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Hard loop approach to anisotropic systems
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Anisotropic systems of quarks and gluons, which at least for sufficiently short space-time intervals can be
treated as homogeneous and static, are considered. The gluon polarization tensor of such a system is explicitly
computed within the semiclassical kinetic and hard loop diagrammatic theories. The equivalence of the two
approaches is demonstrated. The quark self-energy is computed as well, and finally, the dispersion relations of
quarks and gluons in the anisotropic medium are discussed.
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I. INTRODUCTION

The state of equilibrium, being static and homogeneous
sometimes anisotropic. This may happen when the syste
quantum fields, which is of interest here, is under the in
ence of an external force. A relativistic plasma, which
anisotropic due to a magnetic field, often occurs in as
physical situations such as the early Universe or superno
@1#. Anisotropic states are also common for systems wh
are out of equilibrium. Sometimes such states can be tre
as static and homogeneous, but only for sufficiently sh
time and space intervals. How short the intervals should
depends on the specific problem under consideration.

The parton system generated at the early stage of
trarelativistic heavy ion collisions at the BNL Relativist
Heavy Ion Collider~RHC! or CERN Large Hadon Collide
~LHC! is of particular interest for us. The parton momentu
distribution is not isotropic but strongly elongated along t
beam@2,3#. Therefore, specific color fluctuations, instead
being damped, can exponentially grow and noticeably in
ence the temporal evolution of the system. In a series
papers by one of us@4,5#, it has been argued that there a
indeed very fast unstable plasma modes in such a pa
system. The stability analysis@4,5# has been performed
within the semiclassical transport theory of quarks and g
ons @6,7#. Since the theory has been proven till now to
fully consistent with the QCD dynamics only for quasiequ
librium systems@8,9# one wonders to what extent the resu
from @4,5# are reliable. Thus, a QCD diagrammatic analy
is desirable.

Perturbative approaches within the real time field the
provide a natural framework to study weakly interacti
quantum field systems in and out of equilibrium. Howev
the naive perturbative expansion, when applied to ga
fields, suffers from various singularities and some phys
quantities are even gauge dependent. These problems
been partly resolved for equilibrium systems by using
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effective perturbative expansion where the so-called h
thermal loops are resummed@10#. The hard thermal loop
resummation technique within finite-temperature QCD h
been shown to be equivalent to the approach based on
classical@11# transport equations, where color is treated a
classical variable, or on the semiclassical@8# one, where the
color degrees of freedom emerge due to the matrix struc
of the parton distribution function. The hard thermal loo
approach has been generalized to nonequilibrium syste
but only very specific forms of deviations from the equili
rium have been discussed so far: systems out of chem
equilibrium, which are important in the context of heavy-io
collisions@12#, and such where the momentum distribution
isotropic but not of the Bose-Einstein or Fermi-Dirac for
@13–15#. As observed in@16#, the hard thermal loop ap
proach can be applied to any momentum distribution of h
particles which is static and homogeneous. This is evid
when the hard thermal loop effective action is derived with
the transport theory@16#. The term ‘‘thermal’’ is then rather
misleading and for this reason we omit it in the following

In this paper we discuss the applicability of the hard lo
technique for systems with anisotropic momentum distrib
tions. The technique has been earlier applied to the equ
rium QED plasma in a magnetic field@17#. Our aim is to
consider a general situation with an arbitrary momentum d
tribution. We analyze the problem from the point of view
the transport theory and the diagrammatic approach. Us
the semiclassical kinetic equations we derive the hard-lo
induced current paying much attention to the gauge asp
of the procedure. We also explicitly demonstrate that
gluon polarization tensors found by means of the two
proaches are identical. In this way, the applicability of t
kinetic theory beyond the equilibrium is substantiated a
more specifically, the reliability of the results from@4,5# is
shown.

The hard loop diagrammatic technique has the advan
over the semiclassical transport theory approach that it
be naturally extended to fermionic self-energies and
higher-order diagrams beyond the semiclassical approxi
tion. In this way the dispersion relations of quarks and ot
observables of the quark-gluon plasma, such as the en
©2000 The American Physical Society11-1
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STANISŁAW MRÓWCZYŃSKI AND MARKUS H. THOMA PHYSICAL REVIEW D 62 036011
loss of energetic partons, transport coefficients, or pho
and dilepton production rates@18#, can be calculated system
atically in the case of anisotropic distributions. We take
first step in this direction computing the quark self-ener
for an arbitrary momentum distribution.

The self-energy controls the particle dispersion relat
which provides an essential dynamical information about
system. We discuss therefore the general dispersion rela
of gluons ~plasmons! and quarks in the anisotropic quar
gluon plasma. Finally, we briefly consider possible appli
tions of the formalism developed in this paper.

II. TRANSPORT THEORY APPROACH

In this section we first introduce the semiclassical tra
port theory of quarks and gluons@6,7#. Then, applying the
linear-response method, the hard-loop-induced current is
rived. Finally, we compute the gluon polarization tensor.

A. Transport equations

The distribution function of hard~anti-!quarks Q(p,x)

@Q̄(p,x)# is a HermitianNc3Nc matrix in color space@for a
SU(Nc) color group#; x denotes the space-time quark coo
dinate andp is its momentum. The four-momentump
5(E,p) is assumed to satisfy the mass-shell constra
Since both quarks and gluons are treated as massless
ticles the constraint isp250. We also mention here that th
spin of quarks and gluons is taken into account as an inte
degree of freedom. The distribution function transforms u
der local gauge transformationM as

Q~p,x!→M ~x!Q~p,x!M†~x!. ~1!

The color indices are here and in the most cases below
pressed. The distribution function of hard gluons is a H
mitian (Nc

221)3(Nc
221) matrix which transforms as

G~p,x!→M~x!G~p,x!M †~x!, ~2!

where

Mab~x!5Tr@taM ~x!tbM†~x!#

with ta , a51, . . . ,Nc
221 being the SU(Nc) group genera-

tors in the fundamental representation.
The color current is expressed in the fundamental rep

sentation as

j m~x!52gE d3p

~2p!32E
pmFQ~p,x!2Q̄~p,x!

2
1

Nc
Tr@Q~p,x!2Q̄~p,x!#12i taf abcGbc~p,x!G ,

~3!

whereg is the QCD coupling constant,f abc are the structure
constants of theSU(Nc) group.

The distribution functions of quarks and gluons are
sumed to satisfy the following collisionless transport eq
tions:
03601
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pmDmQ~p,x!1gpm
]

]pn

1

2
$Fmn~x!,Q~p,x!%50,

pmDmQ̄~p,x!2gpm
]

]pn

1

2
$Fmn~x!,Q̄~p,x!%50,

pmDmG~p,x!1gpm
]

]pn

1

2
$Fmn~x!,G~p,x!%50, ~4!

where $ . . . , . . .% denotes the anicommutator;Dm and Dm
are the covariant derivatives which act as

Dm5]m2 ig@Am~x!, . . . # Dm5]m2 ig@Am~x!, . . . #,

with Am and Am being the mean-field or background fou
potentials;

Am~x!5Aa
m~x!ta , A ab

m ~x!52 i f abcAc
m~x!;

Fmn and Fmn are the mean-field stress tensors with a co
index structure analogous to that of the four potentials. T
background field is generated by the color current~3! and the
respective equation is

DmFmn~x!5 j n~x!. ~5!

We note that the set of transport equations~4!, ~5! is cova-
riant with respect to the gauge transformations~1!, ~2!.

B. Plasma color response

We discuss here how the plasma, which is~on average!
colorless, homogeneous, and stationary, responds to s
color fluctuations. The distribution functions are assumed
be of the form

Qi j ~p,x!5n~p!d i j 1dQi j ~p,x!, ~6!

Q̄i j ~p,x!5n̄~p!d i j 1dQ̄i j ~p,x!,

Gab~p,x!5ng~p!dab1dGab~p,x!,

where the functions describing the deviation from the col
less state are assumed to be much smaller than the respe
colorless functions. The same is assumed for the momen
gradients of these functions. The~anti-!quark and gluon dis-
tribution functionsn(p), n̄(p), ng(p), reduce in equilib-
rium to the Fermi-Dirac or Bose-Einstein form, i.e.,

n~p!5
2

exp~ upu2m!/T11
, ~7!

n̄~p!5
2

exp~ upu1m!/T11
,

ng~p)5
2

exp~ upu/T!21
,

whereT and m denote the temperature and quark chemi
potential, respectively, while the factor of 2 occurs due to
spin degrees of freedom. The number of quark flavors
assumed to be equal to one.

Substituting Eq.~6! in Eq. ~3! one gets
1-2
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HARD LOOP APPROACH TO ANISOTROPIC SYSTEMS PHYSICAL REVIEW D62 036011
j m~x!52gE d3p

~2p!32E
pmFdQ~p,x!2dQ̄~p,x!

2
1

Nc
Tr@dQ~p,x!2dQ̄~p,x!#

12i taf abcdGbc~p,x!G . ~8!

As seen, the current occurs due to the deviation from
colorless state. Let us also observe here that not o
~anti-!quarks but also gluons contribute to the current~8!.
Thus, the current is of essentially a non-Abelian nature.

Now, we substitute the distribution functions~6! into the
transport equations~4!. Assuming that the stress tensor is
the same order asdQ, dQ̄ or dG and linearizing the equa
tions with respect todQ, dQ̄, anddG we get

pmDmdQ~p,x!52gpmFmn~x!
]n~p!

]pn
, ~9!

pmDmdQ̄~p,x!5gpmFmn~x!
]n̄~p!

]pn
,

pmDmdG~p,x!52gpmFmn~x!
]ng~p!

]pn
.

We keep here the covariant derivatives to maintain the ga
covariance of the equations.

To solve the equations such as Eqs.~9! one usually uses
see, e.g.,@6,8#, the gauge parallel transporter defined in t
fundamental representation as

U~x,y!5P expF2 igE
x

y

dzmAm~z!G ,
where P denotes the ordering along the path fromx to y.
There is an analogous formula of the gauge transpo
U(x,y) in the adjoint representation. UsingU and U one
finds the solutions of Eqs.~9! as

dQ~p,x!52gE d4y Gp~x2y!

3U~x,y!pmFmn~y!U~y,x!
]n~p!

]pn
, ~10!

dQ̄~p,x!5gE d4yGp~x2y!

3U~x,y!pmFmn~y!U~y,x!
]n̄~p!

]pn
,

dG~p,x!52gE d4yGp~x2y!

3U~x,y!pmFmn~y!U~y,x!
]ng~p!

]pn
,

whereGp(x) is the retarded Green’s function which satisfi
the equation

pm]mGp~x!5d (4)~x!

and equals
03601
e
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Gp~x!5E21Q~ t !d (3)~x2vt !,

with t being the 0th component ofx @xm[(t,x)#, andv de-
noting the parton velocity, i.e.,v[p/E.

Substituting the solutions~10! in Eq. ~8! one finds the
color current of the gauge covariant form which reads

j m~x!5g2E d3p

~2p!32E
pmpl

3E d4yGp~x2y!U~x,y!Fln~y!U~y,x!
] f ~p!

]pn
,

~11!

where f (p)[n(p)1n̄(p)12Ncng(p).
Now, we are going to perform the Fourier transform

the induced current~11!. Before this step however, we ne
glect the terms which are not of the leading order ing. Then,
the transportersU are approximated by unity and the stre
tensorFmn by ]mAn2]nAm . Within such an approximation
the Fourier-transform-induced current~11!, which is no
longer gauge covariant, equals

j m~k!5g2E d3p

~2p!32E
pm

] f ~p!

]pl
Fgln2

klpn

psks1 i01GAn~k!.

~12!

The induced currentj m(k) can be expressed as

j a
m~k!5Pab

mn~k!An
b~k!,

with Pmn being the gluon polarization tensor. Transformin
Eq. ~12! to the adjoint representation one finds

Pmn~k!5g2E d3p

~2p!32E
pm

] f ~p!

]pl
Fgln2

klpn

psks1 i01G .

~13!

It should be noted here that the polarization tensor is prop
tional to a unit matrix in the color space.

Now we are going to show that the polarization tensor
transversal, i.e., kmPmn(k)50. Let us first consider
kmPm0(k). One immediately finds from Eq.~13! that

kmPm0~k!52
g2

2
klE d3p

~2p!3

] f ~p!

]pl
.

The indicesl ,m,n51,2,3 refer to the coordinates of thre
vectors. The energy density carried by partons is expecte
be finite. Therefore,f (p5`) must vanish. Consequently, th
above integral vanishes as well. Performing a partial integ
tion and demanding thatf (p5`)50, one also proves tha
kmPmm(k)50. Analogously, it can be also shown th
Pmn(k)5Pnm(k).

III. DIAGRAMMATIC APPROACH

In this section we consider the diagrammatic hard lo
approach to anisotropic systems. Specifically, we comp
1-3



a

lf-

e
he

th

y

o-
ng
is-
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the QCD polarization tensor and the quark self-energy for
arbitrary parton momentum distribution.

A. Polarization tensor

The contribution from the quark loop to the gluon se
energy in the case of one quark flavor is of the form

Pab
mn~k!5

i

2
dabg

2E d4p

~2p!4
Tr@gmS~q!gnS~p!#, ~14!

whereq[p2k andS is the bare quark propagator. Since w
are dealing with a non-equilibrium situation we adopt t
real time formalism. Within the Keldysh representation@19#,
which has been shown to be especially convenient in
hard loop approximation@15#, there are retarded (R), ad-
vanced (A), and symmetric~F! propagators which in the
case of massless quarks are given by

SR,A~p!5
p”

p26 i sgn~p0!01
,

SF~p!522p ip” $@12n~p!#Q~p0!

1@12n̄~p!#Q~2p0!%d~p2!, ~15!
03601
n

e

wheren(p) „n̄(p)… is, as previously, the~anti-!quark distri-
bution function@14# that reduces in equilibrium to the form
~7!. Performing the trace in Eq.~14! and suppressing the
color indices, we find the retarded gluon self-energy as

Pmn~k!5 ig2E d4p

~2p!4
@qmpn1pmqn2gmn~q•p!#

3@D̃F~q!D̃R~p!1D̃A~q!D̃F~p!#, ~16!

where SR,A,F(p)5p” D̃R,A,F(p). Terms containing

D̃A(q)D̃A(p) and D̃R(q)D̃R(p) have been neglected as the
vanish after integrating overp0.

First, we will consider the spatial components of the p
larization tensor. The other components follow from it usi
the transversality of the polarization tensor, as we will d
cuss below. After performing the integration overp0, we
obtain
use

, i.e.,
t of the
ernal
P lm~k!52
g2

2 E d3p

~2p!3

f q~p!

upu F2plpm2klpm2plkm1d lm~2vupu1k•p!

22vupu12k•p1k22 i sgn~ upu2v!01
1

2plpm2klpm2plkm1d lm~vupu1k•p!

2vupu12k•p1k22 i sgn~2upu2v!01G ,

~17!

wherev is the 0th component ofk, i.e.,k5(v,k) and f q(p)[n(p)1n̄(p). Here the vacuum part has been neglected beca
it is suppressed compared to the matter part in the hard loop approximation.

Adopting the hard loop approximation we assume that the internal momenta are much larger than the external onev,
kl!pl . Note that for arbitrary anisotropic distributions we have to require the hard loop condition for each componen
momenta, whereas in the isotropic casev,uku!upu suffices. Expanding the expression in the square brackets for small ext
momenta yields

plpm

2vupu1k•p2 i01
1

plpm

vupu1k•p1 i01
1

2klpm2plkm1d lm~2vupu1k•p!

2~2vupu1k•p2 i01!
1

2klpm2plkm1d lm~vupu1k•p!

2~vupu1k•p1 i01!

2
plpmk2

2~2vupu1k•p2 i01!2
2

plpmk2

2~vupu1k•p1 i01!2
. ~18!

In equilibrium the first two terms vanish after integrating overp. This also holds out of equilibrium if we assumef q(2p)
5 f q(p). Then, we arrive at the final result

P lm~k!52
g2

2 E d3p

~2p!3

f ~p!

upu
~klpm1plkm!~vupu2k•p!1d lm~vupu2k•p!22plpm~v22uku2!

~vupu2k•p1 i01!2
, ~19!
1-4
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where we replacedf q(p) by f (p)[n(p)1n̄(p)12Ncng(p).
The point is that in the hard loop limit the gluonic contrib
tions to the polarization tensor have the same structure a
quark ones@20# and only the distribution function and th
color factor change. For essentially the same reason,
QCD polarization tensor, computed even with the compl
expression~18! without assumingf (2p)5 f (p), is gauge
independent in the hard loop approximation. Indeed,
gluon polarization tensor has the same structure as the
ton one in the hard loop limit. Since the one-loop phot
polarization tensor contains no gauge boson propagator
gauge independent. Consequently, the same holds for
gluon polarization tensor. The result~19! is fully equivalent
to Eq. ~13! obtained within the semiclassical kinetic theor
In order to show the equivalence, one performs a par
integration in Eq.~13! and immediately gets Eq.~19!. How-
ever, we do not need to assume the reflection symmetr
the distribution function to derive Eq.~13!.

Two more comments are in order here. First, if we do
assume the reflection symmetry off (p) the first two terms in
Eq. ~18! will contribute, leading to contributions in the po
larization tensor that dominate over the hard loop result~19!
e

-
ed
im

h
p
n

se
h
a

03601
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he
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and are absent in the semiclassical approximation. As
plained above, the extra contribution appears to be ga
independent. Second, for equilibrium distribution functio
~7! the integrals overupu and over the angle in Eq.~19!
factorize. Then, it is easy to show that Eq.~19! reduces to the
well-known hard thermal loop result@21# where the polariza-
tion tensor has only two independent components and
pends onv and uku.

Owing to transversality, the timelike components ofPmn

follow from P lm. Indeed, P0m(k)5klP lm(k)/v and
P00(k)5klkmP lm(k)/v2. In order to prove the transversalit
of the hard loop polarization tensor in the case of anisotro
distributions, we computekmPmn(k). Considering first the
quark loop contribution, we get

kmPmn~k!5 ig2E d4p

~2p!4
@2~k•p!pn2p2kn2k2pn#

3@D̃F~q!D̃R~p!1D̃A~q!D̃F~p!#. ~20!

After integrating overp0 we find
kmPm0~k!52
g2

2 E d3p

~2p!3

f q~p!

upu F 2~vupu2k•p!upu2k2upu

22vupu12k•p1k22 i sgn~ upu2v!01
1

22~2vupu2k•p!upu1k2upu

2vupu12k•p1k22 i sgn~2upu2v!01G
~21!

and

kmPmm~k!52
g2

2 E d3p

~2p!3

f q~p!

upu F 2~vupu2k•p!pm2k2pm

22vupu12k•p1k22 i sgn~ upu2v!01
1

2~2vupu2k•p!pm2k2pm

2vupu12k•p1k22 i sgn~2upu2v!01G .

~22!
the

ark

o

Expanding the integrands in these expressions for small
ternal momenta analogously to Eq.~18!, it is easy to show
that Eqs.~21! and ~22! vanish in the hard loop approxima
tion. This also holds if the gluon loop contribution is add
as they have the same structure in the hard loop approx
tion.

B. Fermion self-energy

As mentioned in the Introduction, the diagrammatic tec
nique has the advantage over the semiclassical trans
theory approach that it can be easily extended to fermio
self-energies. Therefore, we discuss the hard loop quark
energy for anisotropic momentum distributions. Using t
Feynman gauge, the one-loop quark self-energy is found

S i j ~k!52iCFd i j g
2E d4p

~2p!4
S~p!D~q!, ~23!
x-

a-

-
ort
ic
lf-

e
s

whereCF[(Nc
221)/Nc and nowq[k2p. Adopting again

the Keldysh representation, the gluon propagators in
Feynman gauge are given by

DR,A~q!5
1

q26 i sgn~q0!01
,

DF~q!522p i @11ng~q!#d~q2!. ~24!

Suppressing the color indces, we find for the retarded qu
self-energy

S~k!5 ig2CFE d4p

~2p!4
p” @D̃R~p!DF~q!1D̃R~p!DA~q!

1D̃F~p!DR~q!1D̃A~p!DR~q!#. ~25!

The matter part of Eq.~25! can be decomposed into tw
contributions which read after integrating overp0
1-5
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S1~k!5
g2

8
CFE d3p

~2p!3

ng~p!

upu F ~v2p!g02~k2p!•g

22vupu12k•p1k21 i sgn~v2upu!01
1

~v1p!g02~k2p!•g

2vupu12k•p1k21 i sgn~v1upu!01G
~26!

and

S2~k!5
g2

16
CFE d3p

~2p!3

n~p!1n̄~p!

upu F 2pg01p•g

22vupu12k•p1k21 i sgn~v2upu!01
1

pg01p•g

2vupu12k•p1k21 i sgn~v1upu!01G .

~27!
th
l
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a
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e
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In contrast to the polarization tensor, we need to expand
square brackets in Eq.~26! only to the first order for smal
external momenta, leading to

2pg01p•g

22vupu12k•p2 i01
1

pg01p•g

2vupu12k•p1 i01
. ~28!

Assuming again the reflection symmetry for the distributi
functions, we obtain the final gauge-independent result in
hard loop approximation

S~k!5
g2

16
CFE d3p

~2p!3

2ng~p!1n~p!1n̄~p!

upu

3
g01v•g

v1v•k1 i01
. ~29!

In the case of isotropic distributions~29! reduces to the well-
known hard thermal loop result@22#, where the self-energy
for massless quarks contains only two independent sc
functions depending onv and uku. Giving up the reflection
symmetry of the distribution functions does not introdu
new dominant terms in this case since the self-energy
lows already from the lowest order terms~28!. We have
adopted this symmetry to treatP andS in exactly the same
way.

IV. DISPERSION RELATIONS

The gluon polarization tensor and quark self-energy
be used to determine the dispersion relations of gluons~plas-
mons! and quarks in the quasistatic and quasihomogene
but anisotropic state of the quark-gluon plasma.

A. Gluon dispersion equation

The background gluon fieldAm(k) satisfies the following
equation of motion:

@k2gmn2kmkn2Pmn~k!#An~k!50.

Therefore, the general plasmon dispersion equation is of
form

det@k2gmn2kmkn2Pmn~k!#50. ~30!
03601
e

e
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Equivalently, the dispersion relations are given by the po
tions of the pole of the effective gluon propagator. Due to
transversality ofPmn not all components ofPmn are inde-
pendent from each other and consequently the disper
equation~30! can be simplified. For this purpose we intro
duce the color permittivity tensore lm(k). Because of the
relation

e lm~k!El~k!Em~k!5Pmn~k!Am~k!An~k!,

whereE is the chromoelectric vector, the permittivity can b
expressed through the polarization tensor as

e lm~k!5d lm1
1

v2 P lm~k!. ~31!

There are two other equalities which follow from the tran
versality ofPmn. Namely,

P00~k!5@e lm~k!2d lm#klkm,

P l0~k!5@e lm~k!2d lm#vkm.

Using the permittivity tensor the dispersion equation gets
form

det@k2d lm2klkm2v2e lm~k!#50 ~32!

with

e lm~k!5d lm1
g2

2vE d3p

~2p!3

v l

v2k•v1 i01

] f ~p!

]pn

3 F S 12
k•v

v D dnm1
knvm

v G . ~33!

In the isotropic state there are only two independent co
ponents of the permittivity tensor

e lm~k!5eT~k!@d lm2klkm/k2!] 1eL~k!klkm/k2,

and the dispersion equation~32! splits into two equations

eT~k!5k2/v2, eL~k!50.
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The permittivity tensor ~33! was calculated for the
strongly elongated parton momentum distributionf (p) and it
was found@4,5# that there are unstable solutions of the d
persion equation~32!.

B. Quark dispersion equation

The quark dispersion relations are determined by
poles of the hard loop resummed quark propagator or equ
lently are found as solutions of the equation

det@p”2S~p!#50. ~34!

One sees in Eq.~29! that the spinor structure ofS is very
simple:S(p)5gmSm(p). However, we also include here th
scalar part which is relevant for the massive quarks. The

S~p!5gmSm~p!1C~p!. ~35!

Substituting the expression~35! into Eq.~34! and computing
the determinant as explained in Appendix 1 of@23#, we get

@„pm2Sm~p!…„pm2Sm~p!…2C2~p!#250. ~36!

When the momentum distribution is isotropic, the stru
ture of S further simplifies@22#:

S~p!5A~p!p0g01B~p!p•g1C~p!.

Then, the dispersion equation reads

„12A~p!…2p0
22„12B~p!…2p22C2~p!50.

V. DISCUSSION

In the present work we have considered an anisotro
relativistic plasma which is either in equilibrium and the a
isotropy is caused by external fields or the plasma is ou
equilibrium. In the first case we deal with the homogeneo
and static systems while in the second one it can be treate
quasihomogenous and quasistatic for sufficiently sh
space-time intervals. An example of the first case is the m
netized plasma, while of the second one the parton sys
from the early stage of relativistic heavy-ion collisions whe
we encounter a strong anisotropy in the momentum distr
tion.

The QCD polarization tensor has been computed in
ways. We have first applied the linear-response met
within the semiclassical transport theory and then the d
grammatic hard loop approach. The two methods are equ
lent ~but the distribution functions have to possess a refl
tion symmetry, i.e., f (2p)5 f (p). When using the
diagrammatic approach we have referred to the real t
formalism since the systems under consideration are, in g
eral, out of equilibrium. According to the hard loop approx
mation, we have used bare propagators for the internal l
of the polarization tensor which exhibit an explicit anis
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tropic momentum distribution. Another method has be
used in@17,24# to study anisotropic relativistic QED plasma
in a strong magnetic field. The system has been assu
there to be in equilibrium and dressed propagators co
sponding to electrons in Landau levels have been adopte
this way, anisotropic distributions arise although the dis
bution functions depend only on the energy.

As already mentioned, the semiclassical kinetic theory
quarks and gluons has been shown so far to be fully con
tent with the QCD dynamics only for quasiequilibrium@8,9#.
The considerations presented here demonstrate that
equivalence holds for the systems which are far from eq
librium although the space-time homogeneity must be
voked. Thus, the reliability of the kinetic theory methods
improved and in particular, the stability analysis of the p
ton system form the early stage of ultrarelativistic heavy-
collisions, which has been based on the linearized kin
equations,@4,5# is substantiated.

The main advantage of the diagrammatic approach o
the transport one is that it allows for a systematic pertur
tive extension to higher-order effects. Also the fermion se
energy for anisotropic systems can be calculated in this w
Having the QCD polarization tensor and quark self-ene
derived here, one can construct effective gluon and qu
propagators from the Dyson-Schwinger equation.

The poles of the effective propagators determine@via Eqs.
~32!, ~36!# the parton dispersion relations in an anisotrop
quark-gluon plasma. In the isotropic plasma, the dispers
relations for gluons and quarks show two branches and s
from the same energy at zero momentum@21#. The point is
that in this case there is no direction preferred and the l
gitudinal and transverse components of the dielectric fu
tion are identical when the momentum vanishes. For the
isotropic systems with a preferred direction even at z
momentum, we expect additional branches and the deg
eracy at zero momentum to be removed. In equilibrium
modes are stable or damped due to the Landau mechan
In the case of anisotropic systems growing modes, i.e., in
bilities, are possible. The unstable modes were argued
occur in the parton system from the early stage of ultrare
tivistic heavy-ion collisions@4,5#. Since the characteristic
time of instability development was estimated to be rat
small ~below 1 fm/c) these instabilities can significantly in
fluence the temporal evolution of the parton system.

Also the quark dispersion relations following from th
effective quark propagator are of physical relevance, as t
lead in equilibrium to interesting structures, e.g., van Ho
peaks, in the dilepton production rate@25#, which might
serve as a signature for the quark-gluon plasma formatio
has to be seen whether these structures also survive in
nonequilibrium case.

When the plasma is in the~isotropic! equilibrium state the
zero-frequency limit of the longitudinal component of th
polarization tensor in the hard thermal loop limit (PL
5P00), which is identified with the lowest order Deby
screening mass, is finite. The transverse component@PT
5(d lm2klkm /uku2)P lm /2#, on the other hand, shows n
static magnetic screening. The situation is much more co
plicated in the anisotropic plasma. The screening length
1-7
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pends on the orientation of the vectork @5#, see also@26#.
The diagrammatic approach, following the hard loop

summation technique@10,15#, allows for a systematic calcu
lation of observables, such as the energy loss of energ
partons or the production of photons and dileptons@18#.
Now, the program can be extended to the anisotropic qu
gluon plasma although one has to choose a specific form
the parton momentum distribution. We leave all these iss
for future investigations. Here we have intended to prov
,
l

he
,

D

D
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only the general formalism to study anisotropic systems
quantum fields.
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@12# T.S. Biró, E. van Doorn, B. Mu¨ller, M.H. Thoma, and X.-N.

Wang, Phys. Rev. C48, 1275~1993!.
@13# R. Baier, M. Dirks, K. Redlich, and D. Schiff, Phys. Rev.

56, 2548~1997!.
@14# M. Le Bellac and H. Mabilat, Z. Phys. C75, 137 ~1997!.
r

@15# M.E. Carrington, H. Defu, and M.H. Thoma, Eur. Phys. J. C7,
347 ~1999!.

@16# R.D. Pisarski, hep-ph/9710370.
@17# P. Elmfors, Nucl. Phys.B487, 207 ~1997!.
@18# M.H. Thoma, inQuark-Gluon Plasma 2, edited by R. Hwa

~World Scientific, Singapore, 1995!, p.51.
@19# K. Chou, Z. Su, B. Hao, and L. Yu, Phys. Rep.145, 1 ~1985!.
@20# A. Peshier, K. Schertler, and M.H. Thoma, Ann. Phys.~N.Y.!

266, 162 ~1998!.
@21# V.V. Klimov, Zh. Eksp. Teor. Fiz.82, 336 ~1982! @Sov. Phys.

JETP55, 199 ~1982!#; H.A. Weldon, Phys. Rev. D26, 1394
~1982!.

@22# H.A. Weldon, Phys. Rev. D26, 2789~1982!; J.-P. Blaizot and
J.-Y. Ollitrault, 48, 1390~1993!.
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