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Stochastic treatment of disoriented chiral condensates within a Langevin description

Zhe Xu* and Carsten Greiner†
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Applying a microscopically motivated semiclassical Langevin description of the linear sigma model we
investigate for various different scenarios the stochastic evolution of a disoriented chiral condensate~DCC! in
a rapidly expanding system. Some particular emphasis is put on the numerical realization of colored noise in
order to treat the underlying dissipative and non-Markovian stochastic equations of motion. A comparison with
an approximate Markovian~i.e., instantaneous! treatment of dissipation and noise will be made in order to
identify the possible influence of memory effects in the evolution of the chiral order parameter. Assuming a
standard Rayleigh cooling term to simulate aD-dimensional scaling expansion we present the probability
distribution in the low momentum pion number stemming from the relaxing zero mode component of the chiral
field. The best DCC signal is expected for initial conditions centered around^s&'0 as would be the case of
effective light ‘‘pions’’ close to the phase transition. By choosing appropriate idealized global parameters for
the expansion our findings show that an experimentally feasible DCC, if it does exist in nature, has to be a rare
event with some finite probability following a nontrivial and non-Poissonian distribution on an event by event
basis. DCCs might then be identified experimentally by inspecting higher order factorial cumulantsum (m
>3) in the sampled distribution.

PACS number~s!: 25.75.2q, 11.10.Wx, 11.30.Rd, 12.38.Mh
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I. INTRODUCTION AND MOTIVATION

The prime intention for ultrarelativistic heavy ion coll
sions is to study the behavior of nuclear or hadronic matte
extreme conditions such as very high temperatures and
ergy densities. One of the major goals, particularly at
upcoming BNL Relativistic Heavy Ion Collider~RHIC! fa-
cilities, is to find evidence for a new state of deconfin
partonic matter, the quark gluon plasma~QGP! @1#. In addi-
tion to the confinement-deconfinement transition one also
pects a transition of hot hadronic matter, where chiral sy
metry is being restored. Lattice calculations of quant
chromodynamics~QCD! give the belief that both transition
occur at the same critical temperatureTc at vanishing net-
baryon densities@2#.

The formation of the so-called disoriented chiral conde
sate ~DCC! @3# has been considered as maybe the m
prominent signature for the restoration of chiral symme
occurring in the ongoing evolution of the hot matter from t
chirally restored to the chirally broken phase. The idea h
is that in the course of the evolution of the system from
initially ~and only transiently existing! unbroken phase with
~the order parameter being! ^q̄q&'0 to the true ground stat
with ^q̄q&Þ0 the pseudoscalar condensate^q̄t g5q& might
assume temporarily nonvanishing values. This misalig
condensate has the same quark content and quantum
bers as do pions and thus essentially constitutes a clas
pion field. The subsequent relaxation of this field back to
alignment of the outside vacuum could then lead to an exc
of low momentum pions in a single direction in isosp
space.

*Email address: Zhe.Xu@theo.physik.uni-giessen.de
†Email address: Carsten.Greiner@theo.physik.uni-giessen.de
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The possible occurrence of a semiclassical and cohe
pion field was first raised in a work of Anselm@4# but the
idea of forming DCC was made widely known due
Bjorken@5# and Rajagopal and Wilczek@6#. Since then many
works have appeared on various aspects of DCC forma
in heavy ion collisions. As the microscopic physics gove
ing the chiral phase transition is not known well enough, o
typically employs effective field theories like the linears
model @6# in order to describe this nonequilibrium phenom
enon. On the other hand the description of quantum fi
theory out of equilibrium is interesting in its own right an
thus has given rise to a major attraction for theoretical st
ies in order to describe the evolution of disoriented chi
condensates@7#, such as, e.g., standard Hartree factorizat
or largeNc-expansion methods@8#. Usually these consider
ations assume an initial state at high temperature in wh
chiral symmetry is restored by vanishing collective field
Independent thermal fluctuations in each isospin direction
theO(4) s model are present. This configuration sits on t
top of the barrier of the potential energy at zero temperatu
so a sudden cooling of the system supposedly brings it
an unstable state. This picture is referred to as the quenc
situation@6#. The spontaneous growth and subsequent de
of these configurations would give rise to large collecti
fluctuations in the number of produced neutral pions co
pared to charged pions, and thus could provide a mechan
explaining a family of peculiar cosmic ray events, the Ce
tauros@9#. A deeper reason for these strong fluctuations l
in the fact that all pions constituting the classical and coh
ent field are sitting in the same momentum state and
overall wavefunction can carry no isospin@10#.

The proposed quench scenario@6# assumes that the effec
tive potential governing the evolution of the long waveleng
modes immediately turns to the classical one at zero t
perature. This is a very drastic assumption as the soft cla
©2000 The American Physical Society12-1
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ZHE XU AND CARSTEN GREINER PHYSICAL REVIEW D62 036012
cal modes completely decouple from the residual ther
fluctuations at the chiral phase transition temperature. S
an idealized scenario of immediate decoupling might h
effectively if the expansion and the associated cooling of
fireball occurs sufficiently fast@11#. An alternative, the an-
nealing scenario@13#, was suggested by Gavin and Mu¨ller.
They used the one-loop effective potential instead of
classical one including thermal fluctuations. For moder
expansion and cooling it was shown that the system
exhibit longer unstable periods and thus should lead eve
a stronger enhancement of the soft pionic fields. On the o
side, both scenarios assume that the initial fluctuation of
order parameter at the beginning of the DCC formation
centered around zero with a sufficiently small width in
rather ad hoc manner. Preparing the initial configuration w
stronger initial fluctuations, no DCC formation has been o
served@12#. If the soft field remains in thermal contact wit
the fluctuations giving rise to the one-loop potential, th
one also has to allow for appropriate thermal fluctuations
the initial conditions@14,15#. The proposed quenched initia
conditions within the linear sigma model seem statistica
unlikely.

The likeliness of an instability leading potentially to
DCC event during the evolution with a continuous cont
with the heat bath of thermal pions was investigated by B
and one of us by means of simple Langevin equations@16#.
There the average and statistical properties of individual
lutions were studied with the emphasis on such periods
the time evolution when the transverse massm' of the pionic
modes becomes imaginary and therefore an expone
growth of unstable fluctuations in the collective fields mig
be expected. It was found that for different realistic init
volumes individual events of an ensemble lead to someti
significant growth of fluctuations@16,17#. Subsequent inves
tigation by us in fact leads to the idea of stochastic format
of DCC for particular special stochastic evolution of the o
der parameter@18#.

This idea is what we want to detail in the present study
more depth. Our main conception is that the order param
before and after the onset of the chiral phase transition
interacts~dissipatively! with its ~nearly! thermal surrounding
of thermal ~or ‘‘hard’’ ! pions, which then give rise also t
large fluctuations in the evolution. This one can interpret a
breakdown of the standard mean-field approximation. App
ing a microscopically motivated semiclassical Langevin
scription of the linear sigma model we investigate for vario
different scenarios the stochastic evolution of a single dis
ented chiral condensate in a rapidly expanding system
suming a D-dimensional scaling expansion@11,13,14,16#.
Our stochastic description will allow for a systematic reco
ing of the statistically possible initial configurations of th
order parameter. Furthermore, it also describes the nontr
influence of dissipation and fluctuations on the nonequi
rium evolution and the coherent amplification on the colle
tive pionic zero mode fields during and after the onset of
phase transition.

It remains to answer the important question of how like
particular nonequilibrium evolutions of a statistically gene
ated ensemble will lead to the formation of a ‘‘large’’ DCC
03601
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domain, which will depend nontrivially on the initial an
subsequent fluctuations suffered by the surrounding in
course of the evolution. For this we calculate the effect
pion number contained in the pionic collective field eme
ing by the rolling down of the chiral fields to its true vacuu
values, which by subsequent emission will be freed as
momentum pions. With this number at hand we can make
decision whether accordingly these pions can contribute
an experimentally measurable enhancement of low mom
tum pions and thus might provide indeed a signal for
occurring chiral phase transition. As it turns out the probab
ity distribution in the pion number contains interesting ne
information for the characteristics of the nonequilibrium ev
lution stemming from the relaxing zero mode component
the chiral field. In the interesting cases the to be expec
yield in low momentum pions does not follow a usual a
simple statistical distribution, but possesses large and n
trivial ~non-Poissonian! fluctuations. The best DCC signal i
expected for initial conditions centered around^s&'0 as
would be the case of effective light ‘‘pions’’ close to th
phase transition. By choosing some idealized global par
eters for a (D5)3-dimensional, spherical expansion, o
findings show that an experimentally feasible DCC, if it do
exist in nature, has to be a rare event with some finite pr
ability following a nontrivial and non-Poissonian distributio
on an event by event basis. Comparing with an additio
incoherent background the fluctuations in the low mom
tum pion number might be revealed in the nonvanishing
higher order factorial cumulantsum (m>3). Admittingly,
we have to say that although we do stress a new phys
picture our study has still to be seen as a fairly idealiz
scenario. Nevertheless, we believe that our results are in
esting in their own right and should serve as a simplifi
estimate for the nontrivial late dynamics encountered in
ultrarelativistic heavy ion collision.

In the next section, Sec. II, we describe the linears
model within a Langevin treatment. For this we will firs
summarize the theoretical ideas behind a semiclass
Langevin description for the soft~i.e., low momentum! fields
in thermal quantum field theory. The hard modes are trea
as thermal quasiparticles which constitute a surround
open heat bath. We then discuss the model introduced in@16#
in more depth for simulating the evolution of the order p
rameter and the collective zero mode pionic fields. T
damping term entering the dynamical evolution will be d
cussed and a systematic recording of the statistically poss
initial configurations of the order parameter for finite vo
umes will be given. The final equations of motion to be us
for the dynamical evolution including aD-dimensional scal-
ing expansion for modeling the possible formation of DC
are then stated. As a characteristic for describing
‘‘strength’’ of a DCC we consider the effective pion numb
content of the evolving domain. Some particular emphas
will then be put first in Sec. III on the numerical realizatio
of colored noise in order to treat the underlying dissipat
and non-Markovian stochastic equations of motion. This
the best of our knowledge, is the first numerical treatmen
non-Markovian Langevin equations in thermal quantum fi
theory and might be of importance for other related topics
2-2
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STOCHASTIC TREATMENT OF DISORIENTED CHIRAL . . . PHYSICAL REVIEW D 62 036012
comparison with a standard Markovian~i.e., instantaneous!
treatment of dissipation and noise will be made. For the la
simulations it shows that it is sufficient to consider only t
Markovian approximation, which is numerically much eas
to handle. In Sec. IV we finally present numerical results
the simulation on the evolution of a coherent pionic fie
Four different scenarios, annealing or quench with init
conditions governed by effective ‘‘light’’ or physical mas
pions, will be investigated. We calculate the pion number
a single domain and the distribution of the pion numb
which are the observables relevant to the experimental de
tion of DCC, and which also will give quantitative predic
tion on the possibility of forming an experimentally acce
sible DCC. The unusual distribution in the number of lo
momentum pions is further analyzed by means of a cumu
expansion. To be more realistic we also take into accoun
additional incoherent~Poissonian! contribution on the pro-
duction of soft pions. Inspecting the resulting distribution f
the low momentum pion number we show that the high or
factorial cumulants can still be large. This provides a n
signature to identify possible DCC formation. Some conc
sions for possible experimental searches are drawn. We c
our findings with a summary. In Appendix A we give a m
croscopic derivation of the frequency dependence of the
sipation kernel being employed. Appendix B describes
more detail our strategy for simulating Gaussian nonwh
colored noise for an arbitrary noise kernel. Appendix C giv
a brief reminder on the cumulant expansion for statisti
distributions.

II. LANGEVIN DESCRIPTION
OF LINEAR SIGMA MODEL

In this section we develop in some more detail the Lan
vin description of the linears model introduced in@16,18#.
The starting point is the phenomenological Lagrang
which is given by

L5
1

2
]mfa]mfa2

l

4
~fafa2v2!21Hf0 , ~1!

wherefa5(s,p1 ,p2 ,p3). We employ the standard param
eter f p593 MeV for the pion decay constant,mp5140 MeV
for the vacuum mass of the pion andms'600 MeV for the
‘‘mass’’ of the s meson. For the three parameters in Eq.~1!
one then finds

l5
ms

22mp
2

2 f p
2

'20,

v25 f p
2 2

mp
2

l
5~87 MeV!2,

~2!
H5 f pmp

2 5~122 MeV!3.

The linears model represents an effective chiral theory
the low energy properties of QCD. It can be motivated
more theoretical depth from QCD by the modern methods
the renormalization group@19#. At finite temperature, to
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leading order inl, the thermal fluctuationŝdf2(xW ,t)& of the
pions ands mesons do generate an effective Hartree ty
dynamical mass giving rise to an effective temperature
pendent potential. In the high temperature expansion this
sults in @20#

mth
2 →

~T@mp ,ms!l

4 S N12

3 DT2 →
N54l

2
T2. ~3!

The resulting chiral phase transition is compatible with t
expectations of lattice gauge QCD calculations@21#. There
exist also convincing theoretical arguments@22# that the chi-
ral phase transition near the critical temperatureTc of QCD
with two massless quarks lies in the same universality c
as anO(4)-Heisenberg magnet and thus~in this idealized
case of massless quarks! exhibits a true second order pha
transition which can be described in the Landau-Ginzb
theory by means of an effective linears model. In this sense
one considers the linears model as an appropriate realiza
tion of the chiral behavior of QCD over the whole range
temperature, though the effective parameters nearT'Tc
need not really be equivalent to those atT50.

We now address in an intuitive model how one can
beyond the mean field level for the semiclassical chiral c
lective fields. Our main physical conception will be that t
order parameter and the collective fields before and after
onset of the chiral phase transition still interacts~dissipa-
tively! with its ~nearly! thermal surrounding of thermal~or
‘‘hard’’ ! particles. To outline these ideas more conceptua
we will first summarize in the following subsection the th
oretical reasonings behind a semiclassical Langevin desc
tion of the soft, i.e., low momentum fields.

A. Equations of motion for long wavelength modes
in a heat bath

One of the recent topics in especially non-Abelian ma
less quantum field theory at finite temperature or near th
mal equilibrium concerns the evolution and behavior of t
long wavelength modes. These modes often lie entirely
the nonperturbative regime. Therefore solutions of the c
sical field equations in Minkowski space have been wid
used in recent years to describe long-distance propertie
quantum fields that require a nonperturbative analysis. A
tification of the classical treatment of the long-distance d
namics of weakly coupled bosonic quantum fields at h
temperature is based on the observation that the average
mal amplitude of low-momentum modes is large and a
proaches the classical equipartition limit

n~vp!5~e\vp /T21!21 →
upu→0 T

m*
@1 ~4!

in the case for a sufficiently small generated dynamical m
m* !T. On the other hand, the thermodynamics of a clas
cal field is only defined if an ultraviolet cutoffkc is imposed
on the momentump such as a finite lattice spacinga. In a
recent paper@23# it was shown, at least principally, how t
construct an effective semiclassical action for describing
2-3
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ZHE XU AND CARSTEN GREINER PHYSICAL REVIEW D62 036012
only the classical behavior of the long wavelength mod
below some given cutoffkc , but taking into account also
perturbatively the interaction among the soft and h
modes. The resulting effective actionSeff@soft#, which one
has to interpret as a stochastic, dissipative action@23,24#,
turns out to be complex, leading to a stochastic equation
motion for the soft modes. If the hard modes are already
thermal equilibrium then the evolution of the soft modes
described by a set of generalized Langevin equations—
equations of motion corresponding to the above complex
fective action.

We briefly sketch the main strategy following@23# by
considering a scalar field with interactionLint5(g2/4!)f̃4.
The splitting of the Fourier components,f̃(p,t)5f(p
<kc ,t)1w(p.kc ,t), leads to the following interaction par
in the action:

Sint@f,w#52E
t0

t

d4xXg2

4!
w41

g2

3! S f3w1
3

2
f2w21fw3D C.

~5!

By integrating out the hard modes up to second order in
interaction, one obtains the effective action~or influence
functional! SIF@f,f8# for the soft modes following the
Feynman-Vernon approach@25#. Figure 1 shows the result
ing nonvanishing diagrams contributing toSIF . The contri-
butions from diagram~a! and ~b! are real and generate th
Hartree-like dynamical mass term. Moreover one notices
Feynman graphs contributing at orderO(g4) @diagrams~c!,
~d! and ~e!# to the effective action contain imaginary contr
butions. Their real part leads to dissipation~like in linear
response theory! whereas the imaginary part drives the flu
tuations of the hard particles on the soft modes. From
effective action semiclassical, stochastic equations of mo
result, which have the general shape

hf1m̄2f1
g2

3!
f31 (

N51

3
1

~2N21!!
fN21~Re G2N!fN

5 (
N51

3

fN21jN . ~6!

Here G2N denotes the effective contribution with 2N soft
legs, m̄2 the resummed Hartree-Fock self-energy~cactus
graphs! andjN are associated noise variables with a corre
tion ^jNjN8 &5Im G2N . These generalized Langevin equ
tions ~6! are similar in spirit to those obtained by Caldei
and Leggett in their discussion of quantum Brownian mot
@26#.

For the sake of simplicity we concentrate from now on
on the contribution of the sunset diagram~c! of Fig. 1, i.e.

FIG. 1. Feynman diagrams contributing to the influence act
SIF up to second orderO(g4) in Sint .
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theN51 contribution of Eq.~6!. Performing a Fourier trans
formation to Eq.~6! yields the semiclassical stochastic fie
equation for a soft mode with momentak @23,24#

f̈~k,t !1~k21m*
2
!f~k,t !1

g̃2

6 Ekc d3k1d3k2

~2p!6

3u~kc2uk2k12k2u!f~k1 ,t !

3f~k2 ,t !f~k2k12k2 ,t !

12E
2`

t

dt8G~k,t2t8!ḟ~k,t8!5j~k,t !. ~7!

G(k,t2t8) and j(k,t) denote the~real valued! dissipation
kernel and the noise source, respectively, due to the the
fluctuations of the integrated out hard particles. The dissi
tion kernel is related to the standard imaginary part of
sunset diagram via@24#

G~k,v![
2Im S ret~k,v!

v
, ~8!

which follows by a partial integration of

E
2`

t

dt8S ret~k,t2t8!f~k,t8!

522G~k,Dt50!f~k,t !

12E
2`

t

dt8G~k,t2t8!ḟ~k,t8!. ~9!

~The integration constant represents an additional mom
tum dependent shift in the dynamically generated mass
will be neglected further on.! The explicit calculation of the
dissipation kernel is given in Appendix A.

Within the present treatment the noise turns out to
Gaussian, but colored, characterized by the~ensemble aver-
aged! correlation function@23,24#

^^j~k,t !j~k8,t8!&&5~2p!3d3~k1k8!I ~k,t2t8! ~10!

or

^^j~k,t !j~2k,t8!&&[VI~k,t2t8!, ~11!

where the noise correlation strength is related via a gene
ized fluctuation dissipation relation to the dissipation ker
as

I ~v!5v
exp~\v/T!11

exp~\v/T!21
G~v! →

v!T

2TG~v!. ~12!

In the high-temperature limitv!T the noise acting on the
dynamics of the soft modes then satisfies the~entirely! clas-
sical relation

^^j~k,t !j~2k,t8!&&52TVG~k,t2t8!. ~13!

n

2-4
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STOCHASTIC TREATMENT OF DISORIENTED CHIRAL . . . PHYSICAL REVIEW D 62 036012
The fluctuation-dissipation-theorem ensures that the
modes approach thermal equilibrium precisely at the te
peratureT of the hard modes.

When the characteristic time scale in the evolution of h
modes in the heat bath is short compared to the one of
soft fields and its coupling to the soft fields is sufficien
weak, the appropriate~‘‘instantaneous’’! Markovian limit
then has a form@23#

2E
2`

t

dt8G~k,t2t8!ḟ~k,t8!'hḟ, ~14!

whereh5G(vk5Am21k2) in the linear, harmonic approxi
mation describes the familiar on-shell plasmon damping
~see also Appendix A!. In the semiclassical, high temperatu
limit and within the Markovian approximation the noise b
comes white, i.e.,

^^j~k,t !j~2k,t8!&&52TVhd~ t2t8!. ~15!

B. Effective description of zero mode in the linears model

In an ultrarelativistic heavy ion collision the idealized o
set of a ‘‘quench,’’ as assumed in@6#, is not really given.
Instead, one expects that the most dominant particles to
freed after the onset of the transition are the light pio
which represent a thermalized, further evolving syste
Their occupation in phase space is described via a Bose
tribution and cannot be correctly taken care of in a pur
classical field description. This environmental pion gas m
then actually expand rapidly enough~in longitudinal and
transversal directions! to allow for a nonequilibrium rolling
down of the chiral order parameter and giving potentia
rise to the formation of a DCC. In any case this gas
‘‘hard’’ pions does represent a heat bath with which the
der parameter and the long-wavelength coherent pionic fi
do interact. In this sense these collective modes represe
open system, which acts dissipatively and fluctuatively w
the environment. Referring to the general ideas outlined
the previous subsection one thus expects that the~assumed
ec
to
.
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semiclassical! dynamics of those modes can be described
means of appropriate Langevin equations. This intuit
gave the phenomenological basis for the equations of mo
used in@16#.

As we will argue in Sec. II D we expect that for realist
initial ~small! volumesV(t0) the zero mode (k50) pionic
fields will cover the dominant coherent pion modes to
possibly amplified in the course of a sufficient rapid evo
tion of the system. These three modes in fact do represen
pionic portion to the zero mode

Fa~ t !ª
1

VE d3xfa~xW ,t ![~s,p1,p2,p3!~ t !. ~16!

In the following we want to restrict ourselves to the effecti
description of this zero mode fieldFa, which formally cor-
responds to the limitkc→0 in the previous discussion.

In analogy to Eq.~7! we now propose the following ef
fective Langevin equations of motion for the zero mode

F̈01G@Ḟ0#1m'
2 F05 f pmp

2 1j0 ,
~17!

F̈ i1G@Ḟ i #1m'
2 F i5j i .

The temperature dependent one-loop transversal~‘‘pion’’ !
and the longitudinal~‘‘ s ’’-meson! mass for the respective
fluctuations@see also Eq.~3!# are given by@13–15#

m'
2 5lS F0

21(
i

F i
22 f p

2 D 1mp
2 1mth

2

5lS F0
21(

i
F i

21
1

2
T22 f p

2 D 1mp
2 , ~18!

m i
25m'

2 12lS F0
21(

i
F i

2D . ~19!

The dissipation functionalG@Ḟ# as well as the~semiclassi-
cal! noise will be treated either in the Markovian approxim
tion or within the full non-Markovian expression
G@Ḟ#5H hḞ ~Markovian appr.!,

2E
2`

t

dt8G~ t2t8!Ḟ~ t8! ~non-Markovian!,
~20!

^^ja~ t !&&50, ^^ja~ t1!jb~ t2!&&5H 2T

V
hdabd~ t12t2! ~Markovian appr.!,

2T

V
G~ t12t2!dab ~non-Markovian!.

~21!
ase

nd,
HereT denotes the temperature andV the size of the volume
of the considered system. It will be the major point of S
III to simulate non-Markovian Langevin equations and
compare them with the appropriate Markovian treatment
.
These coupled Langevin equations~17! resemble in its

structure a stochastic Ginzburg-Landau description of ph
transition@27#, especially for an overdamped situation@28#,

where theF̈ term can then be neglected. On the other ha
2-5
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FIG. 2. The temperature de
pendence of the magnitude of th

order parameteruFu5As21pW 2,
the transversal~pionlike! and lon-
gitudinal (s-like! mass at thermal
equilibrium for the physical case
of a nonvanishing pion mass an
the case without explicit chira
symmetry breaking (H50). The
averages are obtained over an e
semble of 103 realizations.
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with l'20 we are obviously not in a weak coupling regim
so that the formal apparatus laid down in the previous S
II A can only serve as a basic motivation. Semiclassi
Langevin equations may not hold for a strongly interact
theory as for highly nontrivial dispersion relations the fr
quencies of the long wavelength modes are not necess
much smaller than the temperature. Still, when the s
modes become tremendously populated one can argue
the long wavelength modes being coherently amplified
have classically@6#. Aside from a theoretical justification on
can regard the Langevin equation as a practical tool to st
the effect of thermalization on a subsystem, to sample a la
set of possible trajectories in the evolution, and to addr
also the question of all thermodynamically possible init
configurations in a systematic manner.

A physically motivated choice for the damping coefficie
and the dissipation kernelG we will state immediately be-
low. For the moment we stay to the Markovian case and t
h as an appropriate free parameter. The ‘‘Brownian’’ moti
of the soft field configuration leads to equipartition of t
energy at constant temperature. In Fig. 2 we show the ef
tive transversal massesm' of the pion modes andm i of the
s mode as a function of the temperature obtained by solv
Eqs. ~17! at fixed temperatureT and sufficiently large vol-
ume V. The masses shown are thus taken as an ense
average of the different realizations within the Langev
scheme. For larger volumes the fluctuations in the obtai
masses are of the order 1/V and thus small. For the situatio
that the vacuum pion mass is assumed to be zero~no explicit
symmetry breaking! one can realize from Fig. 2 the situatio
for a true second order phase transition occurring at the t
sition temperatureT5Tc[A2 f p

2 22mp
2 /l'125 MeV. On

the other hand for the physical situation of a nonvanish
pion mass ofmp5140 MeV the ‘‘phase transition’’ re-
sembles the form of a smooth crossover. In this case, aT
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'Tc , the s field still posseses a nonvanishing value
^s(T'Tc)&' f p/2'svac/2. ~In the large volume limit one

has^s&5^uFu& at fixed temperature, whereuFu5As21pW 2

denotes the magnitude of the order parameter.! Comparing
with results of lattice QCD calculations the transition tem
perature ofTc'125 MeV is considerably smaller than th
typical ones ofTc'150– 200 MeV. This one might correc
by using instead of Eq.~3! the value obtained by the largeN
expansion@8# as mth

2 [(l/3)T2 resulting inTc'154 MeV.
On a qualitative level the present description of the ch
phase transition is compatible with the expectation of latt
calculations. However, for the latter one finds that the ph
transition occurs in a much sharper window around the c
cal temperatureTc : slightly aboveTc the order paramete

^q̄q&;^s& already nearly vanishes; furthermore, sufficien
below Tc , the order parameter has merely changed to
vacuum value. This abrupt behavior around the critical te
perature is not realized within the present treatment of
linear s model, which obviously shows a much smooth
dependence with temperature. A more refined analy
within the linears model might account for this behavio
@29#.

We now turn our attention to specify the dissipation c
efficient h or damping kernelG of Eq. ~20! entering the
Langevin equations~17!. From a physical point of view they
should incorporate the net effect of the dissipative scatte
of the thermal~‘‘hard’’ ! pions with the collective fields. Its
value is thus also of principal interest for DCC formation
a ~too! large damping of the collective pionic fields wou
subsequently reduce significantly the amplitude of any
herently amplified pionic field@30# and thus might destroy
any possible DCC. Being consistent within the linears
model we consider here the ‘‘sunset’’ contribution@see Fig.
1~c!# as the dominant term for the dissipation, as it incorp
2-6
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STOCHASTIC TREATMENT OF DISORIENTED CHIRAL . . . PHYSICAL REVIEW D 62 036012
rates the net effect due to scattering of a soft mode on a
particle into two hard particles and vice versa. The on-sh
plasmon damping rate can then easily be evaluated in a
ogy to standardf4 theory to be

h5
9

16p3
l2

T2

mp
f Sp~12e2 mp/T! , ~22!

wheref Sp(x)52*1
xdt@ ln t/(t21)# ~see Appendix A!. As em-

phasized in@23#, the appropriate Markovian approximatio
in a weakly coupled theory just corresponds to this on-s
approximation. At first sight, in the present situation of
strongly coupled theory, one might think that this ‘‘choice
can only provide a rather crude estimate as the zero m
does not evolve on-shell during the~possibly unstable! evo-
lution. Hence the dissipation and noise correlation sho
better be described by non-Markovian terms includ
memory effects. For this we have to evaluate the comp
~off-shell! frequency dependence of the dissipation kern
This calculation we have shifted to Appendix A. As a furth
assumption we now take for the plasmon massmp the ‘‘pi-
onic’’ massm'(T) for the transversal fluctuations depicte
in the right upper plot of Fig. 2. This choice should be va
near or aboveTc as the transversal and longitudinal mass
become nearly degenerate. The thus resulting dissipation
efficienth of Eq. ~22! is shown in Fig. 3 as a function of th
temperatureT ~see also@32#!. With this prescription one
notes thath possesses a maximum value of'100 MeV near
the critical temperature, which will result in relaxation~or
equilibration! times of roughly 2 fm/c~compare also with
Fig. 7!. For sufficiently smaller temperaturesh decreases
fast to a negligible small value as the density of the therm
pions as potential scattering centers also falls rapidly w
decreasing temperature. This behavior is in line with findin
in @30#, where the on-shell damping coefficient has been c
culated by means of standard chiral pion scattering am
tudes in the vacuum.

Some critical remarks are in order:~1! It is questionable
that above the critical temperature all contributing degree
freedom are being considered. AboveTc one expects tha
due to the deconfinement transition occurring at the sa
critical temperature quarks and gluons are freed and
might have a considerable influence on the damping co

FIG. 3. The dependence of the friction coefficienth on the
temperature.
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cient of the collective, mesonic excitations.~2! The damping
coefficienth introduced in Eq.~22! should be appropriate fo
temperatures close toTc , where spontaneous symmet
breaking has just emerged. On the other hand, for a de
broken phase (T!Tc), the p1p→p1p scattering ampli-
tude will become significantly reduced by the addition
t-channel exchange of as meson, leading to the well known
chiral derivative coupling for lower transferred momen
This additional contribution for the deeply broken phase
have not taken into account and we thus overestimate
damping associated with the thermal scattering especially
low temperatures~see, e.g., for comparison the damping c
efficient given in@30#!. ~3! Moreover, for temperatures muc
below Tc the O~4! transverse and longitudinal mass for th
fluctuations are not equal anymore. From Fig. 2 one rec
nizes that belowT'100 MeV the longitudinal massm i ex-
ceeds two times the transversal massm' , so that the decay
of the longitudinal mode into two transversal particles b
comes possible. In vacuum this just corresponds to the de
s→pp @33,34# with a width on the order of a few hundre
MeV. This would give rise to an additional temperature d
pendent dissipation in longitudinal direction for the evolvin
order parameter and might also have interesting con
quences for the DCC formation investigated in Sec.
Qualitatively one expects that the associated damping
then effectively slow down considerably the rolling down
longitudinal ~i.e., ‘‘radial’’ ! direction of the order paramete
along the effective potential. We leave an implementation
this kind of longitudinal damping for future work.~4! A final
problem, which we briefly mention, concerns the chiral lim
mp50. Below Tc the pions remain as massless Goldsto
bosons~see also Fig. 2! and thes meson becomes degene
ate with the pion at and above the critical temperature. T
ing the expression~22! one notices that the dissipation coe
ficient h diverges like 1/mp . On the other hand, one expec
for a true second order phase transition a critical slow
down of the excitations near the critical temperature and t
a vanishing of the dissipation coefficient@31#. This then im-
plies that a perturbative evaluation is not valid but require
nonperturbative analysis via, e.g., renormalization gro
methods@31#.

Our discussion should demonstrate that a precise dete

nation of the description of the dissipation functionalG@Ḟ#
near the critical temperature is far from being settled. W
consider our choice as a physical motivation, and which
also numerically tractable.

C. Fluctuations of initial conditions at critical temperature

As a first and straightforward application we address
important question for the possible distribution of the ord
parameter~16! at the critical temperature for afinite system
with fixed sizeV. With the noise fluctuating according to Eq
~21! we expect~similarly like in Brownian motion! that the
chiral fields do fluctuate thermally around its mean as w
Assuming that slightly above the transition temperature
system is near thermal equilibrium, generating an ensem
distribution then offers a systematic sampling of all possi
2-7
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ZHE XU AND CARSTEN GREINER PHYSICAL REVIEW D62 036012
‘‘initial’’ configurations for the later dynamical evolution o
the order fields, which then lead to a stochastic formation
DCC.

In Fig. 4 we show first the sensitivity of the~ensemble!

FIG. 4. The temperature dependence of the magnitude of
order parameterF at thermal equilibrium for different volumes
The averages are obtained over an ensemble of 103 realizations.
03601
f

averaged value of the order parameter̂̂ uFu&&
5^^As21pW 2&& on various sizesV as function of the tem-
perature. As expected, finite sizes lead to a positive shif
the order parameter and to a~further! rounding of the phase
transition. In Fig. 5 the characteristic distributions of the c
ral fields and their ‘‘velocities’’ at the critical temperatur
are depicted. The average width scales like 1/AV. Such a
behavior has been reported already within an independ
approach in@35#. One might also employ the quantal versio
of the noise fluctuations according to Eq.~12!, which in the
Markovian on-shell treatment one would approximate as

I→ mp

V
h cothS mp

2TD d~ t12t2!. ~23!

Such a prescription results in even larger fluctuations. I
also interesting to look at the situation in the chiral lim
mp50. The characteristic distributionP(s) is given in Fig.
6. In this case the fluctuations are even larger and scale
fectively with 1/V1/4. @One can find analytically@16# that for
this casê ^s2&&51/2ATc /(lV), so that the width in the dis-
tribution P(s) thus has to scale withV21/4.#

In the next subsection we will now turn to the descripti
of the chiral fields for an expanding environment leadi
then to stochastic individual trajectories with considera
fluctuations and thus also for particular events out of an
semble possibly to experimentally accessible DCC can
dates. In a sense the ‘‘faith’’ of all individual trajectorie
~entering to some amount the unstable regionm'

2 ,0 @16#! is
not really predictable and has to be sampled in some qu
titative way as within our proposed Langevin picture. W
have to admit that one can certainly improve in various wa
on many aspects in describing phase transitions out of e

e

n

FIG. 5. Statistical distribution
of the chirals field and one of the
three pion fields for different finite
volumes. The temperature is take
as the critical temperatureTc .
The distributions are obtained
from an ensemble of 104 indepen-
dent realizations.
2-8
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STOCHASTIC TREATMENT OF DISORIENTED CHIRAL . . . PHYSICAL REVIEW D 62 036012
librium. Much retains to be learned about how these cond
sates evolve in out-of-equilibrium. Probably the most am
tious description on the quantal evolution of the chiral fie
in out-of-equilibrium has been developed by Niegawa@36#
employing the powerful closed-time-path~CTP! real-time
Greens function technique. It has to be seen whether
formal development can be used for practical simulatio
concerning DCC formation. Using the CTP technique, t
approach~as well as earlier developments in the same dir
tion @8#! is, by construction, an ensemble averaged desc
tion @24#, which can thus describe within sophisticated me
ods the dynamical evolution of~ensemble averaged!
expectation values. Unusual fluctuations, such as, e.g., in
pion number, as shown later here, can only be accounted
by higher order correlation functions. These are typically
considered. Our approach, we believe, states thus a fresh
way in order to account in a simple transparent manner
such unusual strong fluctuations and being far from a sim
Gaussian mean field treatment.

D. Modeling the evolution of potential DCC

In the following we will state the final equations of mo
tion for simulating the stochastic formation of possible DC
In the Markovian approximation these correspond to
ones proposed originally in@16#. As a later characteristic
quantity we will consider the pion number of the zero mo
contained in the evolving domain, which is assumed
roughly correspond to the effective number of soft pio
freed from the subsequent decay of the pionic fluctuatio
i.e., the final decay of the DCC.

It is instructive to first outline how possible DCCs wou
be formed in a heavy ion collision. This intuitive and idea
ized physical scenario will give some insight for the choic
of the value of the free parameters to be specified and
also give a perspective to understand the physical matte
be discussed in the following sections. Our picture of a p
sible DCC formation in high energy heavy ion collisions
as follows.

In the first stage of the collision~at proper timest
50.3 . . . 0.5 fm/c in the respective subvolume of the syste!

FIG. 6. Statistical distribution of the chirals field for different
finite volumes for the situation without explicit chiral symmet
breaking. The temperature is taken as the critical temperatureTc .
The distributions are obtained from 104 realizations.
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a parton gas is formed with a temperatureT@Tc well above
the chiral restoration point. Chiral symmetry is complete
restored in this hot region.

In the following (t52 . . . 3 fm/c!, because of the subse
quent collective expansion~longitudinally or later even
transversally! the temperature drops to around the critic
one (T'Tc) and some small chirally restored or alrea
slightly disoriented domains of collective pionic fields sta
to form together with a thermalized background
~quasi-!pions and possibly other thermal excitations with
the respective subsystem. The individual subsystems are
sumed to evolve independently as they are spatially se
rated and might be separated in rapidity. The possible dis
bution of the chiral~mesonic! order parameter then depend
on the size of the volumeV(t) of the individual domain, as
shown in the previous subsection.

At a further time (t053 . . . 7 fm/c! the temperature of a
~rapidly! expanding domain crosses the critical temperat
Tc , having a certain volumeV(t0). At the same time the
partonic gas would undergo the deconfinement-confinem
phase transition into the mesonic freedoms. The tempera
of the surrounding ‘‘heat bath’’ further decreases as the v
ume increases due to the collective expansion. At this st
chiral symmetry becomes spontaneously broken. The st
point of the order parameter characterizing the broken ph
moves from (s'0,pW '0) in the symmetric phase toward
(s' f p ,pW '0) in vacuum. This change happens fast if t
system expands sufficiently rapidly. A possible~but not nec-
essary! instability might arise depending on the actual~‘‘ini-
tial’’ ! values of the order fields@16#. In certain cases, de
pending crucially on the ‘‘appropriate’’ initial configuration
the order parameter can ‘‘roll down’’ in a ‘‘disoriented’
direction with a fixed orientation in isospin space, giving ri
to a large coherent collective pion mode. A potential DCC
formed. Possible DCC domains differ from each other in
orientation in isospin space, in the size and in the pio
content. A large DCC domain denotes here a large pio
content. Intuitively the order parameter in such a large D
domain will go through a trajectory deviating strongly fro
the s direction during the roll-down period. In any case
sufficiently fast expansion and cooling is mandatory for t
possible formation of larger DCCs.~Because of the explicit
symmetry breaking termHs, which, in analogy to a ferro-
magnet, acts as an external and rather strong constant
netic field, together with the dissipative interaction with t
heat bath, the order parameter will otherwise align more
less quasi adiabatically at its thermally dictated equilibriu
value along thes direction, if the experienced cooling is no
fast enough.!

With the ongoing~radial! expansion (t>10 fm/c! and due
to the explicit symmetry breaking the order parameter w
oscillate with decreasing amplitude around the stable p

^s&5 f p along the chiral circle (s21pW 25 f p
2 ). The expan-

sion will come to a halt at some freezeout time, the fireb
breaks off. The coherent semiclassical pion state within
possible DCC domain decays by the emission of long wa
length pions, with isospin distribution characteristic to DC
and which in number correspond approximately to the eff
2-9



. I
um
en
th
ro

of
at
do
o

re
o

by

-
n

ta

-
de

or

l

s
In
y

th
a

n

fi
r
-

gh

ial

ter-

s

the

eri-

or

ple

the
mal
e
ble

-

al

vo-

in
for
to
ti-
ro

rel-
e

mi-

ring

tive
e.
ns
his
the
d

e
ry

ZHE XU AND CARSTEN GREINER PHYSICAL REVIEW D62 036012
tive pion number stored originally in the coherent state
this number of the coherently produced low moment
pions is not too small compared with incoherent low mom
tum pions from other, random sources, constituting
‘‘background,’’ a careful event-by-event analysis can p
vide identification of the DCC formation.

In the following we want to investigate the evolution
the zero mode chiral fields in contact with the heat b
constituted by all the other modes solely in one single
main being created out of the initially hot region by means
equations of motion analogous to Eq.~17!. As outlined
above, of course, many of such domains might well be c
ated. We assume, for simplicity, that these individual d
mains are independent and do not further interact.

The ~rapid! expansion can be incorporated effectively
means of the boost-invariant Bjorken scaling expansion@37#
assuming that the order fieldsFa[Fa(t) depend on time
only implicitly via the proper time variablet5At22xe f f

2 ,
wherexe f fªz for (D5) 1-dimensional longitudinal expan
sion andxe f fªr for (D5) 3-dimensional radial expansio
@11,13,14,16,35,37,38#. In the equations of motion the
d’Alembertian is then replaced by]2/]t21(D/t)]/]t, giv-
ing rise to an effective Raleigh damping coefficientD/t.
This one might also interpret as an effective Hubble cons
@39# due to the volume dilution

V̇

V
2

D

t
50→V~t!5V~t0!S t

t0
D D

~24!

for the expanding volumeV(t) of the domain. In the quasi
free regime of a freely moving bosonic field the amplitu
then decreases in~proper! time with ;t2D/2.

From Eq.~17! we then receive the equations of motion f
the zero mode fields in an expanding environment as

F̈01
D

t
Ḟ01G@Ḟ0#1m'

2 F05 f pmp
2 1j0 ,

~25!

F̈ i1
D

t
Ḟ i1G@Ḟ i #1m'

2 F i5j i .

The dissipation functionalG@Ḟ# as well as the transversa
massm' do both depend on the temperatureT(t). The sto-
chastic noise fields obey Eq.~21!. One therefore also need
to know how the local temperature evolves with time.
principle one has to ask for the equation of state of the s
tem and solve for the hydrodynamic equations within
~assumed! D-dimensional scaling expansion. For the ide
case of a massless gas~which is not a too bad approximatio
for pions! an isentropic expansion results in

Ṫ

T
1

D

3t
50→T~t!5T~t0!S t0

t D D/3

. ~26!

We take this as an idealized guide for the temperature pro
T(t) with proper time.~One should note, however, that fo
temperatures aboveTc partonic degrees of freedom contrib
ute significantly to the equation of state and thus mi
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modify the here assumed profile substantially, if the init
temperature is chosen above the critical temperature.!

We note that the initial proper timet0 and the dimension
D of the expansion are here the important parameters de
mining the dynamics of the expansion: LargeD and smallt0
lead to a more rapid expansion and cooling. ‘‘Initial’’ i
meant here as the proper timet0 where the partonic gas
confines into the mesonic degrees of freedom and before
roll-down. We thus choose the critical temperatureTc as the
initial temperature.~We will also later comment briefly for
cases where we have chosen higher initial temperatures.! For
the ~unknown! initial volume V(t0) we will take V0
510– 200 fm3 as a reasonable range, which implies a sph
cal initial domain of radiusr 51.4– 3.6 fm.~Later we will
see that varying the initial volume will not lead to a maj
change in the final results within our model.!

In order to make a statistical analysis we need to sam

the initial configurationsFa(t0) and Ḟa(t0) at the initial
temperature in a systematic manner. As demonstrated in
last subsection we let the chiral fields propagate at ther
equilibrium for sufficiently long hypothetical times at th
initial temperature in order to generate a consistent ensem

of possible initial configurations forFa and Ḟa . The main
assumption here is thus then the hypothesis of~nearly! per-
fect thermal equilibrium for the initial chiral order fields be
fore the possible roll-down period.

In @16# the average and statistical properties of individu
solutions of the above Langevin equations~25! within the
Markovian approximation@cf. Eqs.~20! and~21!# have been
studied with the emphasis on such periods of the time e
lution when the transverse massm' becomes imaginary and
therefore an exponential growth of unstable fluctuations
the collective fields might be expected. It was found that
different realistic initial volumes individual events lead
sometimes significant growth of fluctuations. For the quan
fication of the resulting strength of the coherent pionic ze
mode fields and as an experimentally more direct and
evant quantity we consider in the following the effectiv
pion number content of these chiral pion fields. In the se
classical approximation this number is given by

np5
1

2
mpS pW 2~t!1

1

mp
2
pẆ 2~t!D V~t!. ~27!

This expression can be most simply obtained by conside
the energy density of the zero modeep;k5051/2(mp

2 pW 2

1pẆ 2). As pW 2(t) will be proportional to 1/V(t) at the late
stage of the evolution after the roll-down period,np(t) then
becomes constant at late proper times when the effec
pion massm' relaxes towards its physical vacuum valu
This constant number will be extracted from the simulatio
as the total pion number freed from the DCC decay. For t
effective pion number one crucial point is then how large
evolving volumeV(t) of the DCC domain has increase
when the pion oscillations have emerged.

We will now first employ our model to understand th
effect of the dissipation and the possible role of memo
2-10
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STOCHASTIC TREATMENT OF DISORIENTED CHIRAL . . . PHYSICAL REVIEW D 62 036012
effects on the evolution. We then further investigate with
different scenarios the statistical distribution in the result
pion number~27! and will propose a new signature of st
chastic DCC formation based on the cumulant expansion

At this point one might indeed worry why we only con
sider thek50 zero mode and not also some other long wa
length pionic excitations, which should also experience so
unusual amplification according to the general wisdom
DCC formation. From a principle point of view our mod
could be worked out or generalized to take into account a
some more long wavelength modes. The cutoff momen
should then be taken as 0,kc&Al f p'400 MeV to account
for the pionic modes who could possibly become unsta
and thus amplified. From the power spectrum shown in
work of Rajagopal and Wilczek@6# one notices that even
within the drastic quenched situation of instantaneous c
ing only the lowest discretized momentum mode becom
dominantly amplified, whereas the next higher lying pion
modes only show some moderate behavior. In the m
physical situation the inclusion of a thermally genera
mass termT2(t)/2 in the effective potential will cut down
even further the low momentum range for possible unsta
modes, i.e.,kc!Al f p . Furthermore also the volumeV(t0)
of an initial domain as chosen by us~at T'Tc) is much
smaller than in@6#, with a radius between 1.4–3.6 fm
Hence, in such a quantized picture of a finite volume onl
few Fourier modes except the zero mode could really
come unstable. We therefore expect that only the pionic z
mode can predominantly be amplified.

III. DISSIPATION: MARKOVIAN VS NON-MARKOVIAN
DESCRIPTION

In this following section we address on a quantitati
level the possible differences between the full no
Markovian treatment and the Markovian~‘‘instantaneous’’!
approximation for the dissipative~20! and fluctuating dy-
namics~21! within the Langevin model.

The exact non-Markovian functionalG@Ḟ# of Eq. ~20! at
a given temperatureT and plasmon massmp has been
worked out in Appendix A.~As also stated in the Appendi
we only consider in the present investigation the contribut
of thermal scattering to the dissipation functional, i.e.,
part denoted asg1 in the Appendix.! As ellaborated in@23#
and stated in Eq.~14! the appropriate Markovian limit for a
sufficiently weakly dissipatively interacting system results
the on-shell dissipation or viscosity coefficienth[G(v
5mp), i.e., Eq. ~22!. For the non-Markovian dissipationa
functional we therefore consistently choose for the plasm
massmp the temperature dependent transversal massm'

[mp(T) of the right upper picture of Fig. 2. Besides eval

ating a history dependent memory functionalG@Ḟ# to treat
the full non-Markovian dissipative dynamics, as a furth
complication one also has to face the problem of how
simulate colored~i.e., nonwhite! Gaussian noise for the fluc
tuating forces in order to be consistent with the underly
fluctuation-dissipation relation~13! or ~21!. Our strategy for
achieving a numerical realization of colored Gaussian no
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is briefly outlined in Appendix B. With this we can the
numerically solve the full non-Markovian equations of m
tion. The Langevin equations~17! or ~25! are then solved for
both cases by means of a standard third order multis
scheme, the Adams-Bashforth method@40#.

In a strong coupling theory like the linears model and
also for unstable situations encountered in describing p
sible DCCs the magnitude of the soft modesAufu2 might
vary sufficiently fast so that no dominant oscillatory fr
quency of the fields does occur and thus the Markov appr
mation should not hold. This gave the motivation for th
particular study. As it turns out, and as we will argue in t
following, however, for situations~and thus appropriately
chosen parameters forD and t0), where large and experi-
mentally significant DCC can occur, the distinction betwe
the two cases becomes more or less irrelevant. One can
incorporate the numerically much simpler Markovian tre
ment. On the other hand, to the best of our knowledge,
study represents the first numerical treatment of n
Markovian Langevin equations in thermal quantum fie
theory and might certainly be of importance for other rela
topics, e.g. in the description of phase transitions in cosm
logical settings by means of Langevin equations@41#.

A general expectation for the possible difference is t
the rate of thermalization, i.e., how fast the considered
evant modes do approach their thermal equilibrium prop
ties within the heat bath, might be substantially affect
This is best and most straightforwardly demonstrated
very simple classical examples like Brownian motion of
diffusive particle or oscillator. For a more systematic inve
tigation in this respect we refer to a future publication@42#,
where also the difference between ‘‘weak’’ and ‘‘strong
dissipative Langevin behavior for diffusive processes will
discussed.

Referring to our present model it is certainly interesting
study how fast the order fields can move~or ‘‘diffuse’’ ! to-
wards their equilibrium properties discussed in the previo
Secs. II B and II C.~A somewhat similar study for simple
Markovian dissipation has been previously carried out
@32#.! In Fig. 7 we show for various cases the relaxation
the ensemble averageds field ^^s&&(t), being initially dis-
torted by hand, towards its equilibrium valuês&eq(T)
~compare Figs. 2 and 4! in a surrounding heat bath at fixe
temperature. As constant volume we haven takenV05100
fm3. In the two upper figures we haven chosen as ini

values Fa(t50)5(0,p1'^uFu&eq(T),0,0) and Ḟa(t50)
5(0,0,0,0), i.e., an initial distortion of the chiral zero mod
fields in one particular pion direction along the effective
nite temperature dependent chiral circles21pW 2

5^uFu2&eq(T). In the upper figure the situation is depicted
the critical temperatureTc , whereas for the middle figure w
have takenT580 MeV. For this investigation we conside
103 independent simulations for taking the ensemble av
age. For both cases the averageds field follows a damped
oscillation along the effective chiral circle. For the Marko
ian simulation one sees that the relaxation towards equ
rium goes in accordance with the value of the dissipat
coefficient~22! depicted in Fig. 3. The non-Markovian evo
2-11
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ZHE XU AND CARSTEN GREINER PHYSICAL REVIEW D62 036012
lution now shows a slightly less damped relaxation towa
the equilibrium value, the difference being more pronounc
for the lower temperature. Qualitatively one can underst
this behavior by comparing the frequency spectrum of
dissipation kernelG(v) ~its reduced form is shown in Fig
19! with the on-shell damping coefficient used in the Ma
kovian approximationG(v)5G(mp)5h. This spectrum has

FIG. 7. Relaxation of the ensemble averageds field within a
heat bath at finite temperature for the non-Markovian and Mark
ian case. The upper and middle part correspond to the situation
physical pion mass, whereas the bottom one corresponds to the
without explicit chiral symmetry breaking (mp50). In this case we
depict the relaxation of the ensemble averaged magnitude of
order parameter. The averages are taken over 103 realizations.
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its maximum in frequency more or less exactly at the o
shell frequency, so that simulation carried out within t
Markovian approximation will result in an effectively large
damping and thus faster relaxation, since the effectively c
tributing frequency modesF(v) of the motionF(t) in the
full treatment are less damped~for vÞmp) than those in the
Markovian approximation.

Another interesting example is shown in the lowest p
of Fig. 7. Here we consider the relaxation of the order p
rameter, initially being distorted to its vacuum value, t
wards its equilibrium valuês&(Tc)5^pW &(Tc)50 at the chi-
ral phase transition without explicit symmetry breakin
Here both the effective massesm' andm i of the chiral fields
vanish, so that the effective potential does not posess
quadratic term. Looking again on Fig. 19 one would exp

from the behaviorḠ(v→0)→0 of the dissipation kernel for
low frequencies that within the non-Markovian treatment t
relaxation towards equilibrium will be much prolonged. Th
trend can certainly be seen from inspecting the figure. Ho
ever, the nonlinear effectivef4 potential drives the initial
relaxation comparable to the simple Markovian treatment
significant and steadily increasing reduction of the relaxat
rate sets in only at later stages of the evolution, when
effective potential really becomes flat. The complete rel
ation within the non-Markovian scheme shows thus a hig
nonlinear behavior.

We now go over to discuss the possible differences for
dynamics of the order parameter including the sim
D-dimensional expansion and cooling scenario discusse
Sec. II D in view of possible DCC formation. As the chara
teristic quantity we concentrate on the effective final pi
number np of Eq. ~27!. Potential DCC pionic modes ar
driven by the initial as well as the intermediate fluctuatio
experienced in the evolution.

Generally it is clear that dissipation will subsequently d
minish potential large pionic fluctuations and thus also
creases the strength, i.e., the pion number, of the pote
DCC candidate. Only a sufficiently fast expansion and co
ing, where the expansion and cooling rate is comparable
larger then the experienced damping rate, can counterbal
the effect of dissipation on the heat bath. To start to be m
quantitative let us consider first the Markovian descriptio
One has to compare the Raleigh damping termD/t ~the
effective ‘‘Hubble’’ parameter! with the dissipation or vis-
cosity coefficienth. Both associated terms in the equatio
of motion ~25! will diminish the amplitude of any pionic
fluctuations being built up during the roll-down period. O
the other hand, the effect of the Raleigh damping on the p
number contentnp is exactly counterbalanced by the volum
dilution ~24!. np being built up during the roll-down period
can thus physically only be decreased by the ‘‘true’’ dissip
tion experienced from the heat bath. Whether this dissipa
can act substantially depends on whether the damping c
ficient is comparable in magnitude to the Hubble parame

D

t
5

D

t0
S T

Tc
D 3/D

.

In Fig. 8 we compareh(T) with the Raleigh coefficient

-
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STOCHASTIC TREATMENT OF DISORIENTED CHIRAL . . . PHYSICAL REVIEW D 62 036012
D/t(T) for 3 sets of parameters of dimensionalityD of the
expansion and initial proper timet0. This serves as a roug
illustration how fast the expansion actually has to be for a
potential DCC candidates to appear. For some reason
choices ofD and t0 one can see that the Raleigh dampi
D/t will be sufficiently larger thanh, at least for later tem-
peratures below about 70 MeV. For a sufficient fast exp
sion D/t will be much larger thanh, so that the dissipation
due to the interaction with the heat bath cannot have
tremendous effect on the potential DCC candidates ex
for a slight hindrance on the evolution. The important thi
during the roll-down is that the fluctuation due to the no
will be large and can eventually enable a large disorienta
of the order parameter. For moderate or slower expans
however, when both damping coefficients become com
rable in magnitude after the roll-down period even for la
times, the dissipation will lead to an additional strong red
tion for the pionic fluctuations and thus for the pion numb
making DCC formation physically impossible.

In order to support these qualitative arguments we ca
late the average pion number~i.e., the sum of the pion num
ber of each individual event divided by the total number
events! and the pion number of the ‘‘most prominent’’ eve
within 103 independent events by solving the Markovi
Langevin equation~25! and compare those with the resu
obtained by solving the same equation but without the da
ing termh and the fluctuating noise.~The thermally distrib-
uted initial configurations are the same for both cases.! The
‘‘most prominent’’ event is meant here and in the followin
sections as the one where the final pion number is the lar
within the generated, finite ensemble. The ‘‘most prom
nent’’ event is at first, of course, of no direct statistical s
nificance. The error of its occurrence for a finite ensem
will indeed be very large. We explicitly show it for the rea
son to simply see what maximum magnitude in the p
number is possible within a finite total number of genera
events within one particular chosen ensemble.

The calculations are performed for different parameterD
andt0. Table I shows the results. For a discussion and p
sible motivation for the various parameters and their ac
physical relevance we refer at this point to the next Sec.

FIG. 8. Comparison of the friction coefficienth(T) with the
Raleigh damping termD/t.
03601
y
ble

-

y
pt

n
n,
a-
r
-
,

-

f

p-

st
-
-
e

n
d

s-
al
.

Here we want to stress that the results of Table I confirm
arguments: For the relative slower expansion the dissipa
due to the interaction with the heat bath destroys any p
sible large pionic oscillations and therefore leads only to
small total pion yield. In contrast, for a fast expansion t
dissipation has only a minor influence on the DCC form
tion. For these cases the damping coefficienth is indeed
rather small compared to the Raleigh coefficientD/t.

Now we can answer our primary question: Is there a
difference between the full non-Markovian treatment of t
dissipative dynamics compared to the approximate Mark
ian treatment on the possible formation of DCC. From o
findings at the beginning of this section we expect that
effective damping experienced by the memory effects wit
the non-Markovian case is moderately, but not significan
diminished.~‘‘Memory’’ indicates that the earlier stages o
the evolution influence the present motion of the order
rameter.! The answer is ‘‘frustrating’’ and simple. For
moderate expansion the pion yield from the DCC decay w
increase compared to the Markovian treatment, but o
slightly. In any case for such a situation the possible p
yield obtained within the simulations are too small to ha
any experimentally relevant consequence. On the other h

TABLE I. The resulting pion yield for the most prominent eve
and the average, respectively, obtained within different expan
scenarios simulated by the special choice ofD and t0. The calcu-
lations have been performed by using the Markovian Lange
equation~25!. The initial volume is chosen asV(t0)5100 fm3 for
all cases. For comparison we neglect the dissipation~‘‘no dissipa-
tion’’ !, i.e., taking the damping coefficienth and the noise as zero
during the dynamical evolution of the order parameter. The res
are obtained within an ensemble of 103 events.

~a! D51

t0 ~fm/c!

np : the most prominent event/average

with dissipation no dissipation

1 7/1.4 18/3.1
0.5 20/3 34/5
0.3 48/6 60/8

~b! D52

t0 ~fm/c!

np : the most prominent event/average

with dissipation no dissipation

4 6/1.6 13/2.5
2 22/3 24/3.7
1 75/8.3 64/8.3

~c! D53

t0 ~fm/c!

np : the most prominent event/average

with dissipation no dissipation

7 6.5/1.5 13/2.4
3 32/3.9 28/4
1.8 85/9 65/8.5
2-13
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FIG. 9. Statistical and normal
ized distribution P(np) of the
emerging final pion number and
the time evolution of the three pi
onic trajectories @„s(t),p i(t)…,
i51,2,3# for the most prominent
event within an ensemble of 104

realizations in both a Markovian
and a non-Markovian simulation
The trajectories start at the initia
proper time t050.5 fm/c. The
starting points are marked with
‘‘X.’’ The marks along the trajec-
tories are positioned at time inter
vals of Dt50.21 fm/c.
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for a sufficiently fast expansion~which might be speculative
or not to be realized in a relativistic heavy ion collision! and
for which more prominent DCC candidates will show u
~compare the next section!, the memory effects of the trea
ment of the dissipation and noise are not of particular s
nificance for the final pion number distribution.

As one particular example we show the outcome o
simulation for both cases in Fig. 9. We takeD51 andt0
50.5 fm/c to simulate a somewhat moderate expansion.~The
dimensionality parameterD51 for longitudinal expansion
simulates a rather slow expansion. On the other hand,
here chosen value oft0 is very small so that the initial cool
ing and expansion after the onset of the phase transitio
still rather fast. This value is definitely too small to be re
ized in nature. Typically one expects a few fm/c for the
onset of the phase transition. In the next section we will
that only a (D53)-dimensional expansion can lead to a
prominent DCC candidates for reasonable choices oft0.
Therefore one should not consider this present example
physically relevant scenario. Its purpose is merely to be
example which does indicate some differences between
non-Markovian and Markovian treatment.! In the upper part
the sampled distribution of the final pion number is sho
within 104 independent events. In the lower part the in
vidual trajectories (s,p i)(t), i 51,2,3, for the most promi-
nent event out of each ensemble are depicted. Clearly t
trajectories represent the ones expected intuitively for a
DCC event. This intuitive picture is further strengthen
when examing Fig. 10, where the evolution in time of t
transversal massm'(t) and the effective pion numbernp(t)
are depicted for the most prominent candidate within
Markovian simulation. One clearly recognizes that for th
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FIG. 10. The time evolution of the effective pion massm'(t)

and the effective pion numbernp(t) for the most prominent even
obtained in the Markovian simulation of Fig. 9.
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STOCHASTIC TREATMENT OF DISORIENTED CHIRAL . . . PHYSICAL REVIEW D 62 036012
candidate the evolution starts with an unstable situa
where the pion fields and thus also the pion number will
amplified significantly in the very first stage. The subsequ
minor decrease in the pion number is then attributed du
the further experienced damping.

The point to make here is that the pion yield of the m
prominent event as well as the average pion number in
ensemble are somewhat larger within the non-Markov
simulation. However, in sake of the variety of choices for t
parametersD andt0 and the associated wildly differing ou
comes~compare, e.g., Tables I and II!, a modification as
presented here is only of minor importance.

We certainly have now to answer what this torturing e
terprise for achieving a simulation of non-Markovian Lang
vin equations was good for. In general dissipation as wel
the associated noisy fluctuations are nonlocal phenomen
time leading to a memory functional over the past history
the system for describing the dissipation as well as to a fi
correlation in time of the noise. The more phenomenolog
Markovian and white noise approximation are generally u
in one way or the other as their numerical realizations
considerably more simple. Typically such an approximat
is justified in a loose sense when there exists a clear sep
tion of time scales between the slow degrees of freed
under consideration and the ones integrated out. At first s
this is not really given for our situation, though our inves
gation shows that one might indeed work with the mu
simpler Markovian approximation. It is also easy to imagi
that such a separation is not given either for a variety
interesting problems in other areas of physics where
wants to describe the effective dynamics of a system in te
of only a few ‘‘relevant’’ degrees of freedom. We therefo
believe that our investigation and in particular the numeri
realization of non-Markovian Langevin equations with co
ored noise is of general and principle relevance for sim
problems of classical or quantum dissipative systems in o
areas. In addition, our extensive discussion here underl
the importance of understanding the certainly complex di
pative nature of the chiral phase transition in more detail.
believe that our ‘‘choice’’ for describing the dissipation fo
the pionic fluctuations of the zero mode with the surround
heat bath is motivated by an intuitive physical picture. If,
the other hand, one can show that the experienced dissip

TABLE II. Pion number of the most prominent event and t
average obtained within the Markovian Langevin scenario for
ferent initial volumesV(t0). The averages are taken over 23103

events. The initial proper timet0 is also varied to simulate differen
expansion scenarios.

D53 andT(t0)5Tc

V(t0)\t0 3 fm/c 5 fm/c 7 fm/c 10 fm/c

10 fm3 33.2/2.9 13.6/1.8 6.5/1.5 7.2/1.4
25 fm3 62.8/3.7 13.4/2.0 7.0/1.6 5.3/1.4
100 fm3 30.0/3.8 13.6/2.1 6.7/1.6 6.4/1.4
200 fm3 25.0/3.7 11.1/2.0 7.4/1.7 5.5/1.4
03601
n
e
t

to

t
e

n

-
-
s
in
f
te
l
d
e
n
ra-
m
ht

f
e
s

l

r
er
es
i-
e

g

ion

for the pionic~transversal! fluctuations is in fact much stron
ger, then there is no chance at all for any DCCs to be form
in heavy ion collisions.

IV. STOCHASTIC FORMATION OF DCC

Although the inclusion of dissipation as discussed in
last section, Sec. III, gradually destroys on general grou
any possible large oscillations of the coherent pionic fie
during and after the roll-down period, there still should be
chance for a particular large pion yield originating fro
some ‘‘appropriate’’ initial fluctuations of the order param
eter and as well as from the subsequent fluctuations exp
enced. If the initial fluctuations are large, and if the sub
quent expansion during the roll-down of the order parame
is sufficiently fast, there should indeed be a considera
probability for a long-time large disorientation of the chir
fields away from thes direction during and shortly after th
roll-down period. This would then lead to a particular lar
final pion yield. As emphasized already in@16#, individual
statistical events will lead to sometimes significant growth
pionic fluctuations. In this sense the formation of a particu
‘‘large’’ DCC, i.e., with a sizeable amount of low momen
tum pions being emitted, can follow some unusual distrib
tion to occur because of the special stochastical and non
ear dynamical nature with a possible, temporarily onsett
instability. To answer this question of how often particul
events might occur with some unusual large pion yield,
investigate in the following the distribution of the pion num
ber for different DCC scenarios which differ from each oth
in the cooling or/and the sampling of the initial fluctuation
We will see that the distribution in the final pion numb
takes a nontrivial and non-Poissonian form, at least for
more speculative scenarios or parameters employed w
one might expect larger DCCs to occur. By means of
cumulant expansion of the resulting distributions we w
then show that the higher order factorial cumulants are e
still moderately large when allowing for an additional an
incoherent realistic background of low momentum pion
Therefore these unusual fluctuations might indeed be
served experimentally and thus provide a very interest
new signature for a nonequilibrium chiral phase transit
and the associated formation of DCC.

As a crude estimate for the maximum soft pion number
occur from the decay of a DCC one can think of a ‘‘true
DCC where the chiral order fields ‘‘circle’’ around with th

maximum amplitude aŝpW 21(1/mp
2 )pẆ 2&< f p

2 along the chi-

ral circle s21pW 2' f p
2 at some intermediate staget̄ after the

roll down in the evolution~compare with the lower part o
Fig. 9!. ~Due to the ongoing expansion in our model t
amplitude will then subsequently decrease due to the exp
enced Raleigh damping, so that at late times the chiral fie
will then only fluctuate around the vacuum value^s&
5 f p .) This will result in a coherent pion number density
np /V' f p

2 mp/2'0.08 fm23. For the total pion number the
crucial question is then how large has the evolving volu
V( t̄) of the DCC domain increased when the pion oscil
tions have emerged.

-
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FIG. 11. Statistical distribution
of the final yield in the pion num-
ber for four different scenarios
~see text! within a (D5)3-
dimensional scaling expansion
Each simulation has been pe
formed with 104 independent
events. The initial volumeV(t0)
5100 fm3 and the initial proper
time is taken ast057 fm/c. The
distributions are compared with
the corresponding Poisson distr
butions. The averaged pion num
ber in the Langevin, modified
Langevin, quench and modified
quench scenario are 1.66, 2.4
3.46 and 20.36, respectively.
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At this point we should give also another rough estim
of how many low momentum pions should emerge out
decaying DCC in order for a chance of experimental det
tion. In a relativistic heavy ion collision at RHIC one typ
cally expects around 1000 pions being produced per un
rapidity. On this ‘‘background’’ one has to look for a pec
liar and unusual enhancement in the pion spectrum at
transverse momentum to identify possible DCC formation
is thus clear that the number of emitted pions out of a
main should be somehow comparable to the number of b
ground pions for a particular small window of low transver
momentum. The expectation is that one should have a
plus of at least 50 pions stemming from a DCC per u
rapidity in a window ofpt,200 MeV in order to allow for a
promising detection@43# ~see also the schematic Fig. 16!.
This number should thus serve in the following as a rou
guide. We will come back to the experimental detection p
sibilities at the end of this section. For our above estimate
the maximum number of pions out of a domain this wou
mean that the intermediate volumeV( t̄) has to have in-
creased up to a value of about 103 fm3 when the order pa-
rameter has reached the chiral circle. This again implies
consider ~or demand! a rapid expansion, i.e., to consid
(D5)3-dimensional expansion and sufficiently small init
time t0, as already demonstrated in the last section~see
Table I! and which first was emphasized in other stud
@11,38#.

A. Different scenarios

In the following we will present numerical results for th
formation of DCC, i.e., the coherent amplification of the p
onic chiral order fields resulting in a final pion number~27!
being effectively emitted by the domain, for various para
eter sets and also for four somewhat different scenarios~see
also @18#!.

The first scenario we want to discuss is the ‘‘normal’’ o
already described in Sec. II D.
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Langevinor ‘‘annealing’’ scenario@13,16#: Like the dy-
namical calculations in the last Sec. III the initial configur
tions of the chiral fields~and their velocities! are sampled
statistically for an assumed thermal equilibrium at the init
temperatureT(t0)5Tc and an initial volumeV(t0), thus
covering a~nearly! complete set of possible initial therma
conditions. Fort.t0 the subsequent evolution of the chir
order fields for each individual realization of the sample
then described by the~Markovian! equations of motion~25!
within a D-dimensional scaling expansion according to E
~26! and ~24!.

Particular examples are listed in the Tables I and II and
Figs. 9–12 for various parameters D,t0 andV(t0). As out-
lined at the beginning of Sec. II D one expects that the ch
phase might set in at proper timest0'3 – 7 fm/c. Inspecting
Table I one recognizes that employing aD51 or D52 di-
mensional scaling ansatz either the average outcome^^np&&
or also the outcome for the most prominent candidate of
sample are unacceptable small for experimental detect
Only for theD53 case~see the tables and the figures list
above! individual and unusual events might occur for a sm
initial proper timet0<3 fm/c and which might be detect
able. This is the situation for a very rapid expansion a
cooling as noted the first time by Randrup@11#. We note,
however, that the average^^np&& is still only moderate even
for this rapid scenarios, i.e.,̂̂ np&&'324, and thus also
unacceptable small~see, e.g., the upper part of Fig. 12!. As
already stressed in@16#, for an experimental identification
this would imply to look for~rather! rare and unusual stron
fluctuations on an event by event analysis in certain rapid
and lowpt windows.

On the other hand, one can clearly recognize from
outcome that the original annealing picture proposed
Gavin and Mu¨ller @13# and assuming there a rather modera
expansion and cooling (t0'7210 fm/c! does not work as
the final pion number is by far too small~confer Table II!.
Experimentally significant DCCs cannot happen for this p
2-16
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STOCHASTIC TREATMENT OF DISORIENTED CHIRAL . . . PHYSICAL REVIEW D 62 036012
ture according to our calculations.
Inspecting Table II more closely, one recognizes at fi

sight maybe somewhat paradox behavior, that the averag
well as the pion yield for the most prominent candidate
each numerically generated ensemble do not show
strong sensitivity on the chosen initial volumeV(t0). This
result one can at least qualitatively understand as follo
The initial fluctuations of the chiral fields depend on t
initial volume as discussed in Sec. II C~see also Fig. 5!. For
a smaller initial volume the initial fluctuations become stro
ger. Hence there is a larger probability for the order para
eter to start to evolve against the positives direction into the
‘‘backward hemisphere.’’~For this see, e.g., the two ex
amples shown in Fig. 9. All ‘‘more prominent’’ candidate
do show a time evolution for the chiral fields akin to the on
depicted there.! For such a case the order parameter has
turn back during the roll-down so that period of large pion
fluctuations would be prolonged. This then gives rise to
larger disorientation of the order parameter. On the ot
hand, however, the volume of a DCC domain at the free
out time is accordingly smaller for the initial volume bein
smaller. Referring to Eq.~27! both trends seem to nearl
exactly counterbalance each other and hence lead to this
culiar behavior.

FIG. 12. Statistical distribution of the final yield in low momen
tum pion number within the Langevin~upper figure! and modified
Langevin~lower figure! scenario compared with the correspondi
Poissonian distribution. A fast expansion is simulated by choos
D53 andt053 fm/c. The upper distribution is calculated withi
104 events, whereas for the lower a sample of 105 independent
events has been chosen.
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We now turn to present a few results obtained for th
other, more speculative scenarios:

Quench scenario: The initialization atT5Tc follows
completely analogous to theLangevin scenario. However,
when switching on to the evolution fort.t0 including the
volume dilution~24!, we demand that during the expansio
the termlT2/2 of the effective potential in the equations
motion ~25! is being omitted as well as also the dissipati
term and the noise in order to mimic an abrupt occurrence
the zero temperature vacuum potential. Consequently
dissipation and the fluctuation vanish during the roll-dow
and the oscillation of the order parameter. Within this s
nario we try to simulate somewhat the picture proposed
@6,7#, where it is assumed that the effective potential bel
Tc changes quasi abruptly to the vacuum potential forT
50. However, the initial conditions, on the other hand, a
sampled at thermal equilibrium at critical temperatureTc .
We believe that this picture represents a strong idealiza
and probably is not likely to happen in an ultrarelativis
heavy ion collision. Due to the abrupt cooling there is like
more instability for the order parameter allowing for strong
final fluctuations.

Modified Langevinscenario: This scenario differs from
the Langevin scenario only in the sampling of the init
configurations. For the sampling we neglect the explicit c
ral symmetry breaking~i.e., H50; see Fig. 6!. On the other
hand, for the evolution att.t0 we employ the same equa
tions of motion~25! including the explicit symmetry break
ing. In the modified Langevin scenario the initial fluctuatio
are stronger than for the other two scenarios since the m
probable initial value of the order parameter is cente
around (̂ ^s&&50,̂ ^pW &&50) and the effective potential fo
this case is more flat. Hence the possibility for the ord
parameter to start its evolution towards the backward he
sphere is more likely to occur. One might argue that the
of the initial conditions prepared within this picture is inco
sistent within the linear sigma model with a physical pi
mass. When discussing Fig. 2 we noted that the phase
sition resembles a smooth crossover. From QCD lattice
culations, however, one knows that the chiral transitions h
pens much sharper within a very narrow window close
T5Tc . This means that it might very well be that the ord
parameter will~strongly! fluctuate around zero near the crit
cal temperature as mimiced by the present realization of
initial conditions. With this in mind one might consider th
present scenario even more realistic than the Langevin
nario following the simple minded linears model.

Modified quenchscenario: The initial configurations o
the order parameter are sampled as in the modified Lang
scenario. The dynamical evolution corresponds to the que
scenario.

In Fig. 11 we depict the distributionP(np) of produced
pions logarithmically within 104 events within the four dif-
ferent DCC scenarios. As parameters we chooseD53 and
t057 fm/c @13# andV(t0)5100 fm3, i.e., still only a rather
moderate expansion. As expected, the pion yields in
modified scenarios are larger than in the normal scenarios
the most prominent event as well as for the average. A co

g
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ZHE XU AND CARSTEN GREINER PHYSICAL REVIEW D62 036012
parison of annealing and quench scenarios, both with fi
and vanishing pion mass~for generating the initial condi-
tions! reveals that the most productive DCC events wo
lead for this set of parameters to a few~6–8 in annealing
scenario with finite pion mass!, to a moderate numbe
~20–40 in annealing scenario with zero-centered initial c
ditions or quench with massive pions! or to about 140 long
wavelength pions~in quench scenario with initial condition
generated by massless pions!, respectively. The final results
of course, mainly depend on how fast the effective cool
and expansion proceeds, i.e., on the value of the initial t
t0 and thus the overall initial Hubble constantD/t0 ~see also
Fig. 12!. In general one finds that for sufficiently fast expa
sion individual unusual strong fluctuations of the order
50–200 pions might occur in all the four scenarios, althou
the average number^^np&& of the emerging long wavelengt
pions only possesses a rather moderate~and likely undetect-
able! value of 5–20.

For a direct comparison we depict a Poissonian distri
tion

P~n!5
n̄n

n!
e2n̄, ~28!

where the mean valuen̄ is equal the averaged pion numb
^^np&& obtained numerically for each sample. With the ch
sen parameters of Fig. 11 the distribution of the pion num
for the Langevin scenario is indeed still similar to a simp
Poissonian distribution.~As mentioned above, for such
slow expansion the coherent pions produced from a D
decay would be washed out by the background of incohe
pions and thus could not provide any signature.! However,
for the other three cases the final distribution doesnot follow
a usual Poissonian distribution. This represents a very im
tant outcome of our previous@18# and the present, more de
tailed investigation! Fluctuations with a large number of p
duced pions are still likely with some small but fini
probability. In principle, an ensemble averaged descript
of potential DCC formation carried out within the mean fie
approximation, as presented in the various literature, can
account for such fluctuations and thus has to fail at so
point. We remark further that also the so called isospin ra
signal is close to that expected for a DCC event.

To demonstrate this interesting behavior of strongly n
Poissonian fluctuations even more pronounced, we sho
Fig. 12 the pion number distribution obtained within th
Langevin and modified Langevin scenario for a rather f
expansion (D53 andt053 fm/c!. These parameters are
line with the ones used in other studies@8,11,35,38#. Both
distributions differ strongly from their corresponding Poiss
nian distributions. The averaged pion number^^np&& are 3.9
and 18.5, respectively, and are both comparable to the va
obtained within the quench and modified quench scenari
Fig. 11. The appearance of particular events with very la
pion number~more than 200! is hereby attributed to the ini
tial fluctuations and the ones experienced during the r
down period.

This special and unusual statistical distribution~obtained
within the modified Langevin scenario! will be further ana-
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lyzed in the next Sec. IV B. We want to note at this poin
that Bjorken and collaborators@44# had speculated that th
final distribution in the pion number will arguably go beyon
a Gaussian~or Poissonian! distribution even when the DCC
fluctuations are generated by a Gaussian distribution for
initial condition parameters. This ‘‘expectation’’ is what w
have demonstrated now. The initial conditions~compare
Figs. 5 and 6! follow, more or less, a Gaussian distributio
whereas the final occurring distribution in, e.g., the pi
number strongly deviates from a Gaussian behavior for
~assumed! nonequilibrium situations, where the occurrin
DCC phenomena could be considered as experimentally
tectable. We also like to mention that Krzywicki and Serre
had recently found in a somewhat similar setting, followi
the model of@38#, that the so-called enhancement factor f
the final fluctuations also will follow some unusual and no
Poissonian distribution@45# ~see also@16#!.

There also had been the conjecture in the literature
the long wavelength amplification of the pionic fluctuatio
is not really driven by the ‘‘true’’ DCC phenomenon, bu
actually could be attributed to a parametric resonance be
ior driven by the late and final oscillations of the coherents
field @46,8#. This alternative idea we can at least qualitative
address. In Fig. 13 we show the statistical distribution of
final number for the ‘‘s ’’ quanta by means of an analogou
expression as Eq.~27!, i.e.,

ns5
1

2
msS „s~t!2^s&vac…

21
1

ms
2
ṡ2~t!D V~t!, ~29!

relaxing to a constant value in the late oscillations of thes
field in longitudinal direction around its vacuum value. Th
scenario and parameters chosen are the ones for the
pronounced situation of the lower part of Fig. 12. On t
average about̂ ^ns&&'3 s particles are produced, bu
within the sample also some events with more than 30s
particles can occur. Due to the potential vacuum decays
→pp ~with a width on the order of a few hundred MeV! the
existence of theses quanta would result on the average in
additional pions or, for the more pronounced events, up
more than 60 additional pions. This is a quite reasona

FIG. 13. Statistical distribution of the final number o
s-mesonic excitations within the modified Langevin scenario
Fig. 12 obtained within 104 events.
2-18
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STOCHASTIC TREATMENT OF DISORIENTED CHIRAL . . . PHYSICAL REVIEW D 62 036012
number, however, it is still considerably smaller than t
direct pions stemming from the true DCC as seen from
lower part of Fig. 12. So, if these lates oscillations really do
exist, because of energy conservation, the amount of p
being produced out of them, either thinking in a perturbat
way as a result of an individual decay of as quantum or
within the nonperturbative mechanism of parametric re
nance, the numbers of produced pions is found to be sig
cantly less than the direct ones of ‘‘true’’ DCC in all simu
lations carried out. We therefore are tempted to conclude
parametric behavior is not as efficient compared to
‘‘true’’ DCC phenomenon. On the other hand, we want
stress here, that these lates oscillations obtained in ou
simulations are actually a caveat of our model. As alrea
pointed out at the end of Sec. II B, exactly because of
possible decay modes→pp, one has in principle to accoun
for an additional temperature dependent dissipative term
longitudinal direction for the evolving order parameter. A
inclusion would in fact then accordingly continuously d
crease these ‘‘radial’’ oscillations because of the decay
pions @33,34#.

As a last investigation we consider the possibility that o
might prepare the initial conditions for the fluctuating chir
fields at some higher initial temperatureTi(t i)@Tc within
the Langevin scenario. The order parameters are then
tered more or less around zero@11#. Switching on to a rapid
3-dimensional scaling expansion one intuitively would e
pect that the chiral fields still would fluctuate around ze
when the system cools down at and below the critical te
peratureTc and thus providing somehow similar initial con
ditions like in the modified Langevin scenario. According
one would expect a more dramatic yield in the pion numb
comparable to the one obtained within the modified Lan
vin scenario. It turns out that this is not the case. We find t
the final yield follows more closely the result of the Lang
vin scenario with the initial conditions sampled atT5Tc , if
the parameters chosen for the initial timet i and initial vol-
umeV(t i) are adjusted in such a way that they exactly c
incide with t0 and V(t0) for the standard Langevin cas
whenT(t5t0) becomesTc . In Fig. 14 we show the statis
tical distribution of thes field and its temporal gradient a
t5tc53 fm/c for the case when the system was prepare
an initial temperatureTi5300 MeV. The final pion numbe
distribution ~not shown! looks more or less identical to th
upper part of Fig. 12, i.e., to the corresponding Lange
scenario being prepared atT5Tc . From Fig. 14 one notices
that indeed thes field is still more centered around zero tha
within the standard case~compare with Fig. 5!. However, the
distribution of the gradientṡ has shifted towards a nonvan
ishing positive value because of the forward drift expe
enced by the explicit symmetry breaking term. This shift
the later distribution atT'Tc then effectively influences the
outcome especially in the final pion yield distribution in
counteracting way compared to the naive expectation.

Summarizing this subsection let us highlight once m
the main outcome of our investigations: If in a heavy i
collision it will come to the formation of an experimental
detectable DCC domain—say with at least 50 low mom
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tum pions—it very likely has to be a rare event with th
average yield̂ ^np&&, stemming from the zero mode fluctua
tions from a single domain, still being considerably smal
than 50. A dedicated event-by-event analysis is then una
able. If, on the other hand, nature is more ‘‘obliging,’’
might also be that̂^np&&&50 ~as in some very speculativ
quench scenarios!, there exist again with some finite prob
abilities on the percent level some events which contai
multiple in the number of pions compared to the avera
One can consider those particular events as really unu
‘‘pion bursts.’’ Also for such a situation a dedicated even
by-event analysis is definitely desirable. For both case
possible detection of unusual fluctuations would prov
nontrivial evidence for the formation of DCCs and the ex
tence of the chiral phase transition. Of course, all this
speculation, as also the whole issue of possible DCC for
tion is. Which of the scenarios or assumed parameters
realized in nature one does not know. A slow or moder
expansion of the system within the Langevin scenario, wh
one may consider as the most physical one, will indeed
result to any verifiable signal. In the next section we w
discuss in more detail on the statistical nature of the unus
distributions found and on their experimental detection p
sibilities.

FIG. 14. Statistical distribution of thes field and its temporal
gradient at the timetc53 fm/c when the critical temperatureTc is
reached. The time evolution starts at a higher temperatureTi

5300 MeV with a 3-dimensional expansion in the Langevin s
nario. The volume attc is 100 fm3.
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ZHE XU AND CARSTEN GREINER PHYSICAL REVIEW D62 036012
B. Critical dynamical fluctuations

In the last subsection, Sec. IV A, we have demonstra
that the probability distribution in the number of the cohe
ently emitted soft pions from the DCC decay is nontriv
and non-Poissonian for a sufficiently fast expansion in
various scenarios presented. The statistical facets of t
unusual probability distributions are what we want to explo
in more detail in this last subsection.

Although in fact the distributions in the pion number fro
a DCC might be realized as such, one very likely can
prove these directly from the experimental measuremen
the unusual pion number abundances, as there are m
more pions emitted independently at the late stage of
ultrarelativistic heavy ion collision@43#. Since one expects
that the emission of the soft pions would be affected m
significantly compared to the moderate or high~transverse!
momentum pions, one has to consider to allow for a l
momentumpt cut in the data to enhance significantly~and
sufficiently! the signal to background ratio. With this at han
we will then show in the later part of this subsection th
indeed the unusual fluctuations might still be clearly visib
and thus provide a very interesting and new event by ev
signature for DCC formation to be analyzed via a cumul
expansion in the~to be! measured low momentum pion num
ber distribution in a given rapidity interval.

In order to account for the true higher order correlatio
of the statistical distributionP(np) we consider as a charac
teristic tool an expansion in factorial cumulantsum . For a
rather brief introduction and some further properties a
analysis we refer to Appendix C. The factorial cumulantum
of order m51,2,3, . . . represent the nontrivial statistica
m-point correlations of the distribution.

In @47# it was stated that so called bin-averaged facto
reduced cumulants for higher than two~i.e., m>3) are con-
sistent with zero when analyzing the particle multiplicity
~lighter! nucleus-nucleus collisions~and contrary to hadronic
collisions!. From this fact Elze and Sarcevic then motivat
to describe the occurring multiparticle density fluctuations
such reactions by means of a~Gaussian! three-dimensiona
statistical free field theory@47#, and suggested the conserv
tive view that no first or second order phase transition sho
be implied as long as there isno compelling evidence in the
data. Our situation, of course, is different as we~have to!
assume a rapid chiral phase transition to occur in orde
mimic the formation of DCCs.

With the probability distribution of the soft pion numbe
obtained numerically within our model we can calculate
factorial moments and subsequently the factorial cumula
In Appendix C we have stated explicitly the first six factor
cumulants expressed via the usual factorial moments of
distribution. In Fig. 15 we show the first sixreducedfactorial
cumulantsum /^np&m in a logarithmic scale for different ex
pansions simulated byD53 and varyingt0 within the modi-
fied Langevin scenario~see also the lower part of Fig. 12!.
Here^np&[^^np&&[u1 denotes the average pion number
the corresponding distribution. Each distribution, except o
was sampled by 104 independent events employing the Ma
kovian equations of motion. For the one remaining distrib
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tion ~with t053 fm/c! 105 events were generated in order
estimate the possible error. One immediately realizes
striking behavior that the higher order and reduced facto
cumulantsum /^np&m with m>3 are clearly nonvanishing
and in fact show an exponentially increasing tendency, as
each distribution the higher order reduced cumulants
more or less on a straight line in this logarithmic represen
tion. Comparing the results for the two distributions fort0
53 fm/c, where one was generated with a sample of 14

events and the second one with a sample of 105 events to
account for higher statistics, we can estimate the error for
higher lying factorial cumulants for a sample of 104 events to
be still in the order of factor of two. This can easily be trac
back to the obvious fact that the higher factorial cumula
depend most sensitively on the tail of the numerically ge
erated distribution with large multiplicityn. On the other
hand, the general trend of exponentially increasing redu
factorial cumulants is not affected by the higher statistic1

This behavior suggests a special sort of dynamical scalin
the ~at least! higher order factorial cumulants approximate
take the form

um'aeam^n&m, ~30!

wherea and a denote constant numbers, depending on
parameters chosen for sampling of the distribution, and^n&
[^^np&& just represents the average number of pions of
distribution P(np). With this asymptotic form~30! for the

1On our suggestion, an expansion in higher order cumulants in
distribution of the so-called enhancement factorA0, as given in
@45#, shows exactly the same tendency of exponentially increas
reduced cumulants@48#. As the model there is different from ours
this repeated finding points towards some ‘‘universal’’ behavior

FIG. 15. The reduced factorial cumulants form51 to 6 for the
pion number distribution obtained within the~Markovian! modified
Langevin scenario (D53) for different initial proper times. The
initial volume is taken asV(t0)5100 fm3. The average pion num
ber ^^np&& within 104 events are 54, 18.5, 4.8 and 2.4, respective
corresponding tot052, 3, 5 and 7 fm/c, respectively. In addition
the cumulants obtained for a distribution fort053 fm/c within a
larger sample of 105 events are also shown to estimate the nume
cal error.
2-20
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STOCHASTIC TREATMENT OF DISORIENTED CHIRAL . . . PHYSICAL REVIEW D 62 036012
factorial cumulantsum ~now assumed also form51 andm
52) one can actually invert the expansion and find the c
responding distributionP̄(n) giving rise to such characteris
tic factorial cumulants. This is briefly worked out in Appe
dix C. The resulting distribution, reflecting for the high
order factorial cumulants, is given by ashiftedPoisson dis-
tribution

P̄~n!5
an8

~n8!!
e2a, ~31!

wheren5(^n&ea)•n8 andn850,1,2, . . . . Asgenerallya is
positive and a small number—typically from the abo
slopes one hasa!1—and^^np&&ea is somemultiple of the
average number̂^np&&, the deduced distribution~31! pro-
vides a nice intuitive and intriguing picture for the unusu
events: Occasionally, a semiclassical ‘‘pion burst’’ with pio
numbernp5(^^np&&ea)•n8 is being emitted for some spe
cial events. These represent rare events as the distributio
n8 follows a standard Poisson distribution sharply peaked
n850. Such rare and unusual events are then in fact q
similar to the Centauro candidates@9#. We do not want to
push this interpretation too far, as smaller deviations fr
the straight exponential fit and, of course, the two low
factorial cumulants are not considered. Yet we believe t
this interpretation provides the right intuitive way of descr
ing the unusual strong fluctuations in the tail of the distrib
tion.

At this stage one might indeed ask for the physical ori
of such a peculiar and scaling-like behavior of the fluctu
tions. Here we can provide at present no definite answe
we can only rely on our numerical findings. For a giv
ensemble of initial configurations, the stochastic appro
presented in this work results in an ensemble of widely d
fering solutions. Since a Gaussian initial distribution in t
fields under the time evolution of a quadratic Hamiltoni
always stays Gaussian, we believe that the unusual final
tuations in the present case originate due to the partic
nonlinear evolution. In principle, the occurrence of some s
of peculiar scaling behavior in higher order factorial m
ments, is known~or speculated! for quite a time to show up
in the multiplicity fluctuations stemming from a quark
hadron phase transition~in hadron-hadron or heavy ion co
lisions! described within a simple phenomenologic
Ginzbug-Landau framework@49#. In this respect our findings
underline the necessity to learn more about the possible o
of a phase transition by a careful study of final multiplici
fluctuations.

On the other hand, one also clearly recognizes that
second order factorial cumulant increases drastically c
pared to any ‘‘usual Gaussian’’ second order cumulant
the order of the first order cumulant and thus defines a m
broader distribution. This increase inu2 is due to the fact tha
many trajectories of the sample enter temporarily the
stable region withm'

2 ,0. In fact for the more dramatic case
we haveu2@u1. In Appendix C we briefly show that for a
situation, whereu2.u1, there exists no simple statistical di
tribution which can be expressed solely in terms of the fi
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two factorial cumulants. This thus signals again that the s
tistical nature of the distribution is highly nontrivial.

It remains to shed light on the possibility whether su
unusual fluctuations can indeed also be reflected in the
mulant expansion based on the data measured in rea
trarelativistic heavy ion collision experiments. In the re
world one expects a huge ‘‘background’’ of pions not com
ing from the decay of a ‘‘large’’ DCC domain, as alread
outlined at the beginning of this Sec. IV. To illustrate such
background we show in Fig. 16 a schematic and qualita
expectation of a single event of the transverse momen
spectrum of charged pions within some definite rapidity
terval including a single hypothetical and sufficiently prom
nent DCC candidate. Such a spectrum has been schem
cally redrawn from a single simulated event of backgrou
pions to be expected at RHIC energies@43#. A ‘‘large’’ DCC
domain would eventually enhance the number of soft pio
in the pion spectrum at sufficiently low momenta~see Fig.
16!. The authors of@43# provide a detailed analysis that
allowing for a low momentumpt cut of pt,200 MeV in
some small and definite interval of rapidity~of order one! the
expectation is that one should have a surplus of at leas
pions stemming from a DCC per unit rapidity in such a wi
dow for a possible ‘‘direct’’ observation. Even in such
small window, however, if supposedly large DCC doma
occurs, there will be still a background of ‘‘normal’’ pions o
the order of 50 in average. Therefore the inherent fluct
tions of the background pion number in lowpt makes it
rather difficult to find out a clear trace of the DCC formatio
in the soft pion enhancement within one event. One then
to go to an appropriate statistical analysis for discover
possible unusual fluctuations. More importantly, as we h
stated in the last subsection, ‘‘larger’’ DCC domains a
more likely to be some rare events. We thus want to pur
in the following by means of the cumulant expansi
whether there is a possibility to look experimentally for u
usual fluctuations when allowing for some additional inc
herent and simple fluctuating Poissonian source produc
also low momentum pions and thus providing the ba
ground.

FIG. 16. Schematic and qualitative view of the transverse m
mentum spectrum of charged pions for one single event wit
some definite rapidity interval including a single hypothetical a
sufficiently prominent DCC candidate.~This spectrum has bee
schematically redrawn from a simulated event of background pi
to be expected at RHIC energies@43#.!
2-21
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ZHE XU AND CARSTEN GREINER PHYSICAL REVIEW D62 036012
By now there have been two experimental investigatio
to look for DCC events either in heavy ion reactions at
CERN-SPS@50# or in p2 p̄ collisions at the Tevatron a
Fermilab@51#. Both programs had so far a negative outco
in their searches. This might still well be due to the fact th
up to now no analysis employing a sufficiently small lo
momentum cut has been carried out. In addition, als
wavelet-type analysis, as originally been proposed by Hu
and co-workers@52#, might further help to look for the oc
currence of unusual events or—in respect to our pres
work—of unusual fluctuations in sufficiently small rapidi
and momentum windows. There exist also other clever s
gestions how to filter for the DCC events, see, e.g.,@53#.

At this step we want to provide a rough estimate in wh
range the typical rapidity interval is to be expected for t
pions to be emitted out of a single DCC domain. The sph
cal (D53-)scaling expansion ansatz in proper time was c
sen to mimic for the rapid expansion. In strict terms suc
scenario is fueled by everlasting sources and thus sh
break down at some later decoupling time as the whole
lision of two heavy ions does last only a finite time. Befo
‘‘freeze-out’’ the domains are separated from the outside
exterior vacuum by the surrounding and expanding mat
This deficiency of everlasting sources can be circumven
by a mapping of the idealized 3-dimensional boost-invari
evolution to quasifree, truncated sources evolving in norm
time at some decoupling time as shown by Bjorken and
workers @44#. Such a truncation of the evolution modifie
somewhat the final momentum spectrum of the emitted pi
@44#. In any case, within the idealized scenario evolvi
solely in proper time at least at the beginning of the evo
tion, a simple estimate for the rapidity interval is given b

Dh'
1

2
lnS 11vc

12vc
D ,

where vc5r (t0)/At0
21r 2(t0) and r (t0)

5@(3/4p)V(t0)#1/3. For the parameters employed@t0
52 – 7 fm/c andV(t0)510– 200 fm3# this estimate implies
a rapidity interval ofDh'0.221 for the low momentum
pions to be emitted, in agreement with general expectati

Suppose now that we have the following situation: T
soft pions are coming from either a DCC domain or, ind
pendently, from an incoherent~‘‘chaotic’’ ! source ~back-
ground!. Furthermore we assume the emission of the in
herent soft pions follows a standard Poissonian distribu
with the mean valuênp&P , i.e.,

PP
inc~n!5

~^np&P!n

n!
e2^np&P. ~32!

As the resulting~factorial! cumulants in the independentl
combined pion number distribution are additive~see Appen-
dix C!, the reduced cumulants can thus simply be written

um

^np&m
5

um
c 1um

inc

~^np&c1^np& inc!m
, ~33!
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where ‘‘c’’ denotes the coherent emission by a DCC sta
and ‘‘inc’’ the incoherent emission by the backgroun
source. Form>2 the cumulants related to the incohere
pion source do vanish by assumption of a Poisson distr
tion. ~We note that if there are more than one single dom
contributing within a considered rapidity and momentu
window, and if these are truly uncorrelated, the respec
cumulants of each independent source would then again
ply add up for the combined pion distribution.! Figure 17
depicts the resultingreduced factorial cumulants~33! ob-
tained for a single domain simulated with a fast expans
(D53, t053 fm/c, modified Langevin scenario; compar
with lower part of Fig. 12 and Fig. 15! and superimposed by
the inclusion of a background source with different me
values^np&P ranging from 20 to 200 incoherent addition
pions. The last numbers can either be seen simply as b
uncertainty and/or also as a result of lowering thept cut. The
additional Poissonian source basically lowers all the redu
factorial cumulants withm.1: As in its form ~32!, PP

inc(n)
has no factorial cumulantsum with m.1, the combined re-
duced factorial cumulants become smaller according
However, the higher order ones form>3 are still apprecia-
bly large if the background mean pion number is less th
about 100, especially with increasing numberm. If we con-
sider as an example the situation that^np&P is about 70, it
shows that for a slow expansiont057 fm/c the reduced
factorial cumulants of higher orderm>3 are still very small
(<1023). This basically reflects the suppression of the fe
coherent emitted pions compared to the large background
contrast, however, for a fast expansiont053 fm/c, as de-
picted in Fig. 17, where ‘‘large’’ DCC states are more like
to occur, thereducedfactorial cumulants of higher order ar
in the range 1 – 10 and thus should be clearly visible a
detectable.

We thus find that for sufficient fast expansion the reduc
higher order cumulants are still in the order 1–10, althou
the number of incoherently emitted pions might in avera
be 3–4 times larger as the averaged number of DCC pio

FIG. 17. The reduced factorial cumulants form51 to 6 for the
pion number distribution of low momentum pions stemming fro
two independent sources: A distribution stemming from a sin
emerging DCC taken from the lower part of Fig. 12~modified
Langevin scenario withD53 and t053 fm/c! and a Poissonian
distributed background pion source with different mean valu
^n&P520– 200.
2-22
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~In our particular last example we have^^np&&DCC518.5
compared tô np&P570.! We therefore conclude that an e
perimental analysis by means of the higher order facto
cumulants for the low momentum pion number distributi
provides a well-suited indication for the possible existen
~and to some lesser extent also for the identification! of any
DCC formation on an event-by-event analysis. Event-
event type analysis for getting additional new insight in t
underlying physics of heavy ion collisions~e.g., the process
of thermalization! has become quite popular over the last tw
years~see, e.g.,@54# and references therein!. In this respect
our work can be considered as a special and ultimate
nario of what to expect in case of a rapidly ongoing chi
phase transition associated with possible DCC state for
tion.

V. SUMMARY

In the present work we have elaborated in detail within
idealized, but microscopically motivated semiclassi
Langevin description on the statistical facets of the format
of possible disoriented chiral condensates during and a
the onset of the chiral phase transition expected to occu
ultrarelativistic heavy ion collisions. Within the Langev
treatment of the standard linears model, one can simulate
on an event by event analysis, the possible evolution of v
ous DCC scenarios in a rather transparent form. Our m
focus and objective has been to understand the physical
of dissipation and noisy fluctuations on the DCC pheno
enon. The advantage of the presented approach is th
contrast to common mean-field treatments, which can o
bring about a deterministic description for the~ensemble!
averaged evolution, it allows for any possible branching
the dynamical trajectories being especially important in
instability region. Our Langevin picture is based on micr
scopic input, although one can interpret the presented
proach more intuitively also in the spirit of the phenomen
logical Landau-Ginzburg description of phase transitio
Our ideas could also be taken over for situations advoca
a first order transition within the linears model @55#, in
order to study for such parametrizations of the effective te
perature dependent potential the influence of dissipation
fluctuation on the evolution of the order parameter inside
nucleating and growing bubbles.

The model, originally being first proposed in@16#, is
based on the very assumption that the high-momentum
ticles ~‘‘hard’’ fluctuations! of the chiral fields constitute a
heat bath which behaves locally thermalized in the expa
ing system. The interaction of the nonequilibrated ‘‘sof
chiral fields with this surrounding heat bath then gives rise
their stochastic and semiclassical evolution of Lange
type. Our main conception is that the order parameter as
as the pionic fluctuations before and after the onset of
chiral phase transition still interacts~dissipatively! with its
surrounding of thermal~or ‘‘hard’’ ! pions, which then results
in large and tremendously differing fluctuations during t
evolution. Furthermore we have concentrated solely on
effective dynamics of the collective zero mode~order param-
eter and pionic fluctuations!. We have argued, that, if at al
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the zero mode pionic fluctuations become most unstable
ing the roll-down period and thus are the ones being p
dominantly amplified for realistic initially small sized an
separated expanding domains. The overall picture of poss
DCC evolution resembles the one proposed by Bjorken
co-workers@5,44#.

As a first application we considered the finite size fluctu
tions of the order parameter and the chiral pionic fields fo
given volume and temperature, resulting in a further smoo
ening of the crossover behavior around the critical tempe
ture within the employed linears model. The Langevin de-
scription provides a powerful and simple tool for generati
in a systematic and efficient manner a canonic sample
statistically possible configurations at a given temperatureT.
As a reasonable~or minimal! assumption we consider th
order parameter and the chiral fields to be likely therma
distributed when the phase transition during the later exp
sion starts to occur. This sampling of possible initial config
rations contrasts to the ad hoc guesses for the initial co
tions made in many of the previous works on DCC phys
and thus enables us to investigate characteristic statis
properties of DCC formation.

We have then concentrated on the dynamical evolution
one single domain during and after the onset of spontane
chiral symmetry breaking at the later stages of the initia
very hot system expected to occur in ultrarelativistic hea
ion collisions. Because of the collective expansion at th
later stages, the temperature will subsequently drop be
the critical one, and smaller, originally chirally restored d
mains~assumed to be independent being separated spa
and in rapidity! start to form together with a thermalize
background of~quasi-!pions and possibly other hadronic e
citations within the respective expanding subsystem.
D-dimensional scaling expansion was employed to acco
for the collective expansion resulting in an additional Ra
leigh or Hubble like damping term within the stochas
equations of motion.

We stressed the important issue of the physical effec
dissipation on the pionic fluctuations for any possible DC
evolution. For the quantification of the resulting strength
the coherent pionic zero-mode field and as an experimen
more direct and relevant quantity we considered the effec
pion number contentnp @via Eq. ~27!# of the emerging final
oscillations in the chiral pionic fields. The dissipation kern
has been calculated by means of a standard finite temper
field theory technique and is directly associated to the
verse thermal scattering rate of the soft mode on the ther
particles. Our analysis clearly shows that the~rapid! expan-
sion, i.e., the Hubble damping term, has to be at leas
efficient in order to compensate for the true dissipation. Fo
larger dissipation coefficienth the final yield in the pion
number would be correspondingly smaller, as the dissipa
damps accordingly faster any large DCC like pionic fluctu
tions which have possibly emerged after the roll-down. A
though our estimate for the dissipation close to the criti
point is inspired by physical arguments, further understa
ing of the certainly complex dissipative nature of the chi
phase transition is crucial: If one can show that the exp
enced dissipation for the pionic~transversal! modes close to
2-23
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ZHE XU AND CARSTEN GREINER PHYSICAL REVIEW D62 036012
the transition point is in fact much stronger than the one
have employed, then there is definitely no chance at all
any DCC signals to be seen in heavy ion collisions. On
other hand, as emphasized at the end of Sec. II B, in
deeply broken phase much below the critical temperature
associated dissipation for the pionic fluctuations will c
tainly be reduced by the additional chirals-meson exchange
for the (p –p)-scattering amplitude as compared to our e
ployed estimate. For the deeply broken phase then also
decays→pp becomes possible giving potentially rise to
much stronger dissipation for the fluctuations in longitudin
direction. All this might very well at least quantitatively e
fect some of our results and conclusions presented conc
ing the possible survival of DCC states and would require
even more involved and detailed calculation.

In addition, we also have described~in Appendix B! how
to numerically realize colored noise in order to treat the
derlying dissipative and non-Markovian stochastic equati
of motion. In general dissipation as well as the associa
noisy fluctuations are nonlocal phenomena in time. This
the best of our knowledge, is the first numerical treatmen
non-Markovian Langevin equations in thermal quantum fi
theory and might certainly be of relevance for other rela
topics.

In the last section we have then given a comprehen
numerical study for the possible formation of DCC, i.e., t
coherent amplification of the pionic chiral fields, for vario
parameter sets and also for four somewhat different s
narios. It shows, as pointed out the first time by Rand
@11#, that a rather rapid expansion is mandatory to have
significant chance for obtaining ‘‘large’’ DCCs which the
might lead to some experimental consequences. On the o
hand, our analysis has provided the at first sight more pe
mistic view, that even then, a DCC event has very likely
be an unusual and rare event. Theaveragecharacteristic
^^np&&, i.e., the average number of low momentum pio
being emitted of the final pionic modes, shows only a mo
erate behavior, which then should result, on the average,
mild increase of the transversal low momentum spectrum
the pions. As we have argued, such a mild increase is p
ably tremendously difficult to observe directly and una
biguously from the average momentum spectrum of pion

However, the statistical distributionP(np) of emitted
pions shows a striking non-Poissonian and nontrivial beh
ior. There exist within some still finite probability some ra
and unusual events which contain a multiple in the num
of pions compared to the average. As pointed out in
subsequent analysis of the statistical nature of such distr
tions, one should indeed interpret those particular event
unusual and semiclassical ‘‘pion bursts’’ similar to the my
tique Centauro candidates@9#. This result suggests a ver
important conclusion: If DCCs are being produced, an
perimental finding will be a rare event following a strikingl
nontrivial and non-Poissonian distribution. A dedicat
event-by-event analysis for the experimental programs~e.g.,
the STAR TPC at RHIC! is then unalterable.

We clearly have to say once more, that, of course, all
above conclusions represent speculation, as also the w
issue of possible DCC formation is. Which of the scenar
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or assumed parameters considered in our work are realize
nature one does not know. Any slow or moderate expans
of the system will indeed not result in any verifiable sign
In addition, because of the various approximations and i
alized scenarios considered, our work should not be see
directly comparable to any experimental data. In this resp
our final last theoretical conjecture, which we now want
summarize, has to be seen as a fascinating and experim
tally possible guideline for a future analysis of the pion sp
tra to be taken at RHIC or already taken at CERN Su
Proton Synchroton~SPS!, if DCC-like phenomena occur in
ultrarelativistic heavy ion reactions.

For any meaningful experimental identification our resu
imply to look for rare and unusual strong fluctuations on
event by event analysis in certain rapidity and sufficien
low ^pt& windows. The further analysis of the unusual d
tribution in the pion number associated to a rapid chi
phase transition we have invoked by means of the facto
cumulantsum , which represent a powerful tool, well-know
in the analysis of final multiparticle fluctuations in high e
ergy hadronic reactions. We have found the striking behav
that the higher order and reduced factorial cumula
um /^np&m with m>3 show an abnormal, exponentially in
creasing tendency. This we consider as the most impor
outcome of our extensive investigation. In addition, we a
found that the second order factorial cumulantu2 increases
dramatically compared to any ‘‘usual’’ Gaussian distrib
tion, thus characterizing a much broader distribution. T
broadening reflects the fact that many trajectories of
sample have entered temporarily the unstable region. In
dition, we have allowed that on top of the pions emergi
from the decay of collective pionic modes a further incoh
ent and Poissonian background source of low momen
pions might in fact overshadow or even completely wash
these striking characteristics. As it turned out, however,
reduced higher order factorial cumulants are still of the or
1 – 10, if the number of incoherently emitted pions is alrea
on average 3–4 times larger than the average numbe
DCC pions.

We therefore strongly advocate that an analysis by me
of the higher order cumulants serves as a new and powe
signature to identify any unusualities associated with pot
tial DCC formation. Of course we are aware that our la
analysis assumes that within each window in momentum
rapidity, where the experimental analysis is considered
DCC-like phenomenon with conditional probability equal
one has occurred. This might not be the true case. Howe
we believe that our suggestion for future experimental ana
ses is in fact rather ‘‘simple’’ to carry out and represen
most likely the only way to find~any! evidence for unusu-
alities in the low momentum pion spectra. If such an analy
turns out to be negative, there is probably no other chanc
look for the DCC phenomenon.
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APPENDIX A: THE DISSIPATION KERNEL G„kÄ0,v…

In this appendix we evaluate the frequency dependenc
the dissipation kernelG(k50,v) used in Sec. III for study-
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ing the non-Markovian dissipative evolution of the chir
fields.

For this we had employed thesunsetdiagram from stan-
dardF4 theory generalized to the presentO(4) case, which
will result in a different numerical coefficient and will b
specified at the end of the appendix.

In theF4 theory the respective dissipation kernel for so
modes~with uku<kc) interacting with the hard modes~with
uku.kc) separated by a momentum cutoffkc is given as

G~k,v!5
iM~k,v!

2v S [
2ImS ret~k,v!

v D , uku<kc ,

~A1!

where the memory kernelM introduced in@23# reads
iM~k,v!5
p

24
g4E

kc

d3q1d3q2

~2p!6

1

v1v2v3
u~ uk2q12q2u2kc!$@~11n1!~11n2!~11n3!2n1n2n3#d~v2v12v22v3!

1@~11n1!n2~11n3!2n1~11n2!n3#d~v2v11v22v3!1@n1~11n2!~11n3!2~11n1!n2n3#

3d~v1v12v22v3!1@n1n2~11n3!2~11n1!~11n2!n3#d~v1v11v22v3!

1@~11n1!~11n2!n32n1n2~11n3!#d~v2v12v21v3!1@~11n1!n2n32n1~11n2!~11n3!#

3d~v2v11v21v3!1@n1~11n2!n32~11n1!n2~11n3!#d~v1v12v21v3!

1@n1n2n32~11n1!~11n2!~11n3!#d~v1v11v21v3!%, ~A2!
-

q.
on-
me.
the
ctor
e to
rmal

st
te
and q3ªk2q12q2 , v i5vqi
, ni5n(v i)51/(ev i /T

21), i 51,2,3. The dispersion relation for the hard mod
is taken asvq5Aq21mp

2, wheremp denotes the dynamica
mass.iM(k,v) represents the net absorption rate for s
modes due to the interaction vertex of a soft mode with th
hard particles. The first and the last term of Eq.~A2! corre-
spond to the decay of one soft mode into three hard mo
and the inverse process. The other six terms correspon
the scattering processs1h↔h1h.

For our study of stochastic DCC formation we co
structed an effective model for the chiral zero mode fields
that for the present purpose we takekc50 and thus need
only to calculateiM(k50,v). Evaluating thed function we
will reduce the six dimensional integral of Eq.~A2! to a
1-dimensional integral which we then treat further nume
cally. In principle this task had already been performed
Wang and Heinz@56# investigating the 2-loop resumme
propagator for hotF4 theory. However, repeating the ste
in their tedious derivation we found out that some particu
kinematic boundaries of the integration variables were
extracted correctly. In the following we sketch the ma
strategy and then state the final result for the considered
sipation kernel.

It is easy to see thatiM(k,v) is antisymmetric inv and
s

t
e

es
to

o

-
y

r
t

is-

thereforeG(k,v) is symmetric. We thus only have to con
sider the case forv>0. In this case the contributions from
the 4th, 6th, 7th and 8th terms in the curly brackets of E
~A2! are identical to zero. In addition one sees that the c
tributions from the 2nd, 3rd and the 5th terms are the sa
Moreover, one can convince oneself that the yield of
respective absorption processes just gives a common fa
ev/T compared to the respective emission processes du
the standard detailed balance relation for systems at the
equilibrium. With these observations we have

iM~0,v!5
p

24

g4

~2p!6
~ev/T21!E d3q1d3q2

1

v1v2v3

3$3~11n1!n2n3d~v1v12v22v3!

1n1n2n3d~v2v12v22v3!%. ~A3!

We now outline our strategy by manipulating the fir
integral in Eq.~A3! which corresponds to the emission ra
of the scattering processh1h→s1h. This integral can be
reduced to a 3-dimensional integral
2-25
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g1~v!ª3E d3q1d3q2

~11n1!n2n3

v1v2v3
d~v1v12v22v3!

524p2E
0

`

dq1dq2E
21

1

dtq1
2q2

2 ~11n1!n2n3

v1v2v3
‘

3d~v1v12v22v3!, ~A4!

wheret5cosu andu denotes the angle betweenq1 andq2.
For the energy conservation stated by thed function one has

v1v12v25v35Aq1
21q2

212q1q2t1mp
2 ~A5!

due to the momentum conservationq11q25q3. Equation
~A5! represents the kinematical constraint among the v
ablesq1 , q2 and t. In order to determine from this equatio
for a given frequencyv the kinematic boundaries forq1 , q2
and t we take its square yielding

~F~q2 ,t !ª !
~v1v1!22q1

2

2~v1v1!
2

q1

v1v1
q2t5Aq2

21mp
2

5v2~q2!. ~A6!

Taking q1 as the most outer integration variable we no
consider it as a fixed constant and concentrate first on
variablesq2 andt. The left side of Eq.~A6!, which we define
as a functionF(q2 ,t), represents a straight line inq2 with
different inclination for different values oft. All straight
lines for differenttP@21,1# cut atq250. Then the solutions
of Eq. ~A6! for a fixedq1 ~and givenv) are the points where
the bundle~in t) of straight linesF(q2 ,t) cutsv2(q2). There
are three cases to distinguish and which are classified by
position of F(q2 ,t) at q250: ~case I! F(q250,t)>mp ;
~case II! 0,F(q250,t),mp ; and~case III! F(q250,t)<0.
Figure 18 illustrates the different situations for the thr
cases and shows the kinematic boundaries ofq2 and t.

We have to remark that the solutions of Eq.~A6! do not
necessarily fulfill the original constraint~A5!. Therefore one
has to insert back the solutions into Eq.~A5! and check
whether they indeed satisfy Eq.~A5!. One finds out that the
solutions of case III do not obey Eq.~A5! ~as v1v12v2
,0).

The kinematic boundaries for the integration variableq2
are

q2
s15

1

2
„AB~v,q1!2q1…, q

2
s185

1

2
„AB~v,q1!1q1…,

q2
s25

1

2
„2AB~v,q1!1q1…, q

2
s285

1

2
„AB~v,q1!1q1…,

where@56#

B~v,q1!5
~v1v1!2@~v1v1!22q1

224mp
2#

~v1v1!22q1
2

.

03601
i-

e

he

In order to satisfy the classification for case I~II ! one finds
from the definition ofF(q250,t) of Eq. ~A6! that the energy
v has to be greater~less! thanmp .

One can now get the kinematic boundaries ofq1 using the
fact that the functionB(v,q1) should not be negative. Fo
case I one finds thatq1 has no further constraints. For case
q1 possesses a lower boundaryq1

cr :

q1
cr5

1

2v
A~v22mp

2!~v229mp
2!.

Equation~A4! can now be stated as

g1~v!524p2H u~mp2v!E
q1

cr

`

dq1E
q

2

s2

q
2

s28

dq2

3E
21

tcr
dt1u~v2mp!

3E
0

`

dq1E
q

2

s1

q
2

s18

dq2E
21

1

dt

3q1
2q2

2 ~11n1!n2n3

v1v2v3
d~v1v12v22v3!J .

~A7!

By suitable substitutions for the integral variables,

dt→dv35
q1q2

v3
dt,

and

dq1 ,dq2→dU1 ,dU2 with Uiªe2v i /T, i 51,2,

one can carry out the integrations overt andq2. The result is

g1~v!524p2T2H u~mp2v!E
0

U(q1
cr)

dU1G1~U1 ;q
2
s28 ,q2

s2!

1u~v2mp!E
0

U(0)

dU1G1~U1 ;q
2
s18 ,q2

s1!J ~A8!

with

G1~U1 ;s1 ,s2!ª
1

12U1

1

12U1Uv

3 lnF „12U~s1!…„U~s2!2U1Uv…

„12U~s2!…„U~s1!2U1Uv…
G

and

U~s!ªexpS 2
As21mp

2

T
D , Uvªe2v/T.

The further evaluation of the second term in Eq.~A3! corre-
sponding to the emission rate of the~inverse! off-shell decay
2-26
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processh1h1h→s follows in analogous but slightly more complicated way to the strategy for the first term consi
above.

We state the final result foriM(0,v):

iM~0,v!5
g4T2

192p3
~12Uv!H 3u~mp2v!E

0

U(q1
cr)

dU1G1~U1 ;q
2
s28 ,q2

s2!13u~v2mp!E
0

U(0)

dU1G1~U1 ;q
2
s18 ,q2

s1!

1u~v23mp!F E
U(q1* )

U(0)

dU1G2~U1 ;q
2
d18 ,q2

d1!1E
U(q1

cr)

U(q1* )
dU1G1~U1 ;q

2
d28 ,q2

d2!G J ~A9!
en

rn

t
s

o-

a

e-
ly

the

0
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g

l
-

with

G2~U1 ;s1 ,s2!ª
1

12U1

1

U12Uv

3 lnF „12U~s1!…„U1U~s2!2Uv…

„12U~s2!…„U1U~s1!2Uv…
G .

Here the kinematic boundariesq2
d1, q

2
d18, q2

d2, q
2
d28 andq1* are

q2
d15

1

2
„AA~v,q1!2q1…, q

2
d185

1

2
„AA~v,q1!1q1…,

q2
d25

1

2
„2AA~v,q1!1q1…, q

2
d285

1

2
„AA~v,q1!1q1…,

q1* 5
1

2
A~v2mp!224mp

2,

where@56#

A~v,q1!5
~v2v1!2

„~v2v1!22q1
224mp

2
…

~v2v1!22q1
2

.

~We note at this stage that we have obtained differ
results for the lower kinematic boundariesq2

s2 and q2
d2 as

compared to the ones given by Wang and Heinz@56#, which
were there simply set as zero.!

The dissipation kernel has then the form

G~0,v!5
iM~0,v!

2v
5:

g4T

192p3
ḠS v

T
,
mp

T D , ~A10!

where we have defined a reduced dissipation ke

Ḡ(v/T,mp /T) which depends only onv/T and mp /T. In
Fig. 19 we show the reduced dissipation kernel formp /T
50.1 andmp /T51. Hereg1 andg2 denote the two differen
contributions toḠ from the scattering and decay proces
One recognizes thatg2 in fact diverges forv→`. One can
furthermore show thatg1 has an asymptotic behavior;1/v
for sufficiently largev. In our present study concerning st
chastic formation of DCC we have neglected theg2 contri-
bution and have thus only described the physical domin
scattering contribution ofs1h↔h1h. The dissipation ker-
03601
t

el
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nel g1(v) has its maximum very close to the on-shell fr
quencyv5mp . Its shape with frequency is thus effective
governed by two characteristic and independent scales,
temperatureT and the plasmon massmp . The Fourier trans-

form of the reduced dissipation kernel, i.e.,Ḡ (k50,t)
[g1(t), for a temperatureT5120 MeV near the critical
temperatureTc is plotted in Fig. 20. The massmp is ex-
tracted as the transversal massm' at that given temperature
from the right upper picture of Fig. 2. By means of Fig. 2
one can estimate that the correlation in time of the ker
extents to about 5 fm/c.

On the plasmon mass shellv5mp the damping coeffi-
cient G(0,mp) is obviously given solely by the scatterin
contribution:

G~0,mp!5
g4T2

128p3mp

„12U~0!…E
0

U(0)

dU1

3G1~U1 ;q
2
s185q1 ,q2

s150!.

The above integration can be further simplified to

„12U~0!…E
0

U(0)

dU1G1~U1 ;q1,0!5 f sp~12e2mp /T!

where f sp(x) is the Spence function defined as

f sp~x!ª2E
1

x

dy
ln y

y21
.

In the high temperature limitmp!T the dynamical massmp

is evaluated by the tadpole diagram asmp
25g2T2/24. One

thus recovers

G~0,mp!5
g3T

32A24p
, ~A11!

which is twice the plasmon damping rate@57,56#.
Generalizing fromO(1) to O(N) one has an additiona

~pre-!factor (N12)/3 for the dissipation kernel and the dy
namical mass. Then for the case of the linearO(4) s model
one also has to substituteg2→6l.
2-27
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APPENDIX B: NUMERICAL REALIZATION
OF COLORED NOISE

Here we outline a new numerical method for simulati
nonwhite, i.e., colored Gaussian noise for an arbitrary~non-
negative and symmetric! noise kernelI (v).

For this consider the situation of a 1-dimensional Brow
ian particle interacting with its thermal surrounding. T
force acting on the particle can be separated into a m
~dissipative! part and a random, stochastic part. This rand
force shall not depend on the state of the particle and re
sents a fluctuating source given as a particular noise
quence.

Suppose the noise in a time interval@0,T# is composed of
a series of pulses which occur randomly@58#. Each pulse can
be written asa•b(t), where b(t) has a certain uniform
shape anda denotes a random height which is allowed to

FIG. 18. Illustration of the solutions and kinematical constrai
for q2 andt for the three cases~see text!. For case I there exists on

solution forq2 for every t. The kinematical constraintsq2
s1 andq2

s18

are the points where the linesF(q2,1) andF(q2 ,21) cut v2(q2).
For case II there exist two solutions for everytP@ tkr ,21#. The

kinematical constraintsq2
s2 and q2

s28 are the cut points betwee

F(q2 ,21) andv2(q2). For case III all solutions are larger thanq2
s3.

It is easy to show that these solutions do not satisfy Eq.~A5!.
03601
-

an

e-
e-

either positive or negative. Then a particular sequence
noise reads

j~ t !5(
i 51

n

aib~ t2t i !, tP@0,T#. ~B1!

In Eq. ~B1! there are one random numbern and two random
variables, the heightai and the timing~center time! t i . The
random numbern is now assumed to obey a Poisson dist
bution with the mean valuen̄5mT, where m denotes the
mean counting rate. The random distribution oft i shall occur
uniformly. Now one has to specify also the statistical dist

s

FIG. 19. The reduced dissipation kernel formp /T50.1 and

mp /T51. g1 andg2 are the contributions toḠ from the contribut-
ing scattering and decay process~see text!.

FIG. 20. The reduced dissipation kernel (g1) in time for T
5120 MeV and a plasmon massmp5194 MeV.
2-28
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butionp(a) of the heighta. In the limit of a large number of
sufficiently weak pulses, i.e., largem and small mean-squar
values2 of p(a), the noise will then approximately be give
as a Gaussian process due to the central limit theor
Gaussian noise is solely characterized by the first two m
ments

^^j~ t !&&50

and

^^j~ t !j~ t8!&&5I ~ t,t8!5ms2E
0

T

dsb~ t2s!b~ t82s!.

~B2!

For this limiting case one can freely choose the distribut
p(a). Most commonly one employs a Gaussian distributi

p~a!5
1

A2ps
e2a2/2s2

.

For a largem the distribution of the pulse numbern has a
sharp maximum centered atn̄. Thus we set a fine time scal
Dt and assume that on each time point one given pu
should occur. The numbern is then fixed byT/Dt, and the
timings t i of occurrence of the pulses are also fixed. It
mains to find out the formb(t) which is related to the cor
relation functionI (t,t8) of Eq. ~B2!. If the correlation func-
tion is ad function then it is easy to show thatb(t) will be
as well proportional to ad function. For this case one de
notes the so constructed fluctuationj(t) as white noise. In
more general case the noise is called colored noise.

For the simulation of Gaussian colored noise we now
sume thatb(t) has a symmetric shape within some tim
interval @2D,D#. Outside this intervalb(t) is taken to be
zero. The noise j(t) is a stationary process fort
P@D,T2D#. It means I (t,t8)5I (ut2t8u)5I (t) where t
5t2t8. ~For tP@0,D# and tP@T2D,T# there are switching
on/off artifacts.! Fourier transformation of Eq.~B2! yields

I ~v!5ms2ub~v!u2. ~B3!

From the above equation it follows that one has to dem
the Fourier transformI (v) of the correlation function of the
noise to be non-negative.b(v) is a real function due to the
symmetry ofb(t). Further we assumeb(v) to be positive.
One thus ends with

b~t!5
1

sAm
G~t! for tP@2D,D# ~B4!

with

G~t!ªE
2`

` dv

2p
AI ~v!e2 ivt.

For the case of white noise with unit strength one h
I (t2t8)5d(t2t8) and thus
03601
m.
-

n

e

-

-

d

s

b~t!5
1

sAm
d~t!.

Then the sequence of white noise can be written as

jw~ t !5(
i 51

n

ai

1

sAm
d~ t2t i !5(

i 51

n
1

Am
āid~ t2t i !,

~B5!

where āi can be sampled according to a Gaussian distri
tion with a unit mean-square value. Having fixed the pu
number n by T/Dt5mT, the mean counting rate ism
51/Dt. Furthermore we approximate thed function as

d~ t i !5H 1

Dt
: t5t i ,

0 : tÞt i .

Then the white noise at each time step can be simply ge
ated as

jw~ t i !5
āi

ADt
.

Coming now back to the construction of a colored no
sequence, we find thatj(t) can be obtained by an integral o
the history of a particular white noise sequence folded w
the uniform pulseb(t) of Eq. ~B4!, i.e.,

j~ t !5(
i 51

n

aib~ t2t i !

5(
i 51

n

aiE
0

T

dt8b~ t2t8!d~ t82t i !

5E
0

T

dt8b~ t2t8!(
i 51

n

aid~ t82t i !

5E
0

T

dt8sAmb~ t2t8!jw~ t8!

5E
0

T

dt8G~ t2t8!jw~ t8!.

In order to check the reliability of our simulation we ca
culate numerically the ensemble average of the noise co
lation and compare it with the given correlation function f
which we choose the reduced dissipation kernel plotted
Fig. 20. The result is shown in Fig. 21. The depicted aver
was obtained by 104 independently realized noise sequenc

APPENDIX C: CUMULANT EXPANSION

We give here a brief reminder of the factorial cumula
expansion for discrete statistical distributions@59#. A sto-
chastic numbern is fully characterized by its probability dis
tribution P(n), n50,1,2, . . . . An equivalent and conve
2-29
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nient representation ofP(n) is given by its probability
generating function

F~12x!ª(
n50

`

~12x!nP~n!. ~C1!

If one defines the factorial momentsfm by f051 and

fm5^n~n21!•••~n2m11!& ~m>1!, ~C2!

then the probability generating function becomes

F~12x!5 (
m50

`
~2x!m

m!
fm . ~C3!

The probability generating function also serves to gen
ate the factorial cumulantsum , which are defined by

ln„F~12x!…ª (
m51

`
~2x!m

m!
um . ~C4!

FIG. 21. Comparison of the correlation functionI
5^^j(t)j(0)&& of the numerically generated noise with the giv
correlation function which is taken as the reduced dissipation ke
of Fig. 20 ~lower part!. The averaging is performed over an e
semble of 104 noise sequences. In addition one exemplaric num
cally generated noise sequence dictated by the correlation fun
is also depicted~upper part!.
03601
r-

The factorial cumulantsum represent the nontrivial~‘‘non-
irreducible’’! correlations at orderm.

For a Poisson distribution,

P~n!5
n̄n

n!
e2n̄,

it follows immediately that its factorial moments readfm

5n̄m and consequently we haveF(12x)5exp(2xn̄). There-
fore the Poisson distribution is characterized by the van
ing of all factorial cumulants except foru15n̄.

According to the definition~C4! the factorial cumulants
um are generally combinations of the factorial momentsf i
with ( i<m). For our use we list here the expressions up
order six, i.e.,

u15f1 ,

u25f22f1
2 ,

u35f323f2f112f1
3 ,

u45f424f3f123f2
2112f2f1

226f1
4 ,

u55f525f4f1210f3f2120f3f1
2130f2

2f1

260f2f1
3124f1

5 ,

u65f626f5f1215f4f2130f4f1
2210f3

2

1120f3f2f12120f3f1
3130f2

3

2270f2
2f1

21360f2f1
42120f1

6 . ~C5!

Now we turn to the question of how—or whether it is
general possible—to receive the probability distributi
P(n), if all the factorial cumulants are given. Using Eq.~C1!
one obtains

P~n!5
~21!n

n!

dn

dxn
F~12x!U

x51

. ~C6!

Although one finds out from Eqs.~C1! and ~C4!

(
n50

`

P~n!5F~12x!ux5051,

the so inverted distributionP(n) is not necessarily positive
for all integersn. Therefore the general answer to the que
tion is ‘‘no.’’ For example assume the simple situatio
where allum exceptu1 andu2 are zero@47,60#. In this case
P(n) can serve as a probability distribution only foru1
>u2, i.e.,

P~n!5
exp~u2/22u1!

n! S u2

2 D n/2

~2 i !n

3Hn„i @~u22u1!2/2u2#1/2
…, ~C7!

el

i-
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where Hn(z) is the Hermite polynomial ofnth order. For
u1,u2 it is easy to show thatP(1) is negative.~This caveat
has not been noticed in@47,60#.! This means that for situa
tions where one finds thatu2.u1, there exists no underlying
statistical distribution which can be expressed solely in te
of the first two factorial cumulants.

Another interesting example we want to discuss for
purpose of analyzing the findings in Sec. IV B is the case
a shiftedPoisson distribution. Here, to some upper limit, t
resulting factorial cumulants are situated in logarithmic re
resentation on a curve, which can be described to a g
approximation by a straight line. The shifted Poissonian d
tribution we introduce as

P~n!5
an8

~n8!!
e2a, n5Bn8, n850,1, . . . , ~C8!

with a andB some positive constant. According to Eq.~C1!
we have

F~12x!5expF (
m51

B
~2x!m

m!

aB!

~B2m!! G .
c-
,

. D
.

s.

03601
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For smalla!1 and largeB@1 the factorial cumulantsum
~with m<B) are approximately given by

um'a•Bm. ~C9!

The higher factorial cumulants form.B vanish.
As a last reminder we consider a combined stocha

process resulting in the discrete variablen5n11n2 by two
completely independent stochastic processesPA(n1) and
PB(n2). The probability distributionPAøB(n) is then given
by

PAøB~n!5 (
n1 ,n2 ;

n11n25n

PA~n1!PB~n2!. ~C10!

With this one finds from the definition~C4! and ~C1! the
factorial cumulants of the joined probability distributio
PAøB(n) as

um
AøB5um

A1um
B . ~C11!

The factorial cumulants of the independently combined va
able are additive.
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