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CMB anisotropy in compact hyperbolic universes. I. Computing correlation functions
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Cosmic microwave backgroul@€MB) anisotropy measurements have brought the issue of global topology
of the universe from the realm of theoretical possibility to within the grasp of observations. The global
topology of the universe modifies the correlation properties of cosmic fields. In particular, strong correlations
are predicted in CMB anisotropy patterns on the largest observable scales if the size of the universe is
comparable to the distance to the CMB last scattering surface. We describe in detail our completely general
scheme using aegularized method of imagdesr calculating such correlation functions in models with non-
trivial topology, and apply it to the computationally challenging compact hyperbolic spaces. Our procedure
directly sums over images within a specified radius, ideally many times the diameter of the space, effectively
treats more distant images in a continuous approximation, and uses Cesaro resummation to further sharpen the
results. At all levels of approximation the symmetries of the space are preserved in the correlation function.
This new technique eliminates the need for the difficult task of spatial eigenmode decomposition on these
spaces. Although the eigenspectrum can be obtained by this method if desired, at a given level of approxima-
tion the correlation functions are more accurately determined. We use the 3-torus example to demonstrate that
the method works very well. We apply it to power spectrum as well as correlation function evaluations in a
number of compact hyperboli€H) spaces. Application to the computation of CMB anisotropy correlations
on CH spaces, and the observational constraints following from them, are given in a companion paper.

PACS numbse(s): 98.70.Vc, 04.20.Gz, 98.80.Cq

[. INTRODUCTION pers describing various aspects of current research in com-
pact cosmologies can be found in RE3].

The remarkable degree of isotropy of the cosmic micro- The realization that the universe with the same local ge-
wave backgroundCMB) points to homogeneous and isotro- ometry has many different choices of global topology is as
pic Freidmann—Robertson—WalkéFRW) models for the old as modern cosmology—de Sitter was quick to point out
universe. The underlying Einstein’s equations of gravitationthat Einstein’s closed static universe model with spherical
are purely local, completely unaffected by the global topo-geometryS® could equally well correspond to a multiply
logical structure of space—time. In fact, in the absence otonnectedelliptical universe model where the antipodal
spatially inhomogeneous perturbations, a FRW model prepoints of S® are topologically identified. The possibility of a
dicts an isotropic CMB regardless of the global topology. multiply connected universe has lingered on the fringes of

Flat or “open” FRW models adequately describe the ob-cosmology largely as a theoretical curiosity.g., in Ref.
served average local properties of our universe. Much of2]), but was sometimes invoked to explain puzzling cosmo-
recent astrophysical data suggest the cosmological densitygical observationge.g., as a possible explanation for the
parameter in nonrelativistic mattef),,, is subcritical[1].  isotropy of the CMB radiatiof5], and for the(controversial
The total density paramet€l includes relativistic particles observations of periodic or discordant quasar redshéfts
and vacuum, scalar field or cosmological constant, contribuThere is a long history of attempts to search for signatures of
tions, as well ad},,. If a cosmological constarfor some  nontrivial global topology by identifying ghost images of
other exotic smooth matter componedbes not compensate local galaxies, clusters or quasars at higher redst8fts 10.
for the deficit from unity, this would imply a hyperbolic The search for signatures of global topology in the distribu-
spatial geometryuniform negative curvatujecommonly re-  tion of luminous matter can probe the topology of the uni-
ferred to as an open universe in the cosmological literatureverse only on scales substantially smaller than the apparent
The simply connected(topologically trivia) hyperbolic  radius of the observable universe. Another avenue in the
3-spacei® and the flat Euclidean 3-spag&are noncompact search for global topology of the universe is through the
and have infinite volume. There are numerous theoreticatffect on the power spectrum of cosmic density perturbation
motivations, however, to favor a spatially compact universefields, reflected in observables such as the distribution of
[2—-6]. To reconcile a compact universe with a flat or hyper-matter in the universe and the CMB anisotropy.
bolic geometry, consideration ehultiply connectedtopo- The observed large scale structure in the universe implies
logically nontrivial) spaces is requiredlnhomogeneous sim- spatially inhomogeneous primordial perturbations existed
ply connected models are another way out; e.g., a hyperboliwhich gave rise to the observed anisotropy of the CMB. The
bubble could be embedded in a highly inhomogeneous spaagobal topology of the universe also modifies the local ob-
and if the bubble is much larger than the Hubble radius weservable properties of the CMB anisotropy on length scales
would not know) Compact hyperbolic spaces have been re-up to a few times the horizon size. In compact universe mod-
cently used to construct cosmological models within theels, the finite spatial size usually precludes the existence of
framework of string theory7]. A compilation of recent pa- primordial fluctuations with wavelengths above a character-
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istic scale related to the size. As a result, the power in CMBour companion paper describing our detailed CMB anisot-
anisotropy is suppressed on large angular scales. Anotheopy calculationg16].

consequence is the breaking of statistical isotropy in charac-

teristic patterns determined by the photon geodesic structure

of the manifold. One can search for such patterns statistically Il. PRIMER ON COMPACT SPACES

in CMB anisotropy maps. Full-sky CMB data, such as from A. Mathematical preliminaries

the COBE-DMR experiment, can constrain the size of the

universe and its topology to the extent that such correlation A tcon;pgc:) Co_zmotl_og_lcal m(_JoieM IS tar\]quottler:jt Sgagizw
patterns are absent in the datd, 16, constructed by identifying points on the standar

For Gaussian perturbations, the angular correlation funcSPaces under the action of a suitabdscrete subgroup of

tion, C(8,d'), of the CMB temperature fluctuations in two motions,I’, of the full isometry groups, of the FRW space

directionsl andq’ in the sky completely encodes the CMB (see[2,22). The isometry grouf is the group of motions

anisotropy predictions of a model. For adiabatic perturbawh'Ch preserves the distances between points. The infinite

) . : U e
tions, the dominant contribution to the anisotropy in theFRW s_patlal hypersurface is thaiversal coye,r/\/l , liled
CMB temperature measured with a wide-angle beanpycoples of the compact spacke{. Cosmological postulates

Bem=2° ch)/z) comes from the cosmological metric per- of local homogeneity and isotropy restrigt" to be a space

. 3 . . _
turbations through the Sachs—Wolfe effect. The angular corc—)f constant curvatureyperbolic?”, with negative curva

. . oo~ . ture, sphericalS®, with positive curvature, or flaEuclidean
relation functionC(q,g’) then depends on the spatial two £%, with zero curvature. The compact space for a given lo-
point correlation functioné = (P (X, 7. 5) P (X', 7 g)), of the ’ ) b P 9

L . cation of the observer is represented asDivechlet domain
gravitational potential®, on the three-hypersurface of last . . ; .
. . S ) with the observer at itbasepoint Every pointx of the com-
scattering along the lines-of-siglitandq’. Thus we need to

. . . pact space has an image- y;x in each copy of the Dirichlet

learn how to compute spatial correlation functions on com ; . o
act spaces domain on the universal cover, whegee I". The tiling of

P Whgn thé eigenfunctions of the Laplacian on the spacéhe universal cover with Dirichlet domains in a Voronoi tes-

are known, the correlation function can be readily obtained'se""’mon("’l familiar concept in cosmology that has been used

via a mode sum. For this to be tractable the known eigen'—n modeling the large scale structure in the universeth

. . the seeds being the basepoint and its images. The Dirichlet
functions would, preferably, be expressed in a reasonably = = represegnts e corﬁpact spacemgx  olyhedron
s!mple closed form..However, obtaining (_:Iosed form EXPreSyiith an even number of faces, with congruent pairs of faces
sions for eigenfunctions may not be possible beyond the SIMY entified (glued underT. For }nore details, see e.g., Refs
plest topologies. Some examples where explicit eigenfunc[-2 22234 ' ' s '
2ggiorr1$vz§ctbﬁenerliasoeli?: Isn(izgew{:ﬁtam%?r%]i_i%&?dlna More explicitly, the Dirichlet domain around the base-
this paer we );/)F:ovide a dpetailed description gf oeguilar— point, Xg, is the set of all points on the universal cover which
izeq method of imagg‘sr compL_Jting correlation functio_ns, :;;e C(ngseelr“(;) roﬁggjlzgzggi;f tThﬁg E?/paerpp/)lzg;;h%;nsigszscts
Whlch does not require any prior knowledge of the elgen_theosegmentjoining 10 VX di.videsM“ into two parts: let
functions on the compact spaddd4,12. The method allows 0 19 %0 '

us to accurately compute the correlation function on compac"f|y denote that half that contains the basepoint. By defini-

spaces where eigenfunctions are not available. Most notorfion: the Dirichlet domain arouns, is Dy, =MN,H, . Thus,

ous in this respect are compact spaces with uniform negativée Dirichlet domain is bounded by hyperplanes bisecting the
curvature, thecompact hyperbolidCH) spaces, for which (geodesit segments joining the basepoixy to a set of ad-
even numerical estimation of the eigenfunctions is believedacent images(The corresponding set of motions is called
to be a challenging tasfor recent progress s¢@3—15). A the set ofadjacency transformationsThe faces of the poly-
novel feature of our scheme is the regularization procedurfedron are identified pairwise; the one formed by the hyper-
that we devise in order to successfully implement the metho®!ane bisecting the segment joining to yx, is identified
of images for the power spectra of cosmological perturbawith the corresponding one bisecting the segment joining
tions expected from early universe physics. As an additionalo ¥~ *Xo. The adjacency transformations generate the group
bonus, this regularization scheme enhances the convergenEeand hence are also known as flaee generators
properties of the method, which proves to be very useful for In the context of cosmology, the Dirichlet domain con-
tackling CH spaces. structed around the observer represents the universe as
In Sec. Il, we introduce compact spaces and briefly re:'seen” by the observertin our papers, we will often loosely
view the aspects that are relevant for our work. The method
of images is derived in Sec. lll. As a simple illustrative ex-

ample, we apply the method of images to the case of a1ip guotient spaceVi=MY/T consists of the equivalence classes
simple flat torus in Sec. IV. The implementation of the of points of MY equivalent undeF. M is a manifold wherl” is a
method in CH spaces is presented in Sec. V. The gross proRubgroup of the isometry grouf of M which acts freely(fixed
erties of the power spectrum in CH spaces that can be inoint free: yx=x=y=1) and properly discontinouslevery point
ferred from our computation is discussed in Sec. VC. Wexe M has a neighborhootl, such thaty(U,)NU,=2V yeT,
derive the properties of the correlation function in CH spacey+1). The manifold M is compact if the corresponding Dirichlet
in Sec. VI. In Sec. VII, we discuss our results and point todomain is compact.
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use the same notatioM to refer to the compact space as planar hexagonal lattice under a screw motion perpendicular
well as one of its Dirichlet domain representations whosedo the plane with rotation of/3 and 27/3, respectively.
basepoint is clear from the contexit proves useful then to
define theoutradius R. and theinradius R. of the Dirichlet C. Compact hyperbolic spaces
domain[3]_: the radius of the s_mallest sphe_re around the ob- For cosmological CH models MU=H3, the three-
server which encloses the Dirichlet dom_aln and that of th%imensional hyperboli¢uniform negative curvatuyemani-
largest sphere around the observer which can be enclosgg|y with line element
within the Dirichlet domain, respectively. The rafib. /R-
is a good indicator of the shape of the Dirichlet domain. ds?=dy?+sink? x(d6?+sir? 6d¢?), (1)

In cosmology, distances are inferred from the cosmologi-
cal redshift which is related to the light travel time. Conse-
quently, in compact spaces, and, more generally, in multiplwhere y=(7,— 7)/d. is the affine distancer is the confor-
connected spaces, light from the same source seems to arriweal time andd.=cH, */y1—(Q, is the curvature radius set
from points at different locations—the source and its imagesy the present cosmological density paramddgrand the
on the universal cover. Any source inferred to be at a disHubble constanH,.? For a universe with hyperbolic geom-
tance greater thaR.. from the observer is bound to be the etry, 0<(,<1; thus the size ofl, ranges fromcHgl as
image of a point which is physically closer. On the other() —0 to infinity asQo— 1.
hand, a source closer th&x. is definitely at its true physical H3 can be viewed as a hyperbolic section embedded in

distance. Note thak.. andR.. are specific to the location of - four-dimensional flat LorentziatMinkowski) space, by rep-
the observer within the compact space since the Dirichlefesenting each point ort® as a unit four vector,X

domain around different observers can, in general, vary. An=(z(x),x), normalized byd. in Minkowski space (2
observer(and Dirichlet domaipindependent linear measure _ |x|2=d?). The distance between two points & is given
of the size of the compact space is given by di@meterof  py the dot product of the corresponding four vectors. The
the spaced ,=sup,yc v d(x,y), i.e., the maximum separa- jsometry group of+? is then the group of rotations in the
tion between two points in the compact space. _ four space, the proper Lorentz group 801). A CH mani-

The isometry grous defining the global symmetries of {54 is completely described by a discrete subgrdumf the
M is the centralizerof I' in the isometry grougG" of its proper Lorentz group S@, 1).
universal coverM"; i.e., G={geG"|gy=ygVyel}. In There are two remarkable features of tessellafifigun-
general, M respects less symmetries thah("; conse- der a discrete group of motions that are absent in the flat
quently, G is of lower dimension tha®". M is (globally)  geometry. First, whereas in flat geometry all finite volume
homogeneous if and only 16 is transitiveon M: i.e., for  guotient spaces obtained are necessarily compact, one can
any two pointsx,ye M, there exists aye G such thaty  tessellatex® with tiles of finite volume which are noncom-
=gx (an equivalent statement is that a compact space igact, giving rise to a class of noncompact finite-volume hy-
globally homogeneousf and only if every element ofy  perbolic universe models. Typically, these spaces have cusp-
eI is aClifford translation i.e., thedisplacement function  |ike extensions to infinity. Second, a given CH topological
d,(x)=d(x,¥x), is independent ok for all pointsxe M").  structure fits only for a specific volume of the space. This is
Space is isotropi¢around a point, or observexg) if G con-  in contrast to flat compact spaces, in which the same topo-
tains a subgroup of rotations arouxgl The only example of |ogical structure can be imposed on any scales. In particular,
a multiply connected compact universe which retains all theall simple flat tori with different identification lengths are
symmetries of its universal cover is the elliptic spacehomeomorphido each other, i.e., one can be obtained from
(8%/Z,) with spherical geometry; the simple flat torus is an-the other by a continuous mapping/deformation, butrase
isotropic, and all othergincluding the entire class of CH jsometricto each other, i.e., the distance between the mapped
manifoldg break global homogeneity as well. As the result, points are not the same. Two hyperbolic spaces of finite vol-
the two-point correlation functiong(x,y) in CH spaces de- ume which are homeomorphic are necessarily isoméimic
pend separately on both pointsandy, and not only on the three dimensions and abdveThis result, known in math-

distanced(x,y,) as in the familiar FRW spaces. ematics literature as thetrong rigidity theoremcan be at-
tributed to the existence of the intrinsic length scale on
B. Compact Euclidean spaces H3—the curvature radiusg,. It not difficult to convince

. . If that the Dirichlet domain has to have a fixed size
The compact spaces with Euclidean geomeéngro cur- onese . . .
P b g & relative tod, in order to tile #*—if one were to scale the

vature have been completely classified. In three dimensions . ; ) )
there are known to be six possible topologies that lead t olygon_ size(relative tod,) t_hen the scaled tiles will no
onger fit together at the vertices.

orientable spaceg®,22,23: the simple flat torus wher&® is . . . .
identified under a discrete group of translations; three other. Thus, a CH mamfold,M,g IS character'|zed by a dimen-
flat tori where the identification is undersarew motioni.e., sionless number/=V . /d¢, whereV , is the volume of
translation accompanied by a rotation about the direction of

the translation, namely, rotation by or #/2 in one compo-

nent of the translations, and rotation byin all three direc- 2Unless explicitly indicated, all distances and times in nonflat ge-
tions; and finally, two topologies made by identifying the ometry are in units of the curvature scalg.
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TABLE I. The characteristics of some of the compact hyperb@iel) manifolds that we have studied. The nomenclature of the spaces
conforms to the Minnesota census. The volume and diantex@ressed in the units of curvature radiase topological invariants which
relate to the density of states in those spaces. The specifications have been obtained from the Minnesota census using SnapPea. Th
exception is the diameter which is our estimate using a simple random sampling algorithm. However, in the context of cosmology, the
observer specific characterization of the Dirichlet dom@round the observeproves useful. Then003 models correspond to spaces
obtained by different Dehn fillings on @oncompagtcusped manifoldm003. The CH spacen003(—3,1) has the smallest volume in the
mO003 series and is also currently the smallest CH space known.nl@el(—5,1) has the smallest volume in tme004 series. The
v3543(2,3) space is a relatively large ofsee Fig. 1

Properties m003(—3,1) mO003(—4,3) m003(—4,1) m003(2,3) m003(—5,4) m004(—5,1) v3543(2,3)
Topological invariants
Volume: V,, 0.94 1.26 1.42 1.54 1.59 0.98 6.45
Diameter:d , 0.84 1.01 1.10 1.16 1.21 0.86 1.90
First homology group Z5s®Zsg Z5®Zg Z3s Zss Z3 Zg Zgz
Dirichlet domain specific
Outradius:R-. /d. 0.75 0.84 1.07 0.83 0.94 0.75 1.33
Inradius:R_ /d. 0.52 0.55 0.54 0.59 0.57 0.53 0.89
No. of faces 18 22 24 26 28 16 38
No. of vertices 26 40 44 48 52 16 72

the space and, is the curvature radiug24]. There are a pact spacen004 by a torus glued along a closed curve with
countably infinite number of CH manifolds, and no upperwinding numbers(—5, 1). The limit noncompact space is
bound onV,,. The theoretical lower bound stands )4,  achieved as a limit of large values of the winding numbers in
=5/(2v3)arcsinf(v3/5)~0.167 [25]. The smallest CH the corresponding sequence of CH manifolds. From the ob-
manifold discovered so far hag,,=0.94 and it has been servational perspective, the CH spaces with high winding
conjectured that this is, in fact, the smallest posdig&27). numbers should be practically indistinguishable from the
The physical volume of the CH universe with a given topol-limit noncompact space. The space with winding numbers
ogy, i.e., a fixed value o¥,,/d?, is then set byd, and is (M, n is equivalent to the space—(m,—n) in the same
thus related to cosmological parameters. The Geometry Cesequence. Not all integer values wfandn lead to a CH
ter at the University of Minnesota has a large census of CHspace, there are bounded forbidden gap regions innthe
manifolds in its public domain. This census was created us—n lattice. One should note that the volume does not
ing the SnapPea computer software which is also freelyniquely characterize a space; there can be a finite number of
available at the websif@8]. TheMinnesota censussts sev-  distinct CH spaces with the same volupbesides the mirror
eral thousands of these manifolds with, up to~ 7 and the  image pairs for chiral CH spaces suchra804(—5,1) and
SnapPea software can be used to obtain various characterist04(5,1). Also, the nomenclature described above is not
properties of these CH manifolds such as the ones listed innique: the same CH space may belong to two different se-
Table | and also the generators of the discrete group motioguences, e.g., the spaam003(—2,3) is equivalent to
I' that we need for our computational method. m004(5,1).(See Ref[27] for details)

The sequences of CH manifolds are closed well-ordered All CH hyperbolic spaces are necessarily globally inho-
sets of order typev®, i.e., are arranged in a countably infi- mogeneous since the only element of (301) which is a
nite number of countably infinite sequenc@s increasing  Clifford translation is the identity22]. A short proof fol-
volume), with each sequence having a noncompact finite voldlows. Assume thag e SO(3,1) is a Clifford translation. Then
ume hyperbolic space as its limit. These limit spaces of finited(x; ,g%;) =d(X,,gx,) for any two pointsx,; andx, on +3.
volume have cusps extending to infinity. The cusps are hoSince S@3,1) is the isometry group of the homogeneous
meomorphic toT?XR", the product of a 2-torus and the space H3, there exists a Lorentz transformation
positive real line. The sequence of CH spaces arises throughSO(3,1) such thatx,=AXx;. Consequently,d(X;,9X;)
Dehn filling a procedure which truncates the cusps of the=d(Ax;,gAX;), implying thatg=A "'gA,VA € SO(3,1).
limit space along a closed curve @1 (with allowed pair of ~ Since the Lorentz group ison-Abelian(i.e., actions of the
winding numbersand glues in a solid torudy identifying  group elements do not commitg must be the identity.
the closed curve along a meridian of the solid torughe
nomenclature of CH spaces in the Minnesota census, which . METHOD OF IMAGES
we follow in this work, identifies a sequence by the limit
space and specifies a CH space belonging to it by two
(coprime integer indices in parentheses correspond to the The correlation functiogq(x,x") of a scalar field®, can
winding numbersm and n, which characterize the closed be expressed formally in terms of the orthonormal set of
curve on the torus; e.gm004(—5,1) refers to the CH mani- eigenfunctions¥; of the Laplace operatoly?, on the hy-
fold obtained by Dehn filling the single cusp of the noncom-persurfacgwith positive eigenvaluekizz 0), as[29]

A. The correlation function
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J’Mudx’ EpOGXN) W (kX" ) =P 4(k)¥j(k,x).  (3b)

Equation(3b) is a consequence of the homogeneity.\af
through a theorem29] which states that the eigenfunctions
of the Laplacian are also the eigenfunctions of the integral
operator corresponding to any two-point function which is
point-pair invariant i.e., depends only the distance between
the points. The orthonormality of the eigenfunctions leads to
the expansior3a) for &, .

. R . .
FIG. 1. The Dirichlet domains of two of the compact hyperbolic Every eigenfunctiont’;;(x) on M is also an eigenfunc-

. . . RS
(CH) spaces that we have studied are shown. On the left is a smafon of Ehe Laplgman on the unlvgrsgl coust™ with eigen-
CH space,m004(—5,1), and on the right is a large CH space, valuek;{, hence is a linear combination of degenerate eigen-

v3543(2,3). functions W{'(k;,x) on M" with eigenvaluek?’, i.e., ¥f(x)
=24 j; ,\If}’,(ki ,X). Thus a subset of equatiofb) can be
m; written as

§q><x,x'>=2i P@(ki);l Wi )W (X)),
| e oo =Py kw0
M

where

(V2+K) W =0. ) =Jde' Ep(xx)W(X").

4

The spectrum of the Laplacian on a compact sgtugs with @
closed boundary conditionss a discrete ordered set of ei- Using automorphism of\Ificj with respect tor, ‘Pﬁ(yx)
genvaluegkf} (kg=0 andkf<kf, ;) with multipliciiesm;.  =we(x)VyeT, and the fact that\( tessellates\,
The function Py (k;) describes the rms amplitude of the
eigenmode expansion of the fiede] determined in the con- L G g L e
text of cosmology by the physical mechanism responsible for de o (X X)Wij(x7) = Mudx o (X X)W (X)
the generation ofb.

Except in simple cases, neither the spectrum of the La- _ 2

1 gu ’ c !
placian {k?} nor the eigenfunctional¢(x) are known for Jde Eo (X, X)W (X),

el
compact manifolds, so ER) cannot be used to calculate the !
correlation function£g,(x,x’) on a compact manifoldM di- . (58
rectly. In contrast, the universal covér* for the compact , " vl
manifold is usually simple enougte.g., =3, S° or £%) that = fde ;F o (X, ¥X') q’ii(();t)))'

the eigenfunctionslf}’(k,x) are known and the correlation

. u . . ~
funct|39ns§q,(x,>_<’) are easily computable. We considéf  \/hereS denotes a possible need for regularization at the last
and&® geometries where the spectrum of eigenvalues on thgtep when the order of integration and summation is re-
universal coverM" is continuous, reflected in the notation \,orsed. Since Eq5b) is satisfied for allwe

u - ’ 12y TEHE k ij » comparison
W;(k,x) replacing the discrete indexwith a functional de- |, Eq. (3a) implies that
pendence otk

The regularized method of imagese developed in Ref. —

. . . C ry — u !

[12] allows computation of the correlation functigfy (x,x’) Ep(X,x")= Eq) Ep(X,PX"). (6)
on a compactmore generally, a multiply connectethani- 7
fold M= M"/T from the correlation functionég,(x,x’), on  This is the main equation of oumethod of imageswhich
M. We now give the explicit derivation of the relation expresses the correlation function on a compact space
betweenég(x,x’) and &5(x,x’), calculated with the same more generally, any nonsimply connected spaa® a sum
form of the power spectruR4 (k). The method solely relies over the correlation function on its universal cover calculated
on the knowledge of the action of elements of the discretdetweenx and the imageyx’(yeI) of x'.
group, I', and requires no information regarding the eigen- Regularization in Eq(5b) is required when the correla-
values and eigenmodes of the Laplacian/oh The expan- tion function on the universal cover does not have a compact
sion (2) is equivalent to the system of integral equations onsupport, f \uég (X, X')dx’ =. Let us consider a new two-

the correlation functions¢g, and &, point function onM" defined by
~ def 1
f dx" £G(x, X)W (X' ) =Py (k) ¥H(X), (39 Ep(x,X") = Eg(X,X") — —f dx" Ex(x,xX"),  (7)
M Vo yM
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for y such thatx’ lies in yM. Replacingég(x,x") by its As we see, the need for regularization is strictly dictated

regularized versio4 (x,x’) in Eq. (5a) gives the same in- by the form of§‘_*,_ which encodes how modes are excited,

tegral equation org%,(x,x') as the original one for every and is not specific to CH spaces. Some authig§ have

eigenfunction® with the exception of that for the zero incorrectly attributed the need for the regularization that we
ij

2 c . invoke in[11,17 to the exponential proliferation of periodic
?gohdt?hlfar;io. ;8; th((a)fzerqu.rr}c;;deI;g—%%rxt, ;c;rr(‘)gh'i:sg]e orbits or the chaotic nature of classical trajectories in CH

- o ) i spaces. Regularization is required in flat compact spaces too
J muép(x,x")dx’=0. Thus, the regularized sum over images(see Sec. IV if the & mode expansion contains the zero

is modek?=0. On the other hand, i has compact support
there is no need for regularization even in CH space; this, in
C (x,x')= Y (X, yX! fact, holds under weaker conditions.
Sa(xx) yze:r falx7x) The counter term in Eq(9) significantly improves the

1 convergence of the sum over images, even if in the lixit
_ U (% yx! __f dx” £ (x.x"). (8 —oo the term is zerdi.e., [ yuég(X,x)dx’=0) and regu-
«Z’r Salx7x) V) me al )-8 larization is formally not required. Indeed, in this case the
Nth partial term of Eq(9) is equal to
One can verify thatg,(x,x’) is biautomorphicwith respect

to T, i.e., 5(X,X") = &5 (y1X ¥2X" )V y1, ¥, €T, In addition, N 1

&5, is smooth and symmetrie$, (x,x') = £5,(x’,X), since&s 5%(X!X')\N:2 Ep(X,yiX )+ o— [ _ dX" Eg(x,X"),

is smooth and point-pair invariant. With these conditions sat- =0 Ve my

isfied, the correlation function then qualifies to be the kernel (10

of an integral operator on square integrable functions\én

The sum in Eq.(8) can be obtained analytically in a \yhere AMy=MU—UN {y;.M} is the complement relative
closed form only in a few cases, e.g., the simple flat torugg A u of the domains from which the image contribution has

(see _Sec. V. _F_or a numerical implementation of the sum been explicitly summed. Thusfb(x,x’)| corresponds to the
over images, it is useful to present the formal expres&n L o N .
approximation where the firstl images up to the distance

as the limit of & sequence of partial sums d=d(x,yyXx') are summed explicitly and the contribution of
1 the rest of the images is estimated as the integral. The latter
EL (X, yix') — _f dx” £5(X, yix") estimation is quite natural, since the sum over densely
VI m packed distant images is similar to a Monte Carlo expression
(9 for the integral.

Finally, we note that the regularization term is certainly
with the discrete motiong; sorted in increasing separation, not unique. In fact, instead of starting with a regularized
d(x,yix')=<d(x,7;+1X"). In practice, the summation over correlation function on the universal cover as in Eg), we
images is carried out over a sufficiently large but finite nUM-.,1d have started with a regularized scalar fiele=®
ber of images, from .wh|ch the liml—« is estimated. Ac_- — [ 4dV®/V,,. This gives rises to different regularizing
curacy is enhanced if thg used correspond to a tessellation o nterterms that might possibly be more effective but are
of M* with the basepoint of the Dirichlet domain shifted to 455 more complicated. In the same spirit of viewing the field
X. ) ) . as the primary starting point, the sum-over-images represen-
A more effective and simpler limiting procedure for t5iinn for ¢6(x,x') can be viewed as a double sum
implementing the regularized method of images is to expllc-z yzy,gg,(yx,y'x'). In general this is computationally more

!tly Stl;m : n'tlagesl lf,p o a radiug, ar? d _reg?ug)arlllzefby zybtract- expensive. However, for the case of the simple flat torus, the
ing the integraléq(r) over a spherical ball of radius, . 0iouble sum can be expressed as a single summation over

Thi.s further eliminates.the needuto know the Pfedse shgpe ppropriately weighted image contributions and has a signifi-
Dirichlet domains(and integratey, over potentially compli- cantly faster convergence.

cated shapesWe use this limiting procedure when dealing

with CH spacegsee Eq.(24) in Sec. V B. The example of

the simple flat torus discussed in Sec. IV shows that the B. The power spectrum

radial limiting procedure does better in eliminating unwanted  5p, illuminating way to present the power spectrum of

low k power than Eq.(9). On the other hand, the radial fjyctyations in compact spaces is to separatedisity of

limiting procedure cannot be applied unambiguously if thegates(the spectrum of eigenvalues weighted with multiplic-

number of images used is small whereas @¢.holds at all ity), solely determined by the geometry and topology of the

values ofN. space, from theccupation numbefrms amplitudes of the
eigenmodesdetermined by the physics invoked to excite the
available modes. This allows a discussion of the effect of

3The volume integral of the Laplace equation on a compact maninontrivial topology independent of the generation mecha-
fold M (thus with closed boundarygives kZf dx’ W (x) nism and the resultant statistical nature and spectrum of the
=0Vi,j. initial perturbations.

N
E(xx")=lim >

N—oi=0
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We define the power spectruf, (k,x) of the scalar field tion, the method of images can be used to establish the con-
® to be the function which describes the contribution to thenection between the local density of states kernel on the
variance of the fieldr3,(x) from the modes in a logarithmic compact manifoldM® and on its universal covering space
interval of eigenvaluesl Ink. The variance is given by the M"
correlation function at zero lag, thus our definition satisfies
£5(x,X) = [5d In(k)P5(k,x). The power spectrum depends

both on the eigenvalue spectrum of the Laplacian, described n°(k,x,x)= >, nU(k,x, yx). (16)
through a collapsed two point functionS(k,x,x), as well as Y

on the rms amplitudeB4 (k) of the eigenmode expansion of

the field on the universal cover: The method of images applied to the density of states,

together with the connection to the trace of the Green func-
tion from Eq. (12), is what is essentially embodied in the
celebrated Selberg trace formyla9]. We emphasize that,
c _ s although the basic ideas are similar, the computation of the
(ko x,x) = kEi Ak =ki)S4(x), correlation function and the density of statégk) in a com-
(11b pact space are distinct problems. Getting the density of states
is computationally more challenging since the aim is to re-
c ) cover a singular functiofstring of delta functionsby super-
Ski(x):; |‘I’ij(x)| : (119 posing smooth functions. For computing correlations of the
CMB anisotropy in compact spaces, we only need to apply
The functionn®(k,x,x) itself may be interpreted as the local the method of images to the correlation function. Also, the
density of stategper d Ink) per unit volumeat the pointx.  Pairwise correlation function at distinct points=x’, calcu--
The notationn®(k,x,x) explicitly retains the intimate con- latéd by the method of images at any level of approximation,

nection to a two-point kernel. Indeed, (x) is related to the satisfies exactly the periodicity of the space, which the den-
imaginary part of the Green functic[ﬁll] sity of states does only if determined with absolute precision.

P (k,x)d In(k)=Pg(k)n°(k,x,x)d In(k), (113

2ki IV. FLAT TORUS MODEL: A SIMPLE EXAMPLE
S (%)== —Im[Gy, (X,X)]. 12

The simple flat torus modeT;?, is the compactification of
The dependence on the position is a manifestation of théhe three-dimensional Euclidean space which identifies
global inhomogeneity of the space. In the case of a globallypoints under a discrete set of translations; x+nL, where
homogeneous spac&, (x,x’)=G, (x—x'), implying that L is the size of the torus and is a vector with integer
S (xX) andn(k,x) are p(l)sition indelpendent. We shall denotecomponents. The corresponcjmg !Dmchlet QOma|n IS a cube
i ) ) o i (more generally, a parallelepipedith opposite faces iden-
mean density of states (), just omitting spatial depen- fjaq (glued together This is, in fact, the model one is
dence. Integrating, (x) over the volume of the manifold1  gydying when one simulates the universe in a finite box with
gives the multiplicity of theith eigenvaluefMSki(x)dx periodic boundary conditions.
=m;, hence Since the eigenfunctions of the Laplacian Bhare sim-
ply the discrete plane waves, the evaluatioré§x,x’) on
T2 as a sum over modes functiofsee Eq.(8)] using fast
Fourier transforms is a preferred technique, one we have
(13)  Uused extensively to constrain the size of such models using
the coBE-DMR data. However, we revisit this simple case to
Thus we factor the power spectrum in a compact space into ilustrate the various steps and clarify subtleties involved in
rms amplitude of modes and the density of states: the calculation ofg,(x,x") in a multiply connected universe
using the method of images. The toroidal case also provides
a good benchmark for evaluating the efficiency of the
method of images.
The correlation function in the periodic box implied by
In the universal covering spac&t" with a continuous the T° topology is
spectrum of eigenstates, the density of states kernel is given
by

n(k)= % jMnc(k,x,x)dx= %2' ks(k—ki)m;.

1
Pi(k= 5 fMP&<k,x>dx= Puln(k). (14

1 2
" £ ()= 32 Pq><kn>exr{—i%”-<x—x'>
nU(k,x,x") = (27)32 Pk )PP (k,X).  (15) 17

The homogeneity ofM" implies that nY(k,x,x)=n"(k)  where n=(n,,n,,n,) is 3-tuple of integers, K2
=k3/(27?) is independent af. Akin to the correlation func- = (2#/L)?(n-n), and the term withn-n=0 is excluded
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from the summation. This is a direct consequence of substiAssume, without loss of generalifythat x’ lies in the Di-
tuting the known eigenmode functions of the Laplacian onrichlet domain withx as the basepoint. The contribution of
T3, ¥, (x)=exp(2mn-x/L), into Eq.(2) for the correlation each image has the form

function.
. - . 1 .
The method of images leads to the following alternative Uy yix')= _j d3k P (K)eik- (x=x)
derivation of Eq.(17). The correlation function or€? is Salx X)) (2m)° o)
given by xexi (ke +kynl +knh)] (19
1 . f H ! =y j : . .
u " 3 ik (x—x") rom imagesy;x’ =x'+nlL. Summing over the contribution
co(xX) (2m)® f dk Po(kje ' 38 fom the images, the correlation function @A is

ei knL

IMZ

N
>
~N n,==Nn,=—N

M =z

chps(X,X’): lim f d3k Py (k)elk: X

N—oo

(2m)°

Nx

sinf (N+1/2)k,L] sinl (N+1/2)k L] sinl (N+1/2)k,L]
sin(k,L/2) sin(k,L/2) sin(k,L/2) (209

1 e
= Wf dsk P¢(k)e' =X im

N-— o0
=f d%k Py (k)€K XD > s(kL—2mmn;)
i=o

B 1 E b 2 _2mn ) 20b
=32 o| T NJex _IT(X_X)' (20b)
The final Eq.(20b) is the same as E17) except that it contains a terR(n=0) which is infinite for a wide class of power
spectra; e.g.P(k)xk® <0, including thosex for which the integral/;dk K’P(k) is convergent ak=0, i.e.,a>—3.

The regularizing term can be easily calculated as well. Subtraction of the volume integr&l deemains as in Eq9) is
described by the following substitution in E@O0b):

N N N N N N
lim X X X e lim [1—jo(kL/2)jo(kyL/2)jo(k L/2)] Z_N > D ekt (21)

N—o Ny==Nny=-Nn,=-N N— o0 ny=-Nn;=-N

[wherejo(x) is the zeroth order spherical Bessel function P4 (k) such as from inflation does have an infrared cutoff,
which leads to the following form for the regularized corre- and all that is required of the regularization scheme is sup-
lation function pression okk=0 power.
Ability to perform an analytic summation over all the im-
ages inT® would lead to the exact recovery of the positions

~§<TI>3(X,X’)= %J d3k Py (k)e'kx—x] of the discrete eigenvaluesz$n|/L, and the eigenfunctions
(2m) in this compact space. In more complex topolodieg., the
% (KL)? CH spacesone can only sum over a finite number of images
X S(KL—27n;)) + ——8(KL) |. and estimate the limit from that. If one tiles the universal
Injl0 24 cover out toN layers, one recovers the delta functionskat
(22) =2an/L only approximately in the partial sum over images.

The power of each discrete mode is aliased to a cubic cell of
As long as the power spectrufg(k) does not blow up
faster thak 2 ask— 0, the above regularization removes the
zero mode contribution completely. In the case of the 4ror any two pointsx and x’ in MY, there exists a discrete
Harrison—Zeldovich spectruriequal power per logarithm of motion yeI" such that the imagex’, would be in the Dirichlet
k), where formallyP4(k)~k ™2 ask—0, the regularization  domain withx as basepoint. Since andyx' are equivalent for the
suppresses the=0 contribution but does not eliminate it compact space, considering the compact space correlation between
completely. However, any physically motivated origin of x and yx’ instead ofx andx’ will give identical results.
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FIG. 2. This illustrates the recovery of the known discrete spectrum i thmodel of sizeL =2 using the method of images. Plots
of (2w2/k3)nT3(k) in the three panels show the density of states obtained at different stages of our methledt Fdueelsimplement the
limiting procedure of Eq(9), varying the number of shell§ of images that are summed. Images uplte 9 layers(=19° image$ are used.
Theright panelsuse the radial limiting procedure of E@®4), with a cutoff radiug, that we use for CH spaces; herg,=9L, with only
3071 nearest images used. The vertical arrows mark the location of the discrete eigenvalues with the height proportional to the occupation
number. Thetopmost panelshows the unregularized spectrum. Note the huge spurious contribution frok=tBemode below the
fundamental mode &=1. Themiddle panekhows the result of regularization. At this stage most of the spurious power is removed. The
result of Cesaro resummation shown in thettom panedemonstrates that our method finally recovers a smoothed power spectrum with
negligible spurious long wavelength power. Note that the radial limiting procedure does better in terms of removing spurious power at
low k.

the reciprocal lattice.In each cell, the kernel within square are aboutr/6 times fewer images within a sphere of radius
brackets in Eq(209 has a peak ak=2|n|/L of height r, =9L than in theN=9 layers.
(2N+1)2 and width~ 1/N, with damped oscillatory wings. As we mentioned above, the regularization is not strictly
Accurate regularization of the partial sum then consists otomplete for Harrison-Zeldovich like spectra, so the question
subtracting the total power in the reciprocal lattice cellof the numerically superior technique does arise. The resum-
aroundk=0. mation procedure effectively averages the sequence of partial
The left panels of Fig. 2 show the number density ofsums up to a given distance. The superior lopower elimi-
statesn” (k)/k® obtained by summation ové&t=9 layers of  nation of the radial limiting procedure is related to the fact
images. The topmost panel shows the direct sum while théhat the product of the volumie® and the number of images
middle panel illustrates the effect of the regularizing term.yithin a radiusr jitters around the volume #r3/3 on very
The regularization procedure drastically reduces the spurioushort scales. The unwanted residual power in komvodes is
power below the fundamental frequency. The oscillatorygistributed in this jitter, and is more readily removed by Ce-
wings of power aliasing inside each reciprocal cell can b&g,o resummation even if one does not go far.ifn the
eliminated if one averages over the results at dashtained  qiher case, the residual power in ldvwmodes is distributed
at different values oN. We found it is most effective to do j, 53 more orderly wave of wavelengthk * in the sequence
it by Cesaro resummation: the effect is shown in the bottom partial sums. Hence, when one is summing images up to a
panel. The result is a smoothed approximation to the undethite distanced the residual power in modes wittd<1 is
lying discrete spectrurtmarked by arrows in the figuyrevith not averaged out.
negligiple contr@bution below the fundamental frequency and | ig important to realize that at a given partial image sum
a positively defined spectrum. _ the correlation function is obtained to far better accuracy
The plots of the right panel of Fig. 2 are analogous 04 the power spectrum. The correlation function is a
those of the left panellexcept that they use the radial I'm't'”9<-space integral over the power spectrum and is accurately
procedure described in Eq24) below, withr, =9L. The onraqyced as long as power is sufficiently peaked around
radial limiting procedure does better_ at eliminating the Un-ne correct eigenvalues and there is not much overlap be-
wanted lowk power at the resummation stage. The spectralyeen the adjacent peaks. The partial image sum generates a
lines are somewhat broader solely due to the fact that ther?pectrum which can be approximated as the true spectrum
convolved with a smearing functionV((k—k;)?/(Ak)2),
around the true eigenvalues. Hetkk() ; quantifies the width
Sp2mm+ VAL 4k sir[ (N+1/2)kL]/sinkL/2] = 2#/L for any integer ~ Of the smoothing. In a compact space no two points are

2m(m—1/2)/L _ 4
m andN. physically separated by more than the diameter of the space.
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Hence, to get a reasonably accurate estimation of thecorre fF+~ 1™ " 1" [ "'
lation function, it is sufficient to ensure thR,~ 1/(AK), is ]
larger than the diameter of the space. In the case of the ¢ 3

[+
T
z
il
o
]

simple T3 model, in the Gaussian approximation to the N3 _
smearing functionw, the method of images witN layers : 4 i I y l? Higl i

. . A i} Fl
givesRs=(2/3)d+yN(N+ 1) whered=Lv3/2 is the diam- :

eter of the simpleT®. Hence, the second layeNE2) ap-

proximation satisfies thB;>d; condition by a comfortable

margin, and even the first layer comes fairly close. o4
The above estimate of the spread in the peaks arounio |

eigenvalues is based solely on the regularized spectrum dor 2| M\%\ /h\ﬁ/h\/;
=
Loy M| e pt .

states

with summation in layers up thN layers. We also carry out a of
Cesaro resummation to remove remaining spurious kow P SO TV U S T
power. The resummation procedure effectively averages thc | 18 L
cumulative results at each layer. It is not difficult to see that "t ]
this reduces the amplitude of the peak by a factor of 2 anc 4 ]
broadens the spectrum by the same factor. Thus to reach tt , ¢ m /hm AM\ M 3
same spectral resolution after Cesaro resummation one neet ¢ /i\ /7\ A\ A
to go toN.~2N layers. We prefer to implement the radial 3
limiting procedure, which is simpler and does better at the
resummation stage in suppressing residual lovpower.
Equating the number of images of the radial limiting proce-
dure to that in N. layers implies choosingr, /L FIG. 3. The recovery of the known discrete spectrum
~(3/4m) (2N +1). Hence, for the resummed spectrum (272/k%)n™°(k) in the T® model of sizeL = 27 using the method of
obtained with the radial limiting procedure, the comfortableimages. The top panel shows the regularized spectrum obtained at
margin of N=2 (which translates tt\.=4) estimated above the lowest level approximatiofN= 0, nearest imageonly the low
for obtaining accurate correlation functions translates,to k cutoff is recovered. The second panel is the spectrum recovered
~5.6L. In the second panel of Fig. 3, we show the spectrun@fter summing images up to a distancergf=5.5_, a level of
recovered at, =5.5.. approximation which shouldand doe} recover the correlation
Another important remark is in order. In application to function quite well, although the spectrum is coarse. The bottom
CMB, the positions of pointg,x’, between which the corre- panel demonstrates the convergence qf the regularized method of
lation function is to be calculated, are given by the |ength|mages: wnh_alarge_e_nough number of images, the spectrum is also
and directions of the photon path from the observer, i.e_,recqvered with precision. In the lower two .panels, Cesaro resum-
correspond to the coordinates on the universal covi¥r In mation has been carried out on the regularized spectrum.

the method of images, the value &f(x.x') for the pairs 4t indistinguishable from the exact restit=3.5 is al-
of points belonging to separate dom&iis found by sym- ready very good and evexi= 1.5 is an adequate approxima-
metric replication of the correlation value computed aker tion of the result. Even from the very beginning, with only
is mapped back into the Dirichlet domain around’hus, the  the nearest image used, the method of images correctly
method of images applied to the correlation function pre-catches the qualitative behavior of the correlation function in
serves at all levels of approximation the exact periodicity ofine compact space, which is dramatically different from the
the £,(x,x") viewed as being defined on the universal cover.corresponding correlation function in noncompact flat space.
This periodicity is the major distinction betweei, (x,x")
and the correlation functiorgy(x,x’) in the simply con- V. COMPACT HYPERBOLIC SPACES
nected universal cover space. In contrast, a correlation func-
tion determined as the inverse transform with respect to the
universal cover eigenmodes of the approximate power spec- The local isotropy and homogeneity df® implies
trum will fail to obey the symmetries of the compact tiling f(%(X,X') depends only on the proper distancesd(x,x’),
strictly. This failure is greater the cruder the level of approxi-petween the points andx’. The eigenfunctions on the uni-
mation used for computing the power spectrum. versal cover are of course well known for all homogeneous
The success at reconstructing the correlation function byng isotropic model§31]. Consequentlyé%(x,x’) can be

the method of images with even just a few layers of SUMMaghtained through Eq2). The role of4(r) in the compact

tion is demonstrated in Fig. 4. In accordance with the estl-Space calculation is to impose the desired power spectrum of

mate of the convergence of the method, summation over fivg, |, jine with the application for which we developed our
layers (N=5.5) and above produces a correlation funCt'onmethod, we now specialize to the scalar fididbeing the

one describing cosmological gravitational potential fluctua-

6 b r. =55 L ]

Den

TENT ST NN T T NN T SO O SN T S VY S YOO S FOUO SR R T e

0 1 2 3 4
wavenumber

A. Correlation function on 3

tions.
5More precisely, when’ does not belong to the Dirichlet domain The initial power spectrum of the gravitational potential
constructed arouns. P+(K) is believed to be dictated by an early universe sce-
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’ N ] infrared cutoff in the spectrum which can be large enough in
\ —non—compact _ q
[\ Cnearest image R =1L E many CH spaces to exclude the supercurvature sector en-
't Ay tirely (k;d.>1). (See Sec. VG.Even if the space does
—_ \ :?igg% support supercurvature modes, some physical mechanism
S 05F \-FT mode sum needs to be invoked to excite them, e.g., as a by-product of
=} the creation of the compact space itself, but which could be
or accompanied by complex nonperturbative structure as well.
: ] To have quantitative predictions fd?4(k) would require
05 [ : addressing this possibility in a full quantum cosmological
_ , 1] context. For a recent discussion of the creation of hyperbolic
- —non-compact R=13L ] universes within a quantum cosmological framework
r \ —nearest image s~ h q gica amewo see
1 \ -r.=1.5L ] [34]_
-r,=3.5L 1
—r.=5.5L ]
S os \‘;:.[.:9'5]&
e (- mede sum B. Numerical implementation of the method of images
= I
(Y T T Equation(8) encodes the basic formula for calculating the
- \ correlation function using the method of images. For a nu-
05 - merical estimate, a limiting procedure such as @y .has to
|

; , T - o0 be used. In this form, the regularization term involves inte-
° ¢ alc5>ng the great circle on SLS grating_gg(x,x’) over a D_irichlet dqmain. Such terms can be
numerically computed given the discrete group of motion,

FIG. 4. Correlation function iff®, calculated by the method of but it is usually cumbersome since the Dirichlet domains of
images with successively increasing number of images, is comparedH spaces have complicated shapes which vary depending
with the exact summation of eigenmodes of the Laplacian via Foupn the basepoint.
rier transformation. Anticipating application to the CMB, we plot A more effective and simpler radial limiting procedure in
the correlation values between the points along the great circle quplementing the regularized method of images is to explic-

radiusR, g and one fixed point on the circle aR(s,0,0). The ori- itly sum images up to a radius and regularize by subtract-
entation of Cartesian coordinates coincides with directions of peri- ; u : L ;

< . ) ing the integraléq(r) over a spherical ball of finite radius
odicity of the torus, sap is the polar angle. Monopole and dipole g. graléq(r) P

contributionsalong the circles(i.e., different on each circjeare *
subtracted. The results are shown for two valueRgf. The first 4 (ry
case wherR s=1 is a very symmetric one where points at 0, 90, gfp(x,x’)z lim 2 gfp(rj)— V—f dr sint? rfﬁ,(r)},
180, . . . degrees on the great circle are exact images of the point at re—ol<lx M JO
the origin. The second case is a more general one. Labels mark the (24
curves from top to bottom at zero lag=0.
ry=d(x, y;x")<rj,1.

nario for the generation of primordial perturbations. We as-
sume that the injtial per'gurbation_s are ggnerated by quantufne volume element in the integral is the one f&f. We
vacuum fluctuations during inflation. This leads to have shown for the flat torus that this scheme works better

~ dBB sin(Br) numerically t_h_an formal r(_-:tgularization which subtracts inte-

g%(x,x’)zgg)(r):j ——— ————Pu(B), (23 grals over Dirichlet domains.
o (B7+1) Bsinhr The plot on the left in Fig. 5 illustrates the steps involved
in implementing the regularized method of images. The

where B=(kd.)?—1, Pu(B)=B(B>+1)Py(K)/(272) value of ¢ as a function ofr, has some residual jitter,
and, as beforer is in units ofd.. In the simplest inflation Which arises because of the boundary effects due to the sharp
models, the power per logarithmic interval kifi.e., Py, is  top-hat” averaging over a spherical ball chosen for the
approximately constant in the “subcurvature sector,” de-counterterm in Eq(24). This can be smoothed out by resum-
fined bykd,>1. This is the generalization of the Harrison- mation techniqueg35]. We use Cesaro resummation for this
Zeldovich spectrum in spatially flat models to hyperbolic PUrpose.
spaceg32,33. In Appendix A, we outline a simplified cal- ~In hyperbolic spaces, the number of images within a ra-
culation of the initial inflationary perturbation spectg, in ~ diusr, grows exponentially for, /d.>1 and it is not nu-
hyperbolic geometry and derive a broader class of “tilted” merically feasible to extend direct summation to large values
spectra. Subhorizon vacuum fluctuations during inflation ar®f r, /d.. The presence of the counterterm, however, be-
not expected to generate supercurvature modes, those wigiles regularizing, significantly improves convergence. This
kd.<1, which is why they are not included in Eq?3). can be intuitively understood as foIIow&{)(rj) represents a
Indeed, sinceH?>1/(ad.)?, for modes withkd,<1 we al- sampling of a smooth function at discrete poinfs In a
ways havek/(aH) <1 so inflation by itself does not provide distant radial interva]r,r+dr], r>R., dr~R., there are
a causal mechanism for their excitation. Moreover, the low-approximately (4r/V ,,)sintfrdr images. The sumy,,
est nonzero eigenvaluk; >0 in compact spaces provides an £g(r;), within this interval is similar to th&Monte Carlo
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FIG. 5. The two plots illustrate the regularization of the correlation functions with and without an infrared cysQff-&. The example
shown is the correlation function at zero-point separation at some point on the CH mantfod{—5,1). The plot on the left corresponds
to £€5(x,x") where there is ng cutoff. The topmost panel shows the sampled valueg;,¢f) which contribute to the sum over images. The
upper solid curve in the middle panel shows the divergent cumulative build up of the partial sum over images with successive addition of
distant images. The dashed curve is the regularizing counterterm required to remove the zero-mode contribution and the lower solid curve
is the cumulative value of the regularized partial sépfx,x’), which fluctuates around the true value once a sufficient number of images
have been added. In the bottom panel this residual jigy in the estimate of the correlation is removed by Cesaro resummation. The
sequence of lines?, s?, ands® shows the result of applying first, second and third order Cesaro resummation. The accuracy at the second
order is usually sufficient. The plot on the right is analogous to the left but for the auxiliary correlation fusggn ,x,x’) with an
infrared cutoff atB, =4.0 below the first eigenvalue in the CH space. In contrast to the left panels, the cumulative sum over images is
oscillatory which is more easily regularized, leading to much smaller residual jitter around the true value.

type) estimation of the integral, therefore one may approxi- £4.(r)=Chi(r)—coth(r)Shi(r). (26)
mate the sum over all distant images beyond a radjuby
an integral to obtain

This is positive definite and does not fall off fast enough with
_ A7 (= r for its volume integral to converge. As a result, the integral
E(xx)= > Eprp+ V_J dr sint?r&g(r). in Eq. (25) is not defined and the step from E@4) to Eq.
M=" M Ty 5 (25) is nontrivial, involving the regularization of an infinity
(29 which can be traced to th@=0 mode. To reinstate the in-
tuitive interpretation in this case, we first show that it is valid
The tilde ongg,(x,x") denotes the fact that it is approximate for an auxiliary correlation function£4 (3, ,r), which has
and unregularized. Subtracting the integral #{4 an explicit infrared cutoff aB, >0. The auxiliary correlation
V) [odr sint?ré(r) as dictated by the regularization equa- function
tion (8), we recover the finite, term of the limiting se-
guence in Eq(24). This demonstrates that even at a finite
r., in addition to the explicit sum over images with " < dBB sin(Br)
<r, , the expression fogg, in Eq. (24) contains the gross §o(By 1) = B (B%+1) Bsinhr P(B)
contribution from all distant images withy>r, . Numeri- )

cally we have found it suffices to evaluate the above expres- =RE[[Ci((i— B, )r)+Ci((i + B,)r)]/2

sion up tor, about 4 to 5 times the domain siRe. to obtain i o

a convergent result fofg,(x,x’). FILSI(+B,)r)+Si(i =, )r)/2 cothr},
Equation(25) provides the simplest interpretation of our (27)

regularization procedure as an integral approximation to the

total contribution of all distant images outside the region

over which direct summation has been carried out. Howeveivhere Si¢) and Ci() are the sine and cosine integral func-
this interpretation may not be obvious in all cases. In fact, fotions, respectively. This functioréq(B, ,r), is no longer
the spectruni?(8)=const that we use here, the correlation positive definite and its volume integral, although an im-
function on the universal covér® is given in terms of the proper integral, can be shown to be zero.

hyperbolic sine and cosine integral functions, $ji@nd The contribution toég (B, ,x,x’) of the distant images
Chi(r), respectively, by with R> 8. * can now be evaluated explicitly:
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FIG. 6. The analog of the bottom panels of Fig. 5 for three G he density of hibi . fl
values of the cutoff3, . The more jagged curve is a regularized FIG. 7. The density of states exhibits suppression of long-wave

sequence of partial sums and the smoother curve is the result of We' if the universe has_ compact _top_ology. Each row co_rresponds
third order Cesaro resummation on the regularized result. The ef© one compact hyperbolic space, indicated by the label in the last

H 3
fectiveness of regularization is enhandgdflected in the smaller C‘?'L‘mh“- Lefthagd fmlddle columns SZOV\FEK,X,)I()/k dcon.wputhed
amplitude of jittej as one increases the value 8f by directly with t lemetho 0 L:‘nages_alt two ran (I:n/]k% siegtedgon:ﬂfﬁ €
cutting out more of the zero-mode contamination. The computatior#aSt column shows the spafial averagek)/k” obtained by Monte

is robust and converges to the correct value as long,as3; . For Carlo integration ofn®(k,x,x)/k® over the Dirichlet domain. The
the CH manifoldm004(—5,1) used in this figure, we estimagy normalization is chosen such that the functions are equal to unity

=5 (see Fig. 7. In the top three cases, <5, and the computed for the topologically trivial infinite open universe. Vertical lines

correlation converges t&°(0)=2 with high accuracy, independent illustrate naive estimation of the cutoff &t =/d,, which holds

of B, . Wheng, > B, the value ofé%(0) is underestimated, as is surprisingly well for the cases checked. The first six examples of
seer: in the bot;om rln,ost panel whegg =8 ' the CH space have about the same valué gf These spaces have

vqumesV/dg around unity. The sixth space |m004(—5,1), the
% _ “small” space used in many of our examples. The seventh space is
47Tf drsint?r &g (B, 1) v3543(2,3), with volumeV ,,/d3=6.45, used as an example of a
R “large” space in this paper.
R>p )
T 1, 1., SINhR . . n oA .
— ——sin(B, R+sin"(k, 1)) ) images to the density c_)f states kern (!(,x,x ) d|scu.ssed in
Vpki R Sec. Il B. We emphasize that evaluating the density of states
(28) numerically in CH spaces is not our primary goal. What we
o _ _ present is a rough estimate of the power spectra in CH spaces
This is purely oscillatory with a zero mean. The plot on thethat can be readily obtained as a by-product of our primary
right in Fig. 5 shows that these oscillations of the regularlzagoa| of computing correlation functions in CH spaces.

tion term precisely cancel out the oscillatiofvéith growing Indeed, in the formalism of images, the singular delta
a_mphtude) of trée image /sum, with no net effect on the lim- f,4ctions inn°(k) [see Eq(110)] are recovered, in principle,
iting value of £4,(B, ,x,X"). by the precise cancellation of the smooth contributions from

 Having established that Eq(25 makes sense for ) images. The volume of a sphere’it?, and consequently
§p(By xX'), wherefs, >0, the interpretation may now €as- the numper of image®f the Dirichlet domain of a CH space
ily be extended tafq(x,x") by simply noting that given O on, the universal covirgrows exponentially with radius be-
<B, <Py, wherep, is the wave number corresponding t0 yondr ~d, . This is the primary constraint on the success of
the first eigenvalue of the Laplacian in the CH space, theapplying the method of images to the density of states.

method of images applied to the auxiliaty, (8. ;1) and " oyr approximation for computing the CH space correla-
§p(x,X") must converge to the same value. This result isjon function includes the gross integral estimate of the im-
demonstrated in Fig. 6. pact of distant images which results in a spread-out con-
volved density of states distribution. Increasing,
C. Power spectrum progressively sharpens spectral profiles near the true posi-

In this section, we present our results on the power spedions of the discrete eigenvalug¢86]. Figure 7 shows a
trum of CH manifolds obtained by applying the method of samplen®(k,x,x) for some of the CH manifolds at two ran-
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dom positionsx in the first two columns. The third column 5

shows the smoothed out estimation of the actual density of

states,n®(k), for the CH manifolds that one can obtain by

averagingn®(k,x,x) over ~10® points on the manifold. 4
There is a definite signature of strong suppression of

power at smalj3 in all the cases that we have explored. This

is qualitatively similar to the infrared cutoff known for the 3

compact manifolds with flat and spherical topology. Quanti-

tatively, the break appears aroudxd~(9(d]j), consistent

with the intuitive expectations. 5
An infrared cutoff at the lowest nonzero eigenvalle,

>0, exists for all compact space&Sheeger’s inequality37]

IIIllIlllII

provides a lower bound ok? for a compact Riemannian 1 : N
manifold, M: .
=S he=int AS) (29) 0
=, =inf — ,
20 g min{V(My), V(M,)} 0 05 1 1.5 2

diameter

where the infimum is taken over all possible surfa&shat ) ) )
partition the spacey, into two subspaced; andM,, i.e. FIG. 8. Some known bounds on the first nonzero eigenvalue in
M=M.UM, andS=dM.= M (Sis the bloundar; oM.  CH spaces are shown. The heavily shaded region is the lower bound
anszl). Chzeeger’s isoptlarimet?ic constang ldepends mére in EqQ. (30). The IighFIy shaded region is the lower bqund derived in
on the geometry than the topology of the space, with Smalq40]' The dashed lines show the lower bound which depends on
values ofh. achieved for spaces having a “dumt;bell like” volume as well for three values of the volume. The shaded regions

cer : o in the top right corner define two upper boundslgn The hori-
structure—a thin bottleneck which allows a partition of the b N Pp a

. zontally shaded region is the upper bound coming from comparison
space into two large volumes by a small-area surfa2e38.  \ith pirichlet eigenvalueg42]. The other region is the sharpest

Regular shaped compact spaces do not allow eigenvaluggssihie hound that can arise using the upper bound in terfng of
which are too small. For example, the Cheeger limit for allj43] and the lower bound ohc in Eq. (30).

flat T2 manifolds isk;=2/L, whereL is the longest side of

the torus. Although the dire_ct estimationtaf is not simple, The density of stater®(k) defines the eigenvalue spec-
for any compact space1 with curvature bounded from be- trym of the Laplacian on a compact space. It is well known
low there exists a lower bound dw in terms of the diam-  that there exist very strong connections between the geom-
eter of M [39,29; for a three-dimensional CH space, etry and the topology of the space and the spectral properties
of the Laplaciar. As discussed above, the infrared cutoff in
ky=hg/2= i —0.92H,,. (30 the spectrum is broadly determined by the didiametey of
d the space and its volume.
The Weyl formulais an example of a general and power-
This result prohibits supercurvature modes for all CH spaceful result connecting number of states to the topology of the
with d,,<0.92.. compact space: for largé, the number of eigenvalues
There are other lower bounds ¢ that exist in the lit-  N(k)=#{j|k;<k} up to a given valud, in ann dimensional
erature. In terms of the diameter alone, the boldd compact space of volumé,,, is given by[29]
=7?/(2d \)?— maxX—(n—1)K,0} has been derived for any

-1

1/2
Zf dt cosH(t)
0

compactn-dimensional space, witk=0 for flat geometry N(k)=#{j|k;<k}=c(n)V ,k"+O(k"" D),
andK= tdc’z for spherical and hyperbolic geometries, re- (31
spectively[40]. For hyperbolic spaces, this bound is sharper c(n)=V(unit ball/(2m)".

than the one above fat,,=0.9d.. There is another lower
bound onk; in terms of the volume as well as the diameterthe constantc(n) is related to the volume within a unit

[41]; for CH spaces ky=V,/[2mdy(sinh(Z,,/dc)  sphere, set by the geometry of the space. In(B, j counts
—2d,,/d;)]. This lower bound dominates in the supercur-the eigenvalues, including multiplicity. As a corollary, the
vature sector for volumes larger than7d;. eigenvalues asymptotically can be estimated:

There are also upper bounds &n. The bound,ki
<4h¢/d.+10hZ [43], does not allow for a firm conclusion

that the space SUPPO”S supercurvature moldgk,<1, un- It is widely believed that, in two and three dimensions, the in-
lessd = 10.€d. [using Eq.(30)]. Upper bounds based on erse problem of identifying a space from the spectrum of the La-
comparison with the first Dirichlet eigenval{2] on a sub-  piacian isspectrally rigid, i.e., there can be only a finite number of
domain of M cannot imposé;d.<1, since Dirichlet eigen-  spaces which have the identical spectrémodulo symmetries
values cannot be less thaij *. Some known bounds oky  [44]. In higher dimensions, there are known exceptions, but spectral
are summarized in Fig. 8. rigidity is quite generic.
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kj~c(n)‘1’”(j/VM)1’“ as j—. (32 There are three distinct regimes for the correlation pat-
terns on the sky in a compact space. Rpg>R-. , the pat-
The corrections to Weyl's asymptotic formula are terns are mainly dominated by the mapping of the SLS into
O(k(n=2+2/0+ 1)y for flat tori andO(k"~Y/In(k?) for mani-  the compact space. The NSW—CMB patterns are character-
folds with negative curvature. ized by spikes of positive correlation when the neighborhood
Weyl's formula also points to the dependence of the in-of one point on the SLS is multiply imaged on the SLS. For
frared cutoff on size: the smaller the space, the larger th® s<R., i.e., the SLS is well within a single domain, the
infrared cutoff. Equatiori32) shows that in the limit of large compact space is indistinguishable from a simply connected
eigenvalues the typical spacing between distinct eigenvaluespace with the same geometry. In the intermediBte
is given by the inverse of its linear size. These are familiarsR_s<R- regime, there is very little multiple imaging;
and intuitive facts in Euclidean compact spaces such as theevertheless, the SLS is large enough to feel the compact-
simple tori. Weyl's formula encourages the view that theseness of the space. Typically the correlation pattern retains the
broad features in the spectra of the compact manifolds trarstructure of correlation in the simply connected space, but is
scend the geometry. Another important point of Weyl's for-significantly deformed.
mula relevant for our work is that the cumulative number of  Figure 9 illustrates the typical correlation patt€(q,,q)
eigenstates asymptotically depends only on the volume ah the large CH modedb3543(5,1) around a fixed direction,
the manifold and not on its exact topology. Thus, the gross),, which we chose to correspond to a fiducial “North Ga-
properties of the spectrum are shared by spaces with compkactic Pole” (NGP). Of course, the global anisotropy implies
rable volumes, and quantities which are fairly democraticallythat this pattern will differ for different choices df,. At
weighted integrals of the power spectrum can be expected 1 ,=0.6, the SLS is largerR s=1.44) than the domain

be similar. (R-=1.32), and spikes of enhanced correlation are seen
with widely separated directions when the fixed point on the
VI. CORRELATIONS IN COMPACT HYPERBOLIC sphere, or points physically close to it, are multiply imaged
SPACES on the SLS. At(,=0.8, the SLS is smallerR-<Rg

=0.93<R.) and high correlation spikes due to multiple im-

As a prelude to our computation of CMB temperatureaging are absent. Nevertheless, the compactness of the space
anisotropy correlations for CH spaces in Réf6], we focus s evident in the distorted contours arougigl At ,=0.9,
our attention in this section on th@-correlation function the SLS is completely contained within the domain, and the
£p(x,x") between points andx’ that belong to a 2-sphere correlation around the NGP is circularly symmetric. As ex-
around the origin in\"—i.e., there exist discrete motions  pected, in this regime the compactness of the space on scales
y" eI’ such that the pointgyx,y'x’ e M" are equidistant much larger than the horizon has very little observational
from the origin. signal. The contours show only slight, observationally insig-

Correlation functions of this kind arise in evaluating large nificant, distortions.
angle CMB anisotropies associated with the gravitational po- Figure 10 plots the variance in the NSW—CMB tempera-
tential on the sphere of last scatteritf§LS—the naive ture, C(§,d), in the large CH modeb3543(5,1) for three
Sachs-Wolfe(NSW) effect. (The radius of the SLSR,s  values of(),. The first two maps show a significant loud
~2tanh*\1—Q,, is related to the density parametfy;.) feature at()y=0.6 and(,=0.8, corresponding to the radii
The angular correlatiol©(q,q’) between the NSW CMB R, s=1.44 andR, 5= 0.93, respectively. The loud spot on the
anisotropy in two direction§y andq’ is given by sphere at();=0.8 is within the domain. At),=0.6, the

sphere is larger than the domaiR(=1.32), and the loud
ca q’)E<A—T(Q)A—T(q’)> spot is multiply imaged on the sky. The third map Hag
' T T =0.9, corresponding to a sphere of radiRig=0.63, which
is significantly smaller than the inradiuR.=0.89. The
variance does not show much variation over this small
sphere around the observer.

The CMB anisotropy has contributions other than the
In simply connected universe€(§,§')=C(§-q’) is statis- NSW term in Eq.(33). In particular, there is an integrated
tically isotropic. In contrast, for all compact universe modelsSachs-Wolfe contributiofiSW), with the integration along
with Euclidean or hyperbolic geometrg(§,§’) is statisti-  the line of sight from the SLS to the observer. The NSW
cally anisotropic. The breakdown of isotropy leads to charterm dominates when the density paramedgyis close to
acteristic patterns in the predicted CMB anisotropy deterunity. When the ISW contribution is important, it signifi-
mined by the shape of the Dirichlet domain around thecantly modifies the correlation patterns, as discussed in our
observer. Moreover, except for the simple flat torus, the glocompanion pap€rl6].
bal inhomogeneity implies that the varian€4€q,q) varies
with direction. This implies that the CMB sky would be a
realization of an inhomogeneous field that would have char-
acteristic patterns of “loud” and “quiet” regions. Thesetwo  The computation of the angular correlation function of the
effects constitute two aspects of the signature of a compac&@MB anisotropy requires machinery to compute spatial cor-
universe. relation functions on equal-time spatial 3-hypersurfaces. We

1
:§<¢(qXHaTLs)(I’(Q'XHaTLs»- (33

VIl. DISCUSSION
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SGP
NGP LCH Q,=0.6 NGP LCH Q,=0.6 SGP

LCH Q,=0.8

LCH Q,=0.9

LCH Q,=0.9

180 degrees 180 degrees

180 degrees 180 degrees

FIG. 9. Typical angular correlation patter@¢¢,,q) of the na- FIG. 10. The variations in the varian€{q,q) of a scalar field
ive (or surface Sachs—Wolfe effect on CMB anisotropy around a On three concentric spheres around the same basepoint. The radius
fixed directiond in the L(arge CH model are shown as full-sky ©f the spheres correspondRs at the values of the density param-
maps at the angular resolution of 5:25.2° pixels. The full-sky  €ter{lo shown. The variance is shown in full-sky maps plotted as
maps are plotted as pairs of 180° diameter hemispherical caps, of@irs of 180° diameter hemispherical caps, one centered on the
centered on the South Galactic Pé®GP and one on the North South Galactic PoléSGP and one on the NorttNGP). In addition
(NGP) g, points to the NGP. In a simply connected universe, thet0 the coBe-DMR beam smoothing, the maps have been smoothed
contours of equal correlation would be concentric circles around®y @ 1.66° Gaussian filter. The loud feature seeif)gt0.8(R-
8o, due to the global isotropy. The three values(hf are repre- <Ris<R-) corresponds te=100% excess in the variance over its
sentative of the three regimes. In the top panel, the radius of thEean. AtQq=0.6, the spot is multiply imaged since the sphere is
SLS,Rys, is greater thaiR-. and one sees multiple imaging. In the larger than the domaik s>R. . At {1,=0.9 there is very little
second, witrR. <R, s<R. , there are significant distortions but no Vvariation over the small sphef® s<R. .
multiple imaging. The bottom panel h& <R, g, and no observ- ) o )
able correlation signatures of compactness. In all the maps, theequired level of accuracy. This is in itself a daunting math-
dipole component of the correlation function has been subtractecematical task, but, fortunately, for many thousand compact
The maps have also been smoothed by a 1.66° Gaussian filter. hyperbolic models, theNAPPEA packagd 28] gives enough

information for us to carry out this step.

have presented a general method of calculating these for Given the tiling, we perform our correlation function cal-
multiply connected spatial sections which evades the task afulation in a sequence of radial shells of sizetesting
eigenmode decomposition. This is particularly useful whenwvhether a stopping criterion based on a desired level of con-
considering compact hyperbolic models of the universe forvergence in the regularized summation over imagf@sc.
which rather little is known about the spectrum of the La-V B) is satisfied; if so, this defines, . It may be that the
placian, and eigenmode decomposition is known to be diffirequiredr, is beyond the computational power at hand. For
cult to obtain. the correlation function calculations of interest for the CMB

We summarize here the basic knowledge we require of @roblem in the compact hyperbolic spaces we have tried, 10
given manifold to use our method and the steps to be folimages are computationally very feasilfless than a day on
lowed to obtain a given accuracy level for the correlationa 433 MHz alpha workstation This allows us to go out to
functions. r.~5d,,, more than adequate for convergence.

For the selected compact modéll= M"/T of interest, It may be for manifolds with very many faces, the number
we must be able to construct the tiling of the universal covenf images required to converge could be prohibitive. Even if
M from the generators of group (Sec. I) up to some this is so, we obtain useful results out to the radius we can
distancer, from the origin, which will be determined by the achieve because at each shethe symmetries of the mani-
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‘ ' T ] the broadened spectral lines obtained by sequential image
Initial Power Spectra in Open-Inflation } addition. One of the manifolds in which the ldkveigenval-
Tilted: pu= 1.7 1 ues were determined by Ino{i&4] is in common with those
we have computed the spectrum for. We find his results
agree with ours.
The goals of this paper were to provide a detailed descrip-
tion of our regularized method of images, demonstrate that it

——OPEN INFLATION

---------- FLAT: % «<k3/2-# ] works extremely well, and more generally show the basic
< 1 effects of compactness on the correlation function of a scalar
= \\ _—_OPEN: R «g¥2-s ] field and the density of states of the Laplacian. The compu-

A ]

tation of large angle CMB anisotropy, the features that arise
in the CMB correlation that are characteristic of compact
spaces, the detailed comparison with the COBE-DMR data
and the constraints that follow using large and small CH
space examples are presented in the companion phpleA

E compilation of the constraints from the all sky COBE-DMR

3 data on a large selection of CH spaces will be presented in
E [45].
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the quantum fluctuations during inflation cannot excite supercurva®f Minnesota. T.S. acknowledges support during the flnal
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spectrum in a flat universe. The open inflation and the flat curvegnatching support from the state of Kansas. In the course of
match atkd,> 1. Tilted initial spectra in hyperbolic universes have this project we had enjoyable interactions with J. Levin, N.
often been taken to be a power lawkd, or 8. Although equiva-  Cornish, D. Spergel, I. Sokolov, G. Starkman, and J. Weeks.
lent atkd,>1, these differ at smakd, from the inflationary pre-
diction; the former is labeled FLAT while the latter is depicted by
the dashed curve labeled OPEN. The open inflation spectrum that
we use in our paper corresponds to no-iilt=3/2, is flat with a
sharp cutoff akd.=1. It is widely accepted that the large scale structures in the

present universe grew out of small initial metric perturba-
fold are preserved in the correlation function. Indeed everions via the mechanism of gravitational instability. The in-
the nearest few shells of images are enough for a qualitdlationary epoch in the universe provides us with a setting for
tively correct result on the basic pattern of correlationsthe generation of fluctuations with power on large scales.
which is also quantitatively not too bad. We showed explic-Cosmological perturbations are effectively massidigt)
itly for the flat torus(Sec. IV) that the correlation function is Scalar fields residing on a background FRW space-time and
well determined as long as the density of states calculated fdhe large scale power is related to the infrared behavior of the
that number of shells has the power in each discrete modight scalar field propagator in the inflationary epddh. this
localized to withinAk;~1/d,, around the true eigenvalue @ppendix, we present a simplified calculation of the initial
ki . Since the line of argument leading to this result is inde-Power spectra for open inflatiothyperbolic geometryto
pendent of the local geometry of the compact space, it apPlace the spectrum that we use in our work within a broad
plies to CH spaces as well. class of “tilted” inflationary spectra which are “scale free”

Our method has the merit of avoiding explicit eigenmodeOn scales much smaller thafy and are analogous to the
decomposition. Recently progress has been reported in divell-known tilted spectra in Euclideaffiat) inflationary uni-
rectly computing the lovk eigenmodes of the Laplacian for Verse. The scope of our analysis is limited by the particular
selected compact hyperbolic spa¢ed]. It has proved nec- choice of the vacuum state, as discussed below.
essary to use spectral line “deblending” techniques in con- Inflationary scenarios that lead to a simply connected hy-
junction with these methods to get the eigenvalue spectrurR€rbolic universe generally require two stagé]. This is
accuratelyf15]. As we showed in Sec. Il B, we can also use
the method of images to calculate the spectrum of eigenval-
ues, though this is more difficult than correlation function 8t infrared behavior is linked to the infrared divergence which
evaluation since it requires longer summations to get narrowrictly exists for massless scalars and for infinite duration of the
spectral lines, as is evident from Fig. 3 grid]. These fig-  accelerated phase. In the case of inflationary scenarios, both the

ures immediately suggesting deblending, but at this stagéinite duration and small effective mass serve to regulate the diver-
only for the torus case do we explicitly know the shapes ofgence.

APPENDIX: INFLATIONARY PERTURBATIONS
IN A HYPERBOLIC UNIVERSE
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because a single stage of inflation cannot provide homogeFhe quantity within the square brackets represents the con-
neity across the Hubble patch without inflating the local cur-tribution per logarithmick-interval to the total power at a
vature in the patch to negligible values. A widely prescribedgiven time, 7. We usually define the power spectrum by
solution is to invoke a ‘“creation stage” involving the cre- evaluating this quantity at some convenient timg, during
ation of a universe with homogeneous hyperbolic spatial seqnflation. For instancer, could correspond to the time dur-
tions which is then followed by a sufficiently short inflation- jng the inflationary epoch when the comoving scélg, cor-

ary stage(so as not to expand the curvature away resnonding to the observed horizon was equal to the Hubble
|nflat|0na_ry stage respons_|ble for generating the primordia},ji,s ol 71| =komo). The power spectrump ,(k/ko), of
perturbations at cosmological scales. Since the second epo‘ﬁ?la field, 4, is defined to be

of inflation cannot be long, the specifics of the first stage o e

creation of{> spatial sections could influence the spectrum K3

of generation of perturbations at supercurvature scales. The P (KIKo)= 5— th( 1) ¥t (T1). (A2)
possible effects on the spectrum have been extensively stud- 2m

ied in recent literaturg¢47] in the context of open-bubble

models in which the open universe resides in the interior offhe present astrophysical comoving scales correspond to
the bubble nucleated in the first-order phase transition from ghysical scales which were much larger than the Hubble ra-
larger inflating universe. It is doubtful, however, that thedius at the end of inflation, hence it suffices to evaluate the
bubble mechanism can be used to produce compact hypesmplitude of modes in the expression for the power spec-
bolic spaces. More relevant is probably the mechanism ofrum, P, (k/k), in the limit, k7— 0.

quantum creation of the universe “from nothing” where the ~ We now compute the spectrum of initial perturbations
topology of the created space is related to the topologicajjenerated in the second inflationary stage on a FRW model
properties of the instanton solution in the Euclidian sectionyith 3 spatial sections.

[34]. Proper quantization of the fluctuations in such a sce- The spatial modes of a scalar field 6% are given by

nario is, however, still a matter for the future. orthonormal eigenfunctions of the Laplacian in spherical co-
We assume that at the beginning of the seconfiiation- ordinateg48];
e

ary) stage all quantum fields on the hyperbolic hypersurfac
are in the vacuum state and the vacuum modes in(&@). © m=l
are chosen by identifying the positive frequency part of the _ | 5
general solution to the mode evolution equation. This choice Gi(X) Zo 2 G Y i),
of the initial state sets the boundary of applicability for our
considerationg.It is important to bear in mind that, in gen- N/(B)
eral, the creation stage could modify the proper choice of the )=\ —— Py s(coshr), (A3)
vacuum state and consequently the predicted spectrum Egs. sinhr
(A7) and (A8).

We outline the derivation of the power spectrum for a free N rag+i+1)
scalar field which will be appropriately identified with A= VIK[F=1, r=|x|, %=xr, N|(ﬂ):m
metric perturbations subsequently. The scalar field equation

allows the spatial and temporal dependence to be separatqfl:ihe ahove equation, tHe!(x) are the associated Legendre
(X, 7) = (1) G(X). The rapid expansion of the space-time ¢, tisns andr' (1) is the Euler-Gamma functiof#9]. Ow-

during inflation would redshift away to insignificance the . . 3
: N L . —.ing to the isotropy ofH°, the modes depend onk=|k|.
number density of any preinflationary quanta within the flrStMoreover, modes wittkd.=1, (i.e., § real and positive

few e-folds of expansion. As a result, it is a good approxi- ) .
mation to assume that all the fields are in their vacuum statg)rm a complete orthonormal basis for free fields/éf and
it is convenient to use the wave numbg;, to label these

i.e., y()=y{" (7). The vacuum expectation value of the .
: 5 . . Lo _~ modes(see Fig. 11
field, (¢°(7)), is the coincidence limit{’ —x) of the equal The temporal modes of the scalar field, on a hyper-

time two-point function{#(x’,7) ¢(x,7)), and, henc:_e, cgn bolic universe, obey the equation
be expressed as a mode-sum over the mode functions:

m=—I|

2

!

(V2= ! fd3k¢( Y (7) w”+2a—1p’+[(52+1)+a2m2]¢ =0 (A4)
2n)? k(T (7 BT Vs ett| =0,

_ (A1) wheremZ; is the effective mass of the field and the prime
denotes density derivatives with conformal time. We now
consider the scalar fielgh to be the fluctuationsge, of the
inflation field[50,51] and thermZ, is related to the quantities

SAlthough not explicitly used, the presence of the “creation S€t By the evolution of the background inflaton field and the
stage” is essential. On the hyperbolic chart of the de Sitter spac&€tric.

some observable 1-loop quantities computed in this vacuum would The above setting allows us to investigate quantum fluc-

diverge on the {=0) boundary and hence the conditions assumeduations during inflation in some well defined regimes. The

here at the onset of the inflationary epoch must breakdown in thélassification here closely follows that of inflation in a flat
past, presumably, due to the creation stage. universe. We consider the following cases.

dk] K .
Ef?[ﬁwk(ﬂwk(ﬂ
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(i) Uniform inflationary (de Sittej expansion andngff
=0. This is the analog of standard slow-roll inflation. PuB)= BT (A8)

(ii) Uniform inflationary expansion with a constant value
of m2/H?#0. This is the analog of the class of models with This is the analog of the Harrison-Zeldovich spectrum for
inverted harmonic oscillatorlike potentials, such as naturahyperbolic models derived if82,33. In the limit 8>1, the

inflation. _ S ~ spectrum goes over to the well-known flat “flicker noise”
(iii) Constant equation of state during inflation. This is anresult. This is also the power spectrum which implies equal
abstraction of the power law models of inflation. power per logarithmic interval ifk| that we use in our work

In each of the above, the conditions are meant to hold irbon CH spacegsee Sec. VA
an approximate fashion over the relevant range of astro- The power spectrum in EGA7) is best numerically com-
physical scales, just as for the flat inflation analogs. ~ puted by using Lancoz’s formula for gamma functions. Us-
In the case of de Sitter expansion, the scale facta is ing the Stirling approximation to gamma functions f6r
=sinhHt)/H=—csch#/H, expressed as a function of cosmic > 1, one recovers the standard tilted flat space spectrum from
time t and conformal timer. Equation(A4) then reduces to Eq. (A7), Pp~k32 1.
. In the more general case of constant equation of state
n__ ! 2 2 _ 1]
=2 cothr i+ [(B7+ 1)+ (Mert/H)“/sinh7]¢h5=0. =P/p, during inflation, the scale factor obeys
(AS) =sinhf(7/a) wherea=2/(3w+1). The de Sitter expansion
The general solution involves associated Legendre functiongofresponds to the case=—1. The Eq.(A4) for the tem-
Q i Br(:flczoshr) and P_{3.. 5(Coshr), multiplied by a poral modes reduces to the form
factor sini’“7. The indexu = /9/4— mezﬁ/H . The positive " ' 2 _
A o ) +2 coth( 7/ +(B°+1)yz=0. A9
frequency(vacuum modgsolution is identified with the late Vs irla) g+ (B Vs (A9)
. . _'k,T .
time asy(T)ptqthve "". The normalized vacuum mode so- The general solution of the above equation involves the same
lution, ¢, is associated Legendre functions as the solution for (B&)

n , with index u=1/2—, rescaled wave numbeg?= «?B?
2o [FGHutiB) —u =(k?—1)a?, rescaled tim&= 7/«, and multiplication by a
Y '=H Sink? 7Q_ {45+ g(coshr), s
iT(i—u+iB) factor of sini 7.
(AB) The positive frequencyvacuum modgsolution is identi-
S . ~ fied again with the late time asymptotiese™ '*”. The nor-
where the overall normalization is determined by normaliz-5iized vacuum mode sqution;l/(” is

ing the probability current, i.e., setting the Wronskian of w

¢ equal toia™ 2. . - ' . P+ ntiB)

The spectrum of initial perturbations in the inflaton field i) =H2 2T H sint? 7Q * _ ~(cosl7)
can be calculated from the vacuum mode solution through ~# iT(i—u+iB) —(2+ip '
Eq. (A2): (A10)

I s—putip)
F(3+u+ip) with rescaled wave numbg and u= 1/2—2/(3w+1). The
spectra given by(A7) are hyperbolic universe analogs of
If m2;=0, the spectrum of initial perturbations in the inflaton tilted spectra generated in flat universe inflation models such

2

. (A7)

The spectrum of perturbations is of the same form(A8)

Plp(,B):

field reduces to as power law inflation.
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