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CMB anisotropy in compact hyperbolic universes. I. Computing correlation functions
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~Received 11 March 1999; published 24 July 2000!

Cosmic microwave background~CMB! anisotropy measurements have brought the issue of global topology
of the universe from the realm of theoretical possibility to within the grasp of observations. The global
topology of the universe modifies the correlation properties of cosmic fields. In particular, strong correlations
are predicted in CMB anisotropy patterns on the largest observable scales if the size of the universe is
comparable to the distance to the CMB last scattering surface. We describe in detail our completely general
scheme using aregularized method of imagesfor calculating such correlation functions in models with non-
trivial topology, and apply it to the computationally challenging compact hyperbolic spaces. Our procedure
directly sums over images within a specified radius, ideally many times the diameter of the space, effectively
treats more distant images in a continuous approximation, and uses Cesaro resummation to further sharpen the
results. At all levels of approximation the symmetries of the space are preserved in the correlation function.
This new technique eliminates the need for the difficult task of spatial eigenmode decomposition on these
spaces. Although the eigenspectrum can be obtained by this method if desired, at a given level of approxima-
tion the correlation functions are more accurately determined. We use the 3-torus example to demonstrate that
the method works very well. We apply it to power spectrum as well as correlation function evaluations in a
number of compact hyperbolic~CH! spaces. Application to the computation of CMB anisotropy correlations
on CH spaces, and the observational constraints following from them, are given in a companion paper.

PACS number~s!: 98.70.Vc, 04.20.Gz, 98.80.Cq
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I. INTRODUCTION

The remarkable degree of isotropy of the cosmic mic
wave background~CMB! points to homogeneous and isotr
pic Freidmann–Robertson–Walker~FRW! models for the
universe. The underlying Einstein’s equations of gravitat
are purely local, completely unaffected by the global top
logical structure of space–time. In fact, in the absence
spatially inhomogeneous perturbations, a FRW model p
dicts an isotropic CMB regardless of the global topology

Flat or ‘‘open’’ FRW models adequately describe the o
served average local properties of our universe. Much
recent astrophysical data suggest the cosmological de
parameter in nonrelativistic matter,Vm , is subcritical@1#.
The total density parameterV0 includes relativistic particles
and vacuum, scalar field or cosmological constant, contr
tions, as well asVm . If a cosmological constant~or some
other exotic smooth matter component! does not compensat
for the deficit from unity, this would imply a hyperboli
spatial geometry~uniform negative curvature!, commonly re-
ferred to as an open universe in the cosmological literat
The simply connected~topologically trivial! hyperbolic
3-spaceH3 and the flat Euclidean 3-spaceE3 are noncompac
and have infinite volume. There are numerous theoret
motivations, however, to favor a spatially compact unive
@2–6#. To reconcile a compact universe with a flat or hyp
bolic geometry, consideration ofmultiply connected~topo-
logically nontrivial! spaces is required.~Inhomogeneous sim
ply connected models are another way out; e.g., a hyperb
bubble could be embedded in a highly inhomogeneous sp
and if the bubble is much larger than the Hubble radius
would not know.! Compact hyperbolic spaces have been
cently used to construct cosmological models within
framework of string theory@7#. A compilation of recent pa-
0556-2821/2000/62~4!/043005~20!/$15.00 62 0430
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pers describing various aspects of current research in c
pact cosmologies can be found in Ref.@8#.

The realization that the universe with the same local
ometry has many different choices of global topology is
old as modern cosmology—de Sitter was quick to point
that Einstein’s closed static universe model with spheri
geometryS3 could equally well correspond to a multipl
connectedelliptical universe model where the antipod
points ofS3 are topologically identified. The possibility of
multiply connected universe has lingered on the fringes
cosmology largely as a theoretical curiosity~e.g., in Ref.
@2#!, but was sometimes invoked to explain puzzling cosm
logical observations@e.g., as a possible explanation for th
isotropy of the CMB radiation@5#, and for the~controversial!
observations of periodic or discordant quasar redshifts@9##.
There is a long history of attempts to search for signature
nontrivial global topology by identifying ghost images o
local galaxies, clusters or quasars at higher redshifts@3,4,10#.
The search for signatures of global topology in the distrib
tion of luminous matter can probe the topology of the u
verse only on scales substantially smaller than the appa
radius of the observable universe. Another avenue in
search for global topology of the universe is through t
effect on the power spectrum of cosmic density perturbat
fields, reflected in observables such as the distribution
matter in the universe and the CMB anisotropy.

The observed large scale structure in the universe imp
spatially inhomogeneous primordial perturbations exis
which gave rise to the observed anisotropy of the CMB. T
global topology of the universe also modifies the local o
servable properties of the CMB anisotropy on length sca
up to a few times the horizon size. In compact universe m
els, the finite spatial size usually precludes the existenc
primordial fluctuations with wavelengths above a charac
©2000 The American Physical Society05-1
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istic scale related to the size. As a result, the power in C
anisotropy is suppressed on large angular scales. Ano
consequence is the breaking of statistical isotropy in cha
teristic patterns determined by the photon geodesic struc
of the manifold. One can search for such patterns statistic
in CMB anisotropy maps. Full-sky CMB data, such as fro
the COBE-DMR experiment, can constrain the size of
universe and its topology to the extent that such correla
patterns are absent in the data@11,16#.

For Gaussian perturbations, the angular correlation fu
tion, C(q̂,q̂8), of the CMB temperature fluctuations in tw
directionsq̂ and q̂8 in the sky completely encodes the CM
anisotropy predictions of a model. For adiabatic pertur
tions, the dominant contribution to the anisotropy in t
CMB temperature measured with a wide-angle be
(uFWHM*2° V0

1/2) comes from the cosmological metric pe
turbations through the Sachs–Wolfe effect. The angular c
relation functionC(q̂,q̂8) then depends on the spatial tw
point correlation function,jF[^F(x,tLS)F(x8,tLS)&, of the
gravitational potential,F, on the three-hypersurface of la
scattering along the lines-of-sight,q̂ andq̂8. Thus we need to
learn how to compute spatial correlation functions on co
pact spaces.

When the eigenfunctions of the Laplacian on the sp
are known, the correlation function can be readily obtain
via a mode sum. For this to be tractable the known eig
functions would, preferably, be expressed in a reasona
simple closed form. However, obtaining closed form expr
sions for eigenfunctions may not be possible beyond the s
plest topologies. Some examples where explicit eigenfu
tions have been used include flat models@17–20# and a
noncompact hyperbolic space with a horn topology@21#. In
this paper we provide a detailed description of ourregular-
ized method of imagesfor computing correlation functions
which does not require any prior knowledge of the eige
functions on the compact spaces@11,12#. The method allows
us to accurately compute the correlation function on comp
spaces where eigenfunctions are not available. Most no
ous in this respect are compact spaces with uniform nega
curvature, thecompact hyperbolic~CH! spaces, for which
even numerical estimation of the eigenfunctions is belie
to be a challenging task~for recent progress see@13–15#!. A
novel feature of our scheme is the regularization proced
that we devise in order to successfully implement the met
of images for the power spectra of cosmological pertur
tions expected from early universe physics. As an additio
bonus, this regularization scheme enhances the converg
properties of the method, which proves to be very useful
tackling CH spaces.

In Sec. II, we introduce compact spaces and briefly
view the aspects that are relevant for our work. The met
of images is derived in Sec. III. As a simple illustrative e
ample, we apply the method of images to the case o
simple flat torus in Sec. IV. The implementation of th
method in CH spaces is presented in Sec. V. The gross p
erties of the power spectrum in CH spaces that can be
ferred from our computation is discussed in Sec. V C. W
derive the properties of the correlation function in CH spa
in Sec. VI. In Sec. VII, we discuss our results and point
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our companion paper describing our detailed CMB anis
ropy calculations@16#.

II. PRIMER ON COMPACT SPACES

A. Mathematical preliminaries

A compact cosmological modelM is a quotient space
constructed by identifying points on the standard FR
spaces under the action of a suitable1 discrete subgroup o
motions,G, of the full isometry groupG, of the FRW space
~see@2,22#!. The isometry groupG is the group of motions
which preserves the distances between points. The infi
FRW spatial hypersurface is theuniversal cover, Mu, tiled
by copies of the compact space,M. Cosmological postulates
of local homogeneity and isotropy restrictMu to be a space
of constant curvature—hyperbolicH3, with negative curva-
ture,sphericalS3, with positive curvature, or flatEuclidean
E3, with zero curvature. The compact space for a given
cation of the observer is represented as theDirichlet domain
with the observer at itsbasepoint. Every pointx of the com-
pact space has an imagexi5g ix in each copy of the Dirichlet
domain on the universal cover, whereg iPG. The tiling of
the universal cover with Dirichlet domains in a Voronoi te
sellation~a familiar concept in cosmology that has been us
in modeling the large scale structure in the universe!, with
the seeds being the basepoint and its images. The Diric
domain represents the compact space as aconvex polyhedron
with an even number of faces, with congruent pairs of fa
identified ~glued! underG. For more details, see e.g., Ref
@2,22,23,4#.

More explicitly, the Dirichlet domain around the bas
point,x0 , is the set of all points on the universal cover whi
are closer~or equidistant! to x0 than to any of the images
gx0 (gPG) of the basepoint. The hyperplane that bise
the segment joiningx0 to gx0 dividesMu into two parts; let
Hg denote that half that contains the basepoint. By defi
tion, the Dirichlet domain aroundx0 is Dx0

5ùgHg . Thus,
the Dirichlet domain is bounded by hyperplanes bisecting
~geodesic! segments joining the basepointx0 to a set of ad-
jacent images.~The corresponding set of motions is calle
the set ofadjacency transformations.! The faces of the poly-
hedron are identified pairwise; the one formed by the hyp
plane bisecting the segment joiningx0 to gx0 is identified
with the corresponding one bisecting the segment joiningx0
to g21x0 . The adjacency transformations generate the gr
G and hence are also known as theface generators.

In the context of cosmology, the Dirichlet domain co
structed around the observer represents the universe
‘‘seen’’ by the observer.~In our papers, we will often loosely

1A quotient spaceM5Mu/G consists of the equivalence class
of points ofMu equivalent underG. M is a manifold whenG is a
subgroup of the isometry group,G of Mu which acts freely~fixed
point free:gx5x⇒g5I ! and properly discontinously~every point
xPM has a neighborhoodUx such thatg(Ux)ùUx5B;gPG,
gÞI !. The manifoldM is compact if the corresponding Dirichle
domain is compact.
5-2
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use the same notationM to refer to the compact space a
well as one of its Dirichlet domain representations who
basepoint is clear from the context.! It proves useful then to
define theoutradius R. and theinradius R, of the Dirichlet
domain@3#: the radius of the smallest sphere around the
server which encloses the Dirichlet domain and that of
largest sphere around the observer which can be encl
within the Dirichlet domain, respectively. The ratioR. /R,

is a good indicator of the shape of the Dirichlet domain.
In cosmology, distances are inferred from the cosmolo

cal redshift which is related to the light travel time. Cons
quently, in compact spaces, and, more generally, in mult
connected spaces, light from the same source seems to a
from points at different locations—the source and its ima
on the universal cover. Any source inferred to be at a d
tance greater thanR. from the observer is bound to be th
image of a point which is physically closer. On the oth
hand, a source closer thanR, is definitely at its true physica
distance. Note thatR. andR, are specific to the location o
the observer within the compact space since the Diric
domain around different observers can, in general, vary.
observer~and Dirichlet domain! independent linear measur
of the size of the compact space is given by thediameterof
the space,dM[supx,yPM d(x,y), i.e., the maximum separa
tion between two points in the compact space.

The isometry groupG defining the global symmetries o
M is the centralizerof G in the isometry groupGu of its
universal cover,Mu; i.e., G5$gPGuugg5gg;gPG%. In
general, M respects less symmetries thanMu; conse-
quently,G is of lower dimension thanGu. M is ~globally!
homogeneous if and only ifG is transitive on M: i.e., for
any two pointsx,yPM, there exists agPG such thaty
5gx ~an equivalent statement is that a compact spac
globally homogeneousif and only if every element ofg
PG is a Clifford translation, i.e., thedisplacement function,
dg(x)[d(x,gx), is independent ofx for all pointsxPMu!.
Space is isotropic~around a point, or observer,x0! if G con-
tains a subgroup of rotations aroundx0 . The only example of
a multiply connected compact universe which retains all
symmetries of its universal cover is the elliptic spa
(S3/Z2) with spherical geometry; the simple flat torus is a
isotropic, and all others~including the entire class of CH
manifolds! break global homogeneity as well. As the resu
the two-point correlation functionsj(x,y) in CH spaces de-
pend separately on both pointsx andy, and not only on the
distanced(x,y,) as in the familiar FRW spaces.

B. Compact Euclidean spaces

The compact spaces with Euclidean geometry~zero cur-
vature! have been completely classified. In three dimensio
there are known to be six possible topologies that lead
orientable spaces@2,22,23#: the simple flat torus whereE3 is
identified under a discrete group of translations; three o
flat tori where the identification is under ascrew motion, i.e.,
translation accompanied by a rotation about the direction
the translation, namely, rotation byp or p/2 in one compo-
nent of the translations, and rotation byp in all three direc-
tions; and finally, two topologies made by identifying th
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planar hexagonal lattice under a screw motion perpendic
to the plane with rotation ofp/3 and 2p/3, respectively.

C. Compact hyperbolic spaces

For cosmological CH models,Mu[H3, the three-
dimensional hyperbolic~uniform negative curvature! mani-
fold with line element

ds25dx21sinh2 x~du21sin2 u df2!, ~1!

wherex5(t02t)/dc is the affine distance,t is the confor-
mal time anddc5cH0

21/A12V0 is the curvature radius se
by the present cosmological density parameterV0 and the
Hubble constantH0 .2 For a universe with hyperbolic geom
etry, 0,V0,1; thus the size ofdc ranges fromcH0

21 as
V0→0 to infinity asV0→1.

H3 can be viewed as a hyperbolic section embedded
four-dimensional flat Lorentzian~Minkowski! space, by rep-
resenting each point onH3 as a unit four vector,X
[„z(x),x…, normalized by dc in Minkowski space (z2

2uxu25dc
2). The distance between two points onH3 is given

by the dot product of the corresponding four vectors. T
isometry group ofH3 is then the group of rotations in th
four space, the proper Lorentz group SO~3, 1!. A CH mani-
fold is completely described by a discrete subgroup,G, of the
proper Lorentz group SO~3, 1!.

There are two remarkable features of tessellatingH3 un-
der a discrete group of motions that are absent in the
geometry. First, whereas in flat geometry all finite volum
quotient spaces obtained are necessarily compact, one
tessellateH3 with tiles of finite volume which are noncom
pact, giving rise to a class of noncompact finite-volume h
perbolic universe models. Typically, these spaces have c
like extensions to infinity. Second, a given CH topologic
structure fits only for a specific volume of the space. This
in contrast to flat compact spaces, in which the same to
logical structure can be imposed on any scales. In particu
all simple flat tori with different identification lengths ar
homeomorphicto each other, i.e., one can be obtained fro
the other by a continuous mapping/deformation, but arenot
isometricto each other, i.e., the distance between the map
points are not the same. Two hyperbolic spaces of finite v
ume which are homeomorphic are necessarily isometric~in
three dimensions and above!. This result, known in math-
ematics literature as thestrong rigidity theorem, can be at-
tributed to the existence of the intrinsic length scale
H3—the curvature radius,dc . It not difficult to convince
oneself that the Dirichlet domain has to have a fixed s
relative todc in order to tileH3—if one were to scale the
polygon size~relative to dc! then the scaled tiles will no
longer fit together at the vertices.

Thus, a CH manifold,M, is characterized by a dimen
sionless number,VM[VM /dc

3, whereVM is the volume of

2Unless explicitly indicated, all distances and times in nonflat
ometry are in units of the curvature scaledc .
5-3
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TABLE I. The characteristics of some of the compact hyperbolic~CH! manifolds that we have studied. The nomenclature of the spa
conforms to the Minnesota census. The volume and diameter~expressed in the units of curvature radius! are topological invariants which
relate to the density of states in those spaces. The specifications have been obtained from the Minnesota census using Sn
exception is the diameter which is our estimate using a simple random sampling algorithm. However, in the context of cosmo
observer specific characterization of the Dirichlet domain~around the observer! proves useful. Them003 models correspond to spac
obtained by different Dehn fillings on a~noncompact! cusped manifold,m003. The CH spacem003(23,1) has the smallest volume in th
m003 series and is also currently the smallest CH space known. Them004(25,1) has the smallest volume in them004 series. The
v3543(2,3) space is a relatively large one~see Fig. 1!.

Properties m003(23,1) m003(24,3) m003(24,1) m003(2,3) m003(25,4) m004(25,1) v3543(2,3)

Topological invariants
Volume: VM 0.94 1.26 1.42 1.54 1.59 0.98 6.45
Diameter:dM 0.84 1.01 1.10 1.16 1.21 0.86 1.90
First homology group Z5% Z5 Z5% Z5 Z35 Z35 Z30 Z5 Z93

Dirichlet domain specific
Outradius:R. /dc 0.75 0.84 1.07 0.83 0.94 0.75 1.33
Inradius:R, /dc 0.52 0.55 0.54 0.59 0.57 0.53 0.89
No. of faces 18 22 24 26 28 16 38
No. of vertices 26 40 44 48 52 16 72
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the space anddc is the curvature radius@24#. There are a
countably infinite number of CH manifolds, and no upp
bound onVM. The theoretical lower bound stands atVM
>5/(2))arcsinh2()/5)'0.167 @25#. The smallest CH
manifold discovered so far hasVM50.94 and it has been
conjectured that this is, in fact, the smallest possible@26,27#.
The physical volume of the CH universe with a given top
ogy, i.e., a fixed value ofVM /dc

3, is then set bydc and is
thus related to cosmological parameters. The Geometry C
ter at the University of Minnesota has a large census of
manifolds in its public domain. This census was created
ing the SnapPea computer software which is also fre
available at the website@28#. TheMinnesota censuslists sev-
eral thousands of these manifolds withVM up to; 7 and the
SnapPea software can be used to obtain various characte
properties of these CH manifolds such as the ones liste
Table I and also the generators of the discrete group mo
G that we need for our computational method.

The sequences of CH manifolds are closed well-orde
sets of order typevv, i.e., are arranged in a countably infi
nite number of countably infinite sequences~in increasing
volume!, with each sequence having a noncompact finite v
ume hyperbolic space as its limit. These limit spaces of fin
volume have cusps extending to infinity. The cusps are
meomorphic toT23R1, the product of a 2-torus and th
positive real line. The sequence of CH spaces arises thro
Dehn filling, a procedure which truncates the cusps of
limit space along a closed curve onT2 ~with allowed pair of
winding numbers! and glues in a solid torus~by identifying
the closed curve along a meridian of the solid torus!. The
nomenclature of CH spaces in the Minnesota census, w
we follow in this work, identifies a sequence by the lim
space and specifies a CH space belonging to it by
~coprime! integer indices in parentheses correspond to
winding numbers,m and n, which characterize the close
curve on the torus; e.g.,m004(25,1) refers to the CH mani
fold obtained by Dehn filling the single cusp of the nonco
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pact spacem004 by a torus glued along a closed curve w
winding numbers~25, 1!. The limit noncompact space i
achieved as a limit of large values of the winding numbers
the corresponding sequence of CH manifolds. From the
servational perspective, the CH spaces with high wind
numbers should be practically indistinguishable from t
limit noncompact space. The space with winding numb
~m, n! is equivalent to the space (2m,2n) in the same
sequence. Not all integer values ofm and n lead to a CH
space, there are bounded forbidden gap regions in thm
2n lattice. One should note that the volume does n
uniquely characterize a space; there can be a finite numb
distinct CH spaces with the same volume@besides the mirror
image pairs for chiral CH spaces such asm004(25,1) and
m004(5,1)#. Also, the nomenclature described above is n
unique: the same CH space may belong to two different
quences, e.g., the spacem003(22,3) is equivalent to
m004(5,1).~See Ref.@27# for details.!

All CH hyperbolic spaces are necessarily globally inh
mogeneous since the only element of SO~3, 1! which is a
Clifford translation is the identity@22#. A short proof fol-
lows. Assume thatgPSO(3,1) is a Clifford translation. Then
d(x1 ,gx1)5d(x2 ,gx2) for any two pointsx1 andx2 on H3.
Since SO~3,1! is the isometry group of the homogeneo
space H3, there exists a Lorentz transformationL
PSO(3,1) such thatx25Lx1 . Consequently,d(x1 ,gx1)
5d(Lx1 ,gLx1), implying that g5L21gL,;LPSO(3,1).
Since the Lorentz group isnon-Abelian~i.e., actions of the
group elements do not commute!, g must be the identity.

III. METHOD OF IMAGES

A. The correlation function

The correlation functionjF(x,x8) of a scalar field,F, can
be expressed formally in terms of the orthonormal set
eigenfunctionsC i of the Laplace operator,“2, on the hy-
persurface~with positive eigenvalueski

2>0!, as@29#
5-4
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jF~x,x8!5(
i

PF~ki !(
j 51

mi

C i j ~x!C i j* ~x8!,

where

~“21ki
2!C i j 50. ~2!

The spectrum of the Laplacian on a compact space~thus with
closed boundary conditions! is a discrete ordered set of e
genvalues$ki

2% ~k0
250 andki

2,ki 11
2 ! with multiplicities mi .

The function PF(ki) describes the rms amplitude of th
eigenmode expansion of the fieldF, determined in the con
text of cosmology by the physical mechanism responsible
the generation ofF.

Except in simple cases, neither the spectrum of the
placian $ki

2% nor the eigenfunctionsC i j
c (x) are known for

compact manifolds, so Eq.~2! cannot be used to calculate th
correlation functionjF

c (x,x8) on a compact manifoldM di-
rectly. In contrast, the universal coverMu for the compact
manifold is usually simple enough~e.g.,H3, S3 or E3! that
the eigenfunctionsC j

u(k,x) are known and the correlatio
functionsjF

u (x,x8) are easily computable. We considerH3

andE3 geometries where the spectrum of eigenvalues on
universal coverMu is continuous, reflected in the notatio
C j

u(k,x) replacing the discrete indexi with a functional de-
pendence onk.

The regularized method of imageswe developed in Ref.
@12# allows computation of the correlation functionjF

c (x,x8)
on a compact~more generally, a multiply connected! mani-
fold M5Mu/G from the correlation function,jF

u (x,x8), on
Mu. We now give the explicit derivation of the relatio
betweenjF

c (x,x8) and jF
u (x,x8), calculated with the same

form of the power spectrumPF(k). The method solely relies
on the knowledge of the action of elements of the discr
group, G, and requires no information regarding the eige
values and eigenmodes of the Laplacian onM. The expan-
sion ~2! is equivalent to the system of integral equations
the correlation functions,jF

c andjF
u ,

E
M

dx8 jF
c ~x,x8!C i j

c ~x8!5PF~ki !C i j
c ~x!, ~3a!

FIG. 1. The Dirichlet domains of two of the compact hyperbo
~CH! spaces that we have studied are shown. On the left is a s
CH space,m004(25,1), and on the right is a large CH spac
v3543(2,3).
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Mu

dx8 jF
u ~x,x8!C j

u~k,x8!5Pf~k!C j
u~k,x!. ~3b!

Equation~3b! is a consequence of the homogeneity ofMu

through a theorem@29# which states that the eigenfunction
of the Laplacian are also the eigenfunctions of the integ
operator corresponding to any two-point function which
point-pair invariant, i.e., depends only the distance betwe
the points. The orthonormality of the eigenfunctions leads
the expansion~3a! for jF

c .
Every eigenfunctionC i j

c (x) on M is also an eigenfunc-
tion of the Laplacian on the universal coverMu with eigen-
valueki

2, hence is a linear combination of degenerate eig
functionsC j

u(ki ,x) on Mu with eigenvalueki
2, i.e., C i j

c (x)
5S j 8ai , j j 8C j 8

u (ki ,x). Thus a subset of equations~3b! can be
written as

E
Mu

dx8 jF
u ~x,x8!C i j

c ~x8!5PF~ki !C i j
c ~x!

5E
M

dx8 jF
c ~x,x8!C i j

c ~x8!.

~4!

Using automorphism ofC i j
c with respect toG, C i j

c (gx)
5C i j

c (x);gPG, and the fact thatM tessellatesMu,

E
M

dx8 jF
c ~x,x8!C i j

c ~x8!5E
Mu

dx8 jF
u ~x,x8!C i j

c ~x8!

5 (
gPG

E
M

dx8 jF
u ~x,gx8!C i j

c ~x8!,

~5a!

5E
M

dx8F (
gPG

˜
jF

u ~x,gx8!GC i j
c ~x8!,

~5b!

whereS̃ denotes a possible need for regularization at the
step when the order of integration and summation is
versed. Since Eq.~5b! is satisfied for allC i j

c , comparison
with Eq. ~3a! implies that

jF
c ~x,x8!5 (

gPF

˜
jF

u ~x,fx8!. ~6!

This is the main equation of ourmethod of images, which
expresses the correlation function on a compact space~and
more generally, any nonsimply connected space! as a sum
over the correlation function on its universal cover calcula
betweenx and the imagesgx8(gPG) of x8.

Regularization in Eq.~5b! is required when the correla
tion function on the universal cover does not have a comp
support,*MujF

u (x,x8)dx85`. Let us consider a new two
point function onMu defined by

j̃F
u ~x,x8!5

def

jF
u ~x,x8!2

1

VM
E

gM
dx9 jF

u ~x,x9!, ~7!

all
5-5
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for g such thatx8 lies in gM. ReplacingjF
u (x,x8) by its

regularized versionj̃F
u (x,x8) in Eq. ~5a! gives the same in-

tegral equation onjF
c (x,x8) as the original one for every

eigenfunctionC i j
c with the exception of that for the zer

modek250. For the zero mode,C0
c5const, for which the

right-hand side of Eq. ~7! is now zero.3 Also,
*Muj̃F

u (x,x8)dx850. Thus, the regularized sum over imag
is

jF
c ~x,x8!5 (

gPG
j̃F

u ~x,gx8!

5 (
gPG

jF
u ~x,gx8!2

1

VM
E

Mu
dx9 jF

u ~x,x9!. ~8!

One can verify thatjF
c (x,x8) is biautomorphicwith respect

to G, i.e., jF
c (x,x8)5jF

c (g1x,g2x8);g1 ,g2PG. In addition,
jF

c is smooth and symmetric,jF
c (x,x8)5jF

c (x8,x), sincejF
u

is smooth and point-pair invariant. With these conditions s
isfied, the correlation function then qualifies to be the ker
of an integral operator on square integrable functions onM.

The sum in Eq.~8! can be obtained analytically in
closed form only in a few cases, e.g., the simple flat to
~see Sec. IV!. For a numerical implementation of the su
over images, it is useful to present the formal expression~8!
as the limit of a sequence of partial sums

jF
c ~x,x8!5 lim

N→`
(
i 50

N F jF
u ~x,g ix8!2

1

VM
E

M
dx9 jF

u ~x,g ix9!G ,
~9!

with the discrete motionsg i sorted in increasing separatio
d(x,g ix8)<d(x,g i 11x8). In practice, the summation ove
images is carried out over a sufficiently large but finite nu
ber of images, from which the limitN→` is estimated. Ac-
curacy is enhanced if theg i used correspond to a tessellatio
of Mu with the basepoint of the Dirichlet domain shifted
x.

A more effective and simpler limiting procedure fo
implementing the regularized method of images is to exp
itly sum images up to a radiusr * and regularize by subtract
ing the integraljF

u (r ) over a spherical ball of radiusr * .
This further eliminates the need to know the precise shap
Dirichlet domains~and integratejF

u over potentially compli-
cated shapes!. We use this limiting procedure when dealin
with CH spaces@see Eq.~24! in Sec. V B#. The example of
the simple flat torus discussed in Sec. IV shows that
radial limiting procedure does better in eliminating unwan
low k power than Eq.~9!. On the other hand, the radia
limiting procedure cannot be applied unambiguously if t
number of images used is small whereas Eq.~9! holds at all
values ofN.

3The volume integral of the Laplace equation on a compact m
fold M ~thus with closed boundary! gives ki

2*Mdx8 C i j
c (x)

50 ; i , j .
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As we see, the need for regularization is strictly dictat
by the form ofju, which encodes how modes are excite
and is not specific to CH spaces. Some authors@30# have
incorrectly attributed the need for the regularization that
invoke in @11,12# to the exponential proliferation of periodi
orbits or the chaotic nature of classical trajectories in C
spaces. Regularization is required in flat compact spaces
~see Sec. IV! if the ju mode expansion contains the ze
modek250. On the other hand, ifju has compact suppor
there is no need for regularization even in CH space; this
fact, holds under weaker conditions.

The counter term in Eq.~9! significantly improves the
convergence of the sum over images, even if in the limitN
→` the term is zero~i.e., *MujF

u (x,x8)dx850! and regu-
larization is formally not required. Indeed, in this case t
Nth partial term of Eq.~9! is equal to

jF
c ~x,x8! uN

5(
i 50

N

jF
u ~x,g ix8!1

1

VM
E

M̄N

dx9 jF
u ~x,x9!,

~10!

whereM̄N5Mu2Ui 50
N $g iM% is the complement relative

to Mu of the domains from which the image contribution h
been explicitly summed. Thus,jF

c (x,x8) uN
corresponds to the

approximation where the firstN images up to the distanc
d<d(x,gNx8) are summed explicitly and the contribution o
the rest of the images is estimated as the integral. The la
estimation is quite natural, since the sum over dens
packed distant images is similar to a Monte Carlo express
for the integral.

Finally, we note that the regularization term is certain
not unique. In fact, instead of starting with a regulariz
correlation function on the universal cover as in Eq.~7!, we
could have started with a regularized scalar field,F̃5F
2*MdV F/VM . This gives rises to different regularizin
counterterms that might possibly be more effective but
also more complicated. In the same spirit of viewing the fie
as the primary starting point, the sum-over-images repres
tation for jF

c (x,x8) can be viewed as a double su
SgSg8jF

u (gx,g8x8). In general this is computationally mor
expensive. However, for the case of the simple flat torus,
double sum can be expressed as a single summation
appropriately weighted image contributions and has a sign
cantly faster convergence.

B. The power spectrum

An illuminating way to present the power spectrum
fluctuations in compact spaces is to separate thedensity of
states~the spectrum of eigenvalues weighted with multipli
ity!, solely determined by the geometry and topology of t
space, from theoccupation number~rms amplitudes of the
eigenmodes! determined by the physics invoked to excite t
available modes. This allows a discussion of the effect
nontrivial topology independent of the generation mec
nism and the resultant statistical nature and spectrum of
initial perturbations.

i-
5-6
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CMB ANISOTROPY IN COMPACT . . . . I. . . . PHYSICAL REVIEW D 62 043005
We define the power spectrumPF
c (k,x) of the scalar field

F to be the function which describes the contribution to
variance of the fieldsF

2 (x) from the modes in a logarithmic
interval of eigenvaluesd ln k. The variance is given by the
correlation function at zero lag, thus our definition satisfi
jF

c (x,x)5*0
`d ln(k)PF

c (k,x). The power spectrum depend
both on the eigenvalue spectrum of the Laplacian, descr
through a collapsed two point function,nc(k,x,x), as well as
on the rms amplitudesPF(k) of the eigenmode expansion o
the field on the universal cover:

PF
c ~k,x!d ln~k!5PF~k!nc~k,x,x!d ln~k!, ~11a!

nc~k,x,x!5k(
i

d~k2ki !Ski
~x!,

~11b!

Ski
~x!5(

j
uC i j

c ~x!u2. ~11c!

The functionnc(k,x,x) itself may be interpreted as the loc
density of states~per d ln k! per unit volumeat the pointx.
The notationnc(k,x,x) explicitly retains the intimate con
nection to a two-point kernel. Indeed,Ski

(x) is related to the
imaginary part of the Green function@21#

Ski
~x!52

2ki

p
Im@Gki

~x,x!#. ~12!

The dependence on the position is a manifestation of
global inhomogeneity of the space. In the case of a glob
homogeneous space,Gki

(x,x8)5Gki
(x2x8), implying that

Ski
(x) andn(k,x) are position independent. We shall deno

mean density of states bync(k), just omitting spatial depen
dence. IntegratingSki

(x) over the volume of the manifoldM
gives the multiplicity of the i th eigenvalue*MSki

(x)dx
5mi , hence

nc~k!5
1

VM
E

M
nc~k,x,x!dx5

1

VM
(

i
kd~k2ki !mi .

~13!

Thus we factor the power spectrum in a compact space in
rms amplitude of modes and the density of states:

PF
c ~k!5

1

VM
E

M
PF

c ~k,x!dx5PF~k!nc~k!. ~14!

In the universal covering spaceMu with a continuous
spectrum of eigenstates, the density of states kernel is g
by

nu~k,x,x8!5
k3

~2p!3 (
j

C j
u~k,x!C j

u* ~k,x8!. ~15!

The homogeneity ofMu implies that nu(k,x,x)5nu(k)
5k3/(2p2) is independent ofx. Akin to the correlation func-
04300
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tion, the method of images can be used to establish the
nection between the local density of states kernel on
compact manifoldMc and on its universal covering spac
Mu:

nc~k,x,x!5(
g

nu~k,x,gx!. ~16!

The method of images applied to the density of stat
together with the connection to the trace of the Green fu
tion from Eq. ~12!, is what is essentially embodied in th
celebrated Selberg trace formula@29#. We emphasize that
although the basic ideas are similar, the computation of
correlation function and the density of statesnc(k) in a com-
pact space are distinct problems. Getting the density of st
is computationally more challenging since the aim is to
cover a singular function~string of delta functions! by super-
posing smooth functions. For computing correlations of
CMB anisotropy in compact spaces, we only need to ap
the method of images to the correlation function. Also, t
pairwise correlation function at distinct pointsxÞx8, calcu-
lated by the method of images at any level of approximati
satisfies exactly the periodicity of the space, which the d
sity of states does only if determined with absolute precisi

IV. FLAT TORUS MODEL: A SIMPLE EXAMPLE

The simple flat torus model,T3, is the compactification of
the three-dimensional Euclidean space which identi
points under a discrete set of translations,x→x1nL, where
L is the size of the torus andn is a vector with integer
components. The corresponding Dirichlet domain is a cu
~more generally, a parallelepiped! with opposite faces iden
tified ~glued together!. This is, in fact, the model one is
studying when one simulates the universe in a finite box w
periodic boundary conditions.

Since the eigenfunctions of the Laplacian onT3 are sim-
ply the discrete plane waves, the evaluation ofjF

c (x,x8) on
T3 as a sum over modes functions@see Eq.~8!# using fast
Fourier transforms is a preferred technique, one we h
used extensively to constrain the size of such models u
the COBE–DMR data. However, we revisit this simple case
illustrate the various steps and clarify subtleties involved
the calculation ofjF

c (x,x8) in a multiply connected universe
using the method of images. The toroidal case also prov
a good benchmark for evaluating the efficiency of t
method of images.

The correlation function in the periodic box implied b
the T3 topology is

jF
T3

~x,x8!5
1

L3 (
n

PF~kn!expF2 i
2pn

L
•~x2x8!G ,

~17!

where n[(nx ,ny ,nz) is 3-tuple of integers, kn
2

5(2p/L)2(n•n), and the term withn•n50 is excluded
5-7
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from the summation. This is a direct consequence of sub
tuting the known eigenmode functions of the Laplacian
T3, Cn(x)5exp(i2pn•x/L), into Eq.~2! for the correlation
function.

The method of images leads to the following alternat
derivation of Eq.~17!. The correlation function onE3 is
given by

jF
u ~x,x8!5

1

~2p!3 E d3k PF~k!eik•~x2x8!. ~18!
n
e-

he
h
f

it
of

04300
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Assume, without loss of generality,4 that x8 lies in the Di-
richlet domain withx as the basepoint. The contribution o
each image has the form

jF
u ~x,g jx8!5

1

~2p!3 E d3k PF~k!eik•~x2x8!

3exp@ i ~kxnx
j 1kyny

j 1kznz
j !# ~19!

from imagesg ix85x81njL. Summing over the contribution
from the images, the correlation function onT3 is
r

jF
T3

~x,x8!5 lim
N→`

1

~2p!3 E d3k PF~k!eik•~x2x8! (
nx52N

N

(
ny52N

N

(
nz52N

N

eiknL

5
1

~2p!3 E d3k PF~k!eik~x2x8! lim
N→`

Fsin@~N11/2!kxL#

sin~kxL/2!

sin@~N11/2!kyL#

sin~kyL/2!

sin@~N11/2!kzL#

sin~kzL/2! G ~20a!

5E d3k PF~k!eik~x2x8!(
j 50

`

d~kL22pnj !

5
1

L3 (
n

PFS 2p

L
nDexpF2 i

2pn

L
~x2x8!G . ~20b!

The final Eq.~20b! is the same as Eq.~17! except that it contains a termP(n50) which is infinite for a wide class of powe
spectra; e.g.,P(k)}ka,a,0, including thosea for which the integral*0

`dk k2P(k) is convergent atk50, i.e.,a.23.
The regularizing term can be easily calculated as well. Subtraction of the volume integral overN domains as in Eq.~9! is

described by the following substitution in Eq.~20b!:

lim
N→`

(
nx52N

N

(
ny52N

N

(
nz52N

N

eiknL→ lim
N→`

@12 j 0~kxL/2! j 0~kyL/2! j 0~kzL/2!# (
nx52N

N

(
ny52N

N

(
nz52N

N

eiknL ~21!
ff,
up-
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@where j 0(x) is the zeroth order spherical Bessel functio#
which leads to the following form for the regularized corr
lation function

j̃F
T3

~x,x8!5
1

~2p!3 E d3k PF~k!eik@x2x8#

3F (
unj uÞ0

`

d~kL22pnj !1
~kL!2

24
d~kL !G .

~22!

As long as the power spectrumPF(k) does not blow up
faster thatk22 ask→0, the above regularization removes t
zero mode contribution completely. In the case of t
Harrison–Zeldovich spectrum~equal power per logarithm o
k!, where formallyPF(k);k23 as k→0, the regularization
suppresses thek50 contribution but does not eliminate
completely. However, any physically motivated origin
e

PF(k) such as from inflation does have an infrared cuto
and all that is required of the regularization scheme is s
pression ofk50 power.

Ability to perform an analytic summation over all the im
ages inT3 would lead to the exact recovery of the positio
of the discrete eigenvalues, 2punu/L, and the eigenfunctions
in this compact space. In more complex topologies~e.g., the
CH spaces! one can only sum over a finite number of imag
and estimate the limit from that. If one tiles the univers
cover out toN layers, one recovers the delta functions ak
52pn/L only approximately in the partial sum over image
The power of each discrete mode is aliased to a cubic ce

4For any two points,x and x8 in Mu, there exists a discrete
motion gPG such that the imagegx8, would be in the Dirichlet
domain withx as basepoint. Sincex8 andgx8 are equivalent for the
compact space, considering the compact space correlation bet
x andgx8 instead ofx andx8 will give identical results.
5-8
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FIG. 2. This illustrates the recovery of the known discrete spectrum in theT3 model of sizeL52p using the method of images. Plot

of (2p2/k3)nT3
(k) in the three panels show the density of states obtained at different stages of our method. Theleft panelsimplement the

limiting procedure of Eq.~9!, varying the number of shellsN of images that are summed. Images up toN59 layers~5193 images! are used.
The right panelsuse the radial limiting procedure of Eq.~24!, with a cutoff radiusr * that we use for CH spaces; here,r * 59L, with only
3071 nearest images used. The vertical arrows mark the location of the discrete eigenvalues with the height proportional to the o
number. Thetopmost panelshows the unregularized spectrum. Note the huge spurious contribution from thek50 mode below the
fundamental mode atk51. Themiddle panelshows the result of regularization. At this stage most of the spurious power is removed
result of Cesaro resummation shown in thebottom paneldemonstrates that our method finally recovers a smoothed power spectrum
negligible spurious long wavelength power. Note that the radial limiting procedure does better in terms of removing spurious p
low k.
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the reciprocal lattice.5 In each cell, the kernel within squar
brackets in Eq.~20a! has a peak atk52punu/L of height
(2N11)3 and width'1/N, with damped oscillatory wings
Accurate regularization of the partial sum then consists
subtracting the total power in the reciprocal lattice c
aroundk50.

The left panels of Fig. 2 show the number density
statesnT3

(k)/k3 obtained by summation overN59 layers of
images. The topmost panel shows the direct sum while
middle panel illustrates the effect of the regularizing ter
The regularization procedure drastically reduces the spur
power below the fundamental frequency. The oscillato
wings of power aliasing inside each reciprocal cell can
eliminated if one averages over the results at eachk obtained
at different values ofN. We found it is most effective to do
it by Cesaro resummation: the effect is shown in the bott
panel. The result is a smoothed approximation to the un
lying discrete spectrum~marked by arrows in the figure! with
negligible contribution below the fundamental frequency a
a positively defined spectrum.

The plots of the right panel of Fig. 2 are analogous
those of the left panel except that they use the radial limit
procedure described in Eq.~24! below, with r * 59L. The
radial limiting procedure does better at eliminating the u
wanted lowk power at the resummation stage. The spec
lines are somewhat broader solely due to the fact that th

5*2p(m21/2)/L
2p(m11/2)/Ldk sin@(N11/2)kL#/sin@kL/2#52p/L for any integer

m andN.
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are aboutp/6 times fewer images within a sphere of radi
r * 59L than in theN59 layers.

As we mentioned above, the regularization is not stric
complete for Harrison-Zeldovich like spectra, so the quest
of the numerically superior technique does arise. The res
mation procedure effectively averages the sequence of pa
sums up to a given distance. The superior lowk power elimi-
nation of the radial limiting procedure is related to the fa
that the product of the volumeL3 and the number of image
within a radiusr jitters around the volume 4pr 3/3 on very
short scales. The unwanted residual power in lowk modes is
distributed in this jitter, and is more readily removed by C
saro resummation even if one does not go far inr. In the
other case, the residual power in lowk modes is distributed
in a more orderly wave of wavelength;k21 in the sequence
of partial sums. Hence, when one is summing images up
finite distanced the residual power in modes withkd!1 is
not averaged out.

It is important to realize that at a given partial image su
the correlation function is obtained to far better accura
than the power spectrum. The correlation function is
k-space integral over the power spectrum and is accura
reproduced as long as power is sufficiently peaked aro
the correct eigenvalues and there is not much overlap
tween the adjacent peaks. The partial image sum genera
spectrum which can be approximated as the true spect
convolved with a smearing function,W„(k2ki)

2/(Dk)s
2
…,

around the true eigenvalues. Here (Dk)s quantifies the width
of the smoothing. In a compact space no two points
physically separated by more than the diameter of the sp
5-9
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BOND, POGOSYAN, AND SOURADEEP PHYSICAL REVIEW D62 043005
Hence, to get a reasonably accurate estimation of the co
lation function, it is sufficient to ensure thatRs;1/(Dk)s is
larger than the diameter of the space. In the case of
simple T3 model, in the Gaussian approximation to t
smearing functionW, the method of images withN layers
givesRs5(2/3)dTAN(N11) wheredT5L)/2 is the diam-
eter of the simpleT3. Hence, the second layer (N52) ap-
proximation satisfies theRs.dT condition by a comfortable
margin, and even the first layer comes fairly close.

The above estimate of the spread in the peaks aro
eigenvalues is based solely on the regularized spectrum
with summation in layers up toN layers. We also carry out a
Cesaro resummation to remove remaining spurious lowk
power. The resummation procedure effectively averages
cumulative results at each layer. It is not difficult to see t
this reduces the amplitude of the peak by a factor of 2
broadens the spectrum by the same factor. Thus to reac
same spectral resolution after Cesaro resummation one n
to go to Nc'2N layers. We prefer to implement the radi
limiting procedure, which is simpler and does better at
resummation stage in suppressing residual lowk power.
Equating the number of images of the radial limiting proc
dure to that in Nc layers implies choosing r * /L
'(3/4p)1/3(2Nc11). Hence, for the resummed spectru
obtained with the radial limiting procedure, the comfortab
margin ofN52 ~which translates toNc54! estimated above
for obtaining accurate correlation functions translates tor *
'5.6L. In the second panel of Fig. 3, we show the spectr
recovered atr * 55.5L.

Another important remark is in order. In application
CMB, the positions of pointsx,x8, between which the corre
lation function is to be calculated, are given by the leng
and directions of the photon path from the observer, i
correspond to the coordinates on the universal coverMu. In
the method of images, the value ofjF

c (x,x8) for the pairs
of points belonging to separate domains6 is found by sym-
metric replication of the correlation value computed afterx8
is mapped back into the Dirichlet domain aroundx. Thus, the
method of images applied to the correlation function p
serves at all levels of approximation the exact periodicity
thejF

c (x,x8) viewed as being defined on the universal cov
This periodicity is the major distinction betweenjF

c (x,x8)
and the correlation functionjF

u (x,x8) in the simply con-
nected universal cover space. In contrast, a correlation fu
tion determined as the inverse transform with respect to
universal cover eigenmodes of the approximate power s
trum will fail to obey the symmetries of the compact tilin
strictly. This failure is greater the cruder the level of appro
mation used for computing the power spectrum.

The success at reconstructing the correlation function
the method of images with even just a few layers of summ
tion is demonstrated in Fig. 4. In accordance with the e
mate of the convergence of the method, summation over
layers (N55.5) and above produces a correlation functi

6More precisely, whenx8 does not belong to the Dirichlet domai
constructed aroundx.
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almost indistinguishable from the exact result.N53.5 is al-
ready very good and evenN51.5 is an adequate approxima
tion of the result. Even from the very beginning, with on
the nearest image used, the method of images corre
catches the qualitative behavior of the correlation function
the compact space, which is dramatically different from t
corresponding correlation function in noncompact flat spa

V. COMPACT HYPERBOLIC SPACES

A. Correlation function on H3

The local isotropy and homogeneity ofH3 implies
jF

u (x,x8) depends only on the proper distance,r[d(x,x8),
between the pointsx andx8. The eigenfunctions on the uni
versal cover are of course well known for all homogeneo
and isotropic models@31#. ConsequentlyjF

u (x,x8) can be
obtained through Eq.~2!. The role ofjF

u (r ) in the compact
space calculation is to impose the desired power spectrum
F. In line with the application for which we developed ou
method, we now specialize to the scalar fieldF being the
one describing cosmological gravitational potential fluctu
tions.

The initial power spectrum of the gravitational potent
PF(k) is believed to be dictated by an early universe s

FIG. 3. The recovery of the known discrete spectru

(2p2/k3)nT3
(k) in theT3 model of sizeL52p using the method of

images. The top panel shows the regularized spectrum obtaine
the lowest level approximation~N50, nearest image!: only the low
k cutoff is recovered. The second panel is the spectrum recov
after summing images up to a distance ofr * 55.5L, a level of
approximation which should~and does! recover the correlation
function quite well, although the spectrum is coarse. The bott
panel demonstrates the convergence of the regularized metho
images: with a large enough number of images, the spectrum is
recovered with precision. In the lower two panels, Cesaro res
mation has been carried out on the regularized spectrum.
5-10
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nario for the generation of primordial perturbations. We
sume that the initial perturbations are generated by quan
vacuum fluctuations during inflation. This leads to

jF
u ~x,x8![jF

u ~r !5E
0

` dbb

~b211!

sin~br !

b sinhr
PF~b!, ~23!

where b[A(kdc)
221, PF(b)[b(b211)PF(k)/(2p2)

and, as before,r is in units of dc . In the simplest inflation
models, the power per logarithmic interval ofk, i.e., PF , is
approximately constant in the ‘‘subcurvature sector,’’ d
fined bykdc.1. This is the generalization of the Harriso
Zeldovich spectrum in spatially flat models to hyperbo
spaces@32,33#. In Appendix A, we outline a simplified cal
culation of the initial inflationary perturbation spectraPF in
hyperbolic geometry and derive a broader class of ‘‘tilte
spectra. Subhorizon vacuum fluctuations during inflation
not expected to generate supercurvature modes, those
kdc,1, which is why they are not included in Eq.~23!.
Indeed, sinceH2.1/(adc)

2, for modes withkdc,1 we al-
ways havek/(aH),1 so inflation by itself does not provid
a causal mechanism for their excitation. Moreover, the lo
est nonzero eigenvalue,k1.0 in compact spaces provides a

FIG. 4. Correlation function inT3, calculated by the method o
images with successively increasing number of images, is comp
with the exact summation of eigenmodes of the Laplacian via F
rier transformation. Anticipating application to the CMB, we pl
the correlation values between the points along the great circl
radiusRLS and one fixed point on the circle at (RLS,0,0). The ori-
entation of Cartesian coordinates coincides with directions of p
odicity of the torus, sof is the polar angle. Monopole and dipo
contributionsalong the circles~i.e., different on each circle! are
subtracted. The results are shown for two values ofRLS . The first
case whenRLS51 is a very symmetric one where points at 0, 9
180, . . . degrees on the great circle are exact images of the poi
the origin. The second case is a more general one. Labels mar
curves from top to bottom at zero lag,f50.
04300
-
m

-

’
e
ith

-

infrared cutoff in the spectrum which can be large enough
many CH spaces to exclude the supercurvature sector
tirely (k1dc.1). ~See Sec. V C.! Even if the space doe
support supercurvature modes, some physical mechan
needs to be invoked to excite them, e.g., as a by-produc
the creation of the compact space itself, but which could
accompanied by complex nonperturbative structure as w
To have quantitative predictions forPF(k) would require
addressing this possibility in a full quantum cosmologic
context. For a recent discussion of the creation of hyperb
universes within a quantum cosmological framework s
@34#.

B. Numerical implementation of the method of images

Equation~8! encodes the basic formula for calculating t
correlation function using the method of images. For a n
merical estimate, a limiting procedure such as Eq.~9! has to
be used. In this form, the regularization term involves in
gratingjF

u (x,x8) over a Dirichlet domain. Such terms can b
numerically computed given the discrete group of motion,G,
but it is usually cumbersome since the Dirichlet domains
CH spaces have complicated shapes which vary depen
on the basepoint.

A more effective and simpler radial limiting procedure
implementing the regularized method of images is to exp
itly sum images up to a radiusr * and regularize by subtract
ing the integraljF

u (r ) over a spherical ball of finite radiu
r * :

jF
c ~x,x8!5 lim

r
*

→`
F (

r j ,r
*

jF
u ~r j !2

4p

VM
E

0

r
* dr sinh2 r jF

u ~r !G ,
~24!

r j5d~x,g jx8!<r j 11 .

The volume element in the integral is the one forH3. We
have shown for the flat torus that this scheme works be
numerically than formal regularization which subtracts in
grals over Dirichlet domains.

The plot on the left in Fig. 5 illustrates the steps involv
in implementing the regularized method of images. T
value of jF

c as a function ofr * has some residual jitter
which arises because of the boundary effects due to the s
‘‘top-hat’’ averaging over a spherical ball chosen for th
counterterm in Eq.~24!. This can be smoothed out by resum
mation techniques@35#. We use Cesaro resummation for th
purpose.

In hyperbolic spaces, the number of images within a
dius r * grows exponentially forr * /dc.1 and it is not nu-
merically feasible to extend direct summation to large valu
of r * /dc . The presence of the counterterm, however,
sides regularizing, significantly improves convergence. T
can be intuitively understood as follows:jF

u (r j ) represents a
sampling of a smooth function at discrete pointsr j . In a
distant radial interval@r ,r 1dr#, r @R. , dr;R. , there are
approximately (4p/VM)sinh2 r dr images. The sum,S r ,
jF

u (r j ), within this interval is similar to the~Monte Carlo
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FIG. 5. The two plots illustrate the regularization of the correlation functions with and without an infrared cutoff atb* .0. The example
shown is the correlation function at zero-point separation at some point on the CH manifoldm004(25,1). The plot on the left correspond
to jF

c (x,x8) where there is nob cutoff. The topmost panel shows the sampled values ofjF
u (r ) which contribute to the sum over images. Th

upper solid curve in the middle panel shows the divergent cumulative build up of the partial sum over images with successive ad
distant images. The dashed curve is the regularizing counterterm required to remove the zero-mode contribution and the lower s

is the cumulative value of the regularized partial sumj̃F
c (x,x8), which fluctuates around the true value once a sufficient number of im

have been added. In the bottom panel this residual jitter (s0) in the estimate of the correlation is removed by Cesaro resummation.
sequence of lines,s1, s2, ands3 shows the result of applying first, second and third order Cesaro resummation. The accuracy at the
order is usually sufficient. The plot on the right is analogous to the left but for the auxiliary correlation functionjF

c (b* ,x,x8) with an
infrared cutoff atb* 54.0 below the first eigenvalue in the CH space. In contrast to the left panels, the cumulative sum over im
oscillatory which is more easily regularized, leading to much smaller residual jitter around the true value.
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type! estimation of the integral, therefore one may appro
mate the sum over all distant images beyond a radiusr * by
an integral to obtain

j̃F
c ~x,x8!5 (

r j ,r
*

jF
u ~r j !1

4p

VM
E

r
*

`

dr sinh2 r jF
u ~r !.

~25!

The tilde onjF
c (x,x8) denotes the fact that it is approxima

and unregularized. Subtracting the integral (4p/
VM)*0

`dr sinh2 rjF
u (r) as dictated by the regularization equ

tion ~8!, we recover the finiter * term of the limiting se-
quence in Eq.~24!. This demonstrates that even at a fin
r * , in addition to the explicit sum over images withr j

,r * , the expression forjF
c in Eq. ~24! contains the gross

contribution from all distant images withr j.r * . Numeri-
cally we have found it suffices to evaluate the above exp
sion up tor * about 4 to 5 times the domain sizeR. to obtain
a convergent result forjF

c (x,x8).
Equation~25! provides the simplest interpretation of o

regularization procedure as an integral approximation to
total contribution of all distant images outside the regi
over which direct summation has been carried out. Howe
this interpretation may not be obvious in all cases. In fact,
the spectrumP(b)[const that we use here, the correlati
function on the universal coverH3 is given in terms of the
hyperbolic sine and cosine integral functions, Shi(r ) and
Chi(r ), respectively, by
04300
-

s-

e

r,
r

jF
u ~r !5Chi~r !2coth~r !Shi~r !. ~26!

This is positive definite and does not fall off fast enough w
r for its volume integral to converge. As a result, the integ
in Eq. ~25! is not defined and the step from Eq.~24! to Eq.
~25! is nontrivial, involving the regularization of an infinity
which can be traced to theb50 mode. To reinstate the in
tuitive interpretation in this case, we first show that it is va
for an auxiliary correlation function,jF

u (b* ,r ), which has
an explicit infrared cutoff atb* .0. The auxiliary correlation
function

jF
u ~b* ,r !5E

b
*

` dbb

~b211!

sin~br !

b sinhr
P~b!

5Re$@Ci„~ i 2b* !r …1Ci„~ i 1b* !r …#/2

1 i @Si„~ i 1b* !r …1Si„~ i 2b* !r …#/2 cothr %,

~27!

where Si(r ) and Ci(r ) are the sine and cosine integral fun
tions, respectively. This function,jF

u (b* ,r ), is no longer
positive definite and its volume integral, although an im
proper integral, can be shown to be zero.

The contribution tojF
c (b* ,x,x8) of the distant images

with R@b21 can now be evaluated explicitly:

*

5-12
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4pE
R

`

dr sinh2 r jF
u ~b* ,r !

→
R@b*

21

2
4p

VDk
*
3 sin„b* R1sin21~k

*
21!…

sinhR

R
.

~28!

This is purely oscillatory with a zero mean. The plot on t
right in Fig. 5 shows that these oscillations of the regulari
tion term precisely cancel out the oscillations~with growing
amplitude! of the image sum, with no net effect on the lim
iting value ofjF

c (b* ,x,x8).
Having established that Eq.~25! makes sense fo

jF
c (b* ,x,x8), whereb* .0, the interpretation may now eas

ily be extended tojF
c (x,x8) by simply noting that given 0

,b* !b1 , whereb1 is the wave number corresponding
the first eigenvalue of the Laplacian in the CH space,
method of images applied to the auxiliaryjF

u (b* ,r ) and
jF

u (x,x8) must converge to the same value. This result
demonstrated in Fig. 6.

C. Power spectrum

In this section, we present our results on the power sp
trum of CH manifolds obtained by applying the method

FIG. 6. The analog of the bottom panels of Fig. 5 for thr
values of the cutoffb* . The more jagged curve is a regularize
sequence of partial sums and the smoother curve is the result
third order Cesaro resummation on the regularized result. The
fectiveness of regularization is enhanced~reflected in the smaller
amplitude of jitter! as one increases the value ofb* by directly
cutting out more of the zero-mode contamination. The computa
is robust and converges to the correct value as long asb* !b1 . For
the CH manifoldm004(25,1) used in this figure, we estimateb1

*5 ~see Fig. 7!. In the top three cases,b* <5, and the computed
correlation converges tojc(0)52 with high accuracy, independen
of b* . Whenb* .b1 , the value ofjc(0) is underestimated, as i
seen in the bottom most panel whereb* 58.
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images to the density of states kernelnu(k,x,x8) discussed in
Sec. III B. We emphasize that evaluating the density of sta
numerically in CH spaces is not our primary goal. What w
present is a rough estimate of the power spectra in CH sp
that can be readily obtained as a by-product of our prim
goal of computing correlation functions in CH spaces.

Indeed, in the formalism of images, the singular de
functions innc(k) @see Eq.~11c!# are recovered, in principle
by the precise cancellation of the smooth contributions fr
all images. The volume of a sphere inH3, and consequently
the number of images~of the Dirichlet domain of a CH spac
on the universal cover!, grows exponentially with radius be
yond r;dc . This is the primary constraint on the success
applying the method of images to the density of states.

Our approximation for computing the CH space corre
tion function includes the gross integral estimate of the i
pact of distant images which results in a spread-out c
volved density of states distribution. Increasingr *
progressively sharpens spectral profiles near the true p
tions of the discrete eigenvalues@36#. Figure 7 shows a
samplenc(k,x,x) for some of the CH manifolds at two ran

f a
f-

n

FIG. 7. The density of states exhibits suppression of long-w
power if the universe has compact topology. Each row correspo
to one compact hyperbolic space, indicated by the label in the
column. Left and middle columns shownc(k,x,x)/k3 computed
with the method of images at two randomly selected pointsx. The
last column shows the spatial averagednc(k)/k3 obtained by Monte
Carlo integration ofnc(k,x,x)/k3 over the Dirichlet domain. The
normalization is chosen such that the functions are equal to u
for the topologically trivial infinite open universe. Vertical line
illustrate naive estimation of the cutoff atk;p/dM which holds
surprisingly well for the cases checked. The first six examples
the CH space have about the same value ofdM . These spaces hav
volumesV/dc

3 around unity. The sixth space ism004(25,1), the
‘‘small’’ space used in many of our examples. The seventh spac
v3543(2,3), with volumeVM /dc

356.45, used as an example of
‘‘large’’ space in this paper.
5-13
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BOND, POGOSYAN, AND SOURADEEP PHYSICAL REVIEW D62 043005
dom positionsx in the first two columns. The third colum
shows the smoothed out estimation of the actual densit
states,nc(k), for the CH manifolds that one can obtain b
averagingnc(k,x,x) over ;103 points on the manifold.

There is a definite signature of strong suppression
power at smallb in all the cases that we have explored. Th
is qualitatively similar to the infrared cutoff known for th
compact manifolds with flat and spherical topology. Quan
tatively, the break appears aroundk;O(dM

21), consistent
with the intuitive expectations.

An infrared cutoff at the lowest nonzero eigenvalue,k1
.0, exists for all compact spaces.Cheeger’s inequality@37#
provides a lower bound onk1

2 for a compact Riemannian
manifold,M:

k1>
hC

2
, hC5 inf

S

A~S!

min$V~M1!,V~M2!%
, ~29!

where the infimum is taken over all possible surfaces,S, that
partition the space,M, into two subspaces,M1 andM2 , i.e.,
M5M1øM2 andS5]M15]M2 ~S is the boundary ofM1
andM2!. Cheeger’s isoperimetric constant hC depends more
on the geometry than the topology of the space, with sm
values ofhC achieved for spaces having a ‘‘dumbbell-like
structure—a thin bottleneck which allows a partition of t
space into two large volumes by a small-area surface@37,38#.
Regular shaped compact spaces do not allow eigenva
which are too small. For example, the Cheeger limit for
flat T3 manifolds isk1>2/L, whereL is the longest side o
the torus. Although the direct estimation ofhC is not simple,
for any compact spaceM with curvature bounded from be
low there exists a lower bound onhC in terms of the diam-
eter ofM @39,29#; for a three-dimensional CH space,

k1>hC/2>
1

dM F2E
0

1/2

dt cosh2~ t !G21

50.92/dM . ~30!

This result prohibits supercurvature modes for all CH spa
with dM,0.92dc .

There are other lower bounds onk1 that exist in the lit-
erature. In terms of the diameter alone, the boundk1

2

>p2/(2dM)22max$2(n21)K,0% has been derived for an
compactn-dimensional space, withK50 for flat geometry
and K56dc

22 for spherical and hyperbolic geometries, r
spectively@40#. For hyperbolic spaces, this bound is sharp
than the one above fordM&0.9dc . There is another lowe
bound onk1 in terms of the volume as well as the diame
@41#; for CH spaces k1>VM /@2pdM„sinh(2dM /dc)
22dM /dc…#. This lower bound dominates in the supercu
vature sector for volumes larger than'7dc

3.
There are also upper bounds onk1 . The bound,k1

2

<4hC /dc110hC
2 @43#, does not allow for a firm conclusion

that the space supports supercurvature modes,k1dc,1, un-
lessdM>10.6dc @using Eq.~30!#. Upper bounds based o
comparison with the first Dirichlet eigenvalue@42# on a sub-
domain ofM cannot imposek1dc,1, since Dirichlet eigen-
values cannot be less thandc

21. Some known bounds onk1

are summarized in Fig. 8.
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The density of statesnc(k) defines the eigenvalue spe
trum of the Laplacian on a compact space. It is well kno
that there exist very strong connections between the ge
etry and the topology of the space and the spectral prope
of the Laplacian.7 As discussed above, the infrared cutoff
the spectrum is broadly determined by the size~diameter! of
the space and its volume.

The Weyl formulais an example of a general and powe
ful result connecting number of states to the topology of
compact space: for largek, the number of eigenvalue
N(k)[#$ j ukj,k% up to a given valuek, in ann dimensional
compact space of volumeVM , is given by@29#

N~k![#$ j ukj,k%'c~n!VMkn1O~k~n21!!,
~31!

c~n!5V~unit ball!/~2p!n.

The constantc(n) is related to the volume within a uni
sphere, set by the geometry of the space. In Eq.~31!, j counts
the eigenvalues, including multiplicity. As a corollary, th
eigenvalues asymptotically can be estimated:

7It is widely believed that, in two and three dimensions, the
verse problem of identifying a space from the spectrum of the
placian isspectrally rigid., i.e., there can be only a finite number o
spaces which have the identical spectrum~modulo symmetries!
@44#. In higher dimensions, there are known exceptions, but spec
rigidity is quite generic.

FIG. 8. Some known bounds on the first nonzero eigenvalu
CH spaces are shown. The heavily shaded region is the lower bo
in Eq. ~30!. The lightly shaded region is the lower bound derived
@40#. The dashed lines show the lower bound which depends
volume as well for three values of the volume. The shaded reg
in the top right corner define two upper bounds onk1 . The hori-
zontally shaded region is the upper bound coming from compar
with Dirichlet eigenvalues@42#. The other region is the sharpe
possible bound that can arise using the upper bound in terms ohC

@43# and the lower bound onhC in Eq. ~30!.
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kj;c~n!21/n~ j /VM!1/n as j→`. ~32!

The corrections to Weyl’s asymptotic formula a
O(k(n22)12/(n11)) for flat tori andO„k(n21)/ ln(k2)… for mani-
folds with negative curvature.

Weyl’s formula also points to the dependence of the
frared cutoff on size: the smaller the space, the larger
infrared cutoff. Equation~32! shows that in the limit of large
eigenvalues the typical spacing between distinct eigenva
is given by the inverse of its linear size. These are fami
and intuitive facts in Euclidean compact spaces such as
simple tori. Weyl’s formula encourages the view that the
broad features in the spectra of the compact manifolds t
scend the geometry. Another important point of Weyl’s fo
mula relevant for our work is that the cumulative number
eigenstates asymptotically depends only on the volume
the manifold and not on its exact topology. Thus, the gr
properties of the spectrum are shared by spaces with com
rable volumes, and quantities which are fairly democratica
weighted integrals of the power spectrum can be expecte
be similar.

VI. CORRELATIONS IN COMPACT HYPERBOLIC
SPACES

As a prelude to our computation of CMB temperatu
anisotropy correlations for CH spaces in Ref.@16#, we focus
our attention in this section on theF-correlation function
jF

c (x,x8) between pointsx andx8 that belong to a 2-spher
around the origin inMu—i.e., there exist discrete motionsg,
g8PG such that the pointsgx,g8x8PMu are equidistant
from the origin.

Correlation functions of this kind arise in evaluating lar
angle CMB anisotropies associated with the gravitational
tential on the sphere of last scattering~SLS!—the naive
Sachs-Wolfe~NSW! effect. ~The radius of the SLS,RLS

'2 tanh21A12V0, is related to the density parameter,V0 .!
The angular correlationC(q̂,q̂8) between the NSW CMB
anisotropy in two directionsq̂ and q̂8 is given by

C~ q̂,q̂8![ K DT

T
~ q̂!

DT

T
~ q̂8!L

5
1

9
^F~ q̂xH ,tLS!F~ q̂8xH ,tLS!&. ~33!

In simply connected universes,C(q̂,q̂8)[C(q̂•q̂8) is statis-
tically isotropic. In contrast, for all compact universe mod
with Euclidean or hyperbolic geometry,C(q̂,q̂8) is statisti-
cally anisotropic. The breakdown of isotropy leads to ch
acteristic patterns in the predicted CMB anisotropy de
mined by the shape of the Dirichlet domain around
observer. Moreover, except for the simple flat torus, the g
bal inhomogeneity implies that the varianceC(q̂,q̂) varies
with direction q̂. This implies that the CMB sky would be
realization of an inhomogeneous field that would have ch
acteristic patterns of ‘‘loud’’ and ‘‘quiet’’ regions. These tw
effects constitute two aspects of the signature of a com
universe.
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There are three distinct regimes for the correlation p
terns on the sky in a compact space. ForRLS.R. , the pat-
terns are mainly dominated by the mapping of the SLS i
the compact space. The NSW–CMB patterns are charac
ized by spikes of positive correlation when the neighborho
of one point on the SLS is multiply imaged on the SLS. F
RLS!R, , i.e., the SLS is well within a single domain, th
compact space is indistinguishable from a simply connec
space with the same geometry. In the intermediateR,

&RLS&R. regime, there is very little multiple imaging
nevertheless, the SLS is large enough to feel the comp
ness of the space. Typically the correlation pattern retains
structure of correlation in the simply connected space, bu
significantly deformed.

Figure 9 illustrates the typical correlation patternC(q̂0 ,q̂)
in the large CH modelv3543(5,1) around a fixed direction
q̂0 , which we chose to correspond to a fiducial ‘‘North G
lactic Pole’’ ~NGP!. Of course, the global anisotropy implie
that this pattern will differ for different choices ofq̂0 . At
V050.6, the SLS is larger (RLS51.44) than the domain
(R.51.32), and spikes of enhanced correlation are s
with widely separated directions when the fixed point on
sphere, or points physically close to it, are multiply imag
on the SLS. AtV050.8, the SLS is smaller (R,,RLS
50.93,R.) and high correlation spikes due to multiple im
aging are absent. Nevertheless, the compactness of the s
is evident in the distorted contours aroundq̂0 . At V050.9,
the SLS is completely contained within the domain, and
correlation around the NGP is circularly symmetric. As e
pected, in this regime the compactness of the space on s
much larger than the horizon has very little observatio
signal. The contours show only slight, observationally ins
nificant, distortions.

Figure 10 plots the variance in the NSW–CMB tempe
ture, C(q̂,q̂), in the large CH modelv3543(5,1) for three
values ofV0 . The first two maps show a significant lou
feature atV050.6 andV050.8, corresponding to the rad
RLS51.44 andRLS50.93, respectively. The loud spot on th
sphere atV050.8 is within the domain. AtV050.6, the
sphere is larger than the domain (R.51.32), and the loud
spot is multiply imaged on the sky. The third map hasV0
50.9, corresponding to a sphere of radiusRLS50.63, which
is significantly smaller than the inradius,R,50.89. The
variance does not show much variation over this sm
sphere around the observer.

The CMB anisotropy has contributions other than t
NSW term in Eq.~33!. In particular, there is an integrate
Sachs-Wolfe contribution~ISW!, with the integration along
the line of sight from the SLS to the observer. The NS
term dominates when the density parameterV0 is close to
unity. When the ISW contribution is important, it signifi
cantly modifies the correlation patterns, as discussed in
companion paper@16#.

VII. DISCUSSION

The computation of the angular correlation function of t
CMB anisotropy requires machinery to compute spatial c
relation functions on equal-time spatial 3-hypersurfaces.
5-15
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have presented a general method of calculating these
multiply connected spatial sections which evades the tas
eigenmode decomposition. This is particularly useful wh
considering compact hyperbolic models of the universe
which rather little is known about the spectrum of the L
placian, and eigenmode decomposition is known to be d
cult to obtain.

We summarize here the basic knowledge we require
given manifold to use our method and the steps to be
lowed to obtain a given accuracy level for the correlati
functions.

For the selected compact modelM5Mu/G of interest,
we must be able to construct the tiling of the universal co
Mu from the generators of groupG ~Sec. II! up to some
distancer from the origin, which will be determined by th

FIG. 9. Typical angular correlation patternsC(q̂0 ,q̂) of the na-
ive ~or surface! Sachs–Wolfe effect on CMB anisotropy around
fixed directionq̂0 in the L~arge! CH model are shown as full-sky
maps at the angular resolution of 5.2°35.2° pixels. The full-sky
maps are plotted as pairs of 180° diameter hemispherical caps
centered on the South Galactic Pole~SGP! and one on the North
~NGP! q̂0 points to the NGP. In a simply connected universe,
contours of equal correlation would be concentric circles aro
q̂0 , due to the global isotropy. The three values ofV0 are repre-
sentative of the three regimes. In the top panel, the radius of
SLS,RLS , is greater thanR. and one sees multiple imaging. In th
second, withR,,RLS,R. , there are significant distortions but n
multiple imaging. The bottom panel hasR,!RLS , and no observ-
able correlation signatures of compactness. In all the maps,
dipole component of the correlation function has been subtrac
The maps have also been smoothed by a 1.66° Gaussian filter
*
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required level of accuracy. This is in itself a daunting ma
ematical task, but, fortunately, for many thousand comp
hyperbolic models, theSNAPPEApackage@28# gives enough
information for us to carry out this step.

Given the tiling, we perform our correlation function ca
culation in a sequence of radial shells of sizer, testing
whether a stopping criterion based on a desired level of c
vergence in the regularized summation over images~Sec.
V B! is satisfied; if so, this definesr * . It may be that the
requiredr * is beyond the computational power at hand. F
the correlation function calculations of interest for the CM
problem in the compact hyperbolic spaces we have tried,5

images are computationally very feasible~less than a day on
a 433 MHz alpha workstation!. This allows us to go out to
r * '5dM , more than adequate for convergence.

It may be for manifolds with very many faces, the numb
of images required to converge could be prohibitive. Even
this is so, we obtain useful results out to the radius we
achieve because at each shellr the symmetries of the mani

ne
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d
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FIG. 10. The variations in the varianceC(q̂,q̂) of a scalar field
on three concentric spheres around the same basepoint. The r
of the spheres correspond toRLS at the values of the density param
eterV0 shown. The variance is shown in full-sky maps plotted
pairs of 180° diameter hemispherical caps, one centered on
South Galactic Pole~SGP! and one on the North~NGP!. In addition
to the COBE–DMR beam smoothing, the maps have been smoot
by a 1.66° Gaussian filter. The loud feature seen atV050.8(R,

,RLS,R.) corresponds to'100% excess in the variance over i
mean. AtV050.6, the spot is multiply imaged since the sphere
larger than the domainRLS.R. . At V050.9 there is very little
variation over the small sphereRLS!R, .
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fold are preserved in the correlation function. Indeed ev
the nearest few shells of images are enough for a qua
tively correct result on the basic pattern of correlatio
which is also quantitatively not too bad. We showed exp
itly for the flat torus~Sec. IV! that the correlation function is
well determined as long as the density of states calculated
that number of shells has the power in each discrete m
localized to withinDki;1/dM around the true eigenvalu
ki . Since the line of argument leading to this result is ind
pendent of the local geometry of the compact space, it
plies to CH spaces as well.

Our method has the merit of avoiding explicit eigenmo
decomposition. Recently progress has been reported in
rectly computing the low-k eigenmodes of the Laplacian fo
selected compact hyperbolic spaces@14#. It has proved nec-
essary to use spectral line ‘‘deblending’’ techniques in c
junction with these methods to get the eigenvalue spect
accurately@15#. As we showed in Sec. III B, we can also u
the method of images to calculate the spectrum of eigen
ues, though this is more difficult than correlation functi
evaluation since it requires longer summations to get nar
spectral lines, as is evident from Fig. 3 and@11#. These fig-
ures immediately suggesting deblending, but at this sta
only for the torus case do we explicitly know the shapes

FIG. 11. The initial power spectrum expected from inflation in
hyperbolic universe with a small tilt is shown as the solid cur
~OPEN INFLATION!. There is a sharp cutoff belowkdc51 since
the quantum fluctuations during inflation cannot excite supercu
ture modes. The curve labeled FLAT shows the analogous ti
spectrum in a flat universe. The open inflation and the flat cur
match atkdc@1. Tilted initial spectra in hyperbolic universes hav
often been taken to be a power law inkdc or b. Although equiva-
lent atkdc@1, these differ at smallkdc from the inflationary pre-
diction; the former is labeled FLAT while the latter is depicted
the dashed curve labeled OPEN. The open inflation spectrum
we use in our paper corresponds to no-tilt,m53/2, is flat with a
sharp cutoff atkdc51.
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the broadened spectral lines obtained by sequential im
addition. One of the manifolds in which the low-k eigenval-
ues were determined by Inoue@14# is in common with those
we have computed the spectrum for. We find his resu
agree with ours.

The goals of this paper were to provide a detailed desc
tion of our regularized method of images, demonstrate tha
works extremely well, and more generally show the ba
effects of compactness on the correlation function of a sc
field and the density of states of the Laplacian. The com
tation of large angle CMB anisotropy, the features that ar
in the CMB correlation that are characteristic of compa
spaces, the detailed comparison with the COBE-DMR d
and the constraints that follow using large and small C
space examples are presented in the companion paper@16#. A
compilation of the constraints from the all sky COBE–DM
data on a large selection of CH spaces will be presente
@45#.
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APPENDIX: INFLATIONARY PERTURBATIONS
IN A HYPERBOLIC UNIVERSE

It is widely accepted that the large scale structures in
present universe grew out of small initial metric perturb
tions via the mechanism of gravitational instability. The i
flationary epoch in the universe provides us with a setting
the generation of fluctuations with power on large scal
Cosmological perturbations are effectively massless~light!
scalar fields residing on a background FRW space-time
the large scale power is related to the infrared behavior of
light scalar field propagator in the inflationary epoch.8 In this
appendix, we present a simplified calculation of the init
power spectra for open inflation~hyperbolic geometry! to
place the spectrum that we use in our work within a bro
class of ‘‘tilted’’ inflationary spectra which are ‘‘scale free
on scales much smaller thandc and are analogous to th
well-known tilted spectra in Euclidean~flat! inflationary uni-
verse. The scope of our analysis is limited by the particu
choice of the vacuum state, as discussed below.

Inflationary scenarios that lead to a simply connected
perbolic universe generally require two stages@46#. This is

8This infrared behavior is linked to the infrared divergence wh
strictly exists for massless scalars and for infinite duration of
accelerated phase. In the case of inflationary scenarios, both
finite duration and small effective mass serve to regulate the di
gence.
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because a single stage of inflation cannot provide homo
neity across the Hubble patch without inflating the local c
vature in the patch to negligible values. A widely prescrib
solution is to invoke a ‘‘creation stage’’ involving the cre
ation of a universe with homogeneous hyperbolic spatial s
tions which is then followed by a sufficiently short inflation
ary stage ~so as not to expand the curvature awa!
inflationary stage responsible for generating the primord
perturbations at cosmological scales. Since the second e
of inflation cannot be long, the specifics of the first stage
creation ofH3 spatial sections could influence the spectru
of generation of perturbations at supercurvature scales.
possible effects on the spectrum have been extensively s
ied in recent literature@47# in the context of open-bubble
models in which the open universe resides in the interio
the bubble nucleated in the first-order phase transition fro
larger inflating universe. It is doubtful, however, that t
bubble mechanism can be used to produce compact hy
bolic spaces. More relevant is probably the mechanism
quantum creation of the universe ‘‘from nothing’’ where th
topology of the created space is related to the topolog
properties of the instanton solution in the Euclidian sect
@34#. Proper quantization of the fluctuations in such a s
nario is, however, still a matter for the future.

We assume that at the beginning of the second~inflation-
ary! stage all quantum fields on the hyperbolic hypersurf
are in the vacuum state and the vacuum modes in Eq.~A6!
are chosen by identifying the positive frequency part of
general solution to the mode evolution equation. This cho
of the initial state sets the boundary of applicability for o
considerations.9 It is important to bear in mind that, in gen
eral, the creation stage could modify the proper choice of
vacuum state and consequently the predicted spectrum
~A7! and ~A8!.

We outline the derivation of the power spectrum for a fr
scalar fieldc which will be appropriately identified with
metric perturbations subsequently. The scalar field equa
allows the spatial and temporal dependence to be separ
c(x,t)5ck(t)Gk(x). The rapid expansion of the space-tim
during inflation would redshift away to insignificance th
number density of any preinflationary quanta within the fi
few e-folds of expansion. As a result, it is a good appro
mation to assume that all the fields are in their vacuum s
i.e., ck(t)[ck

(1)(t). The vacuum expectation value of th
field, ^c2(t)&, is the coincidence limit (x8→x) of the equal-
time two-point function,̂ c(x8,t)c(x,t)&, and, hence, can
be expressed as a mode-sum over the mode functions:

^C2&5
1

~2p!3 E d3k ck~t!ck* ~t!

[E dk

k F k3

2p2 ck~t!ck* ~t!G . ~A1!

9Although not explicitly used, the presence of the ‘‘creati
stage’’ is essential. On the hyperbolic chart of the de Sitter sp
some observable 1-loop quantities computed in this vacuum w
diverge on the (t50) boundary and hence the conditions assum
here at the onset of the inflationary epoch must breakdown in
past, presumably, due to the creation stage.
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The quantity within the square brackets represents the c
tribution per logarithmick-interval to the total power at a
given time, t. We usually define the power spectrum b
evaluating this quantity at some convenient time,t* , during
inflation. For instance,t* could correspond to the time dur
ing the inflationary epoch when the comoving scale,k0 , cor-
responding to the observed horizon was equal to the Hub
radius (k0ut1u5k0t0). The power spectrum,Pc(k/k0), of
the field,c, is defined to be

Pc~k/k0![
k3

2p2 ck~t1!ck* ~t1!. ~A2!

The present astrophysical comoving scales correspon
physical scales which were much larger than the Hubble
dius at the end of inflation, hence it suffices to evaluate
amplitude of modes in the expression for the power sp
trum, Pc(k/k0), in the limit, kt→0.

We now compute the spectrum of initial perturbatio
generated in the second inflationary stage on a FRW mo
with H3 spatial sections.

The spatial modes of a scalar field onH3 are given by
orthonormal eigenfunctions of the Laplacian in spherical
ordinates@48#:

Gk~x!5(
l 50

`

(
m52 l

m5 l

Gk
l ~r !Ylm~ x̂!,

Gk
l ~r !5ANl~b!

sinhr
P21/21 ib

2 l 21/2 ~coshr !, ~A3!

b5Auku221, r 5uxu, x̂5x/r , Nl~b!5UG~ ib1 l 11!

G~ ib11!
U2

.

In the above equation, thePn
m(x) are the associated Legend

functions andG(n) is the Euler-Gamma function@49#. Ow-
ing to the isotropy ofH3, the modes depend onlyk5uku.
Moreover, modes withkdc>1, ~i.e., b real and positive!
form a complete orthonormal basis for free fields onH3, and
it is convenient to use the wave number,b, to label these
modes~see Fig. 11!.

The temporal modes of the scalar field,cb , on a hyper-
bolic universe, obey the equation

cb912
a8

a
cb81@~b211!1a2meff

2 #cb50, ~A4!

wheremeff
2 is the effective mass of the field and the prim

denotes density derivatives with conformal time. We no
consider the scalar fieldc to be the fluctuations,df, of the
inflation field@50,51# and thenmeff

2 is related to the quantities
set by the evolution of the background inflaton field and
metric.

The above setting allows us to investigate quantum fl
tuations during inflation in some well defined regimes. T
classification here closely follows that of inflation in a fl
universe. We consider the following cases.

e
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~i! Uniform inflationary ~de Sitter! expansion andmeff
2

50. This is the analog of standard slow-roll inflation.
~ii ! Uniform inflationary expansion with a constant valu

of meff
2 /H2Þ0. This is the analog of the class of models w

inverted harmonic oscillatorlike potentials, such as natu
inflation.

~iii ! Constant equation of state during inflation. This is
abstraction of the power law models of inflation.

In each of the above, the conditions are meant to hold
an approximate fashion over the relevant range of as
physical scales, just as for the flat inflation analogs.

In the case of de Sitter expansion, the scale factor ia
5sinh(Ht)/H52cscht/H, expressed as a function of cosm
time t and conformal timet. Equation~A4! then reduces to

cb922 cothrcb81@~b211!1~meff /H !2/sinht#cb50.
~A5!

The general solution involves associated Legendre funct
Q2(1/2)1 ib

2m (cosht) and P2(1/2)1 ib
2m (cosht), multiplied by a

factor sinh3/2t. The indexm5A9/42meff
2 /H2. The positive

frequency~vacuum mode! solution is identified with the late
time asymptotics;e2 ikt. The normalized vacuum mode so
lution, cb

(1) , is

cb
~1 !5H2AG~ 1

2 1m1 ib!

iG~ 1
2 2m1 ib!

sinh2 tQ2~1/2!1 ib
2m ~cosht!,

~A6!

where the overall normalization is determined by norma
ing the probability current, i.e., setting the Wronskian
cb

(1) equal toia22.
The spectrum of initial perturbations in the inflaton fie

can be calculated from the vacuum mode solution thro
Eq. ~A2!:

Pc~b!5U i
G~ 1

2 2m1 ib!

G~ 1
2 1m1 ib!

U2

. ~A7!

If meff
2 50, the spectrum of initial perturbations in the inflato

field reduces to
e
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Pc~b!5
1

b~b211!
. ~A8!

This is the analog of the Harrison-Zeldovich spectrum
hyperbolic models derived in@32,33#. In the limit b@1, the
spectrum goes over to the well-known flat ‘‘flicker noise
result. This is also the power spectrum which implies eq
power per logarithmic interval inuku that we use in our work
on CH spaces~see Sec. V A!.

The power spectrum in Eq.~A7! is best numerically com-
puted by using Lancoz’s formula for gamma functions. U
ing the Stirling approximation to gamma functions forb
@1, one recovers the standard tilted flat space spectrum f
Eq. ~A7!, PF;k3/22m.

In the more general case of constant equation of statew
[P/r, during inflation, the scale factor obeysa
5sinha(t/a) wherea52/(3w11). The de Sitter expansion
corresponds to the casew521. The Eq.~A4! for the tem-
poral modes reduces to the form

cb912 coth~t/a!cb81~b211!cb50. ~A9!

The general solution of the above equation involves the sa
associated Legendre functions as the solution for Eq.~A5!

with index m51/22a, rescaled wave numberb̃25a2b2

5(k221)a2, rescaled timet̃5t/a, and multiplication by a
factor of sinhm t̃.

The positive frequency~vacuum mode! solution is identi-
fied again with the late time asymptotics;e2 ik t̃. The nor-
malized vacuum mode solution,cb

(1) , is

cb
~1 !5H2AG~ 1

2 1m1 i b̃ !

iG~ 1
2 2m1 i b̃ !

sinh2 tQ
2~1/2!1 i b̃

2m
~cosht̃ !.

~A10!

The spectrum of perturbations is of the same form as~A7!

with rescaled wave numberb̃ andm51/222/(3w11). The
spectra given by~A7! are hyperbolic universe analogs o
tilted spectra generated in flat universe inflation models s
as power law inflation.
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