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Stochastic treatment of disoriented chiral condensates within a Langevin description
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Applying a microscopically motivated semiclassical Langevin description of the linear sigma model we
investigate for various different scenarios the stochastic evolution of a disoriented chiral condeasatin
a rapidly expanding system. Some particular emphasis is put on the numerical realization of colored noise in
order to treat the underlying dissipative and non-Markovian stochastic equations of motion. A comparison with
an approximate Markoviafi.e., instantaneoydreatment of dissipation and noise will be made in order to
identify the possible influence of memory effects in the evolution of the chiral order parameter. Assuming a
standard Rayleigh cooling term to simulateDadimensional scaling expansion we present the probability
distribution in the low momentum pion number stemming from the relaxing zero mode component of the chiral
field. The best DCC signal is expected for initial conditions centered aroajxet0 as would be the case of
effective light “pions” close to the phase transition. By choosing appropriate idealized global parameters for
the expansion our findings show that an experimentally feasible DCC, if it does exist in nature, has to be a rare
event with some finite probability following a nontrivial and non-Poissonian distribution on an event by event
basis. DCCs might then be identified experimentally by inspecting higher order factorial cumgjatins
=3) in the sampled distribution.

PACS numbgs): 25.75—q, 11.10.Wx, 11.30.Rd, 12.38.Mh

I. INTRODUCTION AND MOTIVATION The possible occurrence of a semiclassical and coherent
pion field was first raised in a work of Anselfd] but the
The prime intention for ultrarelativistic heavy ion colli- idea of forming DCC was made widely known due to
sions is to study the behavior of nuclear or hadronic matter aBjorken[5] and Rajagopal and Wilczdk]. Since then many
extreme conditions such as very high temperatures and emorks have appeared on various aspects of DCC formation
ergy densities. One of the major goals, particularly at than heavy ion collisions. As the microscopic physics govern-
upcoming BNL Relativistic Heavy lon CollidgiRHIC) fa- ing the chiral phase transition is not known well enough, one
cilities, is to find evidence for a new state of deconfinedtypically employs effective field theories like the linear
partonic matter, the quark gluon plast@GP [1]. In addi-  model[6] in order to describe this nonequilibrium phenom-
tion to the confinement-deconfinement transition one also exenon. On the other hand the description of quantum field
pects a transition of hot hadronic matter, where chiral symtheory out of equilibrium is interesting in its own right and
metry is being restored. Lattice calculations of quantumthus has given rise to a major attraction for theoretical stud-
chromodynamic$QCD) give the belief that both transitions jes in order to describe the evolution of disoriented chiral
occur at the same critical temperatufg at vanishing net-  condensatef7], such as, e.g., standard Hartree factorization
baryon densitie$2]. o _ or largeN.-expansion methodg8]. Usually these consider-
The formation of the so-called disoriented chiral conden-ations assume an initial state at high temperature in which
sate (DCC) [3] has been considered as maybe the mosthira| symmetry is restored by vanishing collective fields.
prominent signature for the restoration of chiral symmetry|nqenendent thermal fluctuations in each isospin direction of

occurring in the ongoing evolution of the hot matter from thetheO(4) o model are present. This configuration sits on the

chirally restored to the chirally broken phase. The idea her : :
is that in the course of the evolution of the system from the?Op of the barrier of the potential energy at zero temperature,

S . . . s0 a sudden cooling of the system supposedly brings it into
initially (and only transiently existingunbroken phase with an unstable state. This picture is referred to as the quenched

(the order parameter beinggq)~0 to the true ground state gjtyation[6]. The spontaneous growth and subsequent decay
with {qq)#0 the pseudoscalar condenséter ysq) might  of these configurations would give rise to large collective
assume temporarily nonvanishing values. This misalignedluctuations in the number of produced neutral pions com-
condensate has the same quark content and quantum nupared to charged pions, and thus could provide a mechanism
bers as do pions and thus essentially constitutes a classiaakplaining a family of peculiar cosmic ray events, the Cen-
pion field. The subsequent relaxation of this field back to theauros[9]. A deeper reason for these strong fluctuations lies
alignment of the outside vacuum could then lead to an excesa the fact that all pions constituting the classical and coher-
of low momentum pions in a single direction in isospin ent field are sitting in the same momentum state and the
space. overall wavefunction can carry no isosgit0].
The proposed quench scendr assumes that the effec-
tive potential governing the evolution of the long wavelength
*Email address: Zhe.Xu@theo.physik.uni-giessen.de modes immediately turns to the classical one at zero tem-
"Email address: Carsten.Greiner@theo.physik.uni-giessen.de  perature. This is a very drastic assumption as the soft classi-
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cal modes completely decouple from the residual thermatlomain, which will depend nontrivially on the initial and
fluctuations at the chiral phase transition temperature. Sucbubsequent fluctuations suffered by the surrounding in the
an idealized scenario of immediate decoupling might holdcourse of the evolution. For this we calculate the effective
effectively if the expansion and the associated cooling of thepion number contained in the pionic collective field emerg-
fireball occurs sufficiently fagtl1]. An alternative, the an- ing by the rolling down of the chiral fields to its true vacuum
nealing scenari13], was suggested by Gavin and Néw.  values, which by subsequent emission will be freed as low
They used the one-loop effective potential instead of themomentum pions. With this number at hand we can make the
classical one including thermal fluctuations. For moderatelecision whether accordingly these pions can contribute to
expansion and cooling it was shown that the system caan experimentally measurable enhancement of low momen-
exhibit longer unstable periods and thus should lead even ttum pions and thus might provide indeed a signal for the
a stronger enhancement of the soft pionic fields. On the othesccurring chiral phase transition. As it turns out the probabil-
side, both scenarios assume that the initial fluctuation of théy distribution in the pion number contains interesting new
order parameter at the beginning of the DCC formation arénformation for the characteristics of the nonequilibrium evo-
centered around zero with a sufficiently small width in alution stemming from the relaxing zero mode component of
rather ad hoc manner. Preparing the initial configuration witithe chiral field. In the interesting cases the to be expected
stronger initial fluctuations, no DCC formation has been ob+ield in low momentum pions does not follow a usual and
served[12]. If the soft field remains in thermal contact with simple statistical distribution, but possesses large and non-
the fluctuations giving rise to the one-loop potential, thentrivial (non-Poissonianfluctuations. The best DCC signal is
one also has to allow for appropriate thermal fluctuations irexpected for initial conditions centered aroutwl)~0 as
the initial conditiong14,15. The proposed quenched initial would be the case of effective light “pions” close to the
conditions within the linear sigma model seem statisticallyphase transition. By choosing some idealized global param-
unlikely. eters for a D=)3-dimensional, spherical expansion, our
The likeliness of an instability leading potentially to a findings show that an experimentally feasible DCC, if it does
DCC event during the evolution with a continuous contactexist in nature, has to be a rare event with some finite prob-
with the heat bath of thermal pions was investigated by Bircability following a nontrivial and non-Poissonian distribution
and one of us by means of simple Langevin equat|dies. on an event by event basis. Comparing with an additional
There the average and statistical properties of individual soicoherent background the fluctuations in the low momen-
lutions were studied with the emphasis on such periods ofum pion number might be revealed in the nonvanishing of
the time evolution when the transverse massof the pionic  higher order factorial cumulants,, (m=3). Admittingly,
modes becomes imaginary and therefore an exponentiale have to say that although we do stress a new physical
growth of unstable fluctuations in the collective fields mightpicture our study has still to be seen as a fairly idealized
be expected. It was found that for different realistic initial scenario. Nevertheless, we believe that our results are inter-
volumes individual events of an ensemble lead to sometimessting in their own right and should serve as a simplified
significant growth of fluctuationgl6,17]. Subsequent inves- estimate for the nontrivial late dynamics encountered in an
tigation by us in fact leads to the idea of stochastic formatiorultrarelativistic heavy ion collision.
of DCC for particular special stochastic evolution of the or- In the next section, Sec. Il, we describe the linear
der parametef18]. model within a Langevin treatment. For this we will first
This idea is what we want to detail in the present study insummarize the theoretical ideas behind a semiclassical
more depth. Our main conception is that the order parametdrangevin description for the sofie., low momentumfields
before and after the onset of the chiral phase transition stilin thermal quantum field theory. The hard modes are treated
interacts(dissipatively with its (nearly thermal surrounding as thermal quasiparticles which constitute a surrounding,
of thermal(or “hard”) pions, which then give rise also to open heat bath. We then discuss the model introducgbbin
large fluctuations in the evolution. This one can interpret as & more depth for simulating the evolution of the order pa-
breakdown of the standard mean-field approximation. Applyrameter and the collective zero mode pionic fields. The
ing a microscopically motivated semiclassical Langevin de-damping term entering the dynamical evolution will be dis-
scription of the linear sigma model we investigate for variouscussed and a systematic recording of the statistically possible
different scenarios the stochastic evolution of a single disoriinitial configurations of the order parameter for finite vol-
ented chiral condensate in a rapidly expanding system astines will be given. The final equations of motion to be used
suming aD-dimensional scaling expansidril,13,14,1&  for the dynamical evolution including B-dimensional scal-
Our stochastic description will allow for a systematic record-ing expansion for modeling the possible formation of DCC
ing of the statistically possible initial configurations of the are then stated. As a characteristic for describing the
order parameter. Furthermore, it also describes the nontrividlstrength” of a DCC we consider the effective pion number
influence of dissipation and fluctuations on the nonequilib-content of the evolving domain. Some particular emphasize
rium evolution and the coherent amplification on the collec-will then be put first in Sec. Ill on the numerical realization
tive pionic zero mode fields during and after the onset of theof colored noise in order to treat the underlying dissipative
phase transition. and non-Markovian stochastic equations of motion. This, to
It remains to answer the important question of how likelythe best of our knowledge, is the first numerical treatment of
particular nonequilibrium evolutions of a statistically gener-non-Markovian Langevin equations in thermal quantum field
ated ensemble will lead to the formation of a “large” DCC- theory and might be of importance for other related topics. A
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comparison with a standard Markovidie., instantaneols  |eading order in\, the thermal fluctuation&s$2(x,t)) of the
treatment of dISSIpatIOH and noise will be made. For the Iatebions ando mesons do generate an effective Hartree type
simulations it shows that it is sufficient to consider Only thedynamica| mass g|V|ng rise to an effective temperature de-

Markovian approximation, which is numerically much easierpendent potential. In the high temperature expansion this re-
to handle. In Sec. IV we finally present numerical results ofsyjts in[20]

the simulation on the evolution of a coherent pionic field.
Four different scenarios, annealing or quench with initial (T>mg.mg)y
conditions governed by effective “light” or physical mass mtzh - 7
pions, will be investigated. We calculate the pion number for

a single domain and the distribution of the pion number,
which are the observables relevant to the experimental dete
tion of DCC, and which also will give quantitative predici-

tion on the possibility of forming an experimentally acces-
sible DCC. The unusual distribution in the number of low
momentum pions is further analyzed by means of a cumula
expansion. To be more realistic we also take into account ap

ngi-tfnng:c Isr;?toh%rr?gtE]lezgp:]ahtﬁznrtéfﬂ?gn éjJ'Ztrt'T)e t![Z)rr(])'fortransition which can be described in the Landau-Ginzburg
ucti pions. Inspecting uiting distributi theory by means of an effective linearmodel. In this sense

ﬁggtgglrré%%i?;lag F;'grq rs]zlrln gzrl\;vre th_)rwhi;hatrg\]/? dzggorzgsvrone considers the linear model as an appropriate realiza-
ge. P tion of the chiral behavior of QCD over the whole range in

s?gnature to identify pos_sible DCC formation. Some Condu'temperature though the effective parameters rEaiT
sions for possible experimental searches are drawn. We closneeed ot reélly be equivalent to thoseTat 0 €
our findi_ngs V\.’ith asummary. In Appendix A we give a mi—_ We now address in an intuitive model How one can go
croscopic denvauop of the frequency depe_ndence of_the d.'sf)eyond the mean field level for the semiclassical chiral col-
sipation kernel being employed. Appendix B describes iNe

more detail our strategy for simulating Gaussian nonwhite ctive fields. Our main physical conception will be that the
9y 9 brder parameter and the collective fields before and after the

colored noise for an arbitrary noise kernel. Appendix C gives nset of the chiral phase transition still interaéissipa-

gisti::ggtgggnder on the cumulant expansion for statistica ively) with its (nearly thermal surrounding of thermabr

“hard” ) particles. To outline these ideas more conceptually
we will first summarize in the following subsection the the-
oretical reasonings behind a semiclassical Langevin descrip-
tion of the soft, i.e., low momentum fields.

In this section we develop in some more detail the Lange-

N=4)\

T? > T2 3

N+2

3

The resulting chiral phase transition is compatible with the
&Xpectations of lattice gauge QCD calculatij@4]. There
exist also convincing theoretical argume[2&] that the chi-

ral phase transition near the critical temperaftizeof QCD

with two massless quarks lies in the same universality class
s anO(4)-Heisenberg magnet and thds this idealized
ase of massless quajkexhibits a true second order phase

Il. LANGEVIN DESCRIPTION
OF LINEAR SIGMA MODEL

vin description of the linear- model introduced i16,18. A. Equations of motion for long wavelength modes
The starting point is the phenomenological Lagrangian in a heat bath
which is given by One of the recent topics in especially non-Abelian mass-
1 N less quantum field theory at finite temperature or near ther-
L= §0M¢a3”¢a—z(¢a¢a—l}2)2+H¢01 (1)  mal equilibrium concerns the evolution and behavior of the

long wavelength modes. These modes often lie entirely in
the nonperturbative regime. Therefore solutions of the clas-
sical field equations in Minkowski space have been widely
used in recent years to describe long-distance properties of
quantum fields that require a nonperturbative analysis. A jus-
tification of the classical treatment of the long-distance dy-
namics of weakly coupled bosonic quantum fields at high

where¢,= (o,m1,75,73). We employ the standard param-
eterf .=93 MeV for the pion decay constamh,_= 140 MeV
for the vacuum mass of the pion ang,~600 MeV for the
“mass” of the o meson. For the three parameters in Eq.
one then finds

m2— m2 temperature is based on the observation that the average ther-
=—2 7.9, mal amplitude of low-momentum modes is large and ap-
Zfi proaches the classical equipartition limit
me lpl=0 T
v2=f,27—T=(87 MeV)?, N(wp)=(e"/T—1)"1 — —>1 (4)
, @ . .
H=f, m2=(122 MeV)2. in the case for a sufficiently small generated dynamical mass

m* <T. On the other hand, the thermodynamics of a classi-
The linearoc model represents an effective chiral theory of cal field is only defined if an ultraviolet cutok; is imposed
the low energy properties of QCD. It can be motivated inon the momentunp such as a finite lattice spacirg In a
more theoretical depth from QCD by the modern methods ofecent papef23] it was shown, at least principally, how to
the renormalization groupl9]. At finite temperature, to construct an effective semiclassical action for describing not
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8 theN=1 contribution of Eq(6). Performing a Fourier trans-
Q. P V + - 4 \,O\/ N ‘/\_,\’ formation to Eq.(6) yields the semiclassical stochastic field
’ \ ’ \ equation for a soft mode with momerita 23,24
(a) (b) (c) CY (e)

FIG. 1. Feynman diagrams contributing to the influence action - 542 52 ke d3k,d3k,
Sie up to second orde®(g*) in Si;. ¢ (K,t) +(k“+m* ) p(k,t) + EJ W
only the classical behavior of the long wavelength modes X O(ke— |k—ki—Ks|) p(kq,t)
below some given cutofk;, but taking into account also
perturbatively the interaction among the soft and hard X ¢(ka,t) p(kK—ki—kz,t)
modes. The resulting effective acti@y] soft], which one ‘
has to interpret as a stochastic, dissipative acfe®24), +2J dt'T(k,t=t") (k,t') = &(k,t). (7)

turns out to be complex, leading to a stochastic equation of

motion for the soft modes. If the hard modes are already in o

thermal equilibrium then the evolution of the soft modes isI' (k.t—t') and £(k,t) denote the(real valued dissipation

described by a set of generalized Langevin equations—thkernel and the noise source, respectively, due to the thermal

equations of motion corresponding to the above complex efiluctuations of the integrated out hard particles. The dissipa-

fective action. tion kernel is related to the standard imaginary part of the
We briefly sketch the main strategy followirl@3] by ~ sunset diagram vig24]

considering a scalar field with interactiof),,= (g%/4!) ¢*.

» : L —Im 2"k, w)
The splitting of the Fourier componentss(p,t)= &(p rko)=s———m—m—m ——, (8)
=<k.,t) + o(p>k.,t), leads to the following interaction part @
in the action: which follows by a partial integration of
b g° 4 9° 3 .3 22 3 t
Sint[¢1(P]__Jt0d XE(P +§ d) ¢+§¢ ® +¢QD ) . f dt’EreI(k,t—t’)(ﬁ(k,t')
5 -

By integrating out the hard modes up to second order in the =—2l(kAt=0)¢(k.y)

interaction, one obtains the effective acti¢or influence t )

functiona) Sie[,¢’] for the soft modes following the +2f dt'I'(k,t=t") p(k,t"). ©)
Feynman-Vernon approad@5]. Figure 1 shows the result- o
ing nonvanishing diagrams contributing - . The contri-
butions from diagran{a) and (b) are real and generate the
Hartree-like dynamical mass term. Moreover one notices th
Feynman graphs contributing at ord@¢g*) [diagrams(c),
(d) and(e)] to the effective action contain imaginary contri-
butions. Their real part leads to dissipatidike in linear Gaussian, but colored, characterized by Besemble aver-
response theojywhereas the imaginary part drives the fluc- aged corr'elation functibr{23 24

tuations of the hard particles on the soft modes. From the '

effective action semiclassical, stochastic equations of motion (EkDEK T =(2m)38%(k+k)I (k,t—t') (10)
result, which have the general shape

(The integration constant represents an additional momen-
tum dependent shift in the dynamically generated mass and
akill be neglected further oin.The explicit calculation of the
dissipation kernel is given in Appendix A.

Within the present treatment the noise turns out to be

) 3 or
— 9 1 _
O¢+m?p+ =3+ >, ——— " (Rel )"
¢ ¢ 31 ¢ N% (2N—1)! ¢ 2n) ¢ {EKDE—KE)NH=VI(K,t—t), (11)
> _ where the noise correlation strength is related via a general-
=> N7 1g 6 : .
& N: ized fluctuation dissipation relation to the dissipation kernel

as
Here I',y denotes the effective contribution withN2soft

legs, m? the resummed Hartree-Fock self-ener@actus _ exphio/T)+1 o=T

graphs and & are associated noise variables with a correla- Hw)= YexpholT) -1 Iw) = 2T (w). (12
tion (&nén)=Im T',y. These generalized Langevin equa-

tions (6) are similar in spirit to those obtained by Caldeira In the high-temperature limio<T the noise acting on the
and Leggett in their discussion of quantum Brownian motiondynamics of the soft modes then satisfies (etirely) clas-

[26]. sical relation
For the sake of simplicity we concentrate from now only
on the contribution of the sunset diagrdm of Fig. 1, i.e. (&K, DE—K,t)))=2TVI (k,t—t"). (13
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The fluctuation-dissipation-theorem ensures that the sofemiclassicaldynamics of those modes can be described by

modes approach thermal equilibrium precisely at the temmeans of appropriate Langevin equations. This intuition

peratureT of the hard modes. gave the phenomenological basis for the equations of motion
When the characteristic time scale in the evolution of hardused in[16].

modes in the heat bath is short compared to the one of the As we will argue in Sec. Il D we expect that for realistic

soft fields and its coupling to the soft fields is sufficiently initial (small) volumesV(7y) the zero modeKK=0) pionic

weak, the appropriaté“instantaneous’] Markovian limit  fields will cover the dominant coherent pion modes to be

then has a fornj23] possibly amplified in the course of a sufficient rapid evolu-
tion of the system. These three modes in fact do represent the
2J't At T (K t—t")b(k,t')~ 7 (14) pionic portion to the zero mode

1 -
Aty — | 43¢ = 1,.2,.3
where=T"(w,=Vm?+k?) in the linear, harmonic approxi- @ (t)'_vf X (X O)= (0,7, 7% ) (1) (16)

mation describes the familiar on-shell plasmon damping rate _ ) )
(see also Appendix A In the semiclassical, high temperature In the following we want to restrict ourselves to the effective
limit and within the Markovian approximation the noise be- description of this zero mode fiel#?, which formally cor-

comes white, i.e., responds to the limik;— 0 in the previous discussion.
In analogy to Eq{7) we now propose the following ef-
(&K1 E(—K,t")))y=2TVps(t—t"). (15)  fective Langevin equations of motion for the zero mode

. . 2 )
B. Effective description of zero mode in the lineare- model o+ T Pol+uiPo=fmz+ &,

(17)

In an liltrarelati\,/,istic heavy ion collision the idealized on- D+ D]+ uldi=¢.
set of a “quench,” as assumed [], is not really given.
Instead, one expects that the most dominant particles to bEhe temperature dependent one-loop transvef§zbn” )
freed after the onset of the transition are the light pionsand the longitudinal** o”-meson) mass for the respective
which represent a thermalized, further evolving systemfluctuations[see also Eq(3)] are given by{13-15
Their occupation in phase space is described via a Bose dis-
tribution and cannot be correctly taken care of in a purely Mf -
classical field description. This environmental pion gas may
then actually expand rapidly enoudim longitudinal and

A <I>§+Ei O~ 12|+ m2+md,

transversal directiongo allow for a nonequilibrium rolling =\ @2+ B2+ sz_fz +m?2 (18)
down of the chiral order parameter and giving potentially R ) T ™
rise to the formation of a DCC. In any case this gas of
“hard” pions does represent a heat bath with which the or- 2_ 2 2 2
L =u+ + ol
der parameter and the long-wavelength coherent pionic fields H=mui+2h o Z q)') (19

do interact. In this sense these collective modes represent an )

open system, which acts dissipatively and fluctuatively withThe dissipation functiondl[ @] as well as thesemiclassi-
the environment. Referring to the general ideas outlined irtal) noise will be treated either in the Markovian approxima-
the previous subsection one thus expects that(dsseumed tion or within the full non-Markovian expression

ndD (Markovian appp,
Zf dt'T'(t—t")d(t") (non-Markovian,
2T _
v 78.,0(t;—t,)  (Markovian appn,

((€a(1)))=0, ((&a(t1)én(t)))= oT (21
VF(tl—tz)b‘ab (non-Markovian.

HereT denotes the temperature avidhe size of the volume These coupled Langevin equatioffs?) resemble in its

of the considered system. It will be the major point of Sec.structure a stochastic Ginzburg-Landau description of phase
lll to simulate non-Markovian Langevin equations and totransition[27], especially for an overdamped situatifiz],
compare them with the appropriate Markovian treatment. where thed term can then be neglected. On the other hand,
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100 T T T T T 1000 T T T T r
= transversal
_. 80t M= =140 MeV | . 80F lonaitudinal
S > ongitudina
2 so} | I M, =140 MeV |
A *
e 4} 1 & L _
v 40 £ 400 FIG. 2. The temperature de-
e pendence of the magnitude of the
20t {1 ‘@ 200} - >
order parametel®|=+o*+ 7,
0 . . . . N 0 . . . . . the transversalpionlike) and lon-
0 50 100 150 200 250 300 0 50 100 150 200 250 300 gitudinal (o-like) mass at thermal
100 . ' ' ' ' 1000 ' ' ' ' ' equilibrium for the physical case
=0 MeV transversal of a nonvanishing pion mass and
— 80t m,=0 MeV 1 800} . . - :
A D N N A longitudinal ] the case without explicit chiral
Z pol {3 600k m, =0 MeV J symmetry breaking KH=0). The
A = ] averages are obtained over an en-
2 40t 4 & 400 - semble of 18 realizations.
v 2
20t {1 E 200 .
5
ot 0 i
0 50 100 150 200 250 300 0 50 100 150 200 250 300

TIMeV] T [MeV]

with A=~ 20 we are obviously not in a weak coupling regime, ~T;, the o field still posseses a nonvanishing value of
so that the formal apparatus laid down in the previous SeQo(T~T.))~f /2~ c,,/2. (In the large volume limit one

IlA can only serve as a basic motivation. Semiclassicahag(s)=(|®|) at fixed temperature, whet®|= o2+ 72

Langevin equations may not hold for a strongly interactingyenotes the magnitude of the order parame@omparing
theory as for highly nontrivial dispersion relations the fre-\ i reqults of lattice QCD calculations the transition tem-

quencies of the long wavelength modes are not necessariyy v re ofT.~125 MeV is considerably smaller than the
much smaller than the temperature. Still, when the so

modes become tremendously populated one can argue ﬂ,BX{mcal ones off ;~150-200 MeV. This one might correct

the long wavelength modes being coherently amplified be- y using instead OZ Ed3) thezvalue o.btal-ned by the large
have classically6]. Aside from a theoretical justification one ©XPansion(8] as mg,=(A/3)T* resulting inT,~154 MeV.
can regard the Langevin equation as a practical tool to stud{" @ qualitative level the present description of the chiral
the effect of thermalization on a subsystem, to sample a |argghase transmon is compatible with the ex.pectat|on of lattice
set of possible trajectories in the evolution, and to addresgalculations. However, for the latter one finds that the phase
also the question of all thermodynamica”y possib|e initia|tran5iti0n occurs in a much Sharper window around the criti-
configurations in a systematic manner. cal temperaturél.: slightly aboveT. the order parameter

A physically motivated choice for the damping coefficient (qq)~ (o) already nearly vanishes; furthermore, sufficiently
and the dissipation kerndl we will state immediately be- pelow T, the order parameter has merely changed to its
low. For the moment we stay to the Markovian case and tak§acuum value. This abrupt behavior around the critical tem-
7 as an appropriate free parameter. The “Brownian” motionperature is not realized within the present treatment of the
of the soft field configuration leads to equipartition of the |inear & model, which obviously shows a much smoother
energy at constant temperature. In Fig. 2 we show the effecdependence with temperature. A more refined analysis
tive transversal massgs, of the pion modes angt| of the  within the linearc model might account for this behavior
o mode as a function of the temperature obtained by solving29].
Egs. (17) at fixed temperaturd and sufficiently large vol- We now turn our attention to specify the dissipation co-
ume V. The masses shown are thus taken as an ensemhéficient » or damping kernell of Eq. (20) entering the
average of the different realizations within the Langevin|angevin equation&l7). From a physical point of view they
scheme. For larger volumes the fluctuations in the obtainedhould incorporate the net effect of the dissipative scattering
masses are of the ordeVland thus small. For the situation of the thermal(“hard™) pions with the collective fields. Its
that the vacuum pion mass is assumed to be @@@xplicit  value is thus also of principal interest for DCC formation as
symmetry breakingone can realize from Fig. 2 the situation a (too) large damping of the collective pionic fields would
for a true second order phase transition occurring at the trarsubsequently reduce significantly the amplitude of any co-
sition temperatureTzTCE\/ZfZW—Zmzﬂl)\%lZS MeV. On  herently amplified pionic field30] and thus might destroy
the other hand for the physical situation of a nonvanishingany possible DCC. Being consistent within the linear
pion mass ofm_ =140 MeV the “phase transition” re- model we consider here the “sunset” contributisee Fig.
sembles the form of a smooth crossover. In this casd, at 1(c)] as the dominant term for the dissipation, as it incorpo-
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120k ' ' ' ] cient of the collective, mesonic excitatiorf®) The damping
coefficienty introduced in Eq(22) should be appropriate for
100 temperatures close td., where spontaneous symmetry

S got breaking has just emerged. On the other hand, for a deeply

%’ broken phaseT<T,), the w+ 7— 7+ 7 scattering ampli-

; 6or tude will become significantly reduced by the additional
40+ t-channel exchange of@ meson, leading to the well known
o0l chiral derivative coupling for lower transferred momenta.

This additional contribution for the deeply broken phase we
95 00 200 300 200 have not taken into account and we thus overestimate the

damping associated with the thermal scattering especially for
low temperaturegsee, e.g., for comparison the damping co-
FIG. 3. The dependence of the friction coefficienton the  efficient given in[30]). (3) Moreover, for temperatures much
temperature. below T, the O4) transverse and longitudinal mass for the
fluctuations are not equal anymore. From Fig. 2 one recog-
rates the net effect due to scattering of a soft mode on a hamizes that belowl'~ 100 MeV the longitudinal masg ex-
particle into two hard particles and vice versa. The on-shelteeds two times the transversal mass, so that the decay
plasmon damping rate can then easily be evaluated in anabf the longitudinal mode into two transversal particles be-

T [MeV]

ogy to standardp? theory to be comes possible. In vacuum this just corresponds to the decay
o— m [33,34 with a width on the order of a few hundred
9 T2 T MeV. This would give rise to an additional temperature de-
n= 16773)\ m_pfSp(l_e 7Y, (220 pendent dissipation in longitudinal direction for the evolving

order parameter and might also have interesting conse-
quences for the DCC formation investigated in Sec. IV.

— _ (X _ i -
W:aesriezl;sdp(i)%;B] ft rl]gtg” t/r((; rg]tésazﬁ‘(gsg:]dg Arﬁiirir:tion Qualitatively one expects that the associated damping will
p ' Pprop PP Fhen effectively slow down considerably the rolling down in

in a weakly coupled theory just corresponds to this on-shelly, i dinal i.e., “radial”) direction of the order parameter

approximation. At first sight, n the present S|t.ua}‘t|on .Of ,,aalong the effective potential. We leave an implementation of
strongly coupl_ed theory, one might t_h'nk that this “choice” yis ing of longitudinal damping for future work4) A final

can only provide a rather crude estimate as the zero moc{?roblem, which we briefly mention, concerns the chiral limit
does not evolve on-shell during tlipossibly unstableevo- —0. Below T, the pions remain as massless Goldstone
lution. Hence thg dissipation and noi;e correlatiqn shqul Jsons(see aIsoCFig.)Zand theo meson becomes degener-
better be described by non-Markovian terms includingy e \ith the pion at and above the critical temperature. Tak-

m?fmﬁryl e]ffects. For (’;h|s wg have th tﬁva(le_lat_e trt1_e cokmple: g the expressiof22) one notices that the dissipation coef-
(off-shel) frequency dependence of the dissipation kerne ficient » diverges like h,. On the other hand, one expects

This calc;ulatlon we htavlf th'fti? to IAppend|x A. ?hs a“fu_rtherfor a true second order phase transition a critical slowing
aste,u”mp lon we now take for the plasmon magsthe —pi- down of the excitations near the critical temperature and thus
onic” massu, (T) for the transversal fluctuations depicted a vanishing of the dissipation coefficigf@]. This then im-

in the right upper plot of Fig. 2. This choice ;hogld be valid lies that a perturbative evaluation is not valid but requires a
hear or abovd; as the transversal and Iong|tud|_na! masse onperturbative analysis via, e.g., renormalization group
become nearly degenerate. The thus resulting dissipation Cﬂiethods[31]

efficient  of Eq. (22) is shown in .Fig. 3 asa funptipn of the Our discussion should demonstrate that a precise determi-
temperatureT (see also[32]). With this prescription one . o R ) -
nation of the description of the dissipation functiothgld ]

notes thaty possesses a maximum value~0100 MeV near e - -
near the critical temperature is far from being settled. We

the critical temperature, which will result in relaxatigar ) X : o - Y
equilibration times of roughly 2 fm/c(compare also with consider our choice as a physical motivation, and which is
also numerically tractable.

Fig. 7). For sufficiently smaller temperatures decreases
fast to a negligible small value as the density of the thermal
pions as potential scattering centers also falls rapidly with
decreasing temperature. This behavior is in line with findings
in [30], where the on-shell damping coefficient has been cal- As a first and straightforward application we address the
culated by means of standard chiral pion scattering amplitmportant question for the possible distribution of the order
tudes in the vacuum. parametel16) at the critical temperature for finite system
Some critical remarks are in ordgtt) It is questionable  with fixed sizeV. With the noise fluctuating according to Eq.

that above the critical temperature all contributing degrees of21) we expect(similarly like in Brownian motion that the
freedom are being considered. AboVe one expects that chiral fields do fluctuate thermally around its mean as well.
due to the deconfinement transition occurring at the samé@ssuming that slightly above the transition temperature the
critical temperature quarks and gluons are freed and thusystem is near thermal equilibrium, generating an ensemble
might have a considerable influence on the damping coeffidistribution then offers a systematic sampling of all possible

C. Fluctuations of initial conditions at critical temperature
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averaged value of the order parametef(|®|))

=((\Jo?+ 7?)) on various sized/ as function of the tem-
perature. As expected, finite sizes lead to a positive shift of
the order parameter and to(frther) rounding of the phase
transition. In Fig. 5 the characteristic distributions of the chi-
ral fields and their “velocities” at the critical temperature
are depicted. The average width scales likg\l/ Such a
behavior has been reported already within an independent
approach if35]. One might also employ the quantal version
of the noise fluctuations according to E32), which in the
Markovian on-shell treatment one would approximate as

mp mp

Such a prescription results in even larger fluctuations. It is
also interesting to look at the situation in the chiral limit
m_=0. The characteristic distributioR(c) is given in Fig.
6. In this case the fluctuations are even larger and scale ef-
fectively with 1Y4 [One can find analyticallj16] that for
this casg(o?))=1/2yT./(\V), so that the width in the dis-
tribution P(o) thus has to scale withf ~Y/4]

In the next subsection we will now turn to the description
of the chiral fields for an expanding environment leading
then to stochastic individual trajectories with considerable

FIG. 4. The temperature dependence of the magnitude of thfluctuations and thus also for particular events out of an en-
order parameter® at thermal equilibrium for different volumes. semble possibly to experimentally accessible DCC candi-
The averages are obtained over an ensemble dfddlizations.

dates. In a sense the “faith” of all individual trajectories
(entering to some amount the unstable regiérKO [16]) is

“initial” configurations for the later dynamical evolution of not really predictable and has to be sampled in some quan-
the order fields, which then lead to a stochastic formation ofitative way as within our proposed Langevin picture. We

DCC.

In Fig. 4 we show first the sensitivity of th@ensemblg

have to admit that one can certainly improve in various ways
on many aspects in describing phase transitions out of equi-

0,06 T T T T 0,040 T T T
initial distribution of ¢ field 0,035 |- initial distribution of r field i
0,05 |
— V=200 fm* 0,080 ——V,=200 fm* 1
004F ... V,=100 fm® 0,025} -7 V=100 fm® 4
......... _ ° iernee V=95 fm?
~ 003} V=25 fm 0,020 | m i
Bz °
[ 0,015 | ]
0,02
0,010 | 4
0,01} 0,005
T 0,000 FIG. 5. Statistical distribution
0,00 : = ' - .
e 0005t e of the chiralo field and one of the
-120-100-80 -60 -40 20 0 20 40 60 80 100 120 "77120-100-80 60 -40 20 0 20 40 60 80 100 120 three pion fields for different finite
o (v,) [MeV] 7 (1) [MeV] volumes. The temperature is taken
0,040 1T 0,040 1T as the critical temperaturd..
0,085 initial distribution of 1 0,035}  iniial distribution of i The distributions are obtained
0030 o field gradient ] 0030 = field gradient ] from an ensemble Of fondepen_
. S
0,005 ——V,=200fm’ ] 005 — Vo200 fm h dent realizations.
______ vV =100 fm® -==-=-V =100 fm®
0,020 ° __ 0020
© ®
= 0015 T 0015
0,010 0,010
0,005 0,005
0,000 0,000

-0,005 L
-120-100-80 -60 -40 -20 0 20 40 60 80 100 120

6 (r,) [MeV/m]

0,005 L
-120-100-80 -60 -40 -20 0 20 40 60 80 100 120

# (v) MeVAm]
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0,030~ T T T T T T T T T a parton gas is formed with a temperatiite T. well above
initial distribution of ¢ ] the chiral restoration point. Chiral symmetry is completely
0,025 | N . L .
for the chiral limit ] restored in this hot region.
0,020 —— V=200 fm° ' In the following (r=2 ... 3 fmk), because of the subse-
quent collective expansiorflongitudinally or later even
5 0015 transversally the temperature drops to around the critical
o

one (T=T,) and some small chirally restored or already
slightly disoriented domains of collective pionic fields start
to form together with a thermalized background of
(quasiypions and possibly other thermal excitations within
L e the respective subsystem. The individual subsystems are as-
-120-100 -80 -60 -40 -20 O 20 40 60 80 100 120 sumed to evolve independently as they are spatially sepa-
o () [MeV] rated and might be separated in rapidity. The possible distri-
bution of the chiralmesonig order parameter then depends

FIG. 6. Statistical distribution of the chirat field for different  gn the size of the volum¥(7) of the individual domain, as
finite volumes for the situation without explicit chiral symmetry shown in the previous subsection.

breaking. The temperature is taken as the critical temperdture At a further time ¢,=3 . .. 7 fmk) the temperature of a
The distributions are obtained from gealizations. (rapidly) expanding domain crosses the critical temperature

librium. Much retains to be learned about how these condenlc, having a certain volum&/(7o). At the same time the
sates evolve in out-of-equilibrium. Probably the most ambi-Partonic gas would undergo the deconfinement-confinement
tious description on the quantal evolution of the chiral fieldsPh@se transition into the mesonic freedoms. The temperature
in out-of-equilibrium has been developed by Niegai88] of thg surrounding “heat bath” fu_rther decre_ases as the vol-
employing the powerful closed-time-patl€TP) real-time Ume increases due to the collective expansion. At this stage
Greens function technique. It has to be seen whether thighiral sSymmetry becomes spontaneously broken. The stable
formal development can be used for practical simulationgoint of the order p?rameter characterizing the broken phase
concerning DCC formation. Using the CTP technique, thismoves from ¢~0,7~0) in the symmetric phase towards
approachas well as earlier developments in the same direC'(a'%fﬂ_";'%O) in vacuum. This change happens fast if the
tion [8]) is, by construction, an ensemble averaged descripsystem expands sufficiently rapidly. A possiieit not nec-

tion [24], which can thus describe within sophisticated meth-essary instability might arise depending on the act(f&hi-

ods the dynamical evolution of(ensemble averaged tial”) values of the order fieldgl6). In certain cases, de-
expectation values. Unusual fluctuations, such as, e.g., in thgending crucially on the “appropriate” initial configuration,
pion number, as shown later here, can only be accounted fahe order parameter can “roll down” in a “disoriented”

by higher order correlation functions. These are typically noidirection with a fixed orientation in isospin space, giving rise
considered. Our approach, we believe, states thus a fresh nawa large coherent collective pion mode. A potential DCC is
way in order to account in a simple transparent manner foformed. Possible DCC domains differ from each other in the
such unusual strong fluctuations and being far from a simplerientation in isospin space, in the size and in the pionic

0,010

0,005

0,000

Gaussian mean field treatment. content. A large DCC domain denotes here a large pionic
content. Intuitively the order parameter in such a large DCC
D. Modeling the evolution of potential DCC domain will go through a trajectory deviating strongly from

In the following we will state the final equations of mo- the o direction during the roll-down period. In any case a
tion for simulating the stochastic formation of possible DCC.Sufficiently fast expansion and cooling is mandatory for the
In the Markovian approximation these correspond to thd?0Ssible formation of larger DCC&Because of the explicit
ones proposed originally ifil6]. As a later characteristic SYmmetry breaking terri o, which, in analogy to a ferro-
quantity we will consider the pion number of the zero modeMadnet, acts as an external and rather strong constant mag-
contained in the evolving domain, which is assumed td'etic field, together with the dissipative interaction with the
roughly correspond to the effective number of soft pionsheat bath, the order parameter will otherwise align more or
freed from the subsequent decay of the pionic fluctuationsl,ess quasi adiabatically at its thermally dictated equilibrium
i.e., the final decay of the DCC. value along ther direction, if the experienced cooling is not

It is instructive to first outline how possible DCCs would fast enough. _ _
be formed in a heavy ion collision. This intuitive and ideal- ~ With the ongoingradia) expansion ¢=10 fm/c) and due
ized physical scenario will give some insight for the choicest© the explicit symmetry breaking the order parameter will
of the value of the free parameters to be specified and wilpscillate with decreasing amplitude aaround the stable point
also give a perspective to understand the physical matters {@)=f , along the chiral circle &+ 772:f37)_ The expan-
be discussed in the following sections. Our picture of a possion will come to a halt at some freezeout time, the fireball
sible DCC formation in high energy heavy ion collisions is breaks off. The coherent semiclassical pion state within the
as follows. possible DCC domain decays by the emission of long wave-
In the first stage of the collisior{at proper timesr  length pions, with isospin distribution characteristic to DCC,
=0.3...0.5fm¢in the respective subvolume of the sysiem and which in number correspond approximately to the effec-
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tive pion number stored originally in the coherent state. Ifmodify the here assumed profile substantially, if the initial
this number of the coherently produced low momentumtemperature is chosen above the critical temperature.
pions is not too small compared with incoherent low momen- We note that the initial proper time, and the dimension
tum pions from other, random sources, constituting theD of the expansion are here the important parameters deter-
“background,” a careful event-by-event analysis can pro-mining the dynamics of the expansion: Laf@eand smallr,
vide identification of the DCC formation. lead to a more rapid expansion and cooling. “Initial” is

In the following we want to investigate the evolution of meant here as the proper timg where the partonic gas
the zero mode chiral fields in contact with the heat bathconfines into the mesonic degrees of freedom and before the
constituted by all the other modes solely in one single dotoll-down. We thus choose the critical temperatiigeas the
main being created out of the initially hot region by means ofinitial temperature(We will also later comment briefly for
equations of motion analogous to E@L7). As outlined cases where we have chosen higher initial temperajifes.
above, of course, many of such domains might well be crethe (unknown initial volume V(7,) we will take V,
ated. We assume, for simplicity, that these individual do-=10-200 fn{ as a reasonable range, which implies a spheri-
mains are independent and do not further interact. cal initial domain of radiug =1.4—-3.6 fm.(Later we will

The (rapid expansion can be incorporated effectively by see that varying the initial volume will not lead to a major
means of the boost-invariant Bjorken scaling expan§&f change in the final results within our model.
assuming that the order fieldb,=®,(7) depend on time In order to make a statistical analysis we need to sample
only implicitly via the proper time variable=\t?~X3(,  the initial configurationsb,(7,) and ®,(7,) at the initial
wherex,¢:=z for (D=) 1-dimensional longitudinal expan- temperature in a systematic manner. As demonstrated in the
sion andXxess:=r for (D=) 3-dimensional radial expansion |ast subsection we let the chiral fields propagate at thermal
[11,13,14,16,35,37,38 In the equations of motion the equilibrium for sufficiently long hypothetical times at the
d'Alembertian is then replaced by/d7°+(D/7)dld7, giv-  initial temperature in order to generate a consistent ensemble

Ing rise to an effec.t|ve Raleigh dampm.g coefficidnty. f possible initial configurations fob, and (i)a. The main
This one might also interpret as an effective Hubble constan ssumption here is thus then the hypothesignefrly per-

[39] due to the volume dilution fect thermal equilibrium for the initial chiral order fields be-

vV D ,\D fore the possible roll-down period.
—— —=0-V(1)=V( To)(— (24) In [16] the average and statistical properties of individual
Voo 7o solutions of the above Langevin equatiof&b) within the

Markovian approximatioficf. Eqgs.(20) and(21)] have been
i / e i studied with the emphasis on such periods of the time evo-
free regime of a freely m_ovmg_bosonlté/yeld the amplitude| tion when the transverse maas becomes imaginary and
then decreases ifprope) time with ~ 7~ % _ therefore an exponential growth of unstable fluctuations in
From Eq.(17) we then receive the equations of motion for 1o coljective fields might be expected. It was found that for
the zero mode fields in an expanding environment as different realistic initial volumes individual events lead to
D sometimes significant growth of fluctuations. For the quanti-
Dot — Do+ [ D]+ uldo=f,m+ &, fication of the resulting strength of the coherent pionic zero
T mode fields and as an experimentally more direct and rel-
(25  evant quantity we consider in the following the effective
. D : 2 pion number content of these chiral pion fields. In the semi-
@it T Qi+ TP+ ul®i=§. classical approximation this number is given by

for the expanding volum¥(7) of the domain. In the quasi-

The dissipation functional'[®] as well as the transversal 1 -y 1,
massu, do both depend on the temperatdrer). The sto- Np=25Mg| 75(7)+ v (7)
chastic noise fields obey ER1). One therefore also needs g
to know how the local temperature evolves with time. In__ . . . . L
principle one has to ask for the equation of state of the sysThIS expression c.an be most simply obtained by cor;slderlng
tem and solve for the hydrodynamic equations within thethe energy density of the zero mods, o= 1/2(m7 7"
(assumed D—dimensionall sc_aling expansion. For t.he iQeaI+;72)_ As %2(7) will be proportional to 1V(7) at the late
case of a massless gashich is not a too bad approximation stage of the evolution after the roll-down periat,(7) then

for pions an isentropic expansion results in becomes constant at late proper times when the effective
pion massu, relaxes towards its physical vacuum value.
This constant number will be extracted from the simulations
as the total pion number freed from the DCC decay. For this
effective pion number one crucial point is then how large the
We take this as an idealized guide for the temperature profilevolving volumeV(7) of the DCC domain has increased
T(7) with proper time.(One should note, however, that for when the pion oscillations have emerged.

temperatures abovg; partonic degrees of freedom contrib-  We will now first employ our model to understand the
ute significantly to the equation of state and thus mighteffect of the dissipation and the possible role of memory

V(7). (27

D/3
(26)

T D -0 . To
T1t3,70=T(N=T(7)| -
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effects on the evolution. We then further investigate withinis briefly outlined in Appendix B. With this we can then
different scenarios the statistical distribution in the resultingnumerically solve the full non-Markovian equations of mo-
pion number(27) and will propose a new signature of sto- tion. The Langevin equatior&7) or (25) are then solved for
chastic DCC formation based on the cumulant expansion. hoth cases by means of a standard third order multistep
At this point one might indeed worry why we only con- scheme, the Adams-Bashforth metHdd).
sider thek=0 zero mode and not also some other long wave- |n a strong coupling theory like the linear model and
length pionic excitations, which should also experience somgsq for unstable situations encountered in describing pos-
unusual amplification acco_rdi_ng to t_he gen_eral wisdom ofgipie DCCs the magnitude of the soft modéW might
DCC formation. From a principle point of view our model o o fficiently fast so that no dominant oscillatory fre-

could be worked out or generalized to take into account als%uency of the fields does occur and thus the Markov approxi-
some more long wavelength modes. The cutoff momentum

mation should not hold. This gave the motivation for this
should then be taken as<k.< A\ f_~400 MeV to account . : . :
for the pionic modes Whoccould ?)ossibly become unstabl arncglar study. As it turn; ou_t, and as we will argue in the
and thus amplified. From the power spectrum shown in theollowmg, however, for situationsand thus appropriately

work of Rajagopal and Wilczek6] one notices that even chosen parameters f@ and o), wherelarge and experi-

within the drastic quenched situation of instantaneous cooleNtally significant DCC can occur, the distinction between
ing only the lowest discretized momentum mode become e two cases becomes more or less irrelevant. One can then

dominantly amplified, whereas the next higher lying piomclncorporate the numerically much simpler Markovian treat-

modes only show some moderate behavior. In the morghent. On the other hand_, to the best of our knowledge, our
physical situation the inclusion of a thermally generatedﬁjw&/ r_epreLsents the f'rsi. ”“”?e“fr?' trelatmentt of ff‘f’lg'
mass termT?(7)/2 in the effective potential will cut down arkovian Langevin equations n thermal quantum fie

even further the low momentum range for possible unstabl@€0ry and might certainly be of importance for other related

modes, i.e.k.<\\f_. Furthermore also the volumé(r,) ;tgpiltcizl, se('agtlfir:n Stht? drﬁ:;ﬁgtgfanfan?/?ne;rir:t:g;;]s I cosmo-
of an initial domain as chosen by dat T~T.) is much 9 gs by 9 q '

smaller than in[6], with a radius between 1.4-3.6 fm A general expeqtati_on f(_)r the possible difference is that
. ' . . o : ) " the rate of thermalization, i.e., how fast the considered rel-
Hence, in such a quantized picture of a finite volume only a . e
few Fourier modes except the zero mode could really begvant ques do approach th.e" thermal equm.bnum proper-
come unstable. We therefore expect that only the pionic zer es vy|th|n the heat bath, ”.“ght be substantially affected.
mode can predominantly be amplified. his is best and_most stralghtfqrwardly dgmonst(ated for
very simple classical examples like Brownian motion of a
diffusive particle or oscillator. For a more systematic inves-
Il DISSIPATION: MARKOVIAN VS NON-MARKOVIAN tigation in this respect we refer to a future publicat{@)],
DESCRIPTION where also the difference between “weak” and “strong”
dissipative Langevin behavior for diffusive processes will be
In this following section we address on a quantitativediscussed.
level the possible differences between the full non- Referring to our present model it is certainly interesting to
Markovian treatment and the Markovidtinstantaneous’) study how fast the order fields can mofar “diffuse” ) to-
approximation for the dissipativ€20) and fluctuating dy- wards their equilibrium properties discussed in the previous
namics(21) within the Langevin model. Secs. II B and Il C.(A somewhat similar study for simple

The exact non-Markovian function&] ®] of Eq. (20) at Markovian dissipation has been previously carried out in
a given temperaturé and plasmon massn, has been [32].) In Fig. 7 we show for various cases thg .r_elaxat_lon of
worked out in Appendix A(As also stated in the Appendix the ensemble averagedfield ((o))(t), being initially dis-
we only consider in the present investigation the contributiorforted by hand, towards its equilibrium valu@r)e(T)
of thermal scattering to the dissipation functional, i.e., the(Compare Figs. 2 and)4n a surrounding heat bath at fixed
part denoted ag; in the Appendix As ellaborated if23] ~ temperature. As constant volume we haven taugr 100
and stated in Eq14) the appropriate Markovian limit for a fm®. In the two upper figures we haven chosen as initial
sufficiently weakly dissipatively interacting system results invalues ®,(t=0)=(0,7;~(|®|)¢(T),0,0) and ®,(t=0)
the on-shell dissipation or viscosity coefficiemt=I"(w =(0,0,0,0), i.e., an initial distortion of the chiral zero mode
=my), i.e., Eq.(22). For the non-Markovian dissipational fields in one particular pion direction along the effective fi-
functional we therefore consistently choose for the plasmopjte  temperature  dependent chiral  circler?+ 72
massm, the temperature dependent transversal mass = (|@|2).(T). In the upper figure the situation is depicted at
=m,(T) of the right upper picture of Fig. 2. Besides evalu- the critical temperatur&, , whereas for the middle figure we
ating a history dependent memory functioddl®] to treat  have takenT=80 MeV. For this investigation we consider
the full non-Markovian dissipative dynamics, as a further10® independent simulations for taking the ensemble aver-
complication one also has to face the problem of how toage. For both cases the averagedield follows a damped
simulate coloredi.e., nonwhite Gaussian noise for the fluc- oscillation along the effective chiral circle. For the Markov-
tuating forces in order to be consistent with the underlyingian simulation one sees that the relaxation towards equilib-
fluctuation-dissipation relatioflL3) or (21). Our strategy for rium goes in accordance with the value of the dissipation
achieving a numerical realization of colored Gaussian noiseoefficient(22) depicted in Fig. 3. The non-Markovian evo-
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ol ' ' ' ] its maximum in frequency more or less exactly at the on-
| Nonmarkovian | shell frequency, so that simulation carried out within the
sob [ Markovian ] Markovian approximation will result in an effectively larger
- ] damping and thus faster relaxation, since the effectively con-
S 40 f _ Y — 3 tributing frequency mode® () of the motiond(t) in the
g I f T full treatment are less dampé¢fbr o # my) than those in the
= 30p f - 1 Markovian approximation.
é 20'_ m =140 MeV, T=T, i Another interesting example is shown in the lowest part
v I Start at (0,40,0,0) in O(4) space | of Fig. 7. Here we consider the relaxation of the order pa-
10} g rameter, initially being distorted to its vacuum value, to-
) . . . wards its equilibrium valués)(T.) = (7)(T.) =0 at the chi-
00 5 10 15 20 ral phase transition without explicit symmetry breaking.
¢ Here both the effective massas and of the chiral fields
tlfm/el vanish, so that the effective potential does not posess any
" quadratic term. Looking again on Fig. 19 one would expect
Nonmarkovian from the behaviol'(w—0)— 0 of the dissipation kernel for
ok Ao T Markovian ] low frequencies that within the non-Markovian treatment the
' : relaxation towards equilibrium will be much prolonged. This
= ool | N NS T | trend can certainly be seen from inspecting the figure. How-
(i L ever, the nonlinear effective* potential drives the initial
= relaxation comparable to the simple Markovian treatment. A
A 4or i significant and steadily increasing reduction of the relaxation
8 m,=140 MeV, T=80 MeV rate sets in only at later stages of the evolution, when the
20 + Start at(0,70,0,0) in O(4) space effective potential really becomes flat. The complete relax-
ation within the non-Markovian scheme shows thus a highly
0 L 1 L L L nonlinear behavior.
0 5 10 15 20 25 30 We now go over to discuss the possible differences for the
T [fm/cl dynamics of the order parameter including the simple
D-dimensional expansion and cooling scenario discussed in
100 - - - - - Sec. Il D in view of possible DCC formation. As the charac-
80 Nonmarkovian . teristic quantity we concentrate on the effective final pion
ol e Markovian numbern_ of Eq. (27). Potential DCC pionic modes are
driven by the initial as well as the intermediate fluctuations
> experienced in the evolution.
%’ Generally it is clear that dissipation will subsequently di-
= minish potential large pionic fluctuations and thus also de-
% creases the strength, i.e., the pion number, of the potential
V 40l b ] DCC candidate. Only a sufficiently fast expansion and cool-
: m=0 MeV, T=T, ing, where the expansion and cooling rate is comparable or
-604 ] Startat {1,,0,0,0) in O(4) space 1 larger then the experienced damping rate, can counterbalance
-80 ' ' ' ' the effect of dissipation on the heat bath. To start to be more

5 10 15 20 25 80 quantitative let us consider first the Markovian description.
T [fm/c] One has to compare the Raleigh damping téitr (the
FIG. 7. Relaxation of the ensemble averagedield within a effe'ctlve “I—!upble” paramete)rvylth the dlss!patlon or V'Tc'_
heat bath at finite temperature for the non-Markovian and Markov-COSIty poefﬁCIent_n. B_Ot.h _assomated t?‘rms in the qua’u_ons
ian case. The upper and middle part correspond to the situation of f mo“?” (25) _W'” d'_mm'Sh th_e amplitude of any pionic
yctuations being built up during the roll-down period. On

physical pion mass, whereas the bottom one corresponds to the ¢ X . )
without explicit chiral symmetry breaking(,=0). In this case we  the other hand, the effect of the Raleigh damping on the pion

depict the relaxation of the ensemble averaged magnitude of theumber contenti is exactly counterbalanced by the volume

order parameter. The averages are taken ové&rddlizations. dilution (24). n . being built up during the roll-down period
can thus physically only be decreased by the “true” dissipa-

luti h liahtly | q d relaxation t q tion experienced from the heat bath. Whether this dissipation
ution now shows a slightly 1€ss damped relaxation towards.,, 4. substantially depends on whether the damping coef-

the equilibrium value, the difference being more pronouncedicient is comparable in magnitude to the Hubble parameter
for the lower temperature. Qualitatively one can understand

this behavior by comparing the frequency spectrum of the D D/T\%P

dissipation kernel' (w) (its reduced form is shown in Fig. - ( ) :

19) with the on-shell damping coefficient used in the Mar-

kovian approximatiod’(w)=1"(mp) = . This spectrum has In Fig. 8 we comparen(T) with the Raleigh coefficient

Te

T To
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20— 71— TABLE I. The resulting pion yield for the most prominent event
200F —n . and the average, respectively, obtained within different expansion
180  ------ D/t (D=1, 1,=1 fm/c) b scenarios simulated by the special choiceDoénd 7,. The calcu-
o 160p o D/t (D=2, 1,=2 fm/c) y lations have been performed by using the Markovian Langevin
g 140p Dit (D=3, 7,=8fmc) .~ ] equation(25). The initial volume is chosen ag(,) =100 fn? for
£ 120¢ T 4 7 all cases. For comparison we neglect the dissipatfoo dissipa-
g 100 L ] tion”), i.e., taking the damping coefficient and the noise as zero
2 80T ] during the dynamical evolution of the order parameter. The results
a2 28 . ] are obtained within an ensemble of*lévents.
1] o T
Co20f T 1 (8 D=1
O Tc\ b
-20 —t L . n_: the most prominent event/average
0 20 40 60 80 100 120 140
T [MeV] 7o (fmic) with dissipation no dissipation
FIG. 8. Comparison of the friction coefficienf(T) with the 1 711.4 18/3.1
Raleigh damping ternd/ . 0.5 20/3 34/5
0.3 48/6 60/8

D/7(T) for 3 sets of parameters of dimensionaliyof the (b) D=2
expansion and initial proper timey. This serves as a rough
illustration how fast the expansion actually has to be for any
potential DCC candidates to appear. For some reasonabtg (fm/c) with dissipation no dissipation
choices ofD and 7y one can see that the Raleigh damping

n,.: the most prominent event/average

D/7 will be sufficiently larger thany, at least for later tem- 2/21/'6 ;jg?
peratures below about 70 MeV. For a sufficient fast expan-2 3 '
75/8.3 64/8.3

sion D/ 7 will be much larger thany, so that the dissipation
due to the interaction with the heat bath cannot have any, p-3
tremendous effect on the potential DCC candidates except
for a slight hindrance on the evolution. The important thing n,: the most prominent event/average
during the roll-down is that the fluctuation due to the noise

will be large and can eventually enable a large disorientatior® (fm/c) with dissipation no dissipation
of the order parameter. For moderate or slower expansiory, 6.5/1.5 13/2.4
however, when both damping coefficients become compag 32/3.9 28/4
rable in magnitude after the roll-down period even for latery g 85/9 65/8.5

times, the dissipation will lead to an additional strong reduc
tion for the pionic fluctuations and thus for the pion number,
making DCC formation physically impossible. Here we want to stress that the results of Table | confirm our
In order to support these qualitative arguments we calcuarguments: For the relative slower expansion the dissipation
late the average pion numbgre., the sum of the pion num- due to the interaction with the heat bath destroys any pos-
ber of each individual event divided by the total number ofsible large pionic oscillations and therefore leads only to a
event$ and the pion number of the “most prominent” event small total pion yield. In contrast, for a fast expansion the
within 10° independent events by solving the Markovian dissipation has only a minor influence on the DCC forma-
Langevin equation(25) and compare those with the result tion. For these cases the damping coefficignts indeed
obtained by solving the same equation but without the damprather small compared to the Raleigh coefficiBxitr.
ing term  and the fluctuating nois€The thermally distrib- Now we can answer our primary question: Is there any
uted initial configurations are the same for both caseke  difference between the full non-Markovian treatment of the
“most prominent” event is meant here and in the following dissipative dynamics compared to the approximate Markov-
sections as the one where the final pion number is the large&in treatment on the possible formation of DCC. From our
within the generated, finite ensemble. The “most promi-findings at the beginning of this section we expect that the
nent” event is at first, of course, of no direct statistical sig-effective damping experienced by the memory effects within
nificance. The error of its occurrence for a finite ensemblehe non-Markovian case is moderately, but not significantly
will indeed be very large. We explicitly show it for the rea- diminished.(“Memory” indicates that the earlier stages of
son to simply see what maximum magnitude in the pionthe evolution influence the present motion of the order pa-
number is possible within a finite total number of generatedameten. The answer is “frustrating” and simple. For a
events within one particular chosen ensemble. moderate expansion the pion yield from the DCC decay will
The calculations are performed for different paramelers increase compared to the Markovian treatment, but only
and 7. Table | shows the results. For a discussion and posslightly. In any case for such a situation the possible pion
sible motivation for the various parameters and their actuayield obtained within the simulations are too small to have
physical relevance we refer at this point to the next Sec. IVany experimentally relevant consequence. On the other hand,
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markovian nonmarkovian
= e n,=30 for the most prominent event = n,=45 for the most prominent event
3 0,14 5 from 10, 4 8 0,1; ‘_71_ from 10", E
S | 7\_‘*\_ the average value <n >=3.1 5 "_LL the average value <n >=4.5
c [ T
S 0,015 i S 0014 i E
E z FIG. 9. Statistical and normal-
%5 1E-3- i % 1E33 3 ized distribution P(n,) of the
& 8 emerging final pion number and
3 1E-44 k| 1E-4 4 the time evolution of the three pi-
;ﬂ: HH H g H H ( onic trajectories [ (o (7), (7)),
1E-54; X B W T ST i=1,2,3 for the most prominent
0 5 10 15 20 25 30 0 5 10 15 20 25 30 35 40 45 event within an ensemble of 40
n, n, realizations in both a Markovian
sof T T T T T ™) el T T T T T ™) and a non-l\/!arkovian simule.lti.oln.
L The trajectories start at the initial
B0 1 o i proper time 7,=0.5 fmk. The
40r 1 40 - 1 starting points are marked with
— 20f i e B e g — 20} 1 “X.” The marks along the trajec-
% ol ,.,,..,(T e P L R % ot J tories are positioned at time inter-
= ol 1 2 ol ] vals of A7=0.21 fmk.
€ 40l g & aof ¥ ]
_60 '_ ] _60 [ h TP TSR T ]
of ] sof ]
20 0 20 40 60 80 100 20 0 20 40 60 8 100
c [MeV] o IMeV1
for a sufficiently fast expansiofwhich might be speculative 300 I ——
or not to be realized in a relativistic heavy ion collisiand 250 [ ]

for which more prominent DCC candidates will show up 200 |

(compare the next sectiprthe memory effects of the treat- = 150
. . . . . . [2] r
ment of the dissipation and noise are not of particular sig- &
o ) . o g 100F
nificance for the final pion number distribution. c s
As one particular example we show the outcome of a -2 r
. . . . [ i 4
simulation for both cases in Fig. 9. We take=1 and o 0 for the most prominent event from 10
— ; E= 4
=0.5 fmk to simulate a somewhat moderate expansﬂﬁhe 8 I Langevin scenario (markovian)
dimensionality parameteD=1 for longitudinal expansion % -100© D=1, 7,=0.5 fmfc, Vg=100 fm’, T,=T, |

simulates a rather slow expansion. On the other hand, the -150 ]

here chosen vallue af, is very small so that the initial cqc_)l- . -20910 > 10 20 30 40 50 60 70 80 90 100
ing and expansion after the onset of the phase transition is

still rather fast. This value is definitely too small to be real- T [fm/c]

ized in nature. Typically one expects a few finfor the 50 R
onset of the phase transition. In the next section we will see 45l

that only a O =3)-dimensional expansion can lead to any caol

prominent DCC candidates for reasonable choicesrpf ; a5 |

Therefore one should not consider this present example as
physically relevant scenario. Its purpose is merely to be an
example which does indicate some differences between the
non-Markovian and Markovian treatmenin the upper part
the sampled distribution of the final pion number is shown
within 10* independent events. In the lower part the indi-
vidual trajectories &,;)(7), i=1,2,3, for the most promi-

N W
o O
T T

15 for the most prominent event from 10*

Langevin scenario (markovian)
D=1, 1,=0.5 fm/c, V=100 fm®, T=T,

effective pion numb
= Ny
o o
T T

nent event out of each ensemble are depicted. Clearly thes: 2 L
trajectories represent the ones expected intuitively for a true -10 0 10 20 30 40 50 60 70 80 90 100
DCC event. This intuitive picture is further strengthened 1 [fm/c]

when examing Fig. 10, where the evolution in time of the

transversal masg, () and the effective pion number,(7) FIG. 10. The time evolution of the effective pion mass(r)

are depicted for the most prominent candidate within theand the effective pion number,(7) for the most prominent event
Markovian simulation. One clearly recognizes that for thisobtained in the Markovian simulation of Fig. 9.
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TABLE II. Pion number of the most prominent event and the for the pionic(transversalfluctuations is in fact much stron-
average obtained within the Markovian Langevin scenario for dif-ger, then there is no chance at all for any DCCs to be formed
ferent initial volumesV(,). The averages are taken ovex 20° in heavy ion collisions.
events. The initial proper time, is also varied to simulate different
expansion scenarios.

IV. STOCHASTIC FORMATION OF DCC

D=3 andT(7) =T,

V(7\ 7o 3 fmle 5 fmlc 7 fmlc 10 fmic Althou_gh the inclusion of dissipation as discussed in the
last section, Sec. lll, gradually destroys on general grounds
10 fm? 33.2/2.9 13.6/1.8 6.5/1.5 7.2/1.4  any possible large oscillations of the coherent pionic fields
25 fm? 62.8/3.7 13.4/2.0 7.0/1.6 5.3/1.4  during and after the roll-down period, there still should be a
100 fn? 30.0/3.8 13.6/2.1 6.7/1.6 6.4/1.4  chance for a particular large pion yield originating from
200 fn? 25.0/3.7 11.1/2.0 7.411.7 5.5/1.4 some “appropriate” initial fluctuations of the order param-

eter and as well as from the subsequent fluctuations experi-
enced. If the initial fluctuations are large, and if the subse-

candidate the evolution starts with an unstable situatioflu€nt expansion during the roll-down of the order parameter
where the pion fields and thus also the pion number will bdS sufficiently fast, there should indeed be a considerable

amplified significantly in the very first stage. The subsequen _robability for a Iong-time Iarge di_sorientation of the chiral

min%r decregase in trxl/e pion nurzber is thgen attributed Sue t jelds away from ther direction during and shortly after the

the further experienced dampin roll-down period. This would then lead to a particular large
P PIng. final pion yield. As emphasized already [ih6], individual

The point to make here is that the pion yield of the mOStstatistical events will lead to sometimes significant growth of

prominent event as well as the average pion number in _thr?ionic fluctuations. In this sense the formation of a particular
ensemble are somewhat larger within the non-Markovial Yarge” DCC, i.e., with a sizeable amount of low momen-

simulation. However, in sake of the variety of choices for they ,, pions being emitted, can follow some unusual distribu-

parameter® and o and the associated wildly differing out- tjon to occur because of the special stochastical and nonlin-
comes(compare, e.g., Tables | and),lla modification as ear dynamical nature with a possible, temporarily onsetting
presented here is only of minor importance. instability. To answer this question of how often particular
We certainly have now to answer what this torturing en-events might occur with some unusual large pion yield, we
terprise for achieving a simulation of non-Markovian Lange-investigate in the following the distribution of the pion num-
vin equations was good for. In general dissipation as well aper for different DCC scenarios which differ from each other
the associated noisy fluctuations are nonlocal phenomena in the cooling or/and the sampling of the initial fluctuations.
time leading to a memory functional over the past history ofWe will see that the distribution in the final pion number
the system for describing the dissipation as well as to a finitéakes a nontrivial and non-Poissonian form, at least for the
correlation in time of the noise. The more phenomenologicamore speculative scenarios or parameters employed where
Markovian and white noise approximation are generally use@ne might expect larger DCCs to occur. By means of the
in one way or the other as their numerical realizations aréumulant expansion of the resulting distributions we will
considerably more simple. Typically such an approximatioﬁh?n show that the higher order faptonal cumular_rgs are even
is justified in a loose sense when there exists a clear separdlill moderately large when allowing for an additional and
tion of time scales between the slow degrees of freedonficoherent realistic background of low momentum pions.

under consideration and the ones integrated out. At first sigh'{heregore the_se utnlljlsual ;IL:ﬁtuatlons_dmlght mde_e? be t.Ob'
this is not really given for our situation, though our investi- Served experimentally an us provide a very interesting

gation shows that one might indeed work with the muchneW signature for a nonequilibrium chiral phase transition

) . L2 . : .~ and the associated formation of DCC.
simpler Markovian approximation. It is also easy to imagine As a crude estimate for the maximum soft pion number to
that such a separation is not given either for a variety o

) . ) . foccur from the decay of a DCC one can think of a “true”
interesting problems in other areas of physics where ongycc \yhere the chiral order fields “circle” around with the
wants to describe the effective dynamics of a system in terms . -y 2\ = ) )

of only a few “relevant” degrees of freedom. We therefore Maximum amplitude agm*+ (1/m7) %)< along the chi-
believe that our investigation and in particular the numericaral circle o?+ 7~ f2 at some intermediate stageafter the
realization of non-Markovian Langevin equations with col- roll down in the evolution(compare with the lower part of
ored noise is of general and principle relevance for similafig- 9. (Due to the ongoing expansion in our model the
problems of classical or quantum dissipative systems in othetMplitude will then subsequently decrease due to the experi-
areas. In addition, our extensive discussion here underlingdiced Raleigh damping, so that at late times the chiral fields
the importance of understanding the certainly complex dissiwill then only fluctuate around the vacuum vale)
pative nature of the chiral phase transition in more detail. We= ) Tzh's will result in a coherent pion number density of
believe that our “choice” for describing the dissipation for N=/V~f3m./2~0.08 fm 3. For the total pion number the
the pionic fluctuations of the zero mode with the surroundingerucial question is then how large has the evolving volume
heat bath is motivated by an intuitive physical picture. If, onV(7) of the DCC domain increased when the pion oscilla-
the other hand, one can show that the experienced dissipatidions have emerged.
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1 100 ——————
— [ Langevin scenario [ quench scenario
01 4 | F=<_ —=— Poisson distribution 001 M P
'-._ FIG. 11. Statistical distribution

g 001 3 1 1x10° N of the final yield in the pion num-
Q0 . .
E 1x10%] 1 167 ber for four different scenarios
3 . .
= x (see text within a (D=)3-
S 1x10™4 A 3 x10™ dimensional scaling expansion.
Q . .
= 5 N Each simulation has been per-
° L b 1x107@. ! : | formed with 1@ independent
o 0 1 2 3 45 6 7 8 9 10 11 0 5 10 15 20 25 30 35 40 I
© events. The initial volumé/(7y)
C e e
g 10 T 100 . . . . T . . =100 fn? and the initial proper
2 1 4 1 modified 1 1 L1 modified time is taken asy=7 fm/c. The
= =N : : - i . . . .
@ 0%1 :I r Langevin scenano: 0,01_4 "“”m“ quench scenario distributions are compared with
O 1x107% 4 1 1))((18-6 ”“m the corresponding Poisson distri-

Ty ] ¥ 1x10® butions. The averaged pion num-

1x107 3 { 1x10™° ber in the Langevin, modified

Xioe] 1 1x10'1f1 Langevin, quench and modified

1x1o'f01 ] aboltt quench scenario are 1.66, 2.45,

o 1 1’(1‘;_18 m"" 3.46 and 20.36, respectively.

X
1 0 2 4 6 8 10 12 14 16 18 20 0 20 40 60 80 100 120 140
nn n1t

At this point we should give also another rough estimate Langevinor “annealing” scenarid13,16: Like the dy-
of how many low momentum pions should emerge out ofnamical calculations in the last Sec. IlI the initial configura-
decaying DCC in order for a chance of experimental detections of the chiral fieldsand their velocities are sampled
tion. In a relativistic heavy ion collision at RHIC one typi- statistically for an assumed thermal equilibrium at the initial
cally expects around 1000 pions being produced per unit i'?emperatureT(ro)=Tc and an initial volumeV(7,), thus
rapidity. On this “background” one has to look for a pecu- covering a(nearly complete set of possible initial thermal
liar and unusual enhancement in the pion spectrum at loWonditions. Forr> 7, the subsequent evolution of the chiral
transverse momentum to identify possible DCC formation. ltyrger fields for each individual realization of the sample is

is thus clear that the number of emitted pions out of a doj,an described by théMarkovian equations of motiori25)

main should be somehow comparable to the number of baCl?/Y/ithin a D-dimensional scaling expansion according to EQs.

ground pions for a particular small window of low transverse
o 26) and(24).
momentum. The expectation is that one should have a sur- : . . .
Particular examples are listed in the Tables | and Il and in

plus of at least 50 pions stemming from a DCC per unit_. .
e : : Figs. 9—12 for various parameters B, andV(g). As out-
rapidity in a window ofp, =200 MeV in order to allow for a lined at the beginning of Sec. Il D one expects that the chiral

promising detectiorf43] (see also the schematic Fig.)16 . . . .
: ; - hase might set in at proper timeg~3—-7 fmk. Inspecting
This number should thus serve in the following as a roug rable | one recognizes that employin 1 orD=2 di

guide. We will come back to the experimental detection pos . : )
sibilities at the end of this section. For our above estimate fof?€nsional scaling ansatz either the average outc_(cime)}
the maximum number of pions out of a domain this would®" also the outcome for the most prommen"t candidate of j[he
. . — . sample are unacceptable small for experimental detection.

mean that the intermediate Voium‘%(T) has to have in- Only for theD =3 case(see the tables and the figures listed
creased up to a value of abput 1@” whep the Qrd_er P8~ above individual and unusual events might occur for a small
rameter has reached the c_hlral C|rcle.. Th|_s agan |mpl!es Ghitial proper timerp<3 fm/c and which might be detect-
conS|der§or de_manai a rap|_d expansion, 1.€., to con_su_j_er able. This is the situation for a very rapid expansion and
(_D=)3-d|men5|onal expansion and §uﬁ|C|entIy small initial cooling as noted the first time by Randriibl]. We note,
time 7o, as already demonstrated in the last sectisee however, that the averagén .)) is still only moderate even
Table ) and which first was emphasized in other studiese,. s rapid scenarios, i.e((n,))~3—4, and thus also
[11,38. unacceptable smalkee, e.g., the upper part of Fig.)12s
already stressed ifil6], for an experimental identification
this would imply to look for(rathep rare and unusual strong

In the following we will present numerical results for the fluctuations on an event by event analysis in certain rapidity
formation of DCC, i.e., the coherent amplification of the pi- and low p; windows.
onic chiral order fields resulting in a final pion numigar) On the other hand, one can clearly recognize from the
being effectively emitted by the domain, for various param-outcome that the original annealing picture proposed by
eter sets and also for four somewhat different scendses  Gavin and Mller [13] and assuming there a rather moderate

A. Different scenarios

also[18)). expansion and coolingrf~7—10 fm/c) does not work as
The first scenario we want to discuss is the “normal” onethe final pion number is by far too smdttonfer Table ).
already described in Sec. Il D. Experimentally significant DCCs cannot happen for this pic-

036012-16



STOCHASTIC TREATMENT OF DISORIENTED CHIRA. .. PHYSICAL REVIEW D 62 036012

1 : : : — , —— We now turn to present a few results obtained for three
- [ Langevin scenario (markovian) other, more speculative scenarios:
0t q M 55% —w— Poisson distribution 1 Quench scenario: The initialization aff =T, follows
W completely analogous to thkeangevinscenario. However,

0.01 7 N E when switching on to the evolution far> 7, including the
volume dilution(24), we demand that during the expansion
1x10° 5 E the termA\T?/2 of the effective potential in the equations of
. motion (25) is being omitted as well as also the dissipative
sl term and the noise in order to mimic an abrupt occurrence of
1x10° HH W the zero temperature vacuum pot_ential. _Consequently the
0 5 10 15 20 25 30 B35 40 45 dissipation and the fluctuation vanish during the roll-down

n and the oscillation of the order parameter. Within this sce-

" nario we try to simulate somewhat the picture proposed in

L ' ' ' ' ' ' ' [6,7], where it is assumed that the effective potential below
[ modified Langevin scenario (markovian) ] T, changes quasi abruptly to the vacuum potential Tor
Poisson distribution =0. However, the initial conditions, on the other hand, are
- sampled at thermal equilibrium at critical temperatdre
We believe that this picture represents a strong idealization
and probably is not likely to happen in an ultrarelativistic
heavy ion collision. Due to the abrupt cooling there is likely
more instability for the order parameter allowing for stronger
] final fluctuations.
H ‘ Modified Langevinscenario: This scenario differs from

’ ‘ ‘H T H H —— T the Langevin scenario only in the sampling of the initial
300 400 500 600 700
n

Distribution of total pion number

Distribution of total pion number
Y
o

1l

configurations. For the sampling we neglect the explicit chi-
n ral symmetry breakingi.e., H=0; see Fig. & On the other
hand, for the evolution at> 7, we employ the same equa-
tions of motion(25) including the explicit symmetry break-
ing. In the modified Langevin scenario the initial fluctuations
Poissonian distribution. A fast expansion is simulated by choosin are stronger than for the other two scenarios since the most

D=3 andr,=3 fm/c. The upper distribution is calculated within %robable initial Vallfe of the order parameter IS c_:entered
10* events, whereas for the lower a sample of ladependent around ((o))=0,(m))=0) and the effective potential for

FIG. 12. Statistical distribution of the final yield in low momen-
tum pion number within the Langevitupper figur¢ and modified
Langevin(lower figure scenario compared with the corresponding

events has been chosen. this case is more flat. Hence the possibility for the order
parameter to start its evolution towards the backward hemi-
ture according to our calculations. sphere is more likely to occur. One might argue that the use

Inspecting Table Il more closely, one recognizes at firstof the initial conditions prepared within this picture is incon-
sight maybe somewhat paradox behavior, that the average aistent within the linear sigma model with a physical pion
well as the pion yield for the most prominent candidate ofmass. When discussing Fig. 2 we noted that the phase tran-
each numerically generated ensemble do not show ansition resembles a smooth crossover. From QCD lattice cal-
strong sensitivity on the chosen initial volurv€ 7). This  culations, however, one knows that the chiral transitions hap-
result one can at least qualitatively understand as followspens much sharper within a very narrow window close to
The initial fluctuations of the chiral fields depend on theT=T,. This means that it might very well be that the order
initial volume as discussed in Sec. ll(€ee also Fig. 6 For  parameter wil(strongly fluctuate around zero near the criti-

a smaller initial volume the initial fluctuations become stron-cal temperature as mimiced by the present realization of the
ger. Hence there is a larger probability for the order paraminitial conditions. With this in mind one might consider this
eter to start to evolve against the positivalirection into the  present scenario even more realistic than the Langevin sce-
“backward hemisphere.”(For this see, e.g., the two ex- nario following the simple minded linear model.

amples shown in Fig. 9. All “more prominent” candidates = Modified quenchscenario: The initial configurations of
do show a time evolution for the chiral fields akin to the onesthe order parameter are sampled as in the modified Langevin
depicted therg.For such a case the order parameter has tecenario. The dynamical evolution corresponds to the quench
turn back during the roll-down so that period of large pionicscenario.

fluctuations would be prolonged. This then gives rise to a In Fig. 11 we depict the distributio”R(n,) of produced
larger disorientation of the order parameter. On the othepions logarithmically within 1t events within the four dif-
hand, however, the volume of a DCC domain at the freezeferent DCC scenarios. As parameters we chddse3 and

out time is accordingly smaller for the initial volume being r,=7 fm/c [13] andV(7,) =100 fn?, i.e., still only a rather
smaller. Referring to Eq(27) both trends seem to nearly moderate expansion. As expected, the pion vyields in the
exactly counterbalance each other and hence lead to this perodified scenarios are larger than in the normal scenarios for
culiar behavior. the most prominent event as well as for the average. A com-
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parison of annealing and quench scenarios, both with finite 1 g . - - - - . .
and vanishing pion masgor generating the initial condi- J.‘ 1 modified Langevin scenario
tions reveals that the most productive DCC events would 0,1 —%! (markovian) <n_>=2,3 over 10° 3
lead for this set of parameters to a fé&~8 in annealing . —=— Poisson distribution ]
scenario with finite pion magsto a moderate number 0,01 5 i .

(20-40 in annealing scenario with zero-centered initial con-
ditions or quench with massive pionsr to about 140 long
wavelength piongin quench scenario with initial conditions
generated by massless pignespectively. The final results,
of course, mainly depend on how fast the effective cooling
and expansion proceeds, i.e., on the value of the initial time
7o and thus the overall initial Hubble constditr, (see also
Fig. 12. In general one finds that for sufficiently fast expan- n
sion individual unusual strong fluctuations of the order of
50-200 pions m|ght occur in all the four ScenariOS’ a|though FIG. 13. Statistical distribution of the final number of
the average numbétn.,)) of the emerging long wavelength a.-mesonic gxcitatipn; within the modified Langevin scenario of
pions only possesses a rather modefate likely undetect- 719~ 12 obtained within 1Devents.
able value of 5-20. ) ) )
For a direct comparison we depict a Poissonian distribulyZed in the next Sec. IV B. We want to note at this point,

Distribution of sigma number

tion that Bjorken and collaboratofgl4] had speculated that the
final distribution in the pion number will arguably go beyond
o a Gaussiarjor Poissoniandistribution even when the DCC
P(n)= n—le‘”, (28 fluctuations are generated by a Gaussian distribution for the

initial condition parameters. This “expectation” is what we
have demonstrated now. The initial conditiofsompare
Figs. 5 and pfollow, more or less, a Gaussian distribution,
whereas the final occurring distribution in, e.g., the pion
humber strongly deviates from a Gaussian behavior for the
(assumed nonequilibrium situations, where the occurring

CC phenomena could be considered as experimentally de-
ectable. We also like to mention that Krzywicki and Serreau
Had recently found in a somewhat similar setting, following
the model of{38], that the so-called enhancement factor for
the final fluctuations also will follow some unusual and non-
'Boissonian distributiofd5] (see alsd16]).

There also had been the conjecture in the literature that

the long wavelength amplification of the pionic fluctuations

where the mean value is equal the averaged pion number
({n,)) obtained numerically for each sample. With the cho-
sen parameters of Fig. 11 the distribution of the pion numbe
for the Langevin scenario is indeed still similar to a simple
Poissonian distribution(As mentioned above, for such a
slow expansion the coherent pions produced from a DC
decay would be washed out by the background of incohere
pions and thus could not provide any signatutéowever,
for the other three cases the final distribution doesfollow

a usual Poissonian distribution. This represents a very impo
tant outcome of our previoyd.8] and the present, more de-
tailed investigation! Fluctuations with a large number of pro-

duced pions are still likely with some small but finite is not really driven by the “true” DCC phenomenon, but
probablllt_y. In prlnC|pIe,_ an ens_emble aye_raged descr'pt'or}:lctually could be attributed to a parametric resonance behav-
of pote_ntlaI_DCC formation ca_rrled out v_wthm_the mean field ior driven by the late and final oscillations of the coherent
approximation, as presented in the various literafure, cann@ty g [46,8]. This alternative idea we can at least qualitatively

account for such fluctuations and thus has to _fa|l al SoMe jyress. In Fig. 13 we show the statistical distribution of the
point. We remark further that also the so called isospin ratiq. y

. . nal number for the uanta by means of an analogous
signal is close to that expected for a DCC event. v d y g

To demonstrate this interesting behavior of strongly nonSXPression as Bd27), i.e.,

Poissonian fluctuations even more pronounced, we show in 1
Fig. 12 the pion number distribution obtained within the n.==m
Langevin and modified Langevin scenario for a rather fast 72
expansion D=3 andr,=3 fm/c). These parameters are in
line with the ones used in other studig%11,35,3% Both  relaxing to a constant value in the late oscillations of éhe
distributions differ strongly from their corresponding Poisso-field in longitudinal direction around its vacuum value. The
nian distributions. The averaged pion number,)) are 3.9  scenario and parameters chosen are the ones for the very
and 18.5, respectively, and are both comparable to the valuggonounced situation of the lower part of Fig. 12. On the
obtained within the quench and modified quench scenario adiverage abouf{(n,))~3 o particles are produced, but
Fig. 11. The appearance of particular events with very largavithin the sample also some events with more thano30
pion number(more than 20Pis hereby attributed to the ini- particles can occur. Due to the potential vacuum decay
tial fluctuations and the ones experienced during the roll-— 7r7r (with a width on the order of a few hundred Mgthe
down period. existence of these quanta would result on the average in 6
This special and unusual statistical distributi@itained additional pions or, for the more pronounced events, up to
within the modified Langevin scenajiwill be further ana- more than 60 additional pions. This is a quite reasonable

1.
(0(7)—<0>Uac)2+F02(7) V(7), (29

o
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number, however, it is still considerably smaller than the 0,040 L B B B B
direct pions stemming from the true DCC as seen from the  0,035F  distribution of s field at T, 1
lower part of Fig. 12. So, if these lateoscillations really do 0,080 F  V(T)=100fm’
exist, because of energy conservation, the amount of pions
being produced out of them, either thinking in a perturbative
way as a result of an individual decay ofsaquantum or o
within the nonperturbative mechanism of parametric reso- g~
nance, the numbers of produced pions is found to be signifi- 0,010
cantly less than the direct ones of “true” DCC in all simu- 0,005
lations carried out. We therefore are tempted to conclude that g g0
parametric behavior is not as efficient compared to the 005 e
“true” DCC phenomenon. On the other hand, we want to -120-100-80 60 -40 20 0 20 40 60 80 100120
stress here, that these late oscillations obtained in our 6 (1) [MeV]

simulations are actually a caveat of our model. As already

pointed out at the end of Sec. Il B, exactly because of the 0090 —————————————————
possible decay mode— 1, one has in principle to account 0,035  distribution of o field gradient

for an additional temperature dependent dissipative term in 0,030}
longitudinal direction for the evolving order parameter. An 0,025
inclusion would in fact then accordingly continuously de-

0,025
0,020
0,015

0,02

crease these “radial” oscillations because of the decay into 55 i
pions[33,34. T 20T
As a last investigation we consider the possibility thatone %019}
might prepare the initial conditions for the fluctuating chiral 0,005
fields at some higher initial temperatufg(r,)> T, within 0,000
the Langevin scenario. The order parameters are thencen o5l o o v o 0 o0 v 00 00 00y
tered more or less around zdrbl]. Switching on to a rapid -120-100-80 -60 -40 20 0 20 40 60 80 100120
3-dimensional scaling expansion one intuitively would ex- G (z) [MeVAm]

pect that the chiral fields still would fluctuate around zero
when the system cools down at and below the critical tem- FIG. 14. Sta?istical distribution of the _fi.eld and its tempqral
peratureT, and thus providing somehow similar initial con- 9radient at the timer.=3 fm/c when the critical temperaturg; is
ditions like in the modified Langevin scenario. Accordingly réached. The time evolution starts at a higher temperalyre
one would expect a more dramatic yield in the pion numbers™ 300 MeV with a 3-dimensional expansion in the Langevin sce-
comparable to the one obtained within the modified Lange"a"0- The volume atc is 100 f?.
vin scenario. It turns out that this is not the case. We find that
the final yield follows more closely the result of the Lange-tum pions—it very likely has to be a rare event with the
vin scenario with the initial conditions sampledTat T, if  average yield(n,)), stemming from the zero mode fluctua-
the parameters chosen for the initial timeand initial vol-  tions from a single domain, still being considerably smaller
umeV(7;) are adjusted in such a way that they exactly co-than 50. A dedicated event-by-event analysis is then unalter-
incide with 7o and V(7o) for the standard Langevin case aple. If, on the other hand, nature is more “obliging,” it
whenT(7= ) becomesT,. In Fig. 14 we show the statis- might also be tha{(n,))=<50 (as in some very speculative
tical distribution of thes field and its temporal gradient at quench Scenariosthere exist again with some finite prob_
7=1.=3 fm/c for the case when the system was prepared ajpjjities on the percent level some events which contain a
an initial temperaturd’; =300 MeV. The final pion number myitiple in the number of pions compared to the average.
distribution (not shown looks more or less identical to the One can consider those particular events as really unusual
upper part of Fig. 12, i.e., to the corresponding Langevirpion bursts.” Also for such a situation a dedicated event-
scenario being prepared &t T.. From Fig. 14 one notices py-event analysis is definitely desirable. For both cases, a
that indeed ther field is still more centered around zero than possible detection of unusual fluctuations would provide
within the standard cageompare with Fig. 5 However, the  nontrivial evidence for the formation of DCCs and the exis-
distribution of the gradient has shifted towards a nonvan- tence of the chiral phase transition. Of course, all this is
ishing positive value because of the forward drift experi-speculation, as also the whole issue of possible DCC forma-
enced by the explicit symmetry breaking term. This shift intion is. Which of the scenarios or assumed parameters are
the later distribution aT~T, then effectively influences the realized in nature one does not know. A slow or moderate
outcome especially in the final pion yield distribution in a expansion of the system within the Langevin scenario, which
counteracting way compared to the naive expectation. one may consider as the most physical one, will indeed not
Summarizing this subsection let us highlight once moreresult to any verifiable signal. In the next section we will
the main outcome of our investigations: If in a heavy iondiscuss in more detail on the statistical nature of the unusual
collision it will come to the formation of an experimentally distributions found and on their experimental detection pos-
detectable DCC domain—say with at least 50 low momensibilities.
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B. Critical dynamical fluctuations

. 10°F o t=2fm/c :
In the last subsection, Sec. IV A, we have demonstrated b e re3imic L]
that the probability distribution in the number of the coher- 0 o 1e3 fmic(10%events) .
ently emitted soft pions from the DCC decay is nontrivial 10°F 1::=5fm/c a . 3
and non-Poissonian for a sufficiently fast expansion in the E, A =7 fmic
various scenarios presented. The statistical facets of these § 10°F : . 3
unusual probability distributions are what we want to explore < 10k & ]
in more detail in this last subsection. E . ¢ a
Although in fact the distributions in the pion number from 10°F ® v . R 3
a DCC might be realized as such, one very likely cannot s ’ ° . . .
prove these directly from the experimental measurement of 10 1 2 3 4 5 6
the unusual pion number abundances, as there are much m

more pions emitted independently at the late stage of an
ultrarelativistic heavy ion collisioi43]. Since one expects ~ FIG. 15. The reduced factorial cumulants for=1 to 6 for the
that the emission of the soft pions would be affected mosﬁ'on ”U_mbef d'StflbI;tlog)O?talggftfll WltP:Ir_l t_iﬁ_h’:arkowar)t_modlﬂ_e}(:]

H r P angevin scenarioly = or dirterent Initial proper times. e
z%xfécnatztln}( gi(())r:é)a:)ende tﬁ;?iomggssr%tgr ot';) haﬁt:vcsf\g ?riblowinitial volumg i§ taken a¥/(,) =100 fn?. The average pion num-

: R ber({n)) within 10* events are 54, 18.5, 4.8 and 2.4, respectively,

momgntumpt CUF in the data to enhanc;e sgmﬂcgn(tynd corresponding tarp=2, 3, 5 and 7 fnd, respectively. In addition
sufficiently) the signal to background ratio. With this at hand yhe cumulants obtained for a distribution fas=3 fm/c within a
we will then show in the later part of this subsection thatjarger sample of T0events are also shown to estimate the numeri-
indeed the unusual fluctuations might still be clearly visibleca| error.
and thus provide a very interesting and new event by event
signature for DCC formation to be analyzed via a cumulan

expansion in théto be measured low momentum pion num- =~ . . . .
P &o bo P estimate the possible error. One immediately realizes the

ber distribution in a given rapidity interval. o ' . ;
In order to accougt for thg truye higher order correlationsStriking behavior that the higher order and reduced factorial

mo o
of the statistical distributiof?(n ) we consider as a charac- cumylantsam/(n,,> with m>'3 are C'ea.”y nonvanishing

teristic tool an expansion in factorial cumularts,. For a and in f_act_sho_w an expc_)nentlally increasing tendency, as f_or
rather brief introduction and some further properties and@ch distribution the higher order reduced cumulants lie

analysis we refer to Appendix C. The factorial cumulapt more or less on a straight line in this logarithmic representa-
of order m=1,2,3... represent the nontrivial statistical tion. Comparing the results for the two_dlstnbuuons iy
m-point correlations of the distribution. =3 fmlc, where one was generated with a sample of 10

In [47] it was stated that so called bin-averaged factoria€VeNts and the second one with a sample of agents to
reduced cumulants for higher than tWie., m=3) are con- account for higher statistics, we can estimate the error for the

sistent with zero when analyzing the particle multiplicity of Elghe'lﬁ l_y'nr? facgonal fcfumulan;s for ?_rs]_ample 014]??’ ebnts to g
(lighter) nucleus-nucleus collision&nd contrary to hadronic e still in the or ero actor of two. 1NIS can €asily be trace
collisions. From this fact Elze and Sarcevic then motivatedPaCk t0 the obvious fact that the higher factorial cumulants
to describe the occurring multiparticle density fluctuations ind€Pend most sensitively on the tail of the numerically gen-
such reactions by means of(&aussiai three-dimensional erated distribution with large multlp[|0|ty1: On the other
statistical free field theorj47], and suggested the conserva- 1and. the general trend of exponentially increasing reduced

tive view that no first or second order phase transition shoul(fiac.to”al cumulants IS not affepted by the h'gher stat@pcs.
be implied as long as there o compelling evidence in the This behavior suggests a special sort of dynamical scaling as

data. Our situation, of course, is different as ave to the (at least higher order factorial cumulants approximately

assume a rapid chiral phase transition to occur in order ke the form
mimic the formation of DCCs. ~ a @M/ n\M

With the probability distribution of the soft pion number Om~ae™™m™, (30
obtained numerically within our model we can calculate the
factorial moments and subsequently the factorial cumulantgvherea anda denote constant numbers, depending on the
In Appendix C we have stated explicitly the first six factorial Parameters chosen for sampling of the distribution, emd
cumulants expressed via the usual factorial moments of th&{(n)) just represents the average number of pions of the
distribution. In Fig. 15 we show the first sieducedfactorial ~ distribution P(n). With this asymptotic form30) for the
cumulantsé,,,/(n )™ in a logarithmic scale for different ex-
pansions simulated by =3 and varyingrg within the modi-
fied Langevin scenarigsee also the lower part of Fig. 12 1o our suggestion, an expansion in higher order cumulants in the
Here(n)=((n,))= 0 denotes the average pion number of gistribution of the so-called enhancement facty; as given in
the corresponding distribution. Each distribution, except onej45), shows exactly the same tendency of exponentially increasing
was sampled by Tdindependent events employing the Mar- reduced cumulant®8]. As the model there is different from ours,
kovian equations of motion. For the one remaining distribu-this repeated finding points towards some “universal’ behavior.

ttion (with 7o=3 fm/c) 10° events were generated in order to
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factorial cumulantsd,, (now assumed also fan=1 andm ' ' '
=2) one can actually invert the expansion and find the cor- 5

responding distributio?(n) giving rise to such characteris-

tic factorial cumulants. This is briefly worked out in Appen-
dix C. The resulting distribution, reflecting for the higher g
order factorial cumulants, is given byshiftedPoisson dis- 3
tribution

—_— n,

P(n)= e ? (31 : : .

(n")! 0 200 400 600 800 1000
Transverse momentum (MeV/c)

wheren=({n)e*)-n" andn’=0,1,2 ... . Asgenerallya is

FIG. 16. Schematic and qualitative view of the transverse mo-
mentum spectrum of charged pions for one single event within

o ) some definite rapidity interval including a single hypothetical and
average numbef(n.)), the deduced distributiof81) pro sufficiently prominent DCC candidatéThis spectrum has been

V'dest 6_1 (r)llce "’.]tu't'ﬁe and '”.t”lgu'r?g ?[Ft%”e tf)or ttf’l’e l_Jtrrl]us_uaI schematically redrawn from a simulated event of background pions
events: Occasionally, a semiclassical “pion burst” with pion, 'y expected at RHIC energigt3].)

numbern = ({(n,))e*)-n’ is being emitted for some spe-
cial events. These represent rare events as the distribution {0 factorial cumulants. This thus signals again that the sta-
n’ follows a standard Poisson distribution sharply peaked afistical nature of the distribution is highly nontrivial.
n’=0. Such rare and unusual events are then in fact quite |t remains to shed light on the possibility whether such
similar to the Centauro candidatg8]. We do not want to  ynusual fluctuations can indeed also be reflected in the cu-
push this interpretation too far, as smaller deviations frommulant expansion based on the data measured in real ul-
the straight exponential fit and, of course, the two lowestrarelativistic heavy ion collision experiments. In the real
factorial cumulants are not considered. Yet we believe thalyorld one expects a huge “background” of pions not com-
this interpretation provides the right intuitive way of describ- ing from the decay of a “large” DCC domain, as already
ing the unusual strong fluctuations in the tail of the distribu-outlined at the beginning of this Sec. IV. To illustrate such a
tion. background we show in Fig. 16 a schematic and qualitative
At this stage one might indeed ask for the physical originexpectation of a single event of the transverse momentum
of such a peculiar and scaling-like behavior of the fluctua-spectrum of charged pions within some definite rapidity in-
tions. Here we can provide at present no definite answer, agrval including a single hypothetical and sufficiently promi-
we can only rely on our numerical findings. For a givennent DCC candidate. Such a spectrum has been schemati-
ensemble of initial configurations, the stochastic approacigally redrawn from a single simulated event of background
presented in this work results in an ensemble of widely dif-pions to be expected at RHIC energjé8]. A “large” DCC
fering solutions. Since a Gaussian initial distribution in thedomain would eventually enhance the number of soft pions
fields under the time evolution of a quadratic Hamiltonianin the pion spectrum at sufficiently low momersee Fig.
always stays Gaussian, we believe that the unusual final flug6). The authors of43] provide a detailed analysis that if
tuations in the present case originate due to the particulagliowing for a low momentunp, cut of p;<200 MeV in
nonlinear evolution. In principle, the occurrence of some sorgome small and definite interval of rapidityf order oné the
of peculiar scaling behavior in higher order factorial mo- expectation is that one should have a surplus of at least 50
ments, is knowr(or speculatepfor quite a time to show up  pions stemming from a DCC per unit rapidity in such a win-
in the multiplicity fluctuations stemming from a quark- dow for a possible “direct” observation. Even in such a
hadron phase transitiofin hadron-hadron or heavy ion col- small window, however, if supposedly large DCC domain
lisions) described within a simple phenomenological occurs, there will be still a background of “normal” pions of
Ginzbug-Landau frameword9]. In this respect our findings the order of 50 in average. Therefore the inherent fluctua-
underline the necessity to learn more about the possible onsgéns of the background pion number in lopy makes it
of a phase transition by a careful study of final multiplicity rather difficult to find out a clear trace of the DCC formation
fluctuations. in the soft pion enhancement within one event. One then has
On the other hand, one also clearly recognizes that thgy go to an appropriate statistical analysis for discovering
second order factorial cumulant increases drastically compossible unusual fluctuations. More importantly, as we have
pared to any “usual Gaussian” second order cumulant orstated in the last subsection, “larger” DCC domains are
the order of the first order cumulant and thus defines a muchore likely to be some rare events. We thus want to pursue
broader distribution. This increase g is due to the factthat in the following by means of the cumulant expansion
many trajectories of the sample enter temporarily the unwhether there is a possibility to look experimentally for un-
stable region withu? <0. In fact for the more dramatic cases usual fluctuations when allowing for some additional inco-
we havef,> 6;. In Appendix C we briefly show that for a herent and simple fluctuating Poissonian source producing
situation, whered,> 6,, there exists no simple statistical dis- also low momentum pions and thus providing the back-
tribution which can be expressed solely in terms of the firsground.

positive and a small number—typically from the above
slopes one haa<1—and{(n,))e* is somemultiple of the
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By now there have been two experimental investigations 10 ' ' ' ' ]
to look for DCC events either in heavy ion reactions at the . <n>.,=§g "
CERN-SPS[50] or in p—p collisions at the Tevatron at 10°F o e . ° 3
Fermilab[51]. Both programs had so far a negative outcome W0E % e o ¢ ]
in their searches. This might still well be due to the fact that €, ’ . .
up to now no analysis employing a sufficiently small low E 10°F = . ° N :
momentum cut has been carried out. In addition, also a & = ° N
wavelet-type analysis, as originally been proposed by Huang 10°F 2 : 3
and co-workerg52], might further help to look for the oc- 102k . x ]
currence of unusual events or—in respect to our present x * *
work—of unusual fluctuations in sufficiently small rapidity 10°%— L L L L L
and momentum windows. There exist also other clever sug- ! 2 3 4 5 6
gestions how to filter for the DCC events, see, €53]. m

At this step we want to provide a rough estimate in what

. L : FIG. 17. The reduced factorial cumulants far=1 to 6 for the
range the typical rapidity interval is to be expected for th?pion number distribution of low momentum pions stemming from

pions to be emitted out of a single DCC domain. The spheriy,, independent sources: A distribution stemming from a single
cal (D=3-)scaling expansion ansatz in proper time was chOgmerging DCC taken from the lower part of Fig. imodified
sen to mimic for the rapid expansion. In strict terms such g angevin scenario wittb=3 and r,=3 fm/c) and a Poissonian
scenario is fueled by everlasting sources and thus shoulgistributed background pion source with different mean values
break down at some later decoupling time as the whole col¢n),=20-200.
lision of two heavy ions does last only a finite time. Before
“freeze-out” the domains are separated from the outside owhere “c” denotes the coherent emission by a DCC state
exterior vacuum by the surrounding and expanding matterand “inc” the incoherent emission by the background
This deficiency of everlasting sources can be circumventegource. Form=2 the cumulants related to the incoherent
by a mapping of the idealized 3-dimensional boost-invarianpion source do vanish by assumption of a Poisson distribu-
evolution to quasifree, truncated sources evolving in normalion. (We note that if there are more than one single domain
time at some decoupling time as shown by Bjorken and coecontributing within a considered rapidity and momentum
workers[44]. Such a truncation of the evolution modifies window, and if these are truly uncorrelated, the respective
somewhat the final momentum spectrum of the emitted pionsumulants of each independent source would then again sim-
[44]. In any case, within the idealized scenario evolvingply add up for the combined pion distributiorzigure 17
solely in proper time at least at the beginning of the evolu-depicts the resultingeducedfactorial cumulants(33) ob-
tion, a simple estimate for the rapidity interval is given by tained for a single domain simulated with a fast expansion
(D=3, 79=3 fmlc, modified Langevin scenario; compare
1+v, with lower part of Fig. 12 and Fig. 2%nd superimposed by
1_UC), the inclusion of a background source with different mean
values(n_.)p ranging from 20 to 200 incoherent additional
pions. The last numbers can either be seen simply as basic
where 002153( 7o)/ N7+ (7o) and "(70) " Uncertainty and/or also as a result of lowering pheut. The
=[(3/4m)V(r)]™". For the parameters employefiro,  ,qgitional Poissonian source basically lowers all the reduced
:2_.7 fm/c and V(o) =10-200 firf] this estimate implies factorial cumulants withm>1: As in its form (32), L’,‘C(n)
a rapidity mter\_/al Of.A 7~0.2-1 for_the low momentum . h factorial cumulantg,, with m>1, the combined re-
pions 1o be emiited, in agreement with ge_neral_ eXp.eCt_at'onduced factorial cumulants become smaller accordingly.
Suppose now that we have the following situation: TheHowever, the higher order ones for=3 are still apprecia-

soft pions are coming from either a DCC domain or, Inde'bly large if the background mean pion number is less than

pendently, from an incohererit'chaotic ).so.urce (back'- about 100, especially with increasing numioerlf we con-
ground. Furthermore we assume the emission of the inco-

herent soft pions follows a standard Poissonian distributiori'r?oevzssthaar,: ?;agggjyiflt;?;on T?L]Z;] /'CS t?]t;o?; d7u0c,e|:i
with the mean valuén)p, i.e., pansion

factorial cumulants of higher orden=3 are still very small
N (<10 3). This basically reflects the suppression of the few
Pipnc(n):(<n7T>P) e~ (N)p. (32) coherent emitted pions compared to the large background. In
n! contrast, however, for a fast expansieg=3 fm/c, as de-
picted in Fig. 17, where “large” DCC states are more likely
As the resulting(factoria) cumulants in the independently to occur, thereducedfactorial cumulants of higher order are
combined pion number distribution are additigee Appen- in the range 1-10 and thus should be clearly visible and
dix C), the reduced cumulants can thus simply be written agletectable.
We thus find that for sufficient fast expansion the reduced

1
A’)?%E'n

9 6 + ginc higher order cumulants are still in the order 1-10, although
n— o (33)  the number of incoherently emitted pions might in average
()™ N+ (n)") be 3—4 times larger as the averaged number of DCC pions.
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(In our particular last example we hayén . ))pcc=18.5 the zero mode pionic fluctuations become most unstable dur-
compared tqn,)p="70) We therefore conclude that an ex- ing the roll-down period and thus are the ones being pre-
perimental analysis by means of the higher order factoriabominantly amplified for realistic initially small sized and
cumulants for the low momentum pion number distributionseparated expanding domains. The overall picture of possible
provides a well-suited indication for the possible existenceDCC evolution resembles the one proposed by Bjorken and
(and to some lesser extent also for the identificatminany  co-workers[5,44).
DCC formation on an event-by-event analysis. Event-by-  Ag a first application we considered the finite size fluctua-
event type analysis for getting additional new insight in theyjons of the order parameter and the chiral pionic fields for a
underlying physics of heavy ion collisiorie.g., the process  given volume and temperature, resulting in a further smooth-
of thermalization has become quite popular over the last tWogning of the crossover behavior around the critical tempera-
years(see, e.g.[54] and references therginin this respect {re within the employed linear model. The Langevin de-
our work can be considered as a special and ultimate sc@gription provides a powerful and simple tool for generating
nario of what to expect in case of a rapidly ongoing chiralin 5 systematic and efficient manner a canonic sample of
phase transition associated with possible DCC state formagagistically possible configurations at a given temperafure
tion. As a reasonabléor minima) assumption we consider the
order parameter and the chiral fields to be likely thermally
V. SUMMARY dﬁstributed when the phase transition during thg I_ater expan-
sion starts to occur. This sampling of possible initial configu-
In the present work we have elaborated in detail within arrations contrasts to the ad hoc guesses for the initial condi-
idealized, but microscopically motivated semiclassicaltions made in many of the previous works on DCC physics
Langevin description on the statistical facets of the formatiorand thus enables us to investigate characteristic statistical
of possible disoriented chiral condensates during and aftgsroperties of DCC formation.
the onset of the chiral phase transition expected to occur in We have then concentrated on the dynamical evolution of
ultrarelativistic heavy ion collisions. Within the Langevin one single domain during and after the onset of spontaneous
treatment of the standard linearmodel, one can simulate, chiral symmetry breaking at the later stages of the initially
on an event by event analysis, the possible evolution of varivery hot system expected to occur in ultrarelativistic heavy
ous DCC scenarios in a rather transparent form. Our maiion collisions. Because of the collective expansion at these
focus and objective has been to understand the physical rolater stages, the temperature will subsequently drop below
of dissipation and noisy fluctuations on the DCC phenom-+he critical one, and smaller, originally chirally restored do-
enon. The advantage of the presented approach is that mains(assumed to be independent being separated spatially
contrast to common mean-field treatments, which can onland in rapidity start to form together with a thermalized
bring about a deterministic description for tiiensemblg  background ofquasijpions and possibly other hadronic ex-
averaged evolution, it allows for any possible branching ofcitations within the respective expanding subsystem. A
the dynamical trajectories being especially important in theD-dimensional scaling expansion was employed to account
instability region. Our Langevin picture is based on micro-for the collective expansion resulting in an additional Ray-
scopic input, although one can interpret the presented apeigh or Hubble like damping term within the stochastic
proach more intuitively also in the spirit of the phenomeno-equations of motion.
logical Landau-Ginzburg description of phase transitions. We stressed the important issue of the physical effect of
Our ideas could also be taken over for situations advocatingdissipation on the pionic fluctuations for any possible DCC
a first order transition within the lineas model [55], in  evolution. For the quantification of the resulting strength of
order to study for such parametrizations of the effective temthe coherent pionic zero-mode field and as an experimentally
perature dependent potential the influence of dissipation anehore direct and relevant quantity we considered the effective
fluctuation on the evolution of the order parameter inside thgion number contem ;. [via Eq.(27)] of the emerging final
nucleating and growing bubbles. oscillations in the chiral pionic fields. The dissipation kernel
The model, originally being first proposed [i6], is  has been calculated by means of a standard finite temperature
based on the very assumption that the high-momentum pafield theory technique and is directly associated to the in-
ticles (“hard” fluctuations) of the chiral fields constitute a verse thermal scattering rate of the soft mode on the thermal
heat bath which behaves locally thermalized in the expandparticles. Our analysis clearly shows that thapid expan-
ing system. The interaction of the nonequilibrated “soft” sion, i.e., the Hubble damping term, has to be at least as
chiral fields with this surrounding heat bath then gives rise teefficient in order to compensate for the true dissipation. For a
their stochastic and semiclassical evolution of Langevinarger dissipation coefficieny the final yield in the pion
type. Our main conception is that the order parameter as wellumber would be correspondingly smaller, as the dissipation
as the pionic fluctuations before and after the onset of thelamps accordingly faster any large DCC like pionic fluctua-
chiral phase transition still interactslissipatively with its  tions which have possibly emerged after the roll-down. Al-
surrounding of thermglor “hard” ) pions, which then results though our estimate for the dissipation close to the critical
in large and tremendously differing fluctuations during thepoint is inspired by physical arguments, further understand-
evolution. Furthermore we have concentrated solely on théng of the certainly complex dissipative nature of the chiral
effective dynamics of the collective zero mo@eder param-  phase transition is crucial: If one can show that the experi-
eter and pionic fluctuationsWe have argued, that, if at all, enced dissipation for the pionitransversalmodes close to
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the transition point is in fact much stronger than the one weor assumed parameters considered in our work are realized in
have employed, then there is definitely no chance at all fonature one does not know. Any slow or moderate expansion
any DCC signals to be seen in heavy ion collisions. On thedf the system will indeed not result in any verifiable signal.
other hand, as emphasized at the end of Sec. Il B, in thé addition, because of the various approximations and ide-
deeply broken phase much below the critical temperature thalized scenarios considered, our work should not be seen as
associated dissipation for the pionic fluctuations will cer-directly comparable to any experimental data. In this respect,
tainly be reduced by the additional chi@meson exchange ©OUr fmall last theoretical conjecture, WI.’]ICh. we now want to
for the (—)-scattering amplitude as compared to our em-SUmmarize, has_ to .be seen as a fascmayng and experimen-
ployed estimate. For the deeply broken phase then also trelly possible guideline for a future analysis of the pion spec-
decayo— m becomes possible giving potentially rise to a {2 to be taken at RHIC or already taken at CERN Super
much stronger dissipation for the fluctuations in longitudinalProton SynchrotortSPS, if DCC-like phenomena occur in
direction. All this might very well at least quantitatively ef- Ultrarelativistic heavy ion reactions.
fect some of our results and conclusions presented concern- For any meaningful experimental identification our results
ing the possible survival of DCC states and would require afMPly to look for rare and unusual strong fluctuations on an
even more involved and detailed calculation. event by event analysis in certain rapidity and sufficiently
In addition, we also have describéd Appendix B how Iqw <.pt> yvindows._ The further analy_sis of the unugual d.is—
to numerically realize colored noise in order to treat the uniribution in the pion number associated to a rapid chiral
derlying dissipative and non-Markovian stochastic equation®hase transition we have invoked by means of the factorial
of motion. In general dissipation as well as the associate@umulantsdy,, which represent a powerful tool, well-known
noisy fluctuations are nonlocal phenomena in time. This, td" the analysis of final multiparticle fluctuations in high en-
the best of our knowledge, is the first numerical treatment off9y hadronic reactions. We have found the striking behavior
non-Markovian Langevin equations in thermal quantum fieldhat the higher order and reduced factorial cumulants

theory and might certainly be of relevance for other relatedm/(N-)"™ with m=3 show an abnormal, exponentially in-
topics. creasing tendency. This we consider as the most important

In the last section we have then given a comprehensiv@utcome of our extensive investigation. In addition, we also
numerical study for the possible formation of DCC, i.e., thefound that the second order factorial cumulagtincreases
coherent amplification of the pionic chiral fields, for various dramatically compared to any “usual” Gaussian distribu-
parameter sets and also for four somewhat different scdion, thus characterizing a much broader distribution. This
narios. It shows, as pointed out the first time by Randru,proadenlng reflects the fact that many trajectories of the
[11], that a rather rapid expansion is mandatory to have an§ample have entered temporarily the unstable region. In ad-
significant chance for obtaining “large” DCCs which then dition, we have allowed that on top of the pions emerging
might lead to some experimental consequences. On the oth&PM the decay of collective pionic modes a further incoher-
hand, our analysis has provided the at first sight more pessint and Poissonian background source of low momentum
mistic view, that even then, a DCC event has very likely toPions might in fact overshadow or even completely wash out
be an unusual and rare event. Theeragecharacteristic these striking characteristics. As it turned out, however, the
{(n,)), i.e., the average number of low momentum pionsreduceq higher order faptorlal cumulant; are S-tl|| of_ the order
being emitted of the final pionic modes, shows only a mod-1—10, if the number of incoherently emitted pions is already
erate behavior, which then should result, on the average, in@" average 3—4 times larger than the average number of
mild increase of the transversal low momentum spectrum ifPCC pions. _
the pions. As we have argued, such a mild increase is prob- We therefore strongly advocate that an analysis by means
ably tremendously difficult to observe directly and unam-©f the higher order cumulants serves as a new and powerful
biguously from the average momentum spectrum of pions. Slgnature to |dent|fy any unusualities associated with poten-

However, the statistical distributio®(n,) of emitted tial DCC formation. Of course we are aware that our last
pions shows a striking non-Poissonian and nontrivial behavanalysis assumes that within each window in momentum and
ior. There exist within some still finite probability some rare rapidity, where the experimental analysis is considered, a
and unusual events which contain a multiple in the numbePCC-like phenomenon with conditional probability equal to
of pions compared to the average. As pointed out in thé@ne hqs occurred. This m|g_ht not be the true case. However,
subsequent analysis of the statistical nature of such distribve believe that our suggestion for future experimental analy-
tions, one should indeed interpret those particular events &S IS in fact rather “simple” to carry out and represents
unusual and semiclassical “pion bursts” similar to the mys-most likely the only way to findany) evidence for unusu-
tique Centauro candidatd®]. This result suggests a very alities in the low momentum pion spectra. If such an analysis
important conclusion: If DCCs are being produced, an exiUrns outto be negative, there is probably no other chance to
perimental finding will be a rare event following a strikingly, 100k for the DCC phenomenon.
nontrivial and non-Poissonian distribution. A dedicated
event-by-event analysis for the experimental progréeng.,
the STAR TPC at RHICis then unalterable. ACKNOWLEDGMENTS
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F(k!w): 2(1) = ’ |k|$kC’

w
APPENDIX A: THE DISSIPATION KERNEL I'(k=0,w) (A1)

In this appendix we evaluate the frequency dependence of
the dissipation kerndl'(k=0,w) used in Sec. lll for study- where the memory kerneW introduced in[23] reads

iM(k,w)=

34 A3
T gt [ Ll O(lk— g1 — 0| —k){[(L+Nn)(1+ny)(1+ng)— Sw—w;—wy—
229 @ (2m)° ©10205 (k= 0a1= G| =k{[(1+N1)(141n3)(1+N3) —N1NoN3] 80— 01— W~ w3)
+[(1+n)Ny(1+n3) =Ny (1+Ny)N3] (@0~ w1+ wy— w3) +[N1(1+n;)(1+N3) —(1+n1)Nyn3]
><5(w+w1—w2—w3)+[n1n2(l+n3)—(1+nl)(1+n2)n3]5(w+w1+w2—w3)
+[(1+n1)(1+n2)N3—N1Ny(1+N3) |8(0— w1~ wo+ w3) +[(1+N1)NN3—N1(1+N3)(1+N3)]
><5(w—w1+w2+w3)+[n1(1+n2)n3—(1+nl)n2(1+n3)]5(w+wl—w2+w3)

+[n1n2n3_(1+ nl)(1+ nz)(1+ n3)]5(w+ w1+ w2+ w3)}, (AZ)

and  d3=k—01— 0z, wj=wq, N=n(w)=1(e"'"  thereforel'(k,w) is symmetric. We thus only have to con-

—1), i=1,2,3. The dispersion relation for the hard modessider the case fow=0. In this case the contributions from

is taken aswy= NG m2, wherem,, denotes the dynamical the 4th, 6th, 7th and 8th terms in the curly brackets of Eq.

mass.i M (k,w) represents the net absorption rate for soft(A2) are identical to zero. In addition one sees that the con-

modes due to the interaction vertex of a soft mode with thredributions from the 2nd, 3rd and the 5th terms are the same.

hard particles. The first and the last term of E42) corre-  Moreover, one can convince oneself that the yield of the

spond to the decay of one soft mode into three hard mode®spective absorption processes just gives a common factor

and the inverse process. The other six terms correspond &' compared to the respective emission processes due to

the scattering processt h«—h+h. the standard detailed balance relation for systems at thermal
For our study of stochastic DCC formation we con- equilibrium. With these observations we have

structed an effective model for the chiral zero mode fields, so

that for the present purpose we takg=0 and thus need

only to calculatd M(k=0,w). Evaluating the5 function we _ =~ g T s 3
will reduce the six dimensional integral of E¢A2) to a iM(0,0)= 5 (e” —1)f d°q;d°d>

. : . ) . 24 (2778 W1Wow3
1-dimensional integral which we then treat further numeri-
cally. In principle this task had already been performed by X{3(1+N)NoN38( 0+ 01— wy— w3)
Wang and HeinZ56] investigating the 2-loop resummed
propagator for hotb* theory. However, repeating the steps +N1NN38(0— w1~ W~ w3)} (A3)

in their tedious derivation we found out that some particular

kinematic boundaries of the integration variables were not

extracted correctly. In the following we sketch the main  We now outline our strategy by manipulating the first

strategy and then state the final result for the considered disategral in Eqg.(A3) which corresponds to the emission rate

sipation kernel. of the scattering proceds+h—s+h. This integral can be
It is easy to see thatM(k,w) is antisymmetric inw and  reduced to a 3-dimensional integral
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(1+nq)nyng

w+w;— wy— w3)
W1 Wow3 1 2 3

01(w):=3 f dq;d%q,

® 1 (1+ngy)nzng,
~ 2472 [ “dayaa, | drgfogt 2

WjwWowW3
X w+wi— wy— w3), (A4)

wheret=cos# and # denotes the angle betwegn andqs,.
For the energy conservation stated by ¢hiinction one has

W+ 01— 0= 03= 01+ 05+ 20,0t + My (A5)

due to the momentum conservation+g,=qs;. Equation

(A5) represents the kinematical constraint among the vari-
ablesq;, g, andt. In order to determine from this equation

for a given frequency the kinematic boundaries fay;, g,
andt we take its square yielding

(0+w)?*=qf  q

(P02 ) =) ™~ o gy 02t VA2 M,
= wy(0). (A6)

Taking q; as the most outer integration variable we now
consider it as a fixed constant and concentrate first on the

variablesg, andt. The left side of Eq(A6), which we define
as a functionF(q,,t), represents a straight line o with
different inclination for different values of. All straight
lines for differentt e [ — 1,1] cut atq,=0. Then the solutions
of Eq. (A6) for a fixedq, (and givenw) are the points where
the bundlg(in t) of straight lines=(q,,t) cutsw,(q,). There

PHYSICAL REVIEW D62 036012

In order to satisfy the classification for caséll) one finds
from the definition ofF(q,=0,t) of Eq. (A6) that the energy
o has to be greatdfess thanm,.

One can now get the kinematic boundariegpfising the
fact that the functiorB(w,q;) should not be negative. For
case | one finds that; has no further constraints. For case |l
g, possesses a lower boundayy :

1
A5 =5 V(= mp) (w?—9mp).
Equation(A4) can now be stated as

oo Sé
g1(w)=24m" 0(mp—w)f mdqlfqz day
a7 q22

tCI’
xf dt+6(w—m,)

1
% oL 1
XJ d%szCIzJ dt
0 Sy -1
4,

(1+ng)nyng

2.2
X wtwi—wr—w .
d:19> PP 17 W2 3)]

(AT)
By suitable substitutions for the integral variables,

dtﬂdwgzﬁdt,
w3

and

are three cases to distinguish and which are classified by the

position of F(q,,t) at q,=0: (case } F(q,=0t)=m,;
(case 1) 0<F(g,=0;t)<m,; and(case Il) F(gq,=01)<0.

dg;,dg,—dU;,dU, with U;:==e @'T =12,

Figure 18 illustrates the different situations for the threeOne can carry out the integrations o¥@ndq,. The result is

cases and shows the kinematic boundarieg,odndt.

We have to remark that the solutions of E46) do not
necessarily fulfill the original constraitd5). Therefore one
has to insert back the solutions into E@5) and check
whether they indeed satisfy EGA5). One finds out that the
solutions of case Ill do not obey EGAS) (as w+ w;— w,
<0).

The kinematic boundaries for the integration variatye
are

1 v 1
a03'=5(B(w,a)-ay), 0;'=5(B(w,qy)+ay),

1 s, 1
0= 5= VB(0,q1) +0y), 6= 5 (VB(@,q1) +ay),

where[56]

(0+ 1) [(0+w1)?—g;—4m7]

B , =
() (0t wy)?—

gl(w>=24w2T2[ o(my— ) fou(ql 'dU,G,(Us:92,g2)

u(o) '
+0(w—m,) fo dulel(ul;q?,q?)] (A8)

with
1
1-U;1-U,U,

In[ (1-U(s))(U(s2)— UlUw)}
(1—-U(sp))(U(s)—U,U,)

G1(Uy;81,87) =

and

U(s):=ex u,=e T

f- =)

The further evaluation of the second term in E43) corre-
sponding to the emission rate of tfiaverse off-shell decay
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processh+h+h—s follows in analogous but slightly more complicated way to the strategy for the first term considered

above.
We state the final result fatM (0, w):

4T2
iM(0,w)=
+ 60(w—3my)
[
with
U 1
2( 1131152) 1 U m

(1-U(s))(U U(sp)—U,)

XN = U(,))(U1U(s)—U,))"

Here the kinematic boundanqﬁ qzr, a,% q2 andqy are

o1
dl:—(\/A(wCh —0y), qgl=§(vA(w,ql)+q1),

r 1
dz=—( VA(w,an+a),  45= 5 (JA(w,d) +ay),

1
q;.c =§V(w—mp)2—4m'2),

where[56]

(w— wl)z((w_wl)z_Q%_"'m,z))

Alw,dqy)=
() (0— 00—

(We note at this stage that we have obtained different

results for the lower kinematic boundarie1§2 and qu as
compared to the ones given by Wang and H¢B&], which
were there simply set as zero.

The dissipation kernel has then the form

iM(Ow) 94T F(w m,

) T e | T'T

) . (A10)

where we have defined a reduced dissipation kern

F(w/T m,/T) which depends only om/T and m,/T. In
Fig. 19 we show the reduced dissipation kernel gy /T

=0.1 andm,/T=1. Herey, andy, denote the two different

contributions tol" from the scattering and decay process.
One recognizes thag, in fact diverges forw—oo. One can

furthermore show thay; has an asymptotic behavier1l/w

for sufficiently largew. In our present study concerning sto-

chastic formation of DCC we have neglected thecontri-

u(0) (
Ju(q dUle(U1,q2 aqzl)"‘J ) dUlel(Ulyqz ,d, )H

’ U(O) !
(1= uw)(smmp )f (&) dulel<u1;q§2,q§2>+3a<w—mp>fo dU;G;(U1;9,950

(A9)

nel y,(w) has its maximum very close to the on-shell fre-
quencyw=m,. Its shape with frequency is thus effectively
governed by two characteristic and independent scales, the
temperaturél’ and the plasmon mass,. The Fourier trans-

form of the reduced dissipation kernel, i.d,(k=0,)
=v,(t), for a temperaturel =120 MeV near the critical
temperatureT, is plotted in Fig. 20. The mass, is ex-
tracted as the transversal mass at that given temperature
from the right upper picture of Fig. 2. By means of Fig. 20
one can estimate that the correlation in time of the kernel
extents to about 5 fro/

On the plasmon mass shell=m, the damping coeffi-
cient I'(0,m,) is obviously given solely by the scattering
contribution:

g4T2

I'(0, mp)— (1 U(O))f

><Gl<u1;q31=q1,q§1=0>.

The above integration can be further simplified to
u(0)

(1_U(0))f dUlGl(Ul;q1,0)=fsp(l—eme/T)
0

wherefg(x) is the Spence function defined as

|
fsp(X):= fdy ny

In the high temperature limin,<T the dynamical mass,
F’ evaluated by the tadpole dlagram a§=g°T%/24. One

ethus recovers

o’T

32247’

which is twice the plasmon damping rdt&7,56|.
Generalizing fromO(1) to O(N) one has an additional
(preJjfactor (N+2)/3 for the dissipation kernel and the dy-

I'(0,my)= (A11)

bution and have thus only described the physical dominamamical mass. Then for the case of the lin€4#4) ¢ model

scattering contribution o$+h«<h+h. The dissipation ker-

one also has to substitugg— 6.

036012-27



ZHE XU AND CARSTEN GREINER PHYSICAL REVIEW D62 036012

wz(qz) 25 T T T T T T T T T
Case | Fla,-1)
/ 20
=)
Mp 5 15
N F(q,0) E
oo - H"
S, s, q = 10
q, q, : s
I~
F(a, 1)
%p 0,2 6A 06 08 1,0 1,2 1,4 1,6 1,8 20
o/T
,(T,)
Case ll F(q,-1) 1,0 T T T T T T T
m T Faut) 08t mp/ T=1 i
""" F(a,0) 2 06} 1
o ~_ £
S2 S2 q & o4l T
q2 qg 2 é T e vl
F(q, 1 o T
(qz ) ||'_' 02k \\\ _ Y2 ]
0’0 1 1 1 1 1 1 L
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Case Il F(a, -1) o/T
©,(Q,)

FIG. 19. The reduced dissipation kernel for,/T=0.1 and
m,/T=1. y; andy, are the contributions t&' from the contribut-
ing scattering and decay procesge text

F(a,0) a,
either positive or negative. Then a particular sequence of
noise reads
F(qg, 1)
n
FIG. 18. lllustration of the solutions and kinematical constraints &)= E aib(t—t;), te[O0T]. (B1)
i=1

for g, andt for the three casesee text For case | there exists one

solution forq, for everyt. The kinematical constraintqul andq:1 In Eq. (B1) there are one random numbeand two random
I"iger t:aesgollmi:rlgeéii;??vygi%?jt'i?ngr}g'rz(e?/gr; [13 cut ‘1”]2(12& variables, the heigha; and the timing(center timg t; . The
kr ' random numben is now assumed to obey a Poisson distri-
. . . s, sy h . b _
kinematical constraints),? and g2 are t e cut points between . .o\ the mean value= uT, where u denotes the
F(dz,—1) andw,(q). For case Ill all solutions are larger thelf.  maan counting rate. The random distributiort,aghall occur

It is easy to show that these solutions do not safisfy (B4). uniformly. Now one has to specify also the statistical distri-
APPENDIX B: NUMERICAL REALIZATION , , . :
OF COLORED NOISE 1ok ]

Here we outline a new numerical method for simulating __ og| -

nonwhite, i.e., colored Gaussian noise for an arbitfaign- = T =120 MeV

. e a i m =194 MeV
negative and symmetniaoise kernel (w). g 06 ’

For this consider the situation of a 1-dimensional Brown-
ian particle interacting with its thermal surrounding. The =
force acting on the particle can be separated into a mean™ g,
(dissipative part and a random, stochastic part. This random '

T,

04 .

force shall not depend on the state of the particle and repre- 0,0 N

sents a fluctuating source given as a particular noise se-

quence. S N
Suppose the noise in a time intery&lT] is composed of T

a series of pulses which occur randorfhg]. Each pulse can

be written asa-b(7), where b(7) has a certain uniform FIG. 20. The reduced dissipation kerney;J in time for T

shape an denotes a random height which is allowed to be=120 MeV and a plasmon mass,=194 MeV.

036012-28



STOCHASTIC TREATMENT OF DISORIENTED CHIRA. .. PHYSICAL REVIEW D 62 036012

butionp(a) of the heighta. In the limit of a large number of 1

sufficiently weak pulses, i.e., large and small mean-square b(7)= —= (7).

valueo? of p(a), the noise will then approximately be given IVH

as a Gaussian process due to the central limit theoremynen the sequence of white noise can be written as
Gaussian noise is solely characterized by the first two mo-
ments .
a;o(t—t)),

(B5)

n
1 1
fl)=2 a—=0d(t-t)=2, —
(&1)))=0 TR e T Fe
and .
wherea; can be sampled according to a Gaussian distribu-
tion with a unit mean-square value. Having fixed the pulse

number n by T/At=uT, the mean counting rate ig

]
(EDEX ) =1 (t1)=po? [ dstit-s)b(t'~s).

(B2) =1/At. Furthermore we approximate tt#efunction as

For this limiting case one can freely choose the distribution i . t=t

p(a). Most commonly one employs a Gaussian distribution S(t)=1{ At o
0 : t#t;.

1 —a2/20?
p(a)= ——e /%", . . . .
7o Then the white noise at each time step can be simply gener-
ated as

For a largeu the distribution of the pulse numberhas a o

sharp maximum centered at Thus we set a fine time scale £,(t) = a4
At and assume that on each time point one given pulse AL
should occur. The number is then fixed byT/At, and the
timings t; of occurrence of the pulses are also fixed. It re- Coming now back to the construction of a colored noise
mains to find out the fornb(7) which is related to the cor- sequence, we find th&(t) can be obtained by an integral of
relation functionl (t,t") of Eq. (B2). If the correlation func- the history of a particular white noise sequence folded with
tion is a é function then it is easy to show thb{7) will be  the uniform pulséb(7) of Eq. (B4), i.e.,
as well proportional to & function. For this case one de-
notes the so constructed fluctuatig(t) as white noise. In
more general case the noise is called colored noise. f(t):izl ab(t—t)

For the simulation of Gaussian colored noise we now as-
sume thatb(7) has a symmetric shape within some time n T
interval [—A,A]. Outside this intervab(7) is taken to be => a | dt’b(t—t")a(t' —t)
zero. The noiseé(t) is a stationary process fot -t 0

n

|
e[A, T—A]. It meansl(t,t")=I(|t—t'|)=1(7) where 7 T n
=t—t'. (Forte[0,A] andte[T—A,T] there are switching =f dt’b(t—t’)_z a;o(t'—t))
on/off artifacts) Fourier transformation of EqB2) yields 0 =1
T
l(w)=po?b(w)|?. (B3) =f0 dt’ o ub(t—t")&,(t")
From the above equation it follows that one has to demand T
the Fourier transforni(w) of the correlation function of the = dt'G(t—t’ t’
; : : . (t=t")&w(t).
noise to be non-negative(w) is a real function due to the 0
symmetry ofb(7). Further we assumb(w) to be positive. o ) )
One thus ends with In order to check the reliability of our simulation we cal-
culate numerically the ensemble average of the noise corre-
1 lation and compare it with the given correlation function for
b(7)=—=G(7) for re[—AA] (B4)  which we choose the reduced dissipation kernel plotted in
U\/; Fig. 20. The result is shown in Fig. 21. The depicted average

ith was obtained by 0independently realized noise sequences.
Wi

APPENDIX C: CUMULANT EXPANSION

© d .
6(n:= [ SoiCwe

We give here a brief reminder of the factorial cumulant
expansion for discrete statistical distributiofs9]. A sto-

For the case of white noise with unit strength one hashastic numben is fully characterized by its probability dis-
[(t—t")=4(t—t') and thus tribution P(n), n=0,1,2 ... . An equivalent and conve-

036012-29



ZHE XU AND CARSTEN GREINER PHYSICAL REVIEW D62 036012

' " ' " ' " ' " The factorial cumulant®,, represent the nontrivial‘non-

34 - . . .
I irreducible”) correlations at ordem.

2 L For a Poisson distribution,
® _
o 14 r n" -
g P(n)=—e™",
2 o n!
2 ]
8 11 it follows immediately that its factorial moments reaf,
2 I =n"and consequently we ha¥d 1 — x) =exp(—xn). There-

I fore the Poisson distribution is characterized by the vanish-
-3 - ing of all factorial cumulants except fat; =n.

T T T, According to the definition(C4) the factorial cumulants
T 0., are generally combinations of the factorial momedats
with (i=m). For our use we list here the expressions up to
— T T order six, i.e.,
1,0 F .
[ given correlation function 1 0,= 1,
0.8 numerical simulation T
- ]
2 06F 1 02=ba— ¢35,
° I ]
8 ™I ] 03= da—3byb1 +245,
% 0.2 T 2 2 4
< L 0= Pps—A4d3p1— 3¢5+ 12¢,¢1— 667,
0,0 -
- 05=ds—5dad1—10h3d,+ 20p3¢1+3085¢:
_0,2 L 1 N 1 N 1 N 1 N
0 2 ¢ i 8 0 — 60,1+ 2467,
tT
FIG. 21. Comparison of the correlation functiori 06= b6~ 6 d5h1— 150,42+ 30047 — 103
=((&(t)&(0))) of the numerically generated noise with the given 3 3
correlation function which is taken as the reduced dissipation kernel +120¢3¢2¢1~ 120301+ 304,

of Fig. 20 (lower par}. The averaging is performed over an en-
semble of 16 noise sequences. In addition one exemplaric numeri-

cally generated noise sequence dictated by the correlation function
is also depictedupper part

— 270055+ 360p, b1 — 12045 . (C5)

Now we turn to the question of how—or whether it is in
general possible—to receive the probability distribution
P(n), if all the factorial cumulants are given. Using EG.1)

nient representation oP(n) is given by its probability one obtains

generating function

(=" d"
= —F(1-x)| . (C6)
dx"

x=1

F(1-x)= 3 (1-X)"P(n). 1) P(m="—4

Although find tf Eq$C1) and(C4
If one defines the factorial momends, by ¢,=1 and ough one finds out from Eq$C1) and(C4)

dm=(n(n—=1)---(n—m+1)) (Mm=1), (C2 ZO P(N)=F(1—X)|y_o=1,

then the probability generating function becomes the so inverted distributio®(n) is not necessarily positive

w " for all integersn. Therefore the general answer to the ques-
F(1—x)= 2 (=x) & (C3) tion is “no.” For example assume the simple _situation,
mzo m! m where all§,,, exceptd; and 6, are zerd47,60. In this case
P(n) can serve as a probability distribution only féy
The probability generating function also serves to gener= 05, i.e.,
ate the factorial cumulant&,,, which are defined by

_ n/2
(=" P(”)‘W(?) =
|n(F(1—x)):=mZ:1 7 Om. (CH XH,([(6,— 61)226,]Y?), (C7)
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where H,(z) is the Hermite polynomial ohth order. For
0,< 6, it is easy to show thaP(1) is negative(This caveat

PHYSICAL REVIEW D 62 036012

For smalla<1 and largeB>1 the factorial cumulant®,,
(with m<B) are approximately given by

has not been noticed i#%7,60.) This means that for situa-

tions where one finds tha,> 6,, there exists no underlying

statistical distribution which can be expressed solely in termsl.he higher factorial cumulants fon>B vanish

of the first “_’VO fact(_)rlal cumulants. . As a last reminder we consider a combined stochastic
Another interesting example we want to discuss for the

purpose of analyzing the findings in Sec. IV B is the case OProcess resilting in the discrete variable n, +n, by two
a shiftedPoisson distribution. Here, to some upper limit, thecompletely independent stochastic procesBggn,) and

resulting factorial cumulants are situated in logarithmic rep-PB(nZ)' The probability distributiorP s g(n) is then given

resentation on a curve, which can be described to a goo
approximation by a straight line. The shifted Poissonian dis-

On~a-B™. (C9)

tribution we introduce as

n’

(n")!

with a andB some positive constant. According to EG.1)
we have

P(n)=

e a '=0,1,..., (C§

(=x)"

m!

aB!
(B—m)!|

B
F(l—x)=ex;{ Z

1

>

ny,ny;
ny+n,=n

Paus(n)= Pa(ny)Pg(ny). (C10

With this one finds from the definitiofiC4) and (C1) the
factorial cumulants of the joined probability distribution
Paus(n) as

O = O+ 0. (C1Y
The factorial cumulants of the independently combined vari-
able are additive.
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