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The measurements of CMB anisotropy have opened up a window for probing the global topology of the
universe on length scales comparable to, and even beyond, the Hubble radius. For compact topologies, the two
main effects on the CMB aré1) the breaking of statistical isotropy in characteristic patterns determined by the
photon geodesic structure of the manifold g2y an infrared cutoff in the power spectrum of perturbations
imposed by the finite spatial extent. We calculate the CMB anisotropy in compact hyperbolic universe models
using theregularized method of imagetescribed in detail in the preceding paper, including the line-of-sight
“integrated Sachs-Wolfe” effect, as well as the last-scattering surface terms. We calculate the Bayesian
probabilities for a selection of models by confronting our theoretical pixel—pixel temperature correlation
functions with the COBE-DMR data. Our results demonstrate that strong constraints on compactness arise: if
the universe is small compared to the horizon size, correlations appear in the maps that are irreconcilable with
the observations. This conclusion is qualitatively insensitive to the matter content of the universe, in particular,
the presence of cosmological constant. If the universe is of comparable size to the “horizon,” the likelihood
function is very dependent upon orientation of the manifold w.r.t. the sky. While most orientations may be
strongly ruled out, it sometimes happens that for a specific orientation the predicted correlation patterns are
preferred over those for the conventional infinite models. The full Bayesian analysis we use is the most
complete statistical test that can be done on the cosmic background explorer maps, taking into account all
possible signals and their variances in the theoretical skies, in particular the high degree of anisotropic corre-
lation that can exist. We also show that standard visual measures for comparing theoretical predictions with the
data such as the isotropized power spect@jnare not so useful in small compact spaces because of enhanced
cosmic variance associated with the breakdown of statistical isotropy.

PACS numbd(s): 98.70.Vc, 04.20.Gz, 98.80.Cq

[. INTRODUCTION etry for the universe; the additional requirement of compact-
ness then ushers into consideratitmpologically compact
The cosmic microwave background anisotropy is cur-hyperbolic (CH) universesa field much richer in possibili-

rently the most promising observational probe of the globaties than the compact spaces with flat geometry wigris
spatial structure of the universe on length scales near to anskactlyunity.
even somewhat beyond the “horizon” scaIeCHgl). As In a universe with nontrivial global spatial topology, the
suggested by the concept of inflation, this relatively smoothmultiple connectivity of the space could lead to observable
Hubble volume that we observe is perhaps a tiny patch of asharacteristic angular correlation patterns in the CMB anisot-
extremely inhomogeneous and complex spatial manifoldropy arising directly from multiple imaging of the source
The complexity could involve nontrivial topologymultiple  terms that give rise to the anisotropy in the CMB. Moreover,
connectivity on these ultra-large scales. Within a generalthe modified structure of the eigenmodes in such spaces im-
program to address the observability of such a diverse globadlies that angular correlations would differ from the predic-
structure, a more well defined and tractable path would be ttions in the simply connected space with identical geometry
restrict oneself to spaces of uniform curvatliceally homo-  (the latter plays the role of theniversal covemf the multi-
geneous and isotropic Friedmann—Robertson—Walkeply connected spageeven in the absence of multiple imag-
(FRW) modeld but with nontrivial topology; in particular, ing of the sources. In particular, compact universes cannot
compact spaces which have additional theoretical motivatiosupport modes whose characteristic length scale exceeds the
[1-5,9-11. For Euclidean(uniform zero curvatureor hy- linear size of the space; consequently, the inferred power of
perbolic (uniform negative curvatujegeometry, compact- fluctuations in compact models at large scales would appear
ness necessarily implies nontrivial topology. Much recent assuppressed relative to the power on the universal covering
trophysical data suggest the cosmological density parametspace. A more subtle effect is the angular dependence of the
in matter is subcritica6], 1,,<1. Recently the presence of theoretical temperature variance which reflects generic inho-
a significant cosmological constatdr, more generally, an mogeneity in the topologically compact spaces.
exotic smooth component of mattdras been indicated by Paper I[9] describes theegularized method of imagea
the high redshift supernova searchigband in studies com- general technique that we develogdd®,11] for computing
bining large and intermediate angle cosmic microwave backthe spatial correlations in a universe with nontrivial topol-
ground (CMB) anistropy data with observations of cluster ogy. In this paper we shall apply the method to calculate the
abundances and large scale galaxy clustdi@hgf this com-  angular correlation of CMB anisotropies in CH universe
ponent does not compensate for the deficit from urfity, = models. The angular correlation between the CMB tempera-
=Q,+Q <1, this would imply a hyperbolic spatial geom- ture fluctuations in two directions in the sky completely en-
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codes the CMB anisotropy predictions of any model that Il. CMB ANISOTROPY
postulates Gaussian primordial fluctuations. Using the full

correlation function information on the cosmic background : C : ;
explorer(COBE—differential microwave radiomet¢DMR) Planckian dlstnbutpn of relic photons which decoupled from
.matter at a redshift=1100. These photons have freely

data, we have obtained limits on the size of flat torus uni- . L
. propagated over a distané® g, comparable to the “hori-
verse models that are a factor of 2 sharper than obtain o . .
. zon” size, a function of cosmological parameters. In a non-
from the angular power spectrum aldrie]. The main result X .
at model the other length scale is curvature radiggiven

; . i
was that the volume of the compact universe is constrameg .
to be comparable to or larger than that of the observabl Y (¢/Ho)/V[1—q|. In a matter dominated{o={2y,) cos-

universe. In[10], we proposed on the basis of simple argu-mMology, Ris=2d arctarhy1—Q,. For the adiabatic fluc-
ments that compact universes with hyperbolic geometrjuations we consider here, the dominant contribution to the
should be expected to respect similar constraints. We hav@nhisotropy in the CMB temperature measured with wide-
now carried out the full Bayesian analysis on accurate CMBangle beamsfryuu=2°Q4?) comes from the cosmological
correlation predictions in a large selection of CH universesnetric perturbations through the Sachs—Wolfe effect. Al-
and can demonstrate that essential features of our genetlough in this work we restrict our attention to large beam
constraint is borne out. In this paper we describe the detailsize and the Sachs—Wolfe effect, in Appendix A we show
of our CMB correlation computation, highlight the general how effects which contribute to the CMB anisotropy at finer
correlation features in the compact spaces, describe thesolution can also be incorporated in the method of images.
method of comparison to data and present the resulting con- Adiabatic cosmological metric perturbations can be ex-
straints from COBE—-DMR using the examples of a large a”Cbressed in terms of a scalar gravitational potertigk, 7).
a small CH universe. A compilation of our constraints on theTp dynamical equation fob(x, ) allows for separation of
flat torus m_odels and a large .selection of CH models will bg,o spatial and temporal dependence in the linear redime,
preﬁﬁ”ted In & separate p“b“‘?at[m]]; owe: | 1 we PO6T) =(F(D)+E(1))P(X), whered(x) is the field con-

e outline of this paper is as follows: In Sec. Il we figuration on the three-hypersurface of constant time, whose

recapitulate that the angular correlation function of CMBam litude is determined by the phvsics of the early universe
anisotropy on large angular scales, that predominantly aris P . ) Dy the pnys y uni ’
e use as our time variable dimensionless conformal ttme

through both surface and integrated Sachs—Wolfe effects,

can be related to spatial correlations of the gravitational po€XPressed in units of the curvature radiis Time depen-

tential on the three-space hypersurface at the epoch of ladfnce of the potential at the matter dominated stage is de-
scattering. This is a useful simplification in terms of compu-SCribed by the growing modg(7) and the decaying mode
tational costs for calculating the CMB correlation in compactE(7). In terms of the usual growth factdd(t) for linear
spaces using our method. Although we restrict our calculadensity perturbationst=D/a, wherea is the scale factor.
tions here to large angular scales, Appendix A discusses thEhe relative amplitude of the modes is determined by the
implementation of the method of images to calculate thenatching condition at the moment 7gq
CMB anisotropies at smaller angular scales. In Sec. lll, we=0.00h 11— Q,/Q, of transition from extremely relativ-
describe the computation of the angular correlation functionstic to nonrelativistic domination of the energy density. This
of CMB anisotropy in CH models. The section also includesgives E(7eq) ~F(7e0)/9.

a quick review of some useful notions about compact spaces |n this paper, we concentrate our study on open matter-
and the main result describing the regularized method ofiominated models with zero cosmological constaf,

images from paper [19]. =0,<1, for which the growing mode evolves E&]
In Sec. IV, we discuss some of the typical correlation

features in the CMB anisotropy that arise in compact uni-

verse models. We show that their origin is more readily un- 5 sinh7(sinh7—37) + 20(coshr—1)
derstood by viewing the compact space as a tessellation of F(r)= hr—1)3

3 by the finite domains. In Sec. V, we present our results of (coshr
full Bayesian probability analyses of large angle CMB an-
isotropy predictions for two CH models using the four year. .
COBE-DMR data. In Appendix A, we show how to go be- in the matter dominated phase? 7eo. A nonzero cosmo-
yond the Sachs—Wolfe effects to treat all aspects of CM%;:gma_l constant can _be tr|V|aIIy incorporated in our analysis
anisotropy using the method of images in compact spaces f y using 'ghe appropriate solution f6i(7).

high resolution CMB experiments. In Appendix B, we dem- We write the.SachsA—VV'oIfe f'orml.JIaAfo.r the CMB tem-
onstrate that a by-product of the statistical anisotropy of thé)erat_ure fluctuation T(q), in a d|rect|on_q, in terms of the
CMB inherent in compact universe models is a considerabl rowing mode @, (x) Of. the potential at the three-
enhanced cosmic variance in thigotropized angular power ~nypersurface of constant time=7,s, when the last s%atter-
spectrumC, which completely characterizes the noncompactnd ©f CMB photons took placep s(x) =F(7.s)®(X):
Gaussian models. This emphasizes that the pattern recogni-

tion aspect of the complete Bayesian testing of a model is

essential to get the best constraints on allowed size of thelAt the scales appropriate to CMB anisotropies, damping effects
compact space. on ® can be neglected.

In the standard picture, the CMB that we observe is a

@

043006-2



CMB ANISOTROPY IN COMPACT ... .1l ... PHWGICAL REVIEW D 62 043006

AT 1 XH where y is the affine parameter along the photon path from

7 ([@=3Pus(Qxn) + Zfo dx f(x)®s(Gx), x=0 at the observer position tp,=R,s/d.. The first term
is called thesurfaceor “naive” Sachs—Wolfe effecNSW).

(2 The second term, which is nonzero onlydf varies with
time betweenr s and now, is thantegrated Sachs—Wolfe
effect(ISW). The angular correlation between the CMB tem-
perature fluctuations in two directions in the sky is then
given by

d
(0=g g g,F

TETLSTXHTX

(8.8 = AT AT |
(0.0 =\ (@ —=(@"
1 . ., 2 (xu R . - ~
:§<<DLS(qXH)CDLS(q XH)>+§fO dx FOO(PLs(QX)PLs(8 X)) +{(Prs(@' X)) Prs(Gxn))]
XH XH R -,
+4 [ " f00 [ M f @@ e@ ) €
|
The main point to be noted is th&t(q,§’) depends on |+1/2
the spatial two point correlation function, &g C(0)=2 77— CiP|(cosh)W,, (4)

=(d ¢(x)® g(x")) of ® on the three-hypersurface of last r1d+D

scattering. This is due to the fact that the equation of motion )
for @ allows a separation of spatial and temporal depenwhere theP, are Legendre polynomials al; encodes de-
dence. As in Eq(2), the Sachs—Wolfe contribution to the tails of the experimental configuration, such as finite beam-
correlation between temperature fluctuations in two direcwidth. For COBE-DMR,W,=B?, whereB, is the beam,
tions in the sky can be split into three ternt$} The surface including a(sphericalized approximation to finite pixeliza-
term (NSW) which depends on the correlation betwekrat  tion effects. In this paper, we use the experimentally deter-
the two points on the SLS?) the interference part correlat- mined W, for COBE-DMR, but, to set the scale, we note
ing the value of at the points along one line of sight to the that a GaussiaB,~exg —I(1+1)0te, 2] fit to the COBE-
value at the SLS of the second line of sight; af® an  pMR beam (including pixelization effects gives o,
integral part which contains correlations betwdeat points 17583
on one line of sight with those on the other. The last tWo  The angular power spectrum of the CMB anisotropy on
terms constitute the ISW effect. If one considers the Zero-lathge angu|ar scales arises main|y from the Sachs—Wolfe ef-
correlation (the two lines of sight are identigalthen the  fact and is shown in Fig. 1. Th@ contribution of the NSW
following holds: the first and third terms are positive definite,term is plotted separately for comparison. The NSW contri-
whereas the interference term comes in with a negative Sigytion is suppressed at angular scales larger than the curva-
Eecaus@F(r)/dﬂs negative in the models that we consider yyre scale due to focusing of geodesics in the hyperbolic

ere.

In H3, the global isotropy of the space implies that the———

two point correlation functiorC(§,§')=C(6), where co® 3 ) . .
—g-¢', and the CMB anisotropy can be described equally When we speak about CMB anisotropy at “large angular scales

: . . Iways refer to the beam sizg.,,,and not the angular separa-
well in terms of its angular power spectrufp, defined by ~ “"© 2@ : ; eamand NOt .
9 P P y tion between the lines of sigh#, This distinction is blurred in usual

simply connected models. There, for example, the SW effect domi-
nates both wide beam experiments such as COBE-DMR and also
2A subtle aspect of the Sachs—Wolfe effect at large angular scalebe correlation at large separation In contrast, the distinction is
is that only the growing modE (7 g)®(x) andnotthe total gravi-  important for compact spaces where points widely separated in
tational  potential at last-scattering ®(x, 7. 5)=(F(7.s) angle may be physically clogsee Sec. IV, resulting in the corre-
+E(7.5))®(x) contributes to the effect. The distinction is impor- lation between them being dominated not by SW but by short-
tant for models with small value @, in which the time difference distance effects, including the Doppler effect. It should also be
between the transition to matter domination gt and the last noted that since compact universe models generically violate global
scattering of photons aj g is not large. With this important caveat, isotropy, the decompositiofd) is not valid in those casedshe an-
we shall still loosely caltb g(x) the potential on the last-scattering gular power in a multipold is not evenly distributed in the azi-
hypersurface. muthal levelsm).
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FIG. 1. The solid curves show the angular power spectfiyim 1 10
from the Sachs—Wolfe effect in the three infink€ universes with kd,
differing Q4. Also plotted as a dotted curve is the NSW contribu-
tion in each case. The curves are normalized such that trem FIG. 2. Thek-space dependence of the integrand for the fourth

the NSW contribution goes to unity at larde As Q, increases multipole C, from the Sachs—Wolfe effect in three infinit¢® uni-

towards unity, the relative ISW contribution diminishes and affectsverses characterized by the values(hf shown. In each case the

smaller values of. While the ISW contribution is positive faf, dotted and dashed curves are the NSW and ISW contributions, re-

=0.3 andQ,=0.6, it is negative fo);=0.8. spectively. The ISW curve includes the NSW—-ISW interference
term as well.

geometry[15] and asymptotes to a constant value at small

angular scales. The ISW contributiondpfalls off roughly a group G is the group of motions which preserves the dis-
factor of | ! faster than the NSW contribution. At small tances between points, i.e., leaves the metric unchanged
values of{},, the ISW contribution dominates at large an- The infinite FRW spatial hypersurface is theiversal cover
gular scales. MY, tiled by copies of the compact spagd. The compact
Figure 2 illustrates some general features of the diStribUSpace for a given |ocation Of the Observer is most appropri_
tion of power ink-space for the low multipoles of the Sachs— ately represented as tiirichlet domainwith the observer
Wolfe CMB anisotropy, using the fourth multipole as an at jts basepoint Any point x of the compact space has an
example. While the NSW contribution is always positive, theimagexi= y:x in each copy of the Dirichlet domain on the
ISW contribution can be negative due to the interferencqniversal cover, wherey, e I'. The tiling of the universal
term. The positive ISW contribution comes from larger val- cqyer with Dirichlet domains is a Voronoi tessellatioa
ues ofk than for the NSW effect. Moreover, the sm&ll  famijliar concept in cosmology often used in modeling the
contribution of the positive NSW effect is countered by the|arge scale structure in the universwith the seeds being the
negative interference term in the ISW contributighe sec-  pasepoint and its images. By construction a Dirichlet domain
ond term in Eq(3)]. Note the remarkable cancellation of the represents the compact space asoavex polyhedromith
NSW contribution for(),=0.3. The relative contribution of ayen number of faces identified pairwise unfletn cosmol-
the ISW effect decreases 8g— 1. The presence of the ISW gy, the Dirichlet domain constructed around the observer
contribution tends to relax the constraints on the size of 3epresents the universe as seen by the observer and it proves
compact universe that can be directly inferreo! from the supyseful in this context to define tritradius R- , the radii of
pression of the low multipoles of the CMB anisotro#$6].  the circumscribing spherésmallest sphere around the ob-
server which encloses the Dirichlet domaand, theinra-
lll. CMB ANISOTROPY IN COMPACT HYPERBOLIC dius R_, the radii of the inscribed spheiéargest sphere
MANIFOLDS around the observer which can be enclosed within the Di-
richlet domain of the Dirichlet domain[2]. Note thatR-
andR_ are specific to the location of the observer within the
We briefly recapitulate a few basic notions about compactompact space since the Dirichlet domains around different
universes that we discussed in pap¢BP]. A compact cos- observers are not necessarily identical. An observer-
mological model can be constructed by identifying points onindependentand Dirichlet-domain-independérinear mea-
the standard infinite flat or hyperbolic FRW spaces by thesure of the size of the compact space is given bydiheneter
action of a suitable discrete subgroup of motiokispf the  of the spaced =sup . »d(x,y) [17,18, i.e., the maxi-
full isometry group G, of the FRW space(The isometry mum separation between two points in the compact space.

A. Brief review of compact spaces
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For cosmological CH modelsM"=%3, the three- where B=.(kd)?—1 and Pu(B)=B(B>+1)Py(k)/
dimensional hyperboli¢uniform negative curvatujemani-  (272).
fold. #3 can be viewed as a hyperbolic section embedded in In the simplest inflationary model$,, the power per
four-dimensional flat Lorentzian space. The isometry grougogarithmic interval ofk is approximately constant in the
of 12 is the group of rotations in the four space—the propersubcurvature sector, defined ky.>1. This is the generali-
Lorentz group, S@, 1). A CH manifold is then completely zation of the Harrison—Zeldovich spectrum in spatially flat
described by a discrete subgroup, of the proper Lorentz models to hyperbolic spacd®4,25. Subhorizon vacuum
group, S@3, 1). The Geometry Center at the University of fluctuations during inflation are not expected to generate su-
Minnesota has a large census of CH manifolds and publipercurvature modes, those wikid,<1, which is why they
domain software SnapP¢49]. We have adapted this soft- are not included in Eq6). Indeed, sincéd?>1/(ad.)?, for
ware to tile#* under a given topology using a set of gen- modes withkd.<1 we always havé/(aH)<1 so inflation
erators ofl". The tiling routine uses the generator productby itself does not provide a causal mechanism for their ex-
method and ensures that all distinct tiles within a specifiecitation. Moreover, the lowest nonzero eigenvalue in com-
tiling radius are obtained. pact spacesk,>0, provides an infrared cutoff in the spec-
A CH manifold, M, is characterized by a dimensionless trum which can be large enough in many CH spaces to

number,V =V ,,/d3, whereV , is the volume of the space exclude the supercurvature sector entirekyd.>1). (See
and d; is the curvature radiug20]. There are a countably [9].) Even if the space does support supercurvature modes,
infinite number of CH manifolds with no upper bound on some physical mechanism needs to be invoked to excite
V. The theoretical lower bound stands)ay=0.167[21].  them, e.g., as a by-product of the creation of the compact
The smallest CH manifold discovered so far 45=0.94  space itself, but which could be accompanied by complex
[22]. The Minnesota census lists several thousands of thesenperturbative structure as well. To have quantitative pre-
manifolds with),, up to ~7. In the cosmological context, dictions forP4(k) would require addressing this possibility
the physical size of the curvature radids is determined in a full quantum cosmological context. We note that our
by the density parameter and the Hubble constanmain conclusions regarding peculiar correlation features in
Ho:d.=(c/Hg)/J1—Qp. The physical volume of the CH the CMB anisotropy(see Sec. 1Y would qualitatively hold
manifold with a given topology, i.e., a fixed value of even in the presence of supercurvature modes.
VM/d37 is smaller for smaller values . Although Eq.(5) encodes the basic formula for calculat-
ing the correlation function, it is not numerically implement-
able as is. Both the sum and the integral in E).are diver-

ent and the difference needs to be taken as a limiting

Here we summarize the main result of our regU'f’i‘rize‘{q:)rocess of summation of images and integration up to a finite
method of images that is discussed in detail in pap@]l  gistancer, :

The correlation function on a compact spd&aad more gen-
erally, any nonsimply connected spacét=M"/T', can be . ) )
expressed as a regularized sum over the correlation functioa(X,X") = lim

B. Computing spatial correlation functions

> 5ﬁ$<r,-)—3—;f;*drsinr?r§$<r> ,

ri<r,

on its universal coverM", calculated betweem and the P oL @)
imagesyx'(yel') of x': .
. ri=d(x,y;x").
Ea(x,x")= er Eo(X, yX') The volume element in the integral is the one appropriate for

3. Numerically we have found it suffices to evaluate the

1 above expression up tQ about 4 to 5 times the domain size

=> &(xyx)— Vo dx’ €g(x,Xx"). R.. to obtain a convergent result fgf, (x,x’).
vel M I MY

)

C. Computing the CMB correlation

The local isotropy and homogeneity df® implies For Gaussian perturbations, the angular correlation func-

£4(x,x") depends only on the proper distancesd(x,x’),  1ion, C(8.q’), completely encodes the CMB anisotropy pre-
between the points andx’. The eigenfunctions on the uni- dictions of a model. To make maps, the celestial sphere is
versal cover are of course well known for all homogeneougliscretized intaN,, pixels I?beled byp. N, is determined by
and isotropic model§23]. Consequentlyt’(x,x') can be the angular resolution;-7° degrees fqr COBE-DMR. The
obtained using its eigenmode expansion. The initial powef-OBE—DMR mapg26] had (2-50} pixels, corresponding
spectrumPy (K) is believed to be dictated by an early uni- ©© Np=6144, though compressing the data img=1536
verse scenario for the generation of primordial perturbationg?1X€lS léads to no information lo$27]. We use this number
We assume that the initial perturbations are generated by PiXels in Sec. V, where we confront our models with the

quantum vacuum fluctuations during inflation. This leads toCOBE—-DMR observations using Bayesian statistical meth-
ods, and also in the maps shown in this paper.

-~ dBj sinBr) For Gaussian statistics, the pixelized theoretical maps are
U (x,x' )= &Y (r :f P . (6 fully determined by theN,X N, pixel—pixel correlation ma-
Salxx)=Ea(r) o (B2+1) Bsinhr @A), (© triX, Crpp=C(@p.8,). The expression fo€(g,q’) in Eq.
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(3) involves an integral along the line of sight from the ob- underT’, i.e., either contain the same points of the compact
server to the surface of last scattering—the integratedpaceM or they are both emptyObviously, the isometry
Sachs—Wolfe ternfiISW). We find that a simple integration 1T maps the first set onto the seconi. S consists of
rule usingN, points along each line of sight gives accuratethe points on the SLS, a nonempty €M yS would be a
results when the points are spaced at equal incremdeftsf  circle on the SLS which is pointwise identical to another
F(7). Consequently, to get the fully,, matrix we need to  circle SNy~ 1S on the SLS. If the CMB anisotropy is domi-
evaluate the correlation functiogig(x,x"), betweenN,(N,  nated by the surface term, then the CMB temperature along
+1)NF/2 pairs of points on the constant-time hypersurfacepne circle is expected to be identical to that along the other

of last scattering: circle. This effect was first understood and much emphasized
in the works by Cornish, Starkman, and Sperd8]. The
1 2 AF - " ;
=_¢ & & i necessary and sufficient condition for the existence of
Cr.. 9§<D(XHQp!Xqu’)+3 N . :
PP L matched circlegnonempty subset§NyS) on the SLS is
N that R s=R_, i.e., the SLS is not completely enclosed
X D Wil £6(xnbp Xi8p) + €6 (xilp  xnbp)] within the Dirichlet domain. We discuss the CMB correla-
i=1 tions in our models that arise from this kind of identification
Fr2Ne N in Sec. IVA.
+4(_ > > Wi €5(xibpr »xi6p), (8) The CMB anisotropy has contributions from the entire
N/ iZ1i=1 line of sight and it is useful to study the subsets of identical

points enclosed by the SLS. §is the set of all points en-

closed by the SLS, then the pairs of subsetsSdhat are

To calculateC in the standard infinite open cosmo identical are lens-shaped regions created by the intersection
Tpp’ -

logical models with this real-space integration to an accuracf?f tv(\j/_o_ ballls (sc;e F'g_' 3 Agalrfl thehn_e dces;fgrg and_ SUff'C'.er?.t
comparable to that of the traditional evaluationkispace, —condition for the existence of such identified regions within

N, ~ 10 is sufficient. Moreover, the real space integration isth® SLS iSRis=R< . Further if the SLS does not enclose

much faster in terms of CPU time. For the method to remaidMore than one Dirichlet domain, these lenslike regions are in
accurate in compact modell, should, of course, exceed the direction of the faces and are adjacent to the S\\&

the number of the times a typical photon path crosses thénd from our analysis of the COBE-DMR constraints that
compact universe. We fourid, ~ 10 is still enough for the Viable CH models have volumes comparable to or more than

wherew; andw;; are O(1) coefficients that depend on the
specific difference scheme used.

models we have analyzed so far. that enclosed within the SLS. See Sec). M.these cases it is
clear that correlation patterns are built from points close to
IV. CORRELATION EEATURES IN THE CMB Lhe SITS and directly reflect the shape of polyhedral Dirichlet
ANISOTROPY omain.

The ISW-CMB correlation depends on the correlations

In standard cosmological models based on a topologicallpetween the points lying on the tw@adia) lines of sight
trivial space such a%{®, the observed CMB photons have from the observer to the SLS. Hence it is instructive to study
propagated along radial geodesics from a 2-sphere of radiwghether two different lines of sightadial lineg in the SLS
R s (that we refer to as the sphere of last scattering, )SLScontain a set of identical points. Consider the set of pdints
centered on the observer. The same picture also applies emdL, along two distinct lines of sight. Then for ajle I',
CH models when the space is viewed as a tessellation of thiae subset ;N y 1L, of L, if nonempty, would contain the
universal cover tiled by the Dirichlet domain with the ob- same points as the subsdt,;NL, of L,. The necessary and
server at the basepoint. ¥, g, the volume of the SLS, is sufficient condition for the existence of such pairs of lines of
much larger that that of the compact space, the photonsight is agairR s=R_ . It is possible to show that there are
propagate through a lattice of identical domains. As a coninfinite pairs of lines of sights which share at least one com-
sequence, strong correlations build up between CMB temmon point, but what is more interesting and relevant are the
perature fluctuations observed in widely separated directiongairs where the identical subsets contain a segment. It is a
The correlation functiol©(§,q") is anisotropic and contains straightforward exercise to verify that every pair of lines of
characteristic patterns determined by the photon geodesgight pointing towards centers of matched circles discussed
structure of the compact manifold. These correlations persisibove must contain a segment consisting of identical points
even in CH models whose Dirichlet domains are comparablésee Fig. 3. As we shall discuss in Sec. IV B, this result is
to or slightly bigger than the SLS. This is the key differenceimportant in understanding the correlation patterns in CMB
from the standard models whe€(§,§’) depends only on anisotropy when the integrated Sachs—Wolfe contribution is
the angle betweef]l and§’ and generally falls off with an-  significant.
gular separation. In the regime wher® s<R_, there are no points within

The pattern of strong correlations is directly linked to thethe SLS that are topologically equivalent and the specific
way the pointgon the universal covemM") enclosed by the correlation features discussed above are absent. However,
SLS are equivalent under the topological identification quantitatively the CMB correlations continue to have observ-
Consider a set of pointSon the universal cover. Then for all able deviations from that expected in a simply connected
yeT the pair of subsetySNS andSN y~ 1S are equivalent model untilR, g is substantially smaller thaR_ . Typically,
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connected universe is illustrated. The compact space is represente 0
by the (hexagonal Dirichlet domain,D, around the observe®, L Y o
which tiles the universal cover. The tile® andy D under one 0 100 200 300
of the face translationgeI" and its inverse are shown. The points O (degrees)

O’ andO” are the images of the observé, undery and y %,
respectively. The poirB’ is the y-translate oB and the poinAA’ is

the y~ ! translate oB. The solid circleS, 5 represents the sphere of
last scattering(SLS) on the universal cover; the dashed circles,
labeledyS s and y 'S 5, are the translates of SLS undgrand
v~ 1, respectively. The intersections of the sph&rg with yS g
andy 'S g create a matched pair of circles on the SLS. Similarly,
the shaded lens-shaped regions within the SLS consist of identic
sets of points. Consider the lines of sightA and OB directed
towards the centers of the matched circles. The @4’ is the
image of OB undery and the rayO”A’ is the image ofOA under
vy~ 1. By the arguments outlined in the text, the segmam®’

=0ANOB’ is identical toA’'B=0BNOA’.

- g c Fy T L Y DAY I
" Isw .
FIG. 3. The origin of CMB correlation patterns in a multiply 0oy k A /j ]

FIG. 4. This shows the behavior of the correlation function of
the CMB temperature on a great circle in the sky in a CH model
[m004(—5,1)]. The solid curves in the first and third panels show
C(0) for the surface term in the Sachs—Wolfe eff¢stSW) for
0,=0.3 and 0.6, respectively. They reflect the spatial correlation
along a circle on the sphere of last scatter{84S). The number of
gleaks inC(#) matches the number of Dirichlet domains that the
circle intersects. The smooth curves show corresponding results for
the simply connected infinite® models withQ),=0.3 and 0.6. The
second and fourth panels are analogous to the first and third panels,
except with the integrated Sachs-Woll&W) effect included. In
this more physically correct case, the sharp NSW peaks have been
diluted by the ISW contributions. However, the ISW effect induces

) o ) ~new features; in particular, note the appearance of strong negative
the correlation pattern around any point in the sky is anisocgrrelations in panels two and four.

tropic and distorted.

In simply connected models of the universe, the globakerms in the seD, and £5(x,x") = £5,(gx,gx’). This is the
homogeneity and isotropy ensures that the CMB sky is stagase with simple tori, in which opposite sides are identified
tistically equivalent for all observers. These global symme+,y pyre translation without rotation. In the case of CH spaces
tries are generically absent in compémpen or flatuniverse (a5 well as tori with twists I is not a normal subgroup of
models. Consider two distinct observers. If one of them meagu. Equivalent only are those observers mapped loybe-
sures thg correlation function between pa'uts<()., the cor- longing to the isometry grouf of the compact spacét
responding measurement for the other one will be betweensehc, not in the larger isometry group of its couét". Each
pairs @x,gx") whereg is the element of the isometry group gjement of the isometry grou on M commutes with all
of the universal coverge G, which transports the first ob- the elements of, with the immediate result that the,
server fo the position of the second Ol.ﬁﬁhe motiong al- calculated will be the same up to rotations of the sky if the
ways exists since the universal cover is homogenedtas observer is moved along the orbits Gfin M
example ifx,x" belong to the SLS as seen by first observer, In Sec. IVC, we discuss the correlatio'n pattern in the

thengx,gx are on the SLS from' the second o?sgrver S POINte 1B that arises due to the global inhomogeneity of the com-
of view. Each pairwise correlation valug,(x,x’) is deter- pact space.

mined by the set of distance®(x,x")={d(x,y;x"),¥;
el'}. Moving the observer translates this set to
{d(gx,y;9x’)}. SinceG" is the isometry group on the uni-
versal cover, it conserves distances; in particular, In Fig. 4 the complex behavior of the correlation function
d(gx,ngx’)=d(g*1gx,g*1ngx’). Thus, under a general is illustrated with the example of the small CH model
relocation of the observer ly, the set of distanceB(x,x") (m004(—5,1)). The SLS encompasses150 domains for
is transformed a$d(x,ij’)}—>{d(x,g*1ngx’)}. 0,=0.3 and~20 domains fo),=0.6. It is comparable to
If T is a normal/invariant subgroup @" (g~ 'yger, the size of one domain fdi2,=0.9. The angular correlation
Vyel', geG"Y), moving the observer simply reshuffles the along any arbitrary great circle in the sky in low®g mod-

A. Correlations due to the NSW surface term alone
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els shows distinct peaks as one encounters repeated copies of NGP SaP
the Dirichlet domain. The peaks are more pronounced when
one considers only the surface terms of E).in the CMB
anisotropy. Including the line of sight ISW contribution
tends to smearing the peaks, but also adds its own character-
istic features as discussed in Sec. IV B.

Consider compact universe models which are small
enough such that the SLS does not completely fit inside one
domain,R s>R_ . The CMB temperature is expected to be
identical along pairs of circles if temperature fluctuations are
dominated by the surface terms at the $R8|. We identify
these matched circles on the sky in our models and check the
extent of cross correlation seen at the angular resolution of
COBE-DMR. Figure 5 shows the matched pairs of circles in
two (“small” and “large” ) CH models superimposed on
random realizations of the theoretical sky generated from the
appropriate pixel—pixel correlation matrices. The models
were chosen to have a volume comparable to the voMge
within the SLS. Even with the coarse pixelization of COBE—
DMR, we do see fairly good cross correlation in the CMB LCH 0=0.8
temperature along matched circles in our realizations. Again, 180 degrees 180 degrees
the pattern of correlated circles is more pronounced when the
Sachs—Wolfe surface term is dominant, as happens in the FIG. 5. This shows two full-skynoiseless CMB anisotropy
small model(SCH) with Q,=0.9. We compute the cross- maps, plotted as pairs of 180° diameter hemispherical caps, one

correlation coefficient between the temperature fluctuation§entered on the South Galactic P¢®GP and one on the North
along two matched circle§; andC,=yC, (NGP). They are one of an infinite number of possible random
’ realizations based on the computed pixel-pixel correlation matrix

p1o={AT(X)AT( yx))/[(AT(x)2><AT(yx)z)]llz, for the model in question. Both surface and integrated Sachs-Wolfe
(9) effects have been included. The power was normalized to best
xeCy, vyxeC,. match the COBE-DMR data. The contours are linearly spaced in

30 wK steps. In contrast to Figs. 10 and 11, the maps are not

(In the case of a single realization we replace the statisticadptimally filtered. The model labels(arge CH and $mall) CH
average by the integration ov&ralong the circles.In the  refer to the CH models3543(2,3) andn004(—5,1), respectively.
SCHQ,=0.9 casepy, is in the range 0.6—0.95, whereas it (The model number associated with the topology corresponds to
is in the range 0.2—0.6 for the large modeCH) with 1,  that of the census of CH spaces from the Geometry center, Univer-
—0.6. sity of Minnesota; SCH is one of the smallest and LCH is one of the

The circles of identified pixels on the SLS are not the!a9est spaces in the censushe value off), in each was chosen
whole story. Enhanced NSW cross correlations, but at §° NatVaVsis. The matched pairs of circles expected if the
lower level, also exist between all pairs of points on the SL MB anisotropy is dominated by the surface ter_[m_S] are super-
which are projected close to each other on the CH manifold'.mposeOI on the map for each model. Each pair is labeled by the

This can be seen as secondary maxima in the examples same number centered on the circles. The relative phase is shown
y P H} identified points marked by a diamond and a triangle on each

Fig. 4; these are at_)sent in standard cosmological mOdelﬁircle in a pair. For clarity, we show only the eight largest pairs out
Some features persist at a detectable level even when the a5 ¢ the | cH, _, . case. Even at COBE—-DMR resolution, we
0= " ’ !

compact universe encompasses the SLS, Rgs=R-, al- find the cross correlation between the temperature along matched

though circles are absent in this cdtiee effect dies out for circles is very good in the SGH- ¢ model. The ISW contribution

Ris<R<). When the relative ISW comp_one_nt 1S S'gmflca.m’ is larger atQ)4=0.6, and the cross-correlation coefficients are sys-
the geometrical patterns based on pointwise |dent|f|cat|on%maﬁca”y smaller for LCH_ _o . circle pairs
0= ’

on the SLS are supplanted by more complex features arising

from identifications between photon geodesics, e.g., the . .
strong negative correlations evident in Fig. 4. CMB correlation. In Figs. 6 and 7, the temperature fluctua-

tions along matched pairs of circles in a realization are plot-
ted. Sinc) is closer to unity in the small modéSCH), the
temperature fluctuations along the circles are more tightly
In a hyperbolic model, the temperature fluctuations de-correlated than in the large mod&/CH).

pends on the entire path of the photons from the sphere of An example of ISW induced features is the significant
last scattering to the observer. The relative contribution ohegative correlations between widely separated directions in
the ISW effect increases as the vallg decreases. As the the sky, as is clearly seen in the panels two and four of Fig.
ISW component increases, it tends to wash out the pattern& In fact, the highly anticorrelated regions tend to lie at the
arising solely from the NSWdescribed in the preceding sec- centers of the matched circles discussed in Sec. IV A. Figure
tion). However, it also introduces additional features in the8 plots the anticorrelated pairs of pixels separated by more

B. Correlations with the ISW effect included
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FIG. 6. In the eight panels of the figure, the
- - = 0 A . .
2 b1 »Am E b3 /@A 3 CMB temperature along the eight matched pairs
S Ry \'1 S8 % of circles of the SCH model shown in Fig.(fop
a . = s . = . .
= e z = = pane) is plotted as a function of a polar angle.
0 100 200 300 [+ 100 200 300 . .
polar angle polar angle The temperature shown is from the same realiza-
tion of the CMB sky that is used in Fig. 5 and the
EREE M 0 a 3 diamond and triangles are in correspondence. The
S RSV S AV AN ; . ;
£ W g o= P~ ] CMB anisotropy includes both the surface and
2 -4f Pu=0.9 3 -4 p=0.6 3 integrated Sachs-Wolfe effects. A;=0.9, the
0 100 200 300 0 100 200 300 ISW contribution is small, and thus the values of
polar angle polar angle . .. .
the correlation coefficient are high.
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than~10° below a threshold in the correlation coefficient of points,AA" andBB’, and close ones. The integral term has
Cpp,/\/CppCp,p,: —0.3 in the LCH model with();=0.6.  correlations between close points but is down-weighted by
This should be contrasted with the highest levels of anticorthe extra factor ofAF. Thus the interference terfwhich is
relation of ~—0.04 predicted in the corresponding simply usually small in simply connected modgla this particular
connected universe. setting can dominate the total CMB correlation and make it
As discussed earlier, the lines of sight pointing to centersyegative. Thus the existence of strongly anticorrelated spots

of matched circles have segments of identical points and thigaysed by the ISW term is a signature of nontrivial topology.
can lead to anticorrelation between the CMB anisotropy in

those directions. Here we explain this with the help of Fig. 3.
The segment& B’ andA’B of lines of sightOA andOB are
identical underT". [Recall Egs.(3) and (8) for the Sachs— The global inhomogeneity of compact spaces implies that
Wolfe contribution to the correlation between temperaturgthe variance of the the gravitational potential is spatially de-
fluctuations in two directions in the sKyThe surface term pendent. If these fluctuations arose from quantum noise dur-
depends on the correlation of the potentibl, between two ing inflation, ®(x) would be an inhomogeneous Gaussian
points physically separated by the distamge The interfer-  random field, with a pattern of inhomogeneity determined by
ence term however contains correlation between identicahe topology of the compact space.

C. Patterns arising from global inhomogeneity

© 4F O A S 4F O A
- 2F E - 2E
€ o AR % E of— g\fxvm
5 Pu=0.4 ; A Pu=0.2 c
[+] 100 200 300 0 100 200 300
polar angle polar angle
FIG. 7. In the eight panels of the figure, the
o 4o A Rl 4 A 3 CMB temperature along the largest eight matched
T 2B T o2F E . .
£ 0 M\W g0 oA M\/N pairs of circles of the LCH model(§,=0.6)
—&F = —4E - E . . .
55 Pu=04 A Pu=02 : shown in Fig. 5(bottom paneél is plotted as a
0 100 200 300 ° 100 200 300 function of a polar angle. The temperature shown
polor angie polor angle ) < .
is from the same realization of the CMB sky that
Y £ Y 5 «f@ ry is used in Fig. 5 and the diamond and trlangles
S H AN % g o s : markers are in correspondence. The CMB anisot-
g:f pu=0.6 502 u=0.6 -V 3 ropy includes both the surface and integrated
o 100 200 300 ° 100 200 300 Sachs-Wolfe effects. Af),=0.6, the ISW con-
polar angle polar angle tribution is significant, resulting in small values
of the correlation coefficient.
o 4F O A D 4fF O A
=~ 2F Z o2
£ g9 > Aol
§% pu=0.1 \yv — K P00
[} 100 200 300 [ 100 200 300
polar angle polar angle
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NGP LCH 2,=0.6 SGP

I NSW+ISW I

180 degrees 180 degrees

FIG. 9. The figure shows two full-sky maps of the fluctuations
in the standard deviation of the predicted CMB temperature, plotted
FIG. 8. The negative correlation between pixels located at thexs pairs of 180° diameter hemispherical caps, one centered on the
center of matched circles is demonstrated. The top panel shows tgouth Galactic Pol¢SGP and one on the NorttNGP). The con-
8 largest circle pairs for the LCH model on a sky map, as in Fig. Stours are linearly spaced in units of 0.03 of the mean standard
The groups of pixels marked out in the lower sky map are distantieviation. The first map considers only the NSW contribution,
pairs with high anticorrelatiorCy, /VCpoCprpr<—0.3. Itis visu-  where at the peak value standard deviation is 45% larger than its
ally apparent that these regions lie at the centers of matched circlegean value. The second plot shows that the significant ISW contri-
and are labeled accordingly. bution atQ,=0.6 radically alters the pattern of fluctuations in the
variance since the CMB temperature now depends on the potential

The CH models that we have considered also predict th&t!0ng the entire line of sight.
the rms temperature fluctuations in the sky vary with direc- . ) ) o
tion, as is shown in Figs. 9 and 10 of Paper I. In both LCHtemperature fluctuations in the corresponding direction, cre-
and SCH models there are loud spots—directions in the sk@ting a flat spot signature in the CMB_anisotropy, shown
where the variance is significantly larger. For the NSW con-explicitly for the toroidal horn space {80].
tribution, these arise when the SLS crosses loud regions in
the Dirichlet domain where the variangg,(x,x) is large. V. BAYESIAN ANALYSIS CONSTRAINTS
These regions consist of points in the Dirichlet domain FROM COBE-DMR
where the length of the shortest geodesic is small compared

. ) _ In this section, the goal is to explicitly evaluate how likely
to _the t_yp|cal A th? shortest close_d geodesic at othefe various compact universe models are in light of the
points, i.e., the closest image of the point on the univers

. OBE data on angular anisotropies. We first review the sta-
cover is smaller than-R.. The LCH model has a loud yiqhica| gistributions for the maps derived from the COBE
region around a vertex of the Dirichlet domain shared by tWOjata then show how we use our techniques to confront the
pairs of identified faces where the nearest image of the point& tai

close to this vertex are at a small separation. We discusse The raw data of a CMB experiment comes in the form of
this effect and results for the NSW effect in a previous PAPEL, time stream of measuremertsat N, time-ordered points

[9]- F!gure 9 shows the extent to V_Vh'Ch the ISW term mat‘;kﬁ‘or each frequency channel. The data are then binned into a
the signature expected from a simple NSW con5|derat|on,'\I _pixel discretization of the sky, through the relatidp

the loud spot is dramatically modified, even changing Sign‘:pEthpAer 7, Where the NtXN'p pointing matrix Py,

Wh?ﬂ IrSers Lnndl\j\?ned'x mol £ multiol nnected maps the observing time to the angular position at that time
ere are known exampies of multiply connected spaceg 4 7, is the time stream noisd , is the true signal on the

where the pattern of inhomogeneity is a dominant observablgky_ With the(reasonable and checkablssumption that the
effect. In[29] a noncompact but multiply connected horn noise is Gaussian with covariance mathbe (7,7,/), one
topology was constructed and the properties of the perturba- v

tions were studied. It was demonstrated that there is a regidtf" find the map\ which maximizes the conditional prob-
in which the variance of is strongly suppressed and would ability _P(d|A) and the pixel-pixel noise covariance matrix
correspond to a dark spot in the distribution of galaxies. FofPout it,.Cy,

the NSW contribution to the CMB anisotropy, this same ef- o

fect directly translates to suppression of the variance of the A=C\P'N"1d, Cy=(P'N"P)" L (10)
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No larger moments are required, given the Gaussian noise Cr=C(0p.8p).-
assumption. Thus, the probability of the data given the true
sky signalA is The C+ which enters here should have the COBE beam taken

into account. We do this by calculatir@; through Eq.(8).
. 1 — 1, = We used a higtk-cutoff in evaluating theC", choosing its
P(A|A)= nge’l’m’m CN(A74) 1 (11)  value to regulate the high frequency part@f, but ensured
(2m) N that it was much higher than the corresponding scale associ-
. . ated with the COBE beam size. The effect of the COBE
whereCy=((A—A)(A—A)"). Provided the pixelization is beam was included by forming'C+B, whereB, is the

fine-grained enough, thd map plus theCy contain all of ~COBE beam between pixefsandp’, related to the beam-

the sky information present in the original data det shapeB, by

The COBE teani26] have given six maps at three fre-
guencies, 31, 53, and 90 GHz, each of 6144 pixels of size B ,:E (21+1) B,P, (8- G )- (13)
(2.6°)%, along with information to construcEy from the PRI g T ERTR

number of observations made in each pixel and the average

noise in the radiometers over an observing time. Four our This gives all the necessary ingredients for our analysis
analysis, we compressed the six COBE-DMR m#ps]  except for a prior probability>(Cy) for the theory, which
into a (A+ B)(31+53+ 90 GHz) weighted-sum map. Galac- may encode both our theoretical prejudices about the models
tic emission near the p|ane of the ga|axy Sufﬁcienﬂy Con_and results from other observational tests. For the moment
taminates the primordial signal that a regiai20° from the =~ We leave’P(Cy) unspecified and concentrate on the likeli-
galactic plane is removed, along with adjacent extra pixels ihood function of a model

which contaminating galactic emission is known to be high,

as adyocated by the DMR'team. Although one can dp analy- E(CT)EP(KI Cp)= f dA P(KM)P(MCT)- (14)

sis with the map’s (2.6%) pixels, this “resolution 6” pixel-

ization of the quadrilateralized sphere is oversampled rela-, o ) , L

tive to the COBE—DMR beam size, and there is no effective! N€ integration is carried over all virtual realizations of the
loss of information if we do further data compression bySKY A. The resultis

using “resolution 5" pixels, (5.2°3 [27]. The celestial

sphere is then represented bl,=1536 pixels before the £(Cy)= 1 —(12AT(Cy+cp A
Galactic cut, withN,=999 pixels remaining after the cut is T 2mN?|Cy+ Co M2 '
made. OurCy is largely diagonal, but we include the off- (15

diagonal components centered on a 60° pixel-pair angle

separation, which corresponds to the horn separation of thEhe likelihood, defined by Eq14), is ultimately a function
instrument. We remove a best-fit monopole and dipole fronPf the parameters of the model, built into t@g. Maximi-

the cut-sky maps. Proper account is taken of the monopolgation of £(C+) in the parameter space is a complex task, if,
and dipole contributions, as well as possible quadrupole cors is generally the case, the dependence on parameters is
tamination by Galaxy emission, by increasing the noise imonlinear. However, it is straightforward to determine rela-
associated template patterfi81,32. This corresponds to tive likelihoods of any models with our precomput€g's.
having arbitrary monopole, dipole, and quadrupole contami- In the case of CH models the parameters are the choice of
nation possible, and effectively “shorts-out” this contribu- manifold M; density parameters, of the matt@r, and of

tions toCr. vacuum energyt) , (most important is their combinatidn,

Now we need a probabilistic model for the signal. Therewhich setsR, s/d., and, hence, the physical size of the com-
may be several physically different signals in the COBE—pact spacg the manifold’s orientation with respect to the
DMR data—not only primordial CMB anisotropy, but also observed map, i.e., the triplet of Euler angteghe position
galactic emission and others. However, except for the quaddf the observek,,s within the manifold; and the parameters
rupole contamination which we corrected for, the contribu-characterizing the initial spectrum of fluctuations, such as the
tion of signals other than CMB is small in the weighted sumoverall amplitude and the spectral tilt. If, as here, we fix the
(over frequency channglsnaps that we have used. We have initial spectral slope, only the amplitud® remains free. In
assumed a Gaussian probability distribution for the primor-our studies, we have assumed a uniform prior probability for
dial fluctuations ofd®. As we have seeAT/T is linearly A and integrated the likelihood over(ite., marginalized the
related tod, which remains true even if all the effects lead- parameter However, sinceC is always sharply peaked near
ing to the CMB anisotropy are included. Thus]/T is also  the best-fit value of, the choice of the prior foA is irrel-
statistically a Gaussian random field, fully described by theevant.
theoretical pixel-pixel correlation matri€; that we have Thus, £(Ct) = L(M,Qn, Q4 ,a,Xepyd. The logical way
focused on in our computations: to proceed would be to do many manifoldg(; for each

manifold, many different Q, and Q,; for each
(M,Q,,Q,), many orientationsw, etc. For the exercise
P(A|Cy) = —e—1/2ATC{1A, presented here we have chosen two model spaces, one with a
(27)No2| C]| M2 (120 small volume, SCHMO04(—5,1), and one with a relatively
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TABLE I. The log likelihoods of the compact hyperbolic models relative to the infinite models with the
same(), are listed. The probabilities are calculated by confronting the models with the COBE-DMR data.
The values quoted are likelihoods marginalized over the amplitude of the initial power spectrum. The volume
within the sphere of last scatterif®LS) relative to the volume of the compact models of the universe
(Vis/Vyy) is listed. The three columns of logarithm of likelihood ratiBsC, correspond to the best, next
best, and worst values that we have obtained amongst 24 different rotations of the compact space relative to
the sky. The number in brackets gives the conventional, albeit crude, translation of the probabilities to a
Gaussian likelihoodZ/ £o~exd —14/2]. Only the last model for one specific orientation appears to be
consistent with the COBE-DMR data.

Log of likelihood ratio(Gaussian approx.

orientation

CH topology

[VM/di,R> ,dy/de] Qn Vis/V y best second best worst
0.3 153.4 —35.5 (8.40) —35.7 (8.40) —57.9 (10.8)

m004(—5,1) 0.6 19.3 —22.9 (6.80) —23.3 (6.80) —49.4 (9.90)
[0.98, 0.75, 0.8b 0.9 1.2 —4.4 (3.00) —8.5 (4.10) —37.4 (8.60)
v3543(2,3) 0.6 2.9 —3.6 (2.70) -5.6 (3.30) —31.0 (7.90)
[6.45, 1.33, 1.9D 0.8 0.6 2.5(2.20) -0.8 (1.30) —12.6 (5.00)

large one, LCH,v3543(2,3), and considered ‘pure’ open <0.2, thus the choice of our reference model is not critical.
modelsQ , =0. For each of these CH spaces we found the The clear conclusion to be drawn from the table is that
likelihood for three values of),, and 24 different orienta- when(,, is too small, sdR. <R, g, the likelihoods are tiny
tions. We have chosef),, values to straddle the linR.. relative to the larger models. We believe this is a robust
~R_ g, since we have found this to be a rough boundaryconclusion, largely independent of the details of the manifold
between models which pass and which fail the COBE-DMRchoice, orientation or the assumed spectrum of the initial
test. fluctuations.

The 24 orientations correspond to the rotational symmetry What is also clear is that, ne&.~R,g, it can happen
of a cube on which the COBE-DMR pixelization is speci- that for certain manifolds and orientation3,is higher than
fied. This allows us to avoid interpolatin@; to new pixel  for the standard oCDM universe. The interpretation is that
positions for each rotation and deal only with remapping ofsome of the highly correlated spots that are predicted, such
the correlation matrix elements. We have not varied the poas those shown in Fig. 8, partly line up with the observed
sition of the observer. We have chosen it to be at the “locakpots in the COBE-DMR map. Even though there are
maximum of injectivity radius,” from which position the realization-to-realization fluctuations, the random skies, de-
space usually looks most symmetfior round. We expect rived from an anisotropic model with correlated spots built
that for this observer the model will be less restricted, tharninto C, will always be constrained to deliver pixel pairs
for an observer at another place, who would see a moreeflecting these correlations. By contrast, in infinite isotropic
squashed and anisotropic space. A caveat is if the moshodels there are no preferred spots and in a much smaller
squashed direction is partly hidden within the galactic planefraction of realizations particular spot line-up will happen.

In the torus model calculations, we chose many moreThus, this particular CH model at the specific orientation
manifold orientations to sample the Euler angle space, sinceould be always preferred over its isotropic infinite counter-
C+ could be easily computed with a fast Fourier transformpart.
using the known eigenfunctions of the torus. In general, we Allowing the manifold and its orientation to vary, we can
could continually refine our orientation angles to hone in onget this alignment from time to time, given so many param-
the maximum likelihood value more precisely. We would eters. An obvious question is how to assign the prior prob-
obviously do so if we felt that we were on the trail of a true ability for orientation. This should obviously be random, ex-
model of the universe, but such a refinement is not essentigept that if we actually do live in CH universe, there is a true
for the points we make here: that universes which are mucbrientation and we are not allowed to marginalize over ori-
smaller in volume than the volume within the last scatteringentation nor manifold choice. If high likelihood is achieved
surface are strongly ruled out, independent of orientation. for some manifold at a specific orientation, one could argue

In Table | we present the results for the likelihood of thethat this model is a preferred explanation, at least for the
compact models in our selection relative to the likelihood of COBE—-DMR data. What is then required to test this expla-
the standard noncompact open CDM model with the sameation? Clearly, a strong test is to go to higher resolution. If
Q. The theory with infinite volume is known to fit the the same manifold and orientation remain preferred at higher
COBE-DMR data well and is considered to give a goodresolutions, this should spur cosmologists on to further
description of the data. COBE-DMR data alone does nothecks of the CH hypothesis and search for specific sigha-
discriminate well between the infinite models with different tures of the compact space. A powerful check is to search for
values of Q,, and ., except disfavoring very low),, the correlated circles such as in Fig. 5. A manifold-
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140 degrees 140 degrees 140 degrees 140 degrees

FIG. 10. The figure consists of a column of three CMB sky  FIG. 11. The three CMB sky maps, each showing a pair of 140°
maps, each showing a pair of 140° diameter hemispherical cap§iameter hemispherical caps, centered on the S¢8GP and
centered on the Soutt8GP and North(NGP) Galactic Poles, re- North (NGP) Galactic Poles, are analogous to the lower two plots in
spectively. The top map labeled DATA shows the Fig. 10 but for the §nall) CH modelm004(-5,1). The fact that
COBE-DMR 53+ 90+ 31 GHzA+B data after Wiener filtering, (20=0.3 and 0.6 models above are strongly ruled out by the
assuming a best-fit standard CDM model, normalized to thécOBE—-DMR data is obvious visually. The,=0.9 model is not
COBE-DMR amp"tude_ The next two maps are of one randornobviously eXCluded on the Visual baSiS, but iS indeed eXCluded on
realization of the CMB anisotropy in3543(2,3)—our choice of a  the basis of our Bayesian analysiSee Table ).

L(arge CH model example, fo);=0.6 and 0.8 based on our

theoretical calculations o€(§,q’) convolved with the COBE—- COBE-DMR data. They should be compared with the
DMR beam. Both surface and integrai@8W) Sachs-Wolfe effects “DATA” map in Fig. 10, a Weiner-filtered picture of the
have been included i€(§,§’). No noise was added. The ampli- CMB data. The Wiener-filtered map is the mean signal sub-
tude in each model was chosen to best match the COBE-DMRect to the constraint of the observations for a theory charac-
data. The theoretical sky was Wiener-filtered using the COBE—erjzed by a giverC+:

DMR experimental noise to facilitate visual comparison with the
data. LCH withQ);=0.8 is compatible with the data with a suitable
choice of orientation, whereas with,=0.6, it is ruled out(see
Table ). For all the maps in Figs. 10 and 11, the average, dipole . ) ) ) )
and quadrupole determined for this cut sky were removed. A 20°The maps obtained with different choices f@¥ in the

galactic latitude cut was used, with extra pixel cuts to removeWiener filter often look quite similaas long as the € fits
known regions of galactic emission proposed by the COBE-DMRthe data reasonably welFor Cy, we used that for a stan-
team, accounting for the ragged edges. The contours are linear§ard(),,=1 CDM model, which fits the data rather well. As
spaced at 1K steps. The maps have been smoothed by a 1.66far as the visual appearance of the map is concernéll, a
Gaussian filter. <1 oCDM model would look very similaf33]. The differ-
ences are in line with what we might expect: if there is a
independent strategy with 13 arcmin MAP data emphasizetittle more power on small scales, then the map has slightly
by Cornishet al. [28] exploits these correlated circles. A more contours at small angles. When one uses a model
caveat is that there are other “surface terms” involving thewhich is greatly disfavored by the data, the Wiener map
Doppler term which will spoil somewhat the simplicity of looks extremely different. For example, there is definitely a
this strategy. pronounced large-scale signal in the DMR data which a low
Figures 10 and 11 compare theoretical realizations of th€), compact hyperbolic model cannot reproduce. It then tries
CMB anisotropy in the LCH and SCH models with the to interpret that large-scale signal as a chataed highly

(AJA,Cry=[Cr(Cy+Cy) YA, (16)
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unlikely) superposition of noise, which is another expressiorare not invariant under the choice of the space basefi@nt
of why the model is so statistically disfavored. the observer positigrand which quantify how the sky looks
What one should be noting looking at the maps is thefor a given observer. Our limit on CH models uses the in-
shapes of the patterns and not the specific locations of thgariant linear measurd,,, but roughly corresponds to the
patterns, since these can change from realization to realizgondition R- >R, 5 when R-. is the outradius for the ob-
tion. The full Bayesian analysis takes into account all posserver at the basepoint which maximizes the “injectivity ra-
sible realizations. The incompatibility of models with small dius” of the spacd19]. This means that when the Dirichlet
V1V s(SCH-2(=0.3,0.6) is visually obvious: the best fit domain just fits into the last-scattering sphere, the correlation
amplitudes are high which is reflected in the steeper hot anghatrix is already too distorted to satisfy the data. Moving the
cold features. Although, the SCRy=0.9 and LCH{);  observer to another point, will generally increaRe, but
=0.6 models do not appear grossly inconsistent, it turns ouill also squash the domain in some other directions. In the
that the intrinsic anisotropic correlation pattern is at oddsmore anisotropic view of the CH space presented to such an

with the data statisticallyTable . observer, we expect to predict less favorable CMB skies.
Thus, moving the observer away from the basepoint which
VI. CONCLUSION maximizes the injectivity radius may not relax the constraint.

The absence of good data close to the galactic plege the
Although there are an infinite number of possible CHgalactic cut in the dajamay help some models at specific
spaces, one can extrapolate some general conclusions on Gffentations, but not to the extent that it does for the 1-torus
universe models from our limited eXpIOI’ation of COBE- space, which has an exact p|anar symmetry. Extensive ana|y_
DMR constraints on the LCH and SCH examples. We shalkijs of the changes induced by varying observers is left to
present the CMB constraints on a larger set of CH spaces ifjtyre work.
[13]. The main CMB feature of small compact universe  As we emphasized ifi10,11] and here, the constraints
models—the presence of high correlations between manyrise predominantly from predicted pattern mismatches in
well-separated pixel pairs—is also their handicap. Thegyr models compared with the COBE tapestry. This is en-
COBE-DMR data does not, generally, favor interpre-irely encoded inCr,,, which can also be expressed in
tation as being a noisy random realization der_lve(_j fromierms of aY|, basis. HoweverCy /' is generally quite
a _small compact model. Formally, the likelihood complex and reducing consideration to the isotropigad
P(Acose-pmr Crppr) is much smaller for such models than |pses a substantial amount of information, since it involves a
for a standard oCDM theory in whidBy,,, mostly justfalls 8, projection, followed by a trace oven. More impor-
off with separation between the pixels. tantly, as we show in detail in Appendix B, has substan-
High correlations at large angles are numerous in a comsally increased error bars from ‘“cosmic variance,” i.e., in
pact space witld ,, <R, g and we are confident in concluding the expected theoretical fluctuations about the mean, so we
that such topologies are not viable models for our universe iman draw only extremely weak conclusions about the model.
view of the COBE-DMR data. Of course, the possibility of This is evident in the error bars on the angular power spec-
exceptions in the infinite list of CH models remains, but thetrum shown for a set of the CH models in Fig. 12. Thus,
bulk of models must satisfy the, in our opinion quite solid, although theC, for a compact model may fit the data reason-
limit d > aR, g to pass the CMB test. Setting=1 would  ably well, and it sometimes does so even better than the
be a very conservative choice; all our numerical simulationgorresponding infinite model with the sarfly, statistically
are consistent with at least=1.4. At this limiting value the this may be a rather meaningless observation, and, if one is
CH models we tested are excluded atl8vel. not careful, even misleading. Some auth{#8§,37 have ar-
Similar conclusions were reached by some of the authorgued that because the me@np shape may look better visu-
(Bond, Pogosyan, and Sokolp¥2]) for flat toroidal models. ally, this is evidence that the models are preferred.
Comparison of the full angular correlatidbomputed using To make the point quantitatively that conventional use of
the eigenfunction expansipwith the COBE-DMR data led C; can lead to very wrong conclusions, Table Il compares
to a much stronger limit on the compactness of the universenhe likelihood ratios for a few models obtained using jGst
than limits from other methodg34,35. The main result of information, treated as if they were statistically isotropic
the analysis was thd&®; /R s>1.3 at 95% CL for the equal- Gaussian models with the isotropized power spectrum, with
sided 3-torugwith the periodicity length R, the diameter what was obtained in Table | when the full pattern-
of the torus isdr=3Y?R;, thus a=2.29. For 3-tori with  recognition statistical treatment was made. Details on the
only one short dimensiofor for the noncompact 1-toruys construction of the table are given in Appendix B. In all
the constraint on the most compact dimension is not quite asases shown, the CH, is preferred over th€, of the cor-
strong because the features can be hidden in the “zone @&sponding infinite model, but it is grossly misleading be-
avoidance” associated with the galactic cut. cause of the enhanced error bars, and the huge amount of
Statistical properties of fluctuations in CH manifolds arerelevant information left out. All models argrongly ruled
anisotropic and inhomogeneous. CMB predictions of courseut, save one. And that manifold, with its specific orientation
depend not only on the topology of the space, but also on theelative to the sky, is preferred even more than the statisti-
position of the observer and the orientation of the Dirichletcally isotropized one.
domain with respect to COBE—DMB sky. This lack of high ~ Most astrophysical observations point to a matter density
symmetry is reflected, in particular, R. andR_, which  Q_=<0.4[6]. For the matter-dominatef,= (), open cos-
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ooOF T T T T T T T T T T +Q,, even thoughQ),,, may be small. Ironically, although

40001_ SCH 0,=0.3 ] this makes open models less attractive, having a nor2gro

; ] LL { L which combines withQ,, to give Qo near unity actually
e returns topologically small CH spaces back to life, since it

alleviates the constraint on the side,. Qualitatively, CH
models with the same value &, g/d. will have similar
constraints, whether there {3, or not. Some quantitative
differences will of course arise because of the diminished
contribution from the ISW effect in th&),,+Q, model
compared to the correspondifiyy, =0 one.
In Fig. 13 we show thd),— (), parameter space, where
] the lines of constanR, g/d. provide rough limits on the
A+ ] viability of the CH models, depending on its size. This plot
; ] illustrates that allowing for nonzelQ , relaxes the limits on
aoof  SCH (,=0.9 3 the allowed CH topology. This is a welcome conclusion,
. ] since one could argue thébpologically small CH spaces
are less complex and may be more probable for quantum
processes in the early universe to have created them, making
T S R them a more natural choice among other CH mo@a®.
5 10 15 Although our results strongly indicate that manifolds with
{ smallR- <R, g are unlikely to survive confrontation with the
COBE-DMR data, we emphasize that, in the.>R,g
FIG. 12. The three panels show angular_ power spectra for th% R_ regime, there is some room both to have interesting
SCH model a),=0.3, 0.6, and 0.9, respectively. The larger eror ghacific CH correlation patterns and still be consistent with
bars are the actual cosmic variance computed using the full COM&he COBE—DMR data. WheR_ is large compared t&, s
Igtion matrix infor_mation. The sma_ller error bars drawn slightly the results will quickly converge towards the usual infinite
displaced to the right are the cosmic variance one would assign {yserholic manifold results. The intermediate terrain still en-
one nalvely assumed that tﬁ,’e_contalned all the |nf0_rmat|0n._ The compasses ample scope for interesting topological signatures
excess varlgnce reﬂects. the |ncompleteness ofCthiaformation to be discovered within the CMB. Although our methods are
due to the mhergnt statistical anlsotropy._ The dottet) curve quite general, testing all manifolds in the SnapPea census
showsC, for the simply connected open universe at the same valugy,g way is rather daunting, and there are countably infinite
f)fQo. The error bars show the cosmic variance. ]Zh@s normal- . onifolds not yet prescribed. What may be promising for
ized to give the same rms power as the corresponding SCH modgfiscqyery are specialized statistical indicators, which are less
for the COBE-DMR beam. The full COBE-DMR beam, with q\yerfy[ discriminators than the full Bayesian approach we
rough Gaussian scale,,,~17.5, has been factored outin making paye ysed here, but not as manifold sensitive; e.g., the sta-
the plot. tistical techniques which exploit the high degree of correla-
tion along circle pairs thd28] have emphasized, and Fig. 5
mology, when we combine this with thel,,>aRg s reveals. Maps like we have constructed will be necessary to
COBE-DMB constraint that we suggest, i.e),>1 test the statistical significance of such methods. We also note
—tanlf (d,,/2ad.), we would be able to rule out topologi- that dramatically increasing the resolution beyond that of
cally small CH models withd ,/d.< 2.8 (adopting the con- COBE-DMR to, e.g., MAP resolution, is quite feasible with
servativea=1.4). current computing power using our techniques.
Recent SNla resultg7], the emerging location of a peak
in the CMB power spectrum at- 200, and the combination ACKNOWLEDGMENTS
of CMB with large scale structure daf&] all point to a We have made extensive use of gxaPPEApackage and
significant (), term, with less room for a small,=(),,  related material on compact hyperbolic spaces, which is

TABLE II. The log likelihoods of the compact hyperbolic models relative to the infinite models with the
same(),, are listed. The probabilities are calculated by confronting the models with the COBE—DMR data
solely in terms ofC, . For easy reference the corresponding relative likelihood for the “best” orientation is
listed from Table I.

SCH: m004(—5,1) LCH: v3543(2,3)
CH topology
Qn 0.3 0.6 0.9 0.6 0.8
Log of likelihood ratio 0.621.10) 0.430.9%) 0.480.98) 0.61(1.10) 0.821.30)
Using only(,
Log of likelihood ratio —35.58.40) —22.96.80) —4.43.00) —-3.6(2.70) 2.52.20)

Using full Crppy
(best orientation
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trya, e dg?=a?(7)[(1+2®)d7?— (1—2%)g> dx dx“].

Fo. e ‘. TN AStFODhV‘s: l‘lm"lt 2 (Al)

1. B (‘_)m A . 4

H e : : e This gauge is particularly suitable for the analysis of multi-

0.8 20, g s : : ; y ply connected universes, since the perturbed 3-space is ex-

Loy * 2 : 1 plicitly conformal to the background 3-space, leaving the

R e ST | topological identification of points in the background coor-
T - dinatesx' exact. Also for the perturbed quantities in the lon-

0.6 \ - > Spherical Models

gitudinal gauge one does not need to distinguish between
gauge-specific and gauge-invariant definitions.

In first-order perturbation theory, the photons observed at
the origin from the directiorf] at the (present momentr,
have propagated along radial null geodesics. The position
(7,x') on the geodesics is parametrized bsy{ x,xq) in
terms of the affine parametgrwith y=0 at the origin.r
coincides with the present radius of the FRW horizgp,

The transport of the temperature fluctuatiar(,x,d)
along the photon path is given by the Boltzmann equation

~D A+ (9, O)A7= (9, ¥ +9'0,P)+(9,{)(e/4+ ' di4h,),

. (A2)

FIG. 13. In the Q,—Q, parameter plane, the horizontally Dy=§'d;—9,,
shaded area shows the 95% Qtonfidence limit region coming
from the analysis of high redshift supernovae SNI@]. For refer-  where we have used the following notatiér@X is the total
ence, the vertically shaded region shows 95% CL restrictions arisderivative along the photon path am@ddenotes the partial
ing in the standard infinite universes when SNla and CMB data arelerivatives. Along the path the direction of the photon mo-
combined. Since intermediate-scale CMB data dominates the CMBnentump is opposite to the direction @f. The energy den-
constraint on the first peak position and hence(byy where the ity fluctuations are given by local angle averaging over mo-
influence of the topology would not be so important, the limits onmentum  directions g(7,x) = [dQp Ar( .x',p)/4mw. The
O, Q, in CH spaces should be similar to those shown. We sugs,nction {(x)=J¥dx o1n, is the optical depth due to Th-
gest that lines of constaR; g/d. would provide effective guides to ompson scattering of photons on free electrons with a num-
the viability of the compact models. The two lines with enhancedber densityn.. The velocity is described by the velocity
weight correspond to the lin&s/d;=d,/1.4 in our SCH and otential ¢, e\/.\/e have also omitted subdominant terms re-
LCH example spaces. The allowed region is to the right of theP v o .
R.s/d,=d /1.4 lines. The vertical line a8, =0.4 cuts out the !ated to the effects of polarization and the angular anisotropy
high matter density part of the plane which is disfavored by obser!" the scatterllnd33]. .
vations. The resulting temperature fluctuation measured by the ob-
server in the directioif| is obtained by integrating E¢A2)

available at the public website of the Geometry Center at th&/0ng the photon path

University of Minnesota. T.S. acknowledges support during B
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—(elA+q'ai4p,) a0, tW]. (A3)

Assuming the standard recombination history, the ap-
proximation of instant recombination is quite accurate for the
APPENDIX A: INCORPORATING SMALL ANGLE CMB CMB anisotropy at large and intermediate angular scales. It

ANISOTROPY assumes an instantaneous transition from the phase at
In this section, we discuss the calculation using the LS Whehre thﬁ photons Werehtlghtlmcoupled with thfe ellec-
method of images of the primary CMB anisotropy at smallertrons’ to the p ase at>1s where t ey propagate freely
angular scales where sources other than the Sachs—WoF'f’éter last scatte_rmg s In_E_q: .(AS) th's.’ fo[r?(a)lly corre-
effect make the dominant contribution. The most importanPNds to the limit for the visibility functioe ™ **'— (7,
effects are the Doppler shift due to scattering of photons on” 7.s~ X), Where®(x) is the Heaviside step functlopé(c)or—
free electrons during recombination, and a term describingeSPondingly, the differential visibility functior-d,e~ X’
the compression and rarefaction of photons. — &(70— 715~ x), Where 5(x) is the delta function. Omit-

We shall consider only the scalar mode of perturbations.

As in the main text of this paper, we choose to work in the
longitudinal gauge in which the metric perturbations are de- “Other frequently used notations are®, =¥, 5,=¢, as in

scribed by two scalar potentials and W, [33].
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ting the monopole terms, one obtains the well-known exprestA4) or Eq. (A3). For a completely general source term, the
sion for temperature fluctuations in this limit: correlation function for the CMB anisotropy is the double
_ integral
A(79,0)=(eld+ P +0'9,¢,)|=xs
X=To™ TLs

c@a)= | "du [ "drtsansar). @s)

+f Dy (VD). (Ad)

0 In a compactmore generally, multiply connecteBRW uni-
verse, the method of images can be invoked to compute the

The above expression for the CMB temperature fluctuatioiource correlation function as a regularized sum over images

includes the Doppler terr'd; 4, in addition to the Sachs— over the source correlation function on the universal cover:
Wolfe contribution given in Eq(2). To obtain the Sachs—

Wolfe contribution in the form of Eq(2), the relation® R ., = N ., "

=¥ valid in the (fairly good) hydrodynamic approximation (S(Ax1)S(Q"x2)) :EF (SAx)ASAA x2D D"

to the matter content in the universe is used. Furthermore, (AB)

the well-known solution to the evolution equations for the

perturbations implys(r.s)~—8®(7.s)/3 in the Sachs— Wwhere the superscripts and u refer to the quantity in the

Wolfe regime. multiply connected space and its universal cover, respec-
We have presented these well-known results to stress thdtvely. Tilde refers to the possible need for regularizatibn.

in full generality, the CMB anisotropy can be expressed as # the discrete subgroup of motions which defines the multi-

line of sight integral over a source function given purely inply connected space angx] is the spatial point on the

the real space. Thus, in a multiply connected universe theniversal cover obtained by the action of the motipa I’

method of images can be directly applied to full CMB cal- on the pointx. The important point to note is that one needs

culations in a similar manner as we have used it to calculatéd implement the action of the motiopon the source func-

Sachs—Wolfe contribution. tion unless all the terms in the source function are scalar
The new element that EqA3) has beyond the Sachs— quantities(as was the case for the Sachs—Wolfe effect that

Wolfe expression of Eq(2) is the vectorial terms in the we considered in this papewhen the action is trivial.

source function. For the scalar perturbations all of them are In summary, the CMB anisotropy correlation in a multi-

spatial derivatives of the potentials along the line of sightply connected universe can be computed in full generality

and can be reduced to time derivatives through integration bysing the method of images on the correlation function for

parts. Indeedd'd;® is readily converted into a,® additon =~ CMB anisotropy source terms. However, it is important to

to the integral plus the surface ted 7, (70— 7.5)G], as identify the scalar, vector and tensor parts of the source func-

was implicitly done both in Eq(A4) and in Eq.(2) in the tions and the action of the discrete motion has to be applied

main text. The Doppler term can also be dealt with the sam& nonscalar components of the source function.

way, however there is no obvious advantage of doing that.

The reason is th&-function like, rather than step-function APPENDIX B: INADEQUACY OF ¢C; COMPARISON

like, nature of the differential visibility multiplier in the Dop- EOR COMPACT UNIVERSES

pler term. Integration by parts gives an integral term with . .

(f(e*m), which quickly changes sign; and having to inte- In this app_end|x, we use the exampl_es _of the CH spaces

grate it numerically may not indeed be a simplification over’e have studied here to discuss the limitations of a compari-

numerical differentiation. son of CMB anisotropy predictions to data solely in terms of
As is clear in the simplifying instant recombination ap- the angular power spectrum for compact universe models.

proximation, the Doppler term depends on the line-of-sight 1 n€ (isotropized angular power spectrunt;, widely

projection of a vector at last-scattering surface and not auSed to summarize the CMB anisotropy predictions of a the-

scalar. As for a scalar field, a vector field on a multiply °retical model, is defined by

connected universa1'/T", can be expressed as a sum over |

images of the vector field on the universal covet". How- 1+ S (aar

ever, in contrast to scalar fields, the discrete grdupcts T 2m(2l+ 1) & (@imaim),

both on the spatial positionand the vector at that point, i.e.,

the vector at the image poing x] is rotated relative to the \yhere

vector atx; and its projection on the line-of-sight is not pre-

served. Thus, at scales where it is dominant, the presence of AT

the Doppler term at the last-scattering surface will tend to alm:f dQ = (&)Y im(@). (B1)

destroy the nice circle correlations that appear for the NSW T

case(see Sec. IVA )
However, the presence of vector terms is not an obstacl&he( ) denotes an ensemble average of the random variable

for the numerical implementation of the method of images€nclosed. In full generality, the expectation values of the pair

Indeed, it is quite straightforward to implement the methodproducts of the spherical harmonic coefficietiésma;, ,, )

of images to calculate the CMB correlation function for Eq. are related to the correlation functi@(q,§’) by

043006-17



BOND, POGOSYAN, AND SOURADEEP PHYSICAL REVIEW B2 043006

SCH: m004(-5,1) [QU:: 0.300] SCH: m004(-5,1) [Q°= 0.900]
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FIG. 14. The figure demonstrates the nondiagonal nature of the expectation vaklgspaiir products when the CMB anisotropy is
statistically anisotropic using the examples of the SCH modél gt 0.3 (left pane) andQ(=0.9 (right panel. We use a single positive
integer indexn=1(1+1)+m-+1 to uniquely represent ea¢hm). Each square represents a pairlgh) spherical harmonic indices for all
(I,m) for 2<I=<10. The cross correlation coefficiemi{;mé(amél*,m,}/ \/(a.marmxal,m,aﬁm,) at a given ,n’) square is represented by
the level of gray(or colon shown in the accompanying palett&he squares corresponding to pairs with mild cross correlam;';{ﬂ
<0.12, have been left blank to highlight the strong gnEsr statistically isotropic CMB anisotropy only the diagophﬁ{h 1 terms will be
nonzero. As expected, the CMB anisotropy in the SCH model is more isotrofig=a0.9 as evident from the more diagonal naturep'pﬁf
in the right panel.
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for all the(l, m) with 2<I=<10 for the CH models considered
in our paper. This cross correlation coefficient clearly shows

— R A, A AT a * Ay
_J’ quJ A2 €8,V im( @)Yy (@)- the the existence of significant off-diagodal &’ ,,,) in the
(B2 mO004(—5,1) atQ,=0.3 Whereplr;m' ranges between-0.5

In comparing theoretical predictions to observations, the " : 3
power spectrum¢,, is a useful “data compression” of the 15 F SCH Q,=0.3 3
N(N+1)/2 numbers in theNxN correlation matrix,Cr, N3 E
into ~N multipoles values o€, . However, it is sometimes
overlooked(see, e.g., Ref436,37) that a necessary condi-
tion for this compression to be “loss free” is that the CMB s
fluctuations arestatistically isotropic i.e., the ensemble av- 305 F— , — 3
erages such a8(§,q’) or (&,,a];,) are invariant under ro- 15 SCH 0,=0.8 ]
tation.

The standardsimply connected, FRWuniverse models
respect global isotropy and predict a statistically isotropic
CMB sky. The full angular correlation functio@(§,§') be-
tween two directions is then solely a function of their sepa- 3
ration,§-q’. Using Eq.(B2), the equivalent statement is that 15 |
(A1ma ) =27C 1(1(1+ 1)) 8y Sy , is diagonal in the(l, 1f
m) space and independentmf The angular power spectrum 05 |
C, is uniquely related to the correlation function through the of
expansion4) and contains the same information. :

All Euclidean or hyperbolic compact spaces violate global
isotropy and the CMB temperature fluctuations atatisti-

: FPR A AT o o
cally anlsotroApchl.e., C(a.q )s—&.C(q-q ). As a conse- FIG. 15. The three panels of the figure show the relative devia-
quence, the(amd;,,) now define the rele_vam angulgr tion of I(1+1)(&m4",,) from the mean value o, for all (I,m)
power spectra, and these are no longer required to be diagpy<|<20) in the SCH model af,=0.3, 0.6 & 0.9, respectively.
nal and independent of. Thus,C; as defined by Eq(B1)  The nonzero deviations demonstrate that the diag¢aglas, )
misses both off-diagonal pair products &f,’'s and isotro-  are not independent o when the CMB is statistically anisotropic.
pizes further by summing up the-dependent diagona,,, The relative deviations decrease wifh,, as the space become
pair products. larger relative to the SLS. The point with large deviation in the
Figure 14 shows the normalized full angular power specupper two panels corresponds tong) =(8,0).
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up to 0.6. This is the most extreme case in our set of models | +1/2

since it has the smallest size of the SLS relative to the Di- c'(§.6)=> mQFﬁ(Q'Q’)- (B5)
richlet domain ¥, s/V ,=153.4) amongst the models dis- '

cussed in this paper. A% s/V , decreases, the numberf  and the anisotropic pa@”(§,§’) is orthogonal to the Leg-
m) pairs with highplr'nm' decreases and tkié,mél*,m,> matrix ~ endre polynomials

becomes closer to diagonal. However, for the same CH space

the range ofp,™ remains comparable, e.g., fan004 f dﬂaf dQg CA(9.8")P1(4-§')=0. (B6)

(=51) at Qy=0.9(V,s/V\=1.2), pl,'nm' ranges from ) ) e

—0.42 to 0.5 for 2<1=<10. The larger CH»3543(2,3) model The presence of the nonzero anisotropic (&itd,§') is

is more isotropic, théa,,a% ) are somewhat more diago- the main attribute of statistically anisotropic models, and in
1 me  mr . . .

nal with most of the significant off-diagonal terms at low particular of the CH models. Consider now the effect this

The ranges irp,™ are =0.29 and=0.23 for Q,=0.6 and E;rgdhp?swoer: g;)eegrﬁ?naglsmgtsg:lbu“dﬁ(C') of the isotro-
0.8, respectively. Then-dependence of the diagonal prod-

ucts(ana\,) is shown in Fig. 15. - [(1+1) AT AT

For statistically anisotropic CMB fluctuations, tBecon- CmeZI fdﬂaf dQq—(Q)
tains less information than the full correlation matrix
C(§,§') independent of the underlying statistics. For con- X(q)Yim(@) Y@, (B7)

creteness, we now focus our discussion on Gaussian random
CMB fluctuations which are completely specified by Of course, the expectation value of the estimator is deter-
C(8,8"). For statistically anisotropic CMB, the incomplete- mined solely byC'(g,§") [as it should be using EGB6)]:

ness of the information contained in thgis reflected in the 1(1+1)
enhanced cosmic variano(eﬂ,z). Let us split the correlation <5,>= W_J anJ dQg C(8,8")P(-9").

matrix into an isotropic part determined Bythrough Eq(4)
and an anisotropic term containing the remainder, i.e.,
C(8,8')=C'(8,8)+CA&.q") (B4) Howe\:\e[, Ehe dIStI’Ibu.tlorP(C]) depehds on~the ahlsotroplc

part C*(§,q’). In particular, the variance af,, which can

so that, by definition, the isotropic pa®t(§,q’) is described be calculated as a four-point correlation of th&’s, is en-
by the set of coefficient€; of Legendre seri€s hanced due to the influence 6f(§,§’):

(B8)

[(14+1)
87°

2
var<E.>E<?F>—<a>2=2[ } [ a0, [ dog, [ a0g, [ a0y, ciar.a0P (@000, 0P 05 00

2(C)? 12(1+1)? N
T 2+1 0 3247 fdﬂalf anZUan3C (82,85)Py(Q2-83) | - (BY)

In the final expression, the first term is the well-known resultpixel pairs. As a check of accuracy, the same procedure was
for the cosmic variance af,, strictly valid only for statisti- applied to the infinite statistically isotropic models and the
cally isotropic CMB fluctuations. The second term was ob-first term in Eq.(B9) was recovered. This is a stringent test
tained using the fact th&”"(d,,8,) andP,(d,-§,) are sym-  of the cancellations required to obtain this result. We found
metric functions. It represents a positive definite correctionthat for the finite compact models as well as the infinite
to the standard cosmic variance arising from the aniSOtI’Opynode|S, our results are accurate for angu|ar scales b|gger
of C(g,d"). Hence, the cosmic variance is always larger forthan the beam, including the finite pixel effects.
a statistica_lly_ anisqtropic CMB compared to that expected Figure 12 shows the angular power spectrum for a set of
for the statistically isotropic case with the safje the CH models with the associated cosmic variance. It dem-
To calculate Eq(B9) numerically, we took ou€rpy and  gnstrates that the cosmic variance @fin CH models is
used matrix representations of tRe at the relevant COBE-  gjgnificantly higher than one may naively assign assuming
statistical isotropy. As a resul€’s do not strongly distin-
guish CH models from the corresponding standard isotropic
SFor simplicity we ignore the experimental window function, models and, on their own, are not very restrictive. Compar-
W(§.,8'). For COBE-DMR it is isotropic, withV,=B? (whereB,  ing CMB predictions of CH spaces to data ustfjgalone is
is spherical transform of the isotropic experimental bpand the  not incorrect, but inadequatsince one has not used the full
effect of including the window function is to scale ttgby B?. information available. The larger cosmic variance simply im-
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plies that the theoretical prediction is weaker. The argument-1o level, these power spectra are preferred. Note that the
that a comparison based on more information is more rellikelihood ratios in row 1 are independent of orientation.
evant is quite obvious. Any evaluation of the relative likeli- However, the second row of the table shows that when the
hood of a model based afj is superseded by a likelihood full information on angular patterns is included in the analy-
analysis that uses the complete correlation informati®n. sjs, the likelihoods change dramatically, strongly disfavour-
model that does well SOIer in termS@?bet fails in terms of |ng small Compact mode|S, as in Table I. As We”, the case
the correlation matrix G, should be F:ons_idered ruled out for the 0,=0.8LCH model at the best orientation is en-
In Table Il we compare the relative likelihood for our nanced by the inclusion of the full pattern information.
models_obtained us_ing, versus that obtained using the full Models which fare very poorly with respect to a full cor-
correlation information. _ . relation comparison may well look favored based ondhe
Th? procedure we use to determine the first line in therpe yoaq0n for this is not hard to understand. If the compact
table is to take the compact modeQp , use theP, ma- space is not much larger than the SLS then it predicts strong

trices to calculate the theo.retllc_él, as in Ec_].(BS), then anisotropic correlation features in the CMB sky which are at
assume that we have an infinite model with exactly that

power spectrum, so that theSgs encode all the information odds with the data(see_} Sec. IVZ _However, an |sotr0p|zed.
in the theory. We then use these to calculate @&y, for measure such as thig is insensitive to t_hese feqtures. This
this theory, and determine the full Bayesian likelihood for it MPlies that the comparison of CMB anisotropy in CH mod-
relative to the true infinite open model with the safigand €IS USINGC, alone is grossly inadequate and could be quite
its corresponding’,. The results show that at roughly the Misleading.
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