriate to CMB anisotropies, damping effe
on F can be neglected.
6-2
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DT

T
~ q̂!5

1

3
FLS~ q̂xH!12E

0

xH
dx f ~x!FLS~ q̂x!,

~2!

f ~x!5
1

F~tLS!

d

dt
F~t!U

t5tLS1xH2x
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wherex is the affine parameter along the photon path fro
x50 at the observer position toxH5RLS /dc . The first term
is called thesurfaceor ‘‘naive’’ Sachs–Wolfe effect~NSW!.
The second term, which is nonzero only ifF varies with
time betweentLS and now, is theintegratedSachs–Wolfe
effect~ISW!. The angular correlation between the CMB tem
perature fluctuations in two directions in the sky is th
given by
C~ q̂,q̂8![ K DT

T
~ q̂!

DT

T
~ q̂8!L

5
1

9
^FLS~ q̂xH!FLS~ q̂8xH!&1

2

3 E0

xH
dx f ~x!@^FLS~ q̂x!FLS~ q̂8xH!&1^FLS~ q̂8x!FLS~ q̂xH!&#

14E
0

xH
dx1 f ~x1!E

0

xH
dx2 f ~x2!^FLS~ q̂x1!FLS~ q̂8x2!&. ~3!
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The main point to be noted is thatC(q̂,q̂8) depends on
the spatial two point correlation function, jF
[^FLS(x)FLS(x8)& of F on the three-hypersurface of la
scattering. This is due to the fact that the equation of mot
for F allows a separation of spatial and temporal dep
dence. As in Eq.~2!, the Sachs–Wolfe contribution to th
correlation between temperature fluctuations in two dir
tions in the sky can be split into three terms:~1! The surface
term ~NSW! which depends on the correlation betweenF at
the two points on the SLS;~2! the interference part correla
ing the value ofF at the points along one line of sight to th
value at the SLS of the second line of sight; and~3! an
integral part which contains correlations betweenF at points
on one line of sight with those on the other. The last t
terms constitute the ISW effect. If one considers the zero
correlation ~the two lines of sight are identical!, then the
following holds: the first and third terms are positive defini
whereas the interference term comes in with a negative
becausedF(t)/dt is negative in the models that we consid
here.

In H3, the global isotropy of the space implies that t
two point correlation functionC(q̂,q̂8)[C(u), where cosu
5q̂•q̂8, and the CMB anisotropy can be described equa
well in terms of its angular power spectrumCl , defined by

2A subtle aspect of the Sachs–Wolfe effect at large angular sc
is that only the growing modeF(tLS)F(x) andnot the total gravi-
tational potential at last-scattering F(x,tLS)5„F(tLS)
1E(tLS)…F(x) contributes to the effect. The distinction is impo
tant for models with small value ofVm in which the time difference
between the transition to matter domination attEQ and the last
scattering of photons attLS is not large. With this important cavea
we shall still loosely callFLS(x) the potential on the last-scatterin
hypersurface.
n
-

-

g

,
n

y

C~u!5(
l

l 11/2

l ~ l 11!
Cl Pl~cosu!Wl , ~4!

where thePl are Legendre polynomials andWl encodes de-
tails of the experimental configuration, such as finite bea
width. For COBE–DMR,Wl5Bl

2, where Bl is the beam,
including a~sphericalized! approximation to finite pixeliza-
tion effects. In this paper, we use the experimentally de
mined Wl for COBE–DMR, but, to set the scale, we no
that a GaussianBl;exp@2l(l11)sbeam

2 /2# fit to the COBE–
DMR beam ~including pixelization effects! gives sbeam

21

'17.5.3

The angular power spectrum of the CMB anisotropy
large angular scales arises mainly from the Sachs–Wolfe
fect and is shown in Fig. 1. TheCl contribution of the NSW
term is plotted separately for comparison. The NSW con
bution is suppressed at angular scales larger than the cu
ture scale due to focusing of geodesics in the hyperb

es

3When we speak about CMB anisotropy at ‘‘large angular scale
we always refer to the beam sizesbeamand not the angular separa
tion between the lines of sight,u. This distinction is blurred in usua
simply connected models. There, for example, the SW effect do
nates both wide beam experiments such as COBE–DMR and
the correlation at large separationu. In contrast, the distinction is
important for compact spaces where points widely separate
angle may be physically close~see Sec. IV!, resulting in the corre-
lation between them being dominated not by SW but by sh
distance effects, including the Doppler effect. It should also
noted that since compact universe models generically violate gl
isotropy, the decomposition~4! is not valid in those cases~the an-
gular power in a multipolel is not evenly distributed in the azi
muthal levels,m!.
6-3
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BOND, POGOSYAN, AND SOURADEEP PHYSICAL REVIEW D62 043006
geometry@15# and asymptotes to a constant value at sm
angular scales. The ISW contribution toCl falls off roughly a
factor of l 21 faster than the NSW contribution. At sma
values ofV0 , the ISW contribution dominates at large a
gular scales.

Figure 2 illustrates some general features of the distri
tion of power ink-space for the low multipoles of the Sachs
Wolfe CMB anisotropy, using the fourth multipole as a
example. While the NSW contribution is always positive, t
ISW contribution can be negative due to the interferen
term. The positive ISW contribution comes from larger v
ues of k than for the NSW effect. Moreover, the smallk
contribution of the positive NSW effect is countered by t
negative interference term in the ISW contribution@the sec-
ond term in Eq.~3!#. Note the remarkable cancellation of th
NSW contribution forV050.3. The relative contribution o
the ISW effect decreases asV0→1. The presence of the ISW
contribution tends to relax the constraints on the size o
compact universe that can be directly inferred from the s
pression of the low multipoles of the CMB anisotropy@16#.

III. CMB ANISOTROPY IN COMPACT HYPERBOLIC
MANIFOLDS

A. Brief review of compact spaces

We briefly recapitulate a few basic notions about comp
universes that we discussed in paper I@9#. A compact cos-
mological model can be constructed by identifying points
the standard infinite flat or hyperbolic FRW spaces by
action of a suitable discrete subgroup of motions,G, of the
full isometry group, G, of the FRW space.~The isometry

FIG. 1. The solid curves show the angular power spectrumCl

from the Sachs–Wolfe effect in the three infiniteH3 universes with
differing V0 . Also plotted as a dotted curve is the NSW contrib
tion in each case. The curves are normalized such that theCl from
the NSW contribution goes to unity at largel. As V0 increases
towards unity, the relative ISW contribution diminishes and affe
smaller values ofl. While the ISW contribution is positive forV0

50.3 andV050.6, it is negative forV050.8.
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group G is the group of motions which preserves the d
tances between points, i.e., leaves the metric unchang!.
The infinite FRW spatial hypersurface is theuniversal cover,
Mu, tiled by copies of the compact spaceM. The compact
space for a given location of the observer is most appro
ately represented as theDirichlet domainwith the observer
at its basepoint. Any point x of the compact space has a
imagexi5g ix in each copy of the Dirichlet domain on th
universal cover, whereg iPG. The tiling of the universal
cover with Dirichlet domains is a Voronoi tessellation~a
familiar concept in cosmology often used in modeling t
large scale structure in the universe!, with the seeds being the
basepoint and its images. By construction a Dirichlet dom
represents the compact space as aconvex polyhedronwith
even number of faces identified pairwise underG. In cosmol-
ogy, the Dirichlet domain constructed around the obser
represents the universe as seen by the observer and it p
useful in this context to define theoutradius, R. , the radii of
the circumscribing sphere~smallest sphere around the o
server which encloses the Dirichlet domain! and, theinra-
dius, R, , the radii of the inscribed sphere~largest sphere
around the observer which can be enclosed within the
richlet domain! of the Dirichlet domain@2#. Note thatR.

andR, are specific to the location of the observer within t
compact space since the Dirichlet domains around differ
observers are not necessarily identical. An observ
independent~and Dirichlet-domain-independent! linear mea-
sure of the size of the compact space is given by thediameter
of the space,dM[supx,yPMd(x,y) @17,18#, i.e., the maxi-
mum separation between two points in the compact spac

s

FIG. 2. Thek-space dependence of the integrand for the fou
multipoleC4 from the Sachs–Wolfe effect in three infiniteH3 uni-
verses characterized by the values ofV0 shown. In each case th
dotted and dashed curves are the NSW and ISW contributions
spectively. The ISW curve includes the NSW–ISW interferen
term as well.
6-4
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For cosmological CH models,Mu[H3, the three-
dimensional hyperbolic~uniform negative curvature! mani-
fold. H3 can be viewed as a hyperbolic section embedde
four-dimensional flat Lorentzian space. The isometry gro
of H3 is the group of rotations in the four space—the prop
Lorentz group, SO~3, 1!. A CH manifold is then completely
described by a discrete subgroup,G, of the proper Lorentz
group, SO~3, 1!. The Geometry Center at the University
Minnesota has a large census of CH manifolds and pu
domain software SnapPea@19#. We have adapted this sof
ware to tileH3 under a given topology using a set of ge
erators ofG. The tiling routine uses the generator produ
method and ensures that all distinct tiles within a specifi
tiling radius are obtained.

A CH manifold, M, is characterized by a dimensionle
number,VM[VM /dc

3, whereVM is the volume of the spac
and dc is the curvature radius@20#. There are a countably
infinite number of CH manifolds with no upper bound o
VM . The theoretical lower bound stands atVM>0.167@21#.
The smallest CH manifold discovered so far hasVM50.94
@22#. The Minnesota census lists several thousands of th
manifolds withVM up to ;7. In the cosmological context
the physical size of the curvature radiusdc is determined
by the density parameter and the Hubble const
H0 :dc5(c/H0)/A12V0. The physical volume of the CH
manifold with a given topology, i.e., a fixed value o
VM /dc

3, is smaller for smaller values ofV0 .

B. Computing spatial correlation functions

Here we summarize the main result of our regulariz
method of images that is discussed in detail in paper I@9#.
The correlation function on a compact space~and more gen-
erally, any nonsimply connected space!, M5Mu/G, can be
expressed as a regularized sum over the correlation func
on its universal cover,Mu, calculated betweenx and the
imagesgx8(gPG) of x8:

jF
c ~x,x8!5 (

gPG

˜
jF

u ~x,gx8!

5 (
gPG

jF
u ~x,gx8!2

1

VM
E

Mu
dx8 jF

u ~x,x8!.

~5!

The local isotropy and homogeneity ofH3 implies
jF

u (x,x8) depends only on the proper distance,r[d(x,x8),
between the pointsx andx8. The eigenfunctions on the un
versal cover are of course well known for all homogeneo
and isotropic models@23#. ConsequentlyjF

u (x,x8) can be
obtained using its eigenmode expansion. The initial pow
spectrumPF(k) is believed to be dictated by an early un
verse scenario for the generation of primordial perturbatio
We assume that the initial perturbations are generated
quantum vacuum fluctuations during inflation. This leads

jF
u ~x,x8![jF

u ~r !5E
0

` db b

~b211!

sin~br !

b sinhr
PF~b!, ~6!
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where b[A(kdc)
221 and PF(b)[b(b211)PF(k)/

(2p2).
In the simplest inflationary models,PF , the power per

logarithmic interval ofk is approximately constant in th
subcurvature sector, defined bykdc.1. This is the generali-
zation of the Harrison–Zeldovich spectrum in spatially fl
models to hyperbolic spaces@24,25#. Subhorizon vacuum
fluctuations during inflation are not expected to generate
percurvature modes, those withkdc,1, which is why they
are not included in Eq.~6!. Indeed, sinceH2.1/(adc)

2, for
modes withkdc,1 we always havek/(aH),1 so inflation
by itself does not provide a causal mechanism for their
citation. Moreover, the lowest nonzero eigenvalue in co
pact spaces,k1.0, provides an infrared cutoff in the spec
trum which can be large enough in many CH spaces
exclude the supercurvature sector entirely (k1dc.1). ~See
@9#.! Even if the space does support supercurvature mo
some physical mechanism needs to be invoked to ex
them, e.g., as a by-product of the creation of the comp
space itself, but which could be accompanied by comp
nonperturbative structure as well. To have quantitative p
dictions for PF(k) would require addressing this possibilit
in a full quantum cosmological context. We note that o
main conclusions regarding peculiar correlation features
the CMB anisotropy~see Sec. IV! would qualitatively hold
even in the presence of supercurvature modes.

Although Eq.~5! encodes the basic formula for calcula
ing the correlation function, it is not numerically implemen
able as is. Both the sum and the integral in Eq.~5! are diver-
gent and the difference needs to be taken as a limi
process of summation of images and integration up to a fi
distancer * :

jF
c ~x,x8!5 lim

r
*

→`
F (

r j ,r
*

jF
u ~r j !2

4p

VM
E

0

r
* dr sinh2 r jF

u ~r !G ,
~7!

r j5d~x,g jx8!.

The volume element in the integral is the one appropriate
H3. Numerically we have found it suffices to evaluate t
above expression up tor * about 4 to 5 times the domain siz
R. to obtain a convergent result forjF

c (x,x8).

C. Computing the CMB correlation

For Gaussian perturbations, the angular correlation fu
tion, C(q̂,q̂8), completely encodes the CMB anisotropy pr
dictions of a model. To make maps, the celestial spher
discretized intoNp pixels labeled byp. Np is determined by
the angular resolution,;7° degrees for COBE–DMR. The
COBE–DMR maps@26# had (2.6°)2 pixels, corresponding
to Np56144, though compressing the data intoNp51536
pixels leads to no information loss@27#. We use this number
of pixels in Sec. V, where we confront our models with t
COBE–DMR observations using Bayesian statistical me
ods, and also in the maps shown in this paper.

For Gaussian statistics, the pixelized theoretical maps
fully determined by theNp3Np pixel–pixel correlation ma-
trix, CTpp8[C(q̂p ,q̂p8). The expression forC(q̂,q̂8) in Eq.
6-5
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~3! involves an integral along the line of sight from the o
server to the surface of last scattering—the integra
Sachs–Wolfe term~ISW!. We find that a simple integration
rule usingNL points along each line of sight gives accura
results when the points are spaced at equal incrementsDF of
F(t). Consequently, to get the fullCTpp8 matrix we need to
evaluate the correlation function,jF

c (x,x8), betweenNp(Np

11)NL
2/2 pairs of points on the constant-time hypersurfa

of last scattering:

CTpp8
5

1

9
jF

c ~xHq̂p ,xHq̂p8!1
2

3

DF

NL

3(
i 51

NL

wi@jF
c ~xHq̂p ,x i q̂p8!1jF

c ~x i q̂p8 ,xHq̂p!#

14S DF

NL
D 2

(
i 51

NL

(
j 51

NL

wi j jF
c ~x i q̂p8 ,x j q̂p!, ~8!

wherewi and wi j are O~1! coefficients that depend on th
specific difference scheme used.

To calculateCTpp8 in the standard infinite open cosmo
logical models with this real-space integration to an accur
comparable to that of the traditional evaluation ink-space,
NL;10 is sufficient. Moreover, the real space integration
much faster in terms of CPU time. For the method to rem
accurate in compact models,NL should, of course, excee
the number of the times a typical photon path crosses
compact universe. We foundNL;10 is still enough for the
models we have analyzed so far.

IV. CORRELATION FEATURES IN THE CMB
ANISOTROPY

In standard cosmological models based on a topologic
trivial space such asH3, the observed CMB photons hav
propagated along radial geodesics from a 2-sphere of ra
RLS ~that we refer to as the sphere of last scattering, S!
centered on the observer. The same picture also applie
CH models when the space is viewed as a tessellation o
universal cover tiled by the Dirichlet domain with the o
server at the basepoint. IfVLS , the volume of the SLS, is
much larger that that of the compact space, the phot
propagate through a lattice of identical domains. As a c
sequence, strong correlations build up between CMB te
perature fluctuations observed in widely separated directi
The correlation functionC(q̂,q̂8) is anisotropic and contain
characteristic patterns determined by the photon geod
structure of the compact manifold. These correlations per
even in CH models whose Dirichlet domains are compara
to or slightly bigger than the SLS. This is the key differen
from the standard models whereC(q̂,q̂8) depends only on
the angle betweenq̂ and q̂8 and generally falls off with an-
gular separation.

The pattern of strong correlations is directly linked to t
way the points~on the universal coverMu! enclosed by the
SLS are equivalent under the topological identificationG.
Consider a set of pointsSon the universal cover. Then for a
gPG the pair of subsetsgSùS andSùg21S are equivalent
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underG, i.e., either contain the same points of the comp
spaceM or they are both empty.~Obviously, the isometry
g21PG maps the first set onto the second.! If S consists of
the points on the SLS, a nonempty setSùgS would be a
circle on the SLS which is pointwise identical to anoth
circle Sùg21S on the SLS. If the CMB anisotropy is domi
nated by the surface term, then the CMB temperature al
one circle is expected to be identical to that along the ot
circle. This effect was first understood and much emphasi
in the works by Cornish, Starkman, and Spergel@28#. The
necessary and sufficient condition for the existence
matched circles~nonempty subsetsSùgS! on the SLS is
that RLS>R, , i.e., the SLS is not completely enclose
within the Dirichlet domain. We discuss the CMB correl
tions in our models that arise from this kind of identificatio
in Sec. IV A.

The CMB anisotropy has contributions from the ent
line of sight and it is useful to study the subsets of identi
points enclosed by the SLS. IfS is the set of all points en-
closed by the SLS, then the pairs of subsets ofS that are
identical are lens-shaped regions created by the intersec
of two balls ~see Fig. 3!. Again the necessary and sufficie
condition for the existence of such identified regions with
the SLS isRLS>R, . Further if the SLS does not enclos
more than one Dirichlet domain, these lenslike regions ar
the direction of the faces and are adjacent to the SLS.~We
find from our analysis of the COBE–DMR constraints th
viable CH models have volumes comparable to or more t
that enclosed within the SLS. See Sec. V.! In these cases it is
clear that correlation patterns are built from points close
the SLS and directly reflect the shape of polyhedral Dirich
domain.

The ISW–CMB correlation depends on the correlatio
between the points lying on the two~radial! lines of sight
from the observer to the SLS. Hence it is instructive to stu
whether two different lines of sight~radial lines! in the SLS
contain a set of identical points. Consider the set of pointsL1
andL2 along two distinct lines of sight. Then for allgPG,
the subsetL1ùg21L2 of L1 , if nonempty, would contain the
same points as the subsetgL1ùL2 of L2 . The necessary and
sufficient condition for the existence of such pairs of lines
sight is againRLS>R, . It is possible to show that there ar
infinite pairs of lines of sights which share at least one co
mon point, but what is more interesting and relevant are
pairs where the identical subsets contain a segment. It
straightforward exercise to verify that every pair of lines
sight pointing towards centers of matched circles discus
above must contain a segment consisting of identical po
~see Fig. 3!. As we shall discuss in Sec. IV B, this result
important in understanding the correlation patterns in CM
anisotropy when the integrated Sachs–Wolfe contribution
significant.

In the regime whereRLS,R, , there are no points within
the SLS that are topologically equivalent and the spec
correlation features discussed above are absent. Howe
quantitatively the CMB correlations continue to have obse
able deviations from that expected in a simply connec
model untilRLS is substantially smaller thanR, . Typically,
6-6
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the correlation pattern around any point in the sky is ani
tropic and distorted.

In simply connected models of the universe, the glo
homogeneity and isotropy ensures that the CMB sky is
tistically equivalent for all observers. These global symm
tries are generically absent in compact~open or flat! universe
models. Consider two distinct observers. If one of them m
sures the correlation function between pairs (x,x8), the cor-
responding measurement for the other one will be betw
pairs (gx,gx8) whereg is the element of the isometry grou
of the universal cover,gPGu, which transports the first ob
server to the position of the second one.~The motiong al-
ways exists since the universal cover is homogeneous!. For
example ifx,x8 belong to the SLS as seen by first observ
thengx,gx8 are on the SLS from the second observer’s po
of view. Each pairwise correlation valuejF

c (x,x8) is deter-
mined by the set of distancesD(x,x8)5$d(x,g jx8),g j
PG%. Moving the observer translates this set
$d(gx,g jgx8)%. SinceGu is the isometry group on the un
versal cover, it conserves distances; in particu
d(gx,g jgx8)5d(g21gx,g21g jgx8). Thus, under a genera
relocation of the observer byg, the set of distancesD(x,x8)
is transformed as$d(x,g jx8)%→$d(x,g21g jgx8)%.

If G is a normal/invariant subgroup ofGu ~g21ggPG,
;gPG, gPGu!, moving the observer simply reshuffles th

FIG. 3. The origin of CMB correlation patterns in a multip
connected universe is illustrated. The compact space is repres
by the ~hexagonal! Dirichlet domain,D, around the observer,O,
which tiles the universal cover. The tilesgD andg21D under one
of the face translationsgPG and its inverse are shown. The poin
O8 and O9 are the images of the observer,O, underg and g21,
respectively. The pointB8 is theg-translate ofB and the pointA8 is
theg21 translate ofB. The solid circleSLS represents the sphere o
last scattering~SLS! on the universal cover; the dashed circle
labeledgSLS and g21SLS , are the translates of SLS underg and
g21, respectively. The intersections of the sphereSLS with gSLS

andg21SLS create a matched pair of circles on the SLS. Similar
the shaded lens-shaped regions within the SLS consist of iden
sets of points. Consider the lines of sightOA and OB directed
towards the centers of the matched circles. The rayO8B8 is the
image ofOB underg and the rayO9A8 is the image ofOA under
g21. By the arguments outlined in the text, the segmentAB8
5OAùOB8 is identical toA8B5OBùOA8.
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terms in the setD, andjF
c (x,x8)5jF

c (gx,gx8). This is the
case with simple tori, in which opposite sides are identifi
by pure translation without rotation. In the case of CH spa
~as well as tori with twists!, G is not a normal subgroup o
Gu. Equivalent only are those observers mapped by ag be-
longing to the isometry groupG of the compact spaceM
itself, not in the larger isometry group of its coverMu. Each
element of the isometry groupG on M commutes with all
the elements ofG, with the immediate result that theCTpp8
calculated will be the same up to rotations of the sky if t
observer is moved along the orbits ofG in M.

In Sec. IV C, we discuss the correlation pattern in t
CMB that arises due to the global inhomogeneity of the co
pact space.

A. Correlations due to the NSW surface term alone

In Fig. 4 the complex behavior of the correlation functio
is illustrated with the example of the small CH mod
„m004(25,1)…. The SLS encompasses'150 domains for
V050.3 and'20 domains forV050.6. It is comparable to
the size of one domain forV050.9. The angular correlation
along any arbitrary great circle in the sky in lowerV0 mod-

ted

,

,
al

FIG. 4. This shows the behavior of the correlation function
the CMB temperature on a great circle in the sky in a CH mo
@m004(25,1)#. The solid curves in the first and third panels sho
C(u) for the surface term in the Sachs–Wolfe effect~NSW! for
V050.3 and 0.6, respectively. They reflect the spatial correlat
along a circle on the sphere of last scattering~SLS!. The number of
peaks inC(u) matches the number of Dirichlet domains that t
circle intersects. The smooth curves show corresponding result
the simply connected infiniteH3 models withV050.3 and 0.6. The
second and fourth panels are analogous to the first and third pa
except with the integrated Sachs-Wolfe~ISW! effect included. In
this more physically correct case, the sharp NSW peaks have
diluted by the ISW contributions. However, the ISW effect induc
new features; in particular, note the appearance of strong neg
correlations in panels two and four.
6-7
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BOND, POGOSYAN, AND SOURADEEP PHYSICAL REVIEW D62 043006
els shows distinct peaks as one encounters repeated cop
the Dirichlet domain. The peaks are more pronounced w
one considers only the surface terms of Eq.~2! in the CMB
anisotropy. Including the line of sight ISW contributio
tends to smearing the peaks, but also adds its own chara
istic features as discussed in Sec. IV B.

Consider compact universe models which are sm
enough such that the SLS does not completely fit inside
domain,RLS.R, . The CMB temperature is expected to b
identical along pairs of circles if temperature fluctuations
dominated by the surface terms at the SLS@28#. We identify
these matched circles on the sky in our models and check
extent of cross correlation seen at the angular resolutio
COBE–DMR. Figure 5 shows the matched pairs of circles
two ~‘‘small’’ and ‘‘large’’ ! CH models superimposed o
random realizations of the theoretical sky generated from
appropriate pixel–pixel correlation matrices. The mod
were chosen to have a volume comparable to the volumeVLS
within the SLS. Even with the coarse pixelization of COBE
DMR, we do see fairly good cross correlation in the CM
temperature along matched circles in our realizations. Ag
the pattern of correlated circles is more pronounced when
Sachs–Wolfe surface term is dominant, as happens in
small model~SCH! with V050.9. We compute the cross
correlation coefficient between the temperature fluctuati
along two matched circlesC1 andC25gC1 ,

r125^DT~x!DT~gx!&/@^DT~x!2&^DT~gx!2&#1/2,
~9!

xPC1 , gxPC2 .

~In the case of a single realization we replace the statist
average by the integration overx along the circles.! In the
SCH V050.9 case,r12 is in the range 0.6–0.95, whereas
is in the range 0.2–0.6 for the large model~LCH! with V0
50.6.

The circles of identified pixels on the SLS are not t
whole story. Enhanced NSW cross correlations, but a
lower level, also exist between all pairs of points on the S
which are projected close to each other on the CH manif
This can be seen as secondary maxima in the example
Fig. 4; these are absent in standard cosmological mod
Some features persist at a detectable level even when
compact universe encompasses the SLS, i.e.,RLS&R, , al-
though circles are absent in this case~the effect dies out for
RLS!R,!. When the relative ISW component is significan
the geometrical patterns based on pointwise identificati
on the SLS are supplanted by more complex features ari
from identifications between photon geodesics, e.g.,
strong negative correlations evident in Fig. 4.

B. Correlations with the ISW effect included

In a hyperbolic model, the temperature fluctuations
pends on the entire path of the photons from the spher
last scattering to the observer. The relative contribution
the ISW effect increases as the valueV0 decreases. As the
ISW component increases, it tends to wash out the patt
arising solely from the NSW~described in the preceding se
tion!. However, it also introduces additional features in t
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CMB correlation. In Figs. 6 and 7, the temperature fluctu
tions along matched pairs of circles in a realization are p
ted. SinceV0 is closer to unity in the small model~SCH!, the
temperature fluctuations along the circles are more tigh
correlated than in the large model~LCH!.

An example of ISW induced features is the significa
negative correlations between widely separated direction
the sky, as is clearly seen in the panels two and four of F
4. In fact, the highly anticorrelated regions tend to lie at t
centers of the matched circles discussed in Sec. IV A. Fig
8 plots the anticorrelated pairs of pixels separated by m

FIG. 5. This shows two full-sky~noiseless! CMB anisotropy
maps, plotted as pairs of 180° diameter hemispherical caps,
centered on the South Galactic Pole~SGP! and one on the North
~NGP!. They are one of an infinite number of possible rando
realizations based on the computed pixel-pixel correlation ma
for the model in question. Both surface and integrated Sachs-W
effects have been included. The power was normalized to
match the COBE–DMR data. The contours are linearly space
30 mK steps. In contrast to Figs. 10 and 11, the maps are
optimally filtered. The model labels L~arge! CH and S~mall! CH
refer to the CH modelsv3543(2,3) andm004(25,1), respectively.
~The model number associated with the topology correspond
that of the census of CH spaces from the Geometry center, Uni
sity of Minnesota; SCH is one of the smallest and LCH is one of
largest spaces in the census.! The value ofV0 in each was chosen
so thatVM;VSLS. The matched pairs of circles expected if th
CMB anisotropy is dominated by the surface terms@28# are super-
imposed on the map for each model. Each pair is labeled by
same number centered on the circles. The relative phase is sh
by identified points marked by a diamond and a triangle on e
circle in a pair. For clarity, we show only the eight largest pairs o
of 35 for the LCHV050.6 case. Even at COBE–DMR resolution, w
find the cross correlation between the temperature along mat
circles is very good in the SCHV050.9 model. The ISW contribution
is larger atV050.6, and the cross-correlation coefficients are s
tematically smaller for LCHV050.6 circle pairs.
6-8
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FIG. 6. In the eight panels of the figure, th
CMB temperature along the eight matched pa
of circles of the SCH model shown in Fig. 5~top
panel! is plotted as a function of a polar angle
The temperature shown is from the same reali
tion of the CMB sky that is used in Fig. 5 and th
diamond and triangles are in correspondence. T
CMB anisotropy includes both the surface an
integrated Sachs-Wolfe effects. AtV050.9, the
ISW contribution is small, and thus the values
the correlation coefficient are high.
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than'10° below a threshold in the correlation coefficient
Cpp8 /ACppCp8p8520.3 in the LCH model withV050.6.
This should be contrasted with the highest levels of antic
relation of '20.04 predicted in the corresponding simp
connected universe.

As discussed earlier, the lines of sight pointing to cent
of matched circles have segments of identical points and
can lead to anticorrelation between the CMB anisotropy
those directions. Here we explain this with the help of Fig
The segmentsAB8 andA8B of lines of sightOA andOB are
identical underG. @Recall Eqs.~3! and ~8! for the Sachs–
Wolfe contribution to the correlation between temperat
fluctuations in two directions in the sky.# The surface term
depends on the correlation of the potential,F, between two
points physically separated by the distancer 1 . The interfer-
ence term however contains correlation between ident
04300
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points,AA8 andBB8, and close ones. The integral term h
correlations between close points but is down-weighted
the extra factor ofDF. Thus the interference term~which is
usually small in simply connected models! in this particular
setting can dominate the total CMB correlation and mak
negative. Thus the existence of strongly anticorrelated sp
caused by the ISW term is a signature of nontrivial topolo

C. Patterns arising from global inhomogeneity

The global inhomogeneity of compact spaces implies t
the variance of the the gravitational potential is spatially d
pendent. If these fluctuations arose from quantum noise
ing inflation, F(x) would be an inhomogeneous Gaussi
random field, with a pattern of inhomogeneity determined
the topology of the compact space.
e
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FIG. 7. In the eight panels of the figure, th
CMB temperature along the largest eight match
pairs of circles of the LCH model (V050.6)
shown in Fig. 5~bottom panel! is plotted as a
function of a polar angle. The temperature show
is from the same realization of the CMB sky th
is used in Fig. 5 and the diamond and triangl
markers are in correspondence. The CMB anis
ropy includes both the surface and integrat
Sachs-Wolfe effects. AtV050.6, the ISW con-
tribution is significant, resulting in small value
of the correlation coefficient.
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The CH models that we have considered also predict
the rms temperature fluctuations in the sky vary with dir
tion, as is shown in Figs. 9 and 10 of Paper I. In both LC
and SCH models there are loud spots—directions in the
where the variance is significantly larger. For the NSW co
tribution, these arise when the SLS crosses loud region
the Dirichlet domain where the variancejF

c (x,x) is large.
These regions consist of points in the Dirichlet doma
where the length of the shortest geodesic is small comp
to the typical size of the shortest closed geodesic at o
points, i.e., the closest image of the point on the unive
cover is smaller than;R, . The LCH model has a loud
region around a vertex of the Dirichlet domain shared by t
pairs of identified faces where the nearest image of the po
close to this vertex are at a small separation. We discus
this effect and results for the NSW effect in a previous pa
@9#. Figure 9 shows the extent to which the ISW term ma
the signature expected from a simple NSW considerat
the loud spot is dramatically modified, even changing si
when ISW is included.

There are known examples of multiply connected spa
where the pattern of inhomogeneity is a dominant observa
effect. In @29# a noncompact but multiply connected ho
topology was constructed and the properties of the pertu
tions were studied. It was demonstrated that there is a re
in which the variance ofF is strongly suppressed and wou
correspond to a dark spot in the distribution of galaxies.
the NSW contribution to the CMB anisotropy, this same
fect directly translates to suppression of the variance of

FIG. 8. The negative correlation between pixels located at
center of matched circles is demonstrated. The top panel show
8 largest circle pairs for the LCH model on a sky map, as in Fig
The groups of pixels marked out in the lower sky map are dis
pairs with high anticorrelation,Cpp8 /ACppCp8p8,20.3. It is visu-
ally apparent that these regions lie at the centers of matched ci
and are labeled accordingly.
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temperature fluctuations in the corresponding direction, c
ating a flat spot signature in the CMB anisotropy, sho
explicitly for the toroidal horn space in@30#.

V. BAYESIAN ANALYSIS CONSTRAINTS
FROM COBE –DMR

In this section, the goal is to explicitly evaluate how like
the various compact universe models are in light of
COBE data on angular anisotropies. We first review the s
tistical distributions for the maps derived from the COB
data, then show how we use our techniques to confront
data.

The raw data of a CMB experiment comes in the form
a time stream of measurementsdt at Nt time-ordered points
for each frequency channel. The data are then binned in
Np-pixel discretization of the sky, through the relationdt
5SpPtpDp1h t , where theNt3Np pointing matrix Ptp
maps the observing time to the angular position at that t
andh t is the time stream noise.Dp is the true signal on the
sky. With the~reasonable and checkable! assumption that the
noise is Gaussian with covariance matrixN5^h th t8&, one
can find the mapD̄ which maximizes the conditional prob
ability P(duD) and the pixel-pixel noise covariance matr
about it,CN ,

D̄5CNP†N21d, CN5~P†N21P!21. ~10!

e
the
.
t

les

FIG. 9. The figure shows two full-sky maps of the fluctuatio
in the standard deviation of the predicted CMB temperature, plo
as pairs of 180° diameter hemispherical caps, one centered o
South Galactic Pole~SGP! and one on the North~NGP!. The con-
tours are linearly spaced in units of 0.03 of the mean stand
deviation. The first map considers only the NSW contributio
where at the peak value standard deviation is 45% larger tha
mean value. The second plot shows that the significant ISW co
bution atV050.6 radically alters the pattern of fluctuations in th
variance since the CMB temperature now depends on the pote
along the entire line of sight.
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No larger moments are required, given the Gaussian n
assumption. Thus, the probability of the data given the t
sky signalD is

P~D̄uD!5
1

~2p!Np/2iCNi1/2e21/2~D2D̄ !†CN
21

~D2D̄ !, ~11!

whereCN5^(D2D̄)(D2D̄)†&. Provided the pixelization is
fine-grained enough, theD̄ map plus theCN contain all of
the sky information present in the original data setdt .

The COBE team@26# have given six maps at three fre
quencies, 31, 53, and 90 GHz, each of 6144 pixels of s
(2.6°)2, along with information to constructCN from the
number of observations made in each pixel and the ave
noise in the radiometers over an observing time. Four
analysis, we compressed the six COBE–DMR maps@26#
into a (A1B)(31153190 GHz) weighted-sum map. Galac
tic emission near the plane of the galaxy sufficiently co
taminates the primordial signal that a region620° from the
galactic plane is removed, along with adjacent extra pixel
which contaminating galactic emission is known to be hig
as advocated by the DMR team. Although one can do an
sis with the map’s (2.6°)2 pixels, this ‘‘resolution 6’’ pixel-
ization of the quadrilateralized sphere is oversampled r
tive to the COBE–DMR beam size, and there is no effect
loss of information if we do further data compression
using ‘‘resolution 5’’ pixels, (5.2°)2 @27#. The celestial
sphere is then represented byNp51536 pixels before the
Galactic cut, withNp5999 pixels remaining after the cut i
made. OurCN is largely diagonal, but we include the of
diagonal components centered on a 60° pixel-pair an
separation, which corresponds to the horn separation of
instrument. We remove a best-fit monopole and dipole fr
the cut-sky maps. Proper account is taken of the monop
and dipole contributions, as well as possible quadrupole c
tamination by Galaxy emission, by increasing the noise
associated template patterns@31,32#. This corresponds to
having arbitrary monopole, dipole, and quadrupole conta
nation possible, and effectively ‘‘shorts-out’’ this contribu
tions toCT .

Now we need a probabilistic model for the signal. The
may be several physically different signals in the COBE
DMR data—not only primordial CMB anisotropy, but als
galactic emission and others. However, except for the qu
rupole contamination which we corrected for, the contrib
tion of signals other than CMB is small in the weighted su
~over frequency channels! maps that we have used. We ha
assumed a Gaussian probability distribution for the prim
dial fluctuations ofF. As we have seenDT/T is linearly
related toF, which remains true even if all the effects lea
ing to the CMB anisotropy are included. Thus,DT/T is also
statistically a Gaussian random field, fully described by
theoretical pixel-pixel correlation matrixCT that we have
focused on in our computations:

P~DuCT!5
1

~2p!Np/2iCTi1/2
e21/2D†CT

21D,
~12!
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CT5C~ q̂p ,q̂p8!.

TheCT which enters here should have the COBE beam ta
into account. We do this by calculatingCT through Eq.~8!.
We used a highk-cutoff in evaluating theCu, choosing its
value to regulate the high frequency part ofCT , but ensured
that it was much higher than the corresponding scale ass
ated with the COBE beam size. The effect of the COB
beam was included by formingB†CTB, whereBpp8 is the
COBE beam between pixelsp and p8, related to the beam
shapeBl by

Bpp85(
l

~2l 11!

4p
Bl Pl~ q̂p•q̂p8!. ~13!

This gives all the necessary ingredients for our analy
except for a prior probabilityP(CT) for the theory, which
may encode both our theoretical prejudices about the mo
and results from other observational tests. For the mom
we leaveP(CT) unspecified and concentrate on the like
hood function of a model

L~CT![P~D̄uCT!5E dD P~D̄uD!P~DuCT!. ~14!

The integration is carried over all virtual realizations of t
sky D. The result is

L~CT!5
1

~2p!Np/2iCN1CTi1/2
e2~1/2!D̄†~CN1CT!21D̄.

~15!

The likelihood, defined by Eq.~14!, is ultimately a function
of the parameters of the model, built into theCT . Maximi-
zation ofL(CT) in the parameter space is a complex task,
as is generally the case, the dependence on paramete
nonlinear. However, it is straightforward to determine re
tive likelihoods of any models with our precomputedCT’s.

In the case of CH models the parameters are the choic
manifold M; density parameters, of the matterVm and of
vacuum energy,VL ~most important is their combinationV0
which setsRLS /dc , and, hence, the physical size of the com
pact space!; the manifold’s orientation with respect to th
observed map, i.e., the triplet of Euler anglesa; the position
of the observerxobs within the manifold; and the paramete
characterizing the initial spectrum of fluctuations, such as
overall amplitude and the spectral tilt. If, as here, we fix t
initial spectral slope, only the amplitudeA remains free. In
our studies, we have assumed a uniform prior probability
A and integrated the likelihood over it~i.e., marginalized the
parameter!. However, sinceL is always sharply peaked nea
the best-fit value ofA, the choice of the prior forA is irrel-
evant.

Thus, L(CT)5L(M,Vm ,VL ,a,xobs). The logical way
to proceed would be to do many manifoldsM; for each
manifold, many different Vm and VL ; for each
(M,Vm ,VL), many orientationsa, etc. For the exercise
presented here we have chosen two model spaces, one w
small volume, SCH,m004(25,1), and one with a relatively
6-11
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TABLE I. The log likelihoods of the compact hyperbolic models relative to the infinite models with
sameVm are listed. The probabilities are calculated by confronting the models with the COBE–DMR
The values quoted are likelihoods marginalized over the amplitude of the initial power spectrum. The v
within the sphere of last scattering~SLS! relative to the volume of the compact models of the unive
(VLS /VM) is listed. The three columns of logarithm of likelihood ratiosL/L0 correspond to the best, nex
best, and worst values that we have obtained amongst 24 different rotations of the compact space re
the sky. The numbern in brackets gives the conventional, albeit crude, translation of the probabilities
Gaussian likelihoodL/L0;exp@2n2/2#. Only the last model for one specific orientation appears to
consistent with the COBE–DMR data.

CH topology
@VM /dc

3,R. ,dM /dc# Vm VLS /VM

Log of likelihood ratio~Gaussian approx.!
orientation

best second best worst

0.3 153.4 235.5 ~8.4s! 235.7 ~8.4s! 257.9 ~10.8s!

m004(25,1) 0.6 19.3 222.9 ~6.8s! 223.3 ~6.8s! 249.4 ~9.9s!

@0.98, 0.75, 0.86# 0.9 1.2 24.4 ~3.0s! 28.5 ~4.1s! 237.4 ~8.6s!

v3543(2,3) 0.6 2.9 23.6 ~2.7s! 25.6 ~3.3s! 231.0 ~7.9s!

@6.45, 1.33, 1.90# 0.8 0.6 2.5~2.2s! 20.8 ~1.3s! 212.6 ~5.0s!
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large one, LCH,v3543(2,3), and considered ‘pure’ ope
modelsVL50. For each of these CH spaces we found
likelihood for three values ofVm and 24 different orienta-
tions. We have chosenVm values to straddle the lineR.

'RLS , since we have found this to be a rough bound
between models which pass and which fail the COBE–DM
test.

The 24 orientations correspond to the rotational symme
of a cube on which the COBE–DMR pixelization is spe
fied. This allows us to avoid interpolatingCT to new pixel
positions for each rotation and deal only with remapping
the correlation matrix elements. We have not varied the
sition of the observer. We have chosen it to be at the ‘‘lo
maximum of injectivity radius,’’ from which position the
space usually looks most symmetric~or round!. We expect
that for this observer the model will be less restricted, th
for an observer at another place, who would see a m
squashed and anisotropic space. A caveat is if the m
squashed direction is partly hidden within the galactic pla

In the torus model calculations, we chose many m
manifold orientations to sample the Euler angle space, s
CT could be easily computed with a fast Fourier transfo
using the known eigenfunctions of the torus. In general,
could continually refine our orientation angles to hone in
the maximum likelihood value more precisely. We wou
obviously do so if we felt that we were on the trail of a tru
model of the universe, but such a refinement is not esse
for the points we make here: that universes which are m
smaller in volume than the volume within the last scatter
surface are strongly ruled out, independent of orientation

In Table I we present the results for the likelihood of t
compact models in our selection relative to the likelihood
the standard noncompact open CDM model with the sa
Vm . The theory with infinite volume is known to fit th
COBE–DMR data well and is considered to give a go
description of the data. COBE–DMR data alone does
discriminate well between the infinite models with differe
values of Vm and VL , except disfavoring very lowVm
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,0.2, thus the choice of our reference model is not critic
The clear conclusion to be drawn from the table is th

whenVm is too small, soR.,RLS , the likelihoods are tiny
relative to the larger models. We believe this is a rob
conclusion, largely independent of the details of the manif
choice, orientation or the assumed spectrum of the ini
fluctuations.

What is also clear is that, nearR.'RLS , it can happen
that for certain manifolds and orientations,L is higher than
for the standard oCDM universe. The interpretation is t
some of the highly correlated spots that are predicted, s
as those shown in Fig. 8, partly line up with the observ
spots in the COBE–DMR map. Even though there a
realization-to-realization fluctuations, the random skies,
rived from an anisotropic model with correlated spots bu
into CT , will always be constrained to deliver pixel pair
reflecting these correlations. By contrast, in infinite isotro
models there are no preferred spots and in a much sm
fraction of realizations particular spot line-up will happe
Thus, this particular CH model at the specific orientati
would be always preferred over its isotropic infinite count
part.

Allowing the manifold and its orientation to vary, we ca
get this alignment from time to time, given so many para
eters. An obvious question is how to assign the prior pr
ability for orientation. This should obviously be random, e
cept that if we actually do live in CH universe, there is a tr
orientation and we are not allowed to marginalize over o
entation nor manifold choice. If high likelihood is achieve
for some manifold at a specific orientation, one could arg
that this model is a preferred explanation, at least for
COBE–DMR data. What is then required to test this exp
nation? Clearly, a strong test is to go to higher resolution
the same manifold and orientation remain preferred at hig
resolutions, this should spur cosmologists on to furth
checks of the CH hypothesis and search for specific sig
tures of the compact space. A powerful check is to search
the correlated circles such as in Fig. 5. A manifol
6-12
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CMB ANISOTROPY IN COMPACT . . . . II. . . . PHYSICAL REVIEW D 62 043006
independent strategy with 13 arcmin MAP data emphasi
by Cornish et al. @28# exploits these correlated circles.
caveat is that there are other ‘‘surface terms’’ involving t
Doppler term which will spoil somewhat the simplicity o
this strategy.

Figures 10 and 11 compare theoretical realizations of
CMB anisotropy in the LCH and SCH models with th

FIG. 10. The figure consists of a column of three CMB s
maps, each showing a pair of 140° diameter hemispherical c
centered on the South~SGP! and North~NGP! Galactic Poles, re-
spectively. The top map labeled DATA shows th
COBE–DMR 53190131 GHzA1B data after Wiener filtering,
assuming a best-fit standard CDM model, normalized to
COBE–DMR amplitude. The next two maps are of one rand
realization of the CMB anisotropy inv3543(2,3)—our choice of a
L~arge! CH model example, forV050.6 and 0.8 based on ou
theoretical calculations ofC(q̂,q̂8) convolved with the COBE–
DMR beam. Both surface and integrated~ISW! Sachs-Wolfe effects
have been included inC(q̂,q̂8). No noise was added. The ampl
tude in each model was chosen to best match the COBE–D
data. The theoretical sky was Wiener-filtered using the COB
DMR experimental noise to facilitate visual comparison with t
data. LCH withV050.8 is compatible with the data with a suitab
choice of orientation, whereas withV050.6, it is ruled out~see
Table I!. For all the maps in Figs. 10 and 11, the average, dip
and quadrupole determined for this cut sky were removed. A
galactic latitude cut was used, with extra pixel cuts to remo
known regions of galactic emission proposed by the COBE–D
team, accounting for the ragged edges. The contours are line
spaced at 15mK steps. The maps have been smoothed by a 1
Gaussian filter.
04300
d

e

COBE–DMR data. They should be compared with t
‘‘DATA’’ map in Fig. 10, a Weiner-filtered picture of the
CMB data. The Wiener-filtered map is the mean signal s
ject to the constraint of the observations for a theory char
terized by a givenCT :

^DsuD̄,CT&5@CT~CN1CT!21#D̄. ~16!

The maps obtained with different choices forCT in the
Wiener filter often look quite similaras long as the CT fits
the data reasonably well. For CT , we used that for a stan
dardVm51 CDM model, which fits the data rather well. A
far as the visual appearance of the map is concerned, aVm
,1 oCDM model would look very similar@33#. The differ-
ences are in line with what we might expect: if there is
little more power on small scales, then the map has sligh
more contours at small angles. When one uses a m
which is greatly disfavored by the data, the Wiener m
looks extremely different. For example, there is definitely
pronounced large-scale signal in the DMR data which a l
V0 compact hyperbolic model cannot reproduce. It then tr
to interpret that large-scale signal as a chance~and highly

s,

e

R
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e
°
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°

FIG. 11. The three CMB sky maps, each showing a pair of 1
diameter hemispherical caps, centered on the South~SGP! and
North ~NGP! Galactic Poles, are analogous to the lower two plots
Fig. 10 but for the S~mall! CH modelm004(25,1). The fact that
V050.3 and 0.6 models above are strongly ruled out by
COBE–DMR data is obvious visually. TheV050.9 model is not
obviously excluded on the visual basis, but is indeed excluded
the basis of our Bayesian analysis.~See Table I.!
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BOND, POGOSYAN, AND SOURADEEP PHYSICAL REVIEW D62 043006
unlikely! superposition of noise, which is another express
of why the model is so statistically disfavored.

What one should be noting looking at the maps is
shapes of the patterns and not the specific locations of
patterns, since these can change from realization to rea
tion. The full Bayesian analysis takes into account all p
sible realizations. The incompatibility of models with sma
VM /VLS~SCH-V050.3,0.6) is visually obvious: the best fi
amplitudes are high which is reflected in the steeper hot
cold features. Although, the SCH-V050.9 and LCH-V0
50.6 models do not appear grossly inconsistent, it turns
that the intrinsic anisotropic correlation pattern is at od
with the data statistically~Table I!.

VI. CONCLUSION

Although there are an infinite number of possible C
spaces, one can extrapolate some general conclusions o
universe models from our limited exploration of COBE
DMR constraints on the LCH and SCH examples. We sh
present the CMB constraints on a larger set of CH space
@13#. The main CMB feature of small compact univer
models—the presence of high correlations between m
well-separated pixel pairs—is also their handicap. T
COBE–DMR data does not, generally, favor interp
tation as being a noisy random realization derived fr
a small compact model. Formally, the likelihoo
P(D̄COBE–DMRuCTpp8) is much smaller for such models tha
for a standard oCDM theory in whichCTpp8 mostly just falls
off with separation between the pixels.

High correlations at large angles are numerous in a c
pact space withdM,RLS and we are confident in concludin
that such topologies are not viable models for our univers
view of the COBE–DMR data. Of course, the possibility
exceptions in the infinite list of CH models remains, but t
bulk of models must satisfy the, in our opinion quite sol
limit dM.aRLS to pass the CMB test. Settinga51 would
be a very conservative choice; all our numerical simulatio
are consistent with at leasta51.4. At this limiting value the
CH models we tested are excluded at 3s level.

Similar conclusions were reached by some of the auth
~Bond, Pogosyan, and Sokolov@12#! for flat toroidal models.
Comparison of the full angular correlation~computed using
the eigenfunction expansion! with the COBE–DMR data led
to a much stronger limit on the compactness of the unive
than limits from other methods@34,35#. The main result of
the analysis was thatRT /RLS.1.3 at 95% CL for the equal
sided 3-torus~with the periodicity length 2RT , the diameter
of the torus isdT531/2RT , thus a52.25!. For 3-tori with
only one short dimension~or for the noncompact 1-torus!,
the constraint on the most compact dimension is not quit
strong because the features can be hidden in the ‘‘zon
avoidance’’ associated with the galactic cut.

Statistical properties of fluctuations in CH manifolds a
anisotropic and inhomogeneous. CMB predictions of cou
depend not only on the topology of the space, but also on
position of the observer and the orientation of the Dirich
domain with respect to COBE–DMB sky. This lack of hig
symmetry is reflected, in particular, inR. and R, , which
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are not invariant under the choice of the space basepoint~i.e.,
the observer position! and which quantify how the sky look
for a given observer. Our limit on CH models uses the
variant linear measuredM , but roughly corresponds to th
condition R..RLS when R. is the outradius for the ob
server at the basepoint which maximizes the ‘‘injectivity r
dius’’ of the space@19#. This means that when the Dirichle
domain just fits into the last-scattering sphere, the correla
matrix is already too distorted to satisfy the data. Moving t
observer to another point, will generally increaseR. , but
will also squash the domain in some other directions. In
more anisotropic view of the CH space presented to such
observer, we expect to predict less favorable CMB sk
Thus, moving the observer away from the basepoint wh
maximizes the injectivity radius may not relax the constrai
The absence of good data close to the galactic plane~i.e., the
galactic cut in the data! may help some models at specifi
orientations, but not to the extent that it does for the 1-to
space, which has an exact planar symmetry. Extensive an
sis of the changes induced by varying observers is lef
future work.

As we emphasized in@10,11# and here, the constraint
arise predominantly from predicted pattern mismatches
our models compared with the COBE tapestry. This is
tirely encoded inCTpp8 , which can also be expressed
terms of aYlm basis. However,CTlm,l 8m8 is generally quite
complex and reducing consideration to the isotropizedCl
loses a substantial amount of information, since it involve
d l l 8 projection, followed by a trace overm. More impor-
tantly, as we show in detail in Appendix B,Cl has substan-
tially increased error bars from ‘‘cosmic variance,’’ i.e.,
the expected theoretical fluctuations about the mean, so
can draw only extremely weak conclusions about the mo
This is evident in the error bars on the angular power sp
trum shown for a set of the CH models in Fig. 12. Thu
although theCl for a compact model may fit the data reaso
ably well, and it sometimes does so even better than
corresponding infinite model with the sameV0 , statistically
this may be a rather meaningless observation, and, if on
not careful, even misleading. Some authors@36,37# have ar-
gued that because the meanCl shape may look better visu
ally, this is evidence that the models are preferred.

To make the point quantitatively that conventional use
Cl can lead to very wrong conclusions, Table II compa
the likelihood ratios for a few models obtained using justCl
information, treated as if they were statistically isotrop
Gaussian models with the isotropized power spectrum, w
what was obtained in Table I when the full patter
recognition statistical treatment was made. Details on
construction of the table are given in Appendix B. In a
cases shown, the CHCl is preferred over theCl of the cor-
responding infinite model, but it is grossly misleading b
cause of the enhanced error bars, and the huge amou
relevant information left out. All models arestrongly ruled
out, save one. And that manifold, with its specific orientati
relative to the sky, is preferred even more than the stat
cally isotropized one.

Most astrophysical observations point to a matter den
Vm&0.4 @6#. For the matter-dominatedV05Vm open cos-
6-14
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mology, when we combine this with thedM.aRSLS
COBE–DMB constraint that we suggest, i.e.,Vm.1
2tanh2 (dM/2adc), we would be able to rule out topolog
cally small CH models withdM /dc&2.8 ~adopting the con-
servativea51.4!.

Recent SNIa results@7#, the emerging location of a pea
in the CMB power spectrum atl;200, and the combination
of CMB with large scale structure data@8# all point to a
significant VL term, with less room for a smallV05Vm

FIG. 12. The three panels show angular power spectra for
SCH model atV050.3, 0.6, and 0.9, respectively. The larger err
bars are the actual cosmic variance computed using the full co
lation matrix information. The smaller error bars drawn sligh
displaced to the right are the cosmic variance one would assig
one naively assumed that theCl contained all the information. The
excess variance reflects the incompleteness of theCl information
due to the inherent statistical anisotropy. The dotted~red! curve
showsCl for the simply connected open universe at the same va
of V0 . The error bars show the cosmic variance. TheCl is normal-
ized to give the same rms power as the corresponding SCH m
for the COBE–DMR beam. The full COBE–DMR beam, wi
rough Gaussian scalesbeam

21 ;17.5, has been factored out in makin
the plot.
04300
1VL , even thoughVm may be small. Ironically, although
this makes open models less attractive, having a nonzeroVL
which combines withVm to give V0 near unity actually
returns topologically small CH spaces back to life, since
alleviates the constraint on the sizedM . Qualitatively, CH
models with the same value ofRLS /dc will have similar
constraints, whether there isVL or not. Some quantitative
differences will of course arise because of the diminish
contribution from the ISW effect in theVm1VL model
compared to the correspondingVL50 one.

In Fig. 13 we show theVm2VL parameter space, wher
the lines of constantRLS /dc provide rough limits on the
viability of the CH models, depending on its size. This p
illustrates that allowing for nonzeroVL relaxes the limits on
the allowed CH topology. This is a welcome conclusio
since one could argue that~topologically! small CH spaces
are less complex and may be more probable for quan
processes in the early universe to have created them, ma
them a more natural choice among other CH models@38#.

Although our results strongly indicate that manifolds wi
smallR.,RLS are unlikely to survive confrontation with th
COBE–DMR data, we emphasize that, in theR..RLS
.R, regime, there is some room both to have interest
specific CH correlation patterns and still be consistent w
the COBE–DMR data. WhenR, is large compared toRLS
the results will quickly converge towards the usual infin
hyperbolic manifold results. The intermediate terrain still e
compasses ample scope for interesting topological signat
to be discovered within the CMB. Although our methods a
quite general, testing all manifolds in the SnapPea cen
this way is rather daunting, and there are countably infin
manifolds not yet prescribed. What may be promising
discovery are specialized statistical indicators, which are
powerful discriminators than the full Bayesian approach
have used here, but not as manifold sensitive; e.g., the
tistical techniques which exploit the high degree of corre
tion along circle pairs that@28# have emphasized, and Fig.
reveals. Maps like we have constructed will be necessar
test the statistical significance of such methods. We also n
that dramatically increasing the resolution beyond that
COBE–DMR to, e.g., MAP resolution, is quite feasible wi
current computing power using our techniques.
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TABLE II. The log likelihoods of the compact hyperbolic models relative to the infinite models with
sameVm are listed. The probabilities are calculated by confronting the models with the COBE–DMR
solely in terms ofCl . For easy reference the corresponding relative likelihood for the ‘‘best’’ orientatio
listed from Table I.

CH topology
Vm

SCH: m004(25,1) LCH: v3543(2,3)

0.3 0.6 0.9 0.6 0.8

Log of likelihood ratio
Using onlyCl

0.62~1.1s! 0.43~0.93s! 0.48~0.98s! 0.61~1.1s! 0.82~1.3s!

Log of likelihood ratio
Using full CTpp8
~best orientation!

235.5~8.4s! 222.9~6.8s! 24.4~3.0s! 23.6~2.7s! 2.5~2.2s!
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APPENDIX A: INCORPORATING SMALL ANGLE CMB
ANISOTROPY

In this section, we discuss the calculation using
method of images of the primary CMB anisotropy at sma
angular scales where sources other than the Sachs–W
effect make the dominant contribution. The most import
effects are the Doppler shift due to scattering of photons
free electrons during recombination, and a term describ
the compression and rarefaction of photons.

We shall consider only the scalar mode of perturbatio
As in the main text of this paper, we choose to work in t
longitudinal gauge in which the metric perturbations are
scribed by two scalar potentialsF andC,

FIG. 13. In the Vm2VL parameter plane, the horizontall
shaded area shows the 95% CL~confidence limit! region coming
from the analysis of high redshift supernovae SNIa@10#. For refer-
ence, the vertically shaded region shows 95% CL restrictions a
ing in the standard infinite universes when SNIa and CMB data
combined. Since intermediate-scale CMB data dominates the C
constraint on the first peak position and hence onV0 , where the
influence of the topology would not be so important, the limits
Vm , VL in CH spaces should be similar to those shown. We s
gest that lines of constantRLS /dc would provide effective guides to
the viability of the compact models. The two lines with enhanc
weight correspond to the lineRLS /dc5dM/1.4 in our SCH and
LCH example spaces. The allowed region is to the right of
RLS /dc5dM/1.4 lines. The vertical line atVm50.4 cuts out the
high matter density part of the plane which is disfavored by obs
vations.
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ds25a2~t!@~112F!dt22~122C!gik
~3! dxi dxk#.

~A1!

This gauge is particularly suitable for the analysis of mu
ply connected universes, since the perturbed 3-space is
plicitly conformal to the background 3-space, leaving t
topological identification of points in the background coo
dinatesxi exact. Also for the perturbed quantities in the lo
gitudinal gauge one does not need to distinguish betw
gauge-specific and gauge-invariant definitions.

In first-order perturbation theory, the photons observed
the origin from the directionq̂ at the ~present! momentt0
have propagated along radial null geodesics. The posi
(t,xi) on the geodesics is parametrized by (t02x,xq̂) in
terms of the affine parameterx with x50 at the origin.t0
coincides with the present radius of the FRW horizon,xH .

The transport of the temperature fluctuationDT(t,xk,q̂)
along the photon path is given by the Boltzmann equatio

2DxDT1~]xz!DT5~]tC1q̂i] iF!1~]xz!~«/41q̂i] icv!,
~A2!

Dx5q̂i] i2]t ,

where we have used the following notations4: Dx is the total
derivative along the photon path and] denotes the partia
derivatives. Along the path the direction of the photon m
mentump̂ is opposite to the direction ofq̂. The energy den-
sity fluctuations are given by local angle averaging over m
mentum directions «(t,xi)5*dV p̂ DT(t,xi ,p̂)/4p. The
function z(x)5*0

xdx sTne is the optical depth due to Th
ompson scattering of photons on free electrons with a nu
ber densityne . The velocity is described by the velocit
potentialcv . We have also omitted subdominant terms
lated to the effects of polarization and the angular anisotr
in the scattering@33#.

The resulting temperature fluctuation measured by the
server in the directionq̂ is obtained by integrating Eq.~A2!
along the photon path

DT~t0 ,q̂!5E
0

t0
Dx@~]tC1q̂i] iF!e2z~x!

2~«/41q̂i] icv!]xe2z~x!#. ~A3!

Assuming the standard recombination history, the
proximation of instant recombination is quite accurate for
CMB anisotropy at large and intermediate angular scales
assumes an instantaneous transition from the phaset
,tLS , where the photons were tightly coupled with the ele
trons, to the phase att.tLS where they propagate freel
after last scattering attLS . In Eq. ~A3! this formally corre-
sponds to the limit for the visibility functione2z(x)→Q(t0
2tLS2x), whereQ(x) is the Heaviside step function. Cor
respondingly, the differential visibility function2]xe2z(x)

→d(t02tLS2x), whered(x) is the delta function. Omit-

4Other frequently used notations aren5F, w5C, dg5«, as in
@33#.
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ting the monopole terms, one obtains the well-known expr
sion for temperature fluctuations in this limit:

DT~t0 ,q̂!5~«/41F1q̂i] icv!u
x5t02tLS

t5xLS

1E
0

t02tLSDx]t~C1F!. ~A4!

The above expression for the CMB temperature fluctua
includes the Doppler termq̂i] icv in addition to the Sachs–
Wolfe contribution given in Eq.~2!. To obtain the Sachs–
Wolfe contribution in the form of Eq.~2!, the relationF
5C valid in the ~fairly good! hydrodynamic approximation
to the matter content in the universe is used. Furtherm
the well-known solution to the evolution equations for t
perturbations imply«(tLS)'28F(tLS)/3 in the Sachs–
Wolfe regime.

We have presented these well-known results to stress
in full generality, the CMB anisotropy can be expressed a
line of sight integral over a source function given purely
the real space. Thus, in a multiply connected universe
method of images can be directly applied to full CMB ca
culations in a similar manner as we have used it to calcu
Sachs–Wolfe contribution.

The new element that Eq.~A3! has beyond the Sachs
Wolfe expression of Eq.~2! is the vectorial terms in the
source function. For the scalar perturbations all of them
spatial derivatives of the potentials along the line of sig
and can be reduced to time derivatives through integration
parts. Indeed,q̂i] iF is readily converted into a]tF addition
to the integral plus the surface termF@tLS ,(t02tLS)q̂#, as
was implicitly done both in Eq.~A4! and in Eq.~2! in the
main text. The Doppler term can also be dealt with the sa
way, however there is no obvious advantage of doing t
The reason is thed-function like, rather than step-functio
like, nature of the differential visibility multiplier in the Dop
pler term. Integration by parts gives an integral term w
]x

2e2z(x), which quickly changes sign; and having to int
grate it numerically may not indeed be a simplification ov
numerical differentiation.

As is clear in the simplifying instant recombination a
proximation,the Doppler term depends on the line-of-sig
projection of a vector at last-scattering surface and not
scalar. As for a scalar field, a vector field on a multip
connected universeMu/G, can be expressed as a sum ov
images of the vector field on the universal cover,Mu. How-
ever, in contrast to scalar fields, the discrete groupG acts
both on the spatial positionx and the vector at that point, i.e
the vector at the image pointg@x# is rotated relative to the
vector atx; and its projection on the line-of-sight is not pr
served. Thus, at scales where it is dominant, the presenc
the Doppler term at the last-scattering surface will tend
destroy the nice circle correlations that appear for the N
case~see Sec. IV A!.

However, the presence of vector terms is not an obst
for the numerical implementation of the method of imag
Indeed, it is quite straightforward to implement the meth
of images to calculate the CMB correlation function for E
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~A4! or Eq. ~A3!. For a completely general source term, t
correlation function for the CMB anisotropy is the doub
integral

C~ q̂,q̂8!5E
0

xH
dx1E

0

xH
dx2^S~ q̂x1!S~ q̂8x2!&. ~A5!

In a compact~more generally, multiply connected! FRW uni-
verse, the method of images can be invoked to compute
source correlation function as a regularized sum over ima
over the source correlation function on the universal cov

^S~ q̂x1!S~ q̂8x2!&c5 (
gPG

˜
^S~ q̂x1!g@S~g@ q̂8x2# !#&u,

~A6!

where the superscriptsc and u refer to the quantity in the
multiply connected space and its universal cover, resp
tively. Tilde refers to the possible need for regularizationG
is the discrete subgroup of motions which defines the mu
ply connected space andg@x# is the spatial point on the
universal cover obtained by the action of the motiongPG
on the pointx. The important point to note is that one nee
to implement the action of the motiong on the source func-
tion unless all the terms in the source function are sca
quantities~as was the case for the Sachs–Wolfe effect t
we considered in this paper! when the action is trivial.

In summary, the CMB anisotropy correlation in a mul
ply connected universe can be computed in full genera
using the method of images on the correlation function
CMB anisotropy source terms. However, it is important
identify the scalar, vector and tensor parts of the source fu
tions and the action of the discrete motion has to be app
to nonscalar components of the source function.

APPENDIX B: INADEQUACY OF Cl COMPARISON
FOR COMPACT UNIVERSES

In this appendix, we use the examples of the CH spa
we have studied here to discuss the limitations of a comp
son of CMB anisotropy predictions to data solely in terms
the angular power spectrum for compact universe model

The ~isotropized! angular power spectrum,Cl , widely
used to summarize the CMB anisotropy predictions of a t
oretical model, is defined by

Cl[
l ~ l 11!

2p~2l 11! (
m52 l

l

^âlmâlm* &,

where

âlm5E dV~ q̂

DT̂

T
~ q̂!Ylm~ q̂!. ~B1!

The ^ & denotes an ensemble average of the random vari
enclosed. In full generality, the expectation values of the p
products of the spherical harmonic coefficients^âlmâl 8m8

* &
are related to the correlation functionC(q̂,q̂8) by
6-17
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FIG. 14. The figure demonstrates the nondiagonal nature of the expectation values ofalm pair products when the CMB anisotropy
statistically anisotropic using the examples of the SCH model atV050.3 ~left panel! andV050.9 ~right panel!. We use a single positive
integer index,n5 l ( l 11)1m11 to uniquely represent each~l,m!. Each square represents a pair of~l,m! spherical harmonic indices for al

~l,m! for 2< l<10. The cross correlation coefficient,r lm
l 8m8[^âlmâl 8m8

* &/A^âlmâlm* &^âl 8m8âl 8m8
* & at a given (n,n8) square is represented b

the level of gray~or color! shown in the accompanying palette.~The squares corresponding to pairs with mild cross correlation,ur lm
l 8m8u

,0.12, have been left blank to highlight the strong ones!. For statistically isotropic CMB anisotropy only the diagonalr lm
lm51 terms will be

nonzero. As expected, the CMB anisotropy in the SCH model is more isotropic atV050.9 as evident from the more diagonal nature ofr lm
lm

in the right panel.
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^âlmâl 8m8
* &5E dV q̂E dV q̂8K DT

T
~ q̂!

DT

T
~ q̂8!L

3Ylm~ q̂!Yl 8m8
* ~ q̂8!

5E dV q̂E dV q̂8 C~ q̂,q̂8!Ylm~ q̂!Yl 8m8
* ~ q̂8!.

~B2!

In comparing theoretical predictions to observations,
power spectrum,Cl , is a useful ‘‘data compression’’ of the
N(N11)/2 numbers in theN3N correlation matrix,CT ,
into 'N multipoles values ofCl . However, it is sometimes
overlooked~see, e.g., Refs.@36,37#! that a necessary cond
tion for this compression to be ‘‘loss free’’ is that the CM
fluctuations arestatistically isotropic, i.e., the ensemble av
erages such asC(q̂,q̂8) or ^âlmâlm* & are invariant under ro-
tation.

The standard~simply connected, FRW! universe models
respect global isotropy and predict a statistically isotro
CMB sky. The full angular correlation functionC(q̂,q̂8) be-
tween two directions is then solely a function of their sep
ration,q̂•q̂8. Using Eq.~B2!, the equivalent statement is th
^âlmâl 8m8

* &52pCl /„l ( l 11)…d l l 8dmm8 , is diagonal in the~l,
m! space and independent ofm. The angular power spectrum
Cl is uniquely related to the correlation function through t
expansion~4! and contains the same information.

All Euclidean or hyperbolic compact spaces violate glo
isotropy and the CMB temperature fluctuations arestatisti-
cally anisotropic, i.e., C(q̂,q̂8)ÓC(q̂•q̂8). As a conse-
quence, the^âlmâl 8m8

* & now define the relevant angula
power spectra, and these are no longer required to be di
nal and independent ofm. Thus,Cl as defined by Eq.~B1!
misses both off-diagonal pair products ofalm’s and isotro-
pizes further by summing up them-dependent diagonalalm
pair products.

Figure 14 shows the normalized full angular power sp
04300
e
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trum

r lm
l 8m8[^âlmâl 8m8

* &/A^âlmâlm* &^âl 8m8âl 8m8
* & ~B3!

for all the~l, m! with 2< l<10 for the CH models considere
in our paper. This cross correlation coefficient clearly sho
the the existence of significant off-diagonal^âlmâl 8m8

* & in the

m004(25,1) atV050.3 wherer lm
l 8m8 ranges between20.5

FIG. 15. The three panels of the figure show the relative de
tion of l ( l 11)^âlmâl 8m8

* & from the mean value ofCl for all ~l,m!
(2< l<20) in the SCH model atV050.3, 0.6 & 0.9, respectively.
The nonzero deviations demonstrate that the diagonal^âlmâl 8m8

* &
are not independent ofm when the CMB is statistically anisotropic
The relative deviations decrease withVm as the space becom
larger relative to the SLS. The point with large deviation in t
upper two panels corresponds to (l ,m)5(8,0).
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up to 0.6. This is the most extreme case in our set of mo
since it has the smallest size of the SLS relative to the
richlet domain (VLS /VM5153.4) amongst the models dis
cussed in this paper. AsVLS /VM decreases, the number of~l,

m! pairs with highr lm
l 8m8 decreases and the^âlmâl 8m8

* & matrix
becomes closer to diagonal. However, for the same CH sp

the range ofr lm
l 8m8 remains comparable, e.g., form004

(25,1) at V050.9(VLS /VM51.2), r lm
l 8m8 ranges from

20.42 to 0.5 for 2< l<10. The larger CHv3543(2,3) model
is more isotropic, thêâlmâl 8m8

* & are somewhat more diago
nal with most of the significant off-diagonal terms at lowl.

The ranges inr lm
l 8m8 are 60.29 and60.23 for V050.6 and

0.8, respectively. Them-dependence of the diagonal pro
ucts ^âlmâlm* & is shown in Fig. 15.

For statistically anisotropic CMB fluctuations, theCl con-
tains less information than the full correlation matr
C(q̂,q̂8) independent of the underlying statistics. For co
creteness, we now focus our discussion on Gaussian ran
CMB fluctuations which are completely specified b
C(q̂,q̂8). For statistically anisotropic CMB, the incomplet
ness of the information contained in theCl is reflected in the
enhanced cosmic variance,^Cl

2&. Let us split the correlation
matrix into an isotropic part determined byCl through Eq.~4!
and an anisotropic term containing the remainder, i.e.,

C~ q̂,q̂8!5CI~ q̂,q̂8!1CA~ q̂,q̂8! ~B4!

so that, by definition, the isotropic partCI(q̂,q̂8) is described
by the set of coefficientsC1 of Legendre series5
u

b

io
op
fo
te

n,
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CI~ q̂,q̂8!5(
l

l 11/2

l ~ l 11!
Cl Pl~ q̂•q̂8!, ~B5!

and the anisotropic partCA(q̂,q̂8) is orthogonal to the Leg-
endre polynomials

E dV q̂E dV q̂8 CA~ q̂,q̂8!Pl~ q̂•q̂8!50. ~B6!

The presence of the nonzero anisotropic partCA(q̂,q̂8) is
the main attribute of statistically anisotropic models, and
particular of the CH models. Consider now the effect th
term has on the probability distributionP( C̃l) of the isotro-
pized power spectrum estimator

C̃l[
l ~ l 11!

2p~2l 11! (
m52 l

l E dV q̂E dV q̂8

DT

T
~ q̂!

DT

Y

3~ q̂8!Ylm~ q̂!Ylm* ~ q̂8!. ~B7!

Of course, the expectation value of the estimator is de
mined solely byCI(q̂,q̂8) @as it should be using Eq.~B6!#:

^C̃l&5
l ~ l 11!

8p2 E dV q̂E dV q̂8 C~ q̂,q̂8!Pl~ q̂•q̂8!.

~B8!

However, the distributionP( C̃l) depends on the anisotropi
part CA(q̂,q̂8). In particular, the variance ofC̃l , which can
be calculated as a four-point correlation of theDT’s, is en-
hanced due to the influence ofCA(q̂,q̂8):
var~ C̃l ![^C̃l
2&2^C̃l&

252F l ~ l 11!

8p2 G2E dV q̂1
E dV q̂2

E dV q̂3
E dV q̂4

C~ q̂1 ,q̂3!Pl~ q̂1•q̂2!C~ q̂2 ,q̂4!Pl~ q̂3•q̂4!

5
2^C̃l&

2

2l 11
1

l 2~ l 11!2

32p4 E dV q̂1
E dV q̂2

F E dV q̂3
CA~ q̂1 ,q̂3!Pl~ q̂2•q̂3!G2

. ~B9!
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In the final expression, the first term is the well-known res
for the cosmic variance ofCl , strictly valid only for statisti-
cally isotropic CMB fluctuations. The second term was o
tained using the fact thatCA(q̂1 ,q̂2) andPl(q̂1•q̂2) are sym-
metric functions. It represents a positive definite correct
to the standard cosmic variance arising from the anisotr
of C(q̂,q̂8). Hence, the cosmic variance is always larger
a statistically anisotropic CMB compared to that expec
for the statistically isotropic case with the sameCl .

To calculate Eq.~B9! numerically, we took ourCTpp8 and
used matrix representations of thePl at the relevant COBE-

5For simplicity we ignore the experimental window functio
W(q̂,q̂8). For COBE–DMR it is isotropic, withWl[Bl

2 ~whereBl

is spherical transform of the isotropic experimental beam! and the
effect of including the window function is to scale theCl by Bl

2.
lt

-

n
y

r
d

pixel pairs. As a check of accuracy, the same procedure
applied to the infinite statistically isotropic models and t
first term in Eq.~B9! was recovered. This is a stringent te
of the cancellations required to obtain this result. We fou
that for the finite compact models as well as the infin
models, our results are accurate for angular scales big
than the beam, including the finite pixel effects.

Figure 12 shows the angular power spectrum for a se
the CH models with the associated cosmic variance. It de
onstrates that the cosmic variance ofCl in CH models is
significantly higher than one may naively assign assum
statistical isotropy. As a result,Cl ’s do not strongly distin-
guish CH models from the corresponding standard isotro
models and, on their own, are not very restrictive. Comp
ing CMB predictions of CH spaces to data usingCl alone is
not incorrect, but inadequatesince one has not used the fu
information available. The larger cosmic variance simply i
6-19
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plies that the theoretical prediction is weaker. The argum
that a comparison based on more information is more
evant is quite obvious. Any evaluation of the relative like
hood of a model based onCl is superseded by a likelihoo
analysis that uses the complete correlation informationA
model that does well solely in terms ofCl but fails in terms of
the correlation matrix CTpp8 should be considered ruled ou.

In Table II we compare the relative likelihood for ou
models obtained usingCl versus that obtained using the fu
correlation information.

The procedure we use to determine the first line in
table is to take the compact model’sCTpp8 , use thePl ma-
trices to calculate the theoreticalCl , as in Eq.~B8!, then
assume that we have an infinite model with exactly t
power spectrum, so that theseCl ’s encode all the information
in the theory. We then use these to calculate newCTpp8 for
this theory, and determine the full Bayesian likelihood for
relative to the true infinite open model with the sameV0 and
its correspondingCl . The results show that at roughly th
e

p

tu

cs

er

e

04300
nt
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t
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11s level, these power spectra are preferred. Note that
likelihood ratios in row 1 are independent of orientatio
However, the second row of the table shows that when
full information on angular patterns is included in the ana
sis, the likelihoods change dramatically, strongly disfavo
ing small compact models, as in Table I. As well, the ca
for the V050.8 LCH model at the best orientation is e
hanced by the inclusion of the full pattern information.

Models which fare very poorly with respect to a full co
relation comparison may well look favored based on theCl .
The reason for this is not hard to understand. If the comp
space is not much larger than the SLS then it predicts str
anisotropic correlation features in the CMB sky which are
odds with the data~see Sec. IV!. However, an isotropized
measure such as theCl is insensitive to these features. Th
implies that the comparison of CMB anisotropy in CH mo
els usingCl alone is grossly inadequate and could be qu
misleading.
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