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Hard loop approach to anisotropic systems
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Anisotropic systems of quarks and gluons, which at least for sufficiently short space-time intervals can be
treated as homogeneous and static, are considered. The gluon polarization tensor of such a system is explicitly
computed within the semiclassical kinetic and hard loop diagrammatic theories. The equivalence of the two
approaches is demonstrated. The quark self-energy is computed as well, and finally, the dispersion relations of
quarks and gluons in the anisotropic medium are discussed.
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[. INTRODUCTION effective perturbative expansion where the so-called hard
thermal loops are resummddO]. The hard thermal loop
The state of equilibrium, being static and homogeneous, isesummation technique within finite-temperature QCD has
sometimes anisotropic. This may happen when the system dfeen shown to be equivalent to the approach based on the
quantum fields, which is of interest here, is under the influclassical11] transport equations, where color is treated as a
ence of an external force. A relativistic plasma, which isclassical variable, or on the semiclassi&l one, where the
anisotropic due to a magnetic field, often occurs in astrocolor degrees of freedom emerge due to the matrix structure
physical situations such as the early Universe or supernovasf the parton distribution function. The hard thermal loop
[1]. Anisotropic states are also common for systems whictapproach has been generalized to nonequilibrium systems,
are out of equilibrium. Sometimes such states can be treataslt only very specific forms of deviations from the equilib-
as static and homogeneous, but only for sufficiently shortium have been discussed so far: systems out of chemical
time and space intervals. How short the intervals should bequilibrium, which are important in the context of heavy-ion
depends on the specific problem under consideration. collisions[12], and such where the momentum distribution is
The parton system generated at the early stage of ulsotropic but not of the Bose-Einstein or Fermi-Dirac form
trarelativistic heavy ion collisions at the BNL Relativistic [13—15. As observed in[16], the hard thermal loop ap-
Heavy lon Collider(RHC) or CERN Large Hadon Collider proach can be applied to any momentum distribution of hard
(LHC) is of particular interest for us. The parton momentumparticles which is static and homogeneous. This is evident
distribution is not isotropic but strongly elongated along thewhen the hard thermal loop effective action is derived within
beam[2,3]. Therefore, specific color fluctuations, instead ofthe transport theorj16]. The term “thermal” is then rather
being damped, can exponentially grow and noticeably influmisleading and for this reason we omit it in the following.
ence the temporal evolution of the system. In a series of In this paper we discuss the applicability of the hard loop
papers by one of ug4,5], it has been argued that there are technique for systems with anisotropic momentum distribu-
indeed very fast unstable plasma modes in such a partaions. The technique has been earlier applied to the equilib-
system. The stability analysig4,5] has been performed rium QED plasma in a magnetic fie[d7]. Our aim is to
within the semiclassical transport theory of quarks and gluconsider a general situation with an arbitrary momentum dis-
ons[6,7]. Since the theory has been proven till now to betribution. We analyze the problem from the point of view of
fully consistent with the QCD dynamics only for quasiequi- the transport theory and the diagrammatic approach. Using
librium systemg8,9] one wonders to what extent the results the semiclassical kinetic equations we derive the hard-loop-
from [4,5] are reliable. Thus, a QCD diagrammatic analysisinduced current paying much attention to the gauge aspects
is desirable. of the procedure. We also explicitly demonstrate that the
Perturbative approaches within the real time field theorygluon polarization tensors found by means of the two ap-
provide a natural framework to study weakly interactingproaches are identical. In this way, the applicability of the
quantum field systems in and out of equilibrium. However kinetic theory beyond the equilibrium is substantiated and
the naive perturbative expansion, when applied to gaugenore specifically, the reliability of the results fropm,5] is
fields, suffers from various singularities and some physicakhown.
quantities are even gauge dependent. These problems haveThe hard loop diagrammatic technique has the advantage
been partly resolved for equilibrium systems by using arover the semiclassical transport theory approach that it can
be naturally extended to fermionic self-energies and to
higher-order diagrams beyond the semiclassical approxima-
*Electronic address: mrow@fuw.edu.pl tion. In this way the dispersion relations of quarks and other
"Electronic address: markus.thoma@cern.ch observables of the quark-gluon plasma, such as the energy
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loss of energetic partons, transport coefficients, or photon J 1
and dilepton production rat¢48], can be calculated system- D”DMQ(P,X)JFQP“J E{FW(X),Q(P,X)}:Q
atically in the case of anisotropic distributions. We take a v
first step in this direction computing the quark self-energy — J 1 — B
for an arbitrary momentum distribution. p“DMQ(p,x)—gp"a—pV E{FM,,(X),Q(D,X)}—O,

The self-energy controls the particle dispersion relation 51
which provides an essential dynamical information about the D G(pX)+00F— —{F. (x).G(p.X)'=0 4
system. We discuss therefore the general dispersion relation PGP ) +ap p, 2{ w(X),G(pX)}=0, (4)
of gluons (plasmong and quarks in the anisotropic quark- _
gluon plasma. Finally, we briefly consider possible applicawhere{ ..., ...} denotes the anicommutatdp,, andD,
tions of the formalism developed in this paper. are the covariant derivatives which act as

D,=d,—1g[A,(x),...] D,=d,—ig[Ax),...],

. ] o ) ] with A, and A, being the mean-field or background four
In this section we first introduce the semiclassical transpotentials;

port theory of quarks and gluon$§,7]. Then, applying the
linear-response method, the hard-loop-induced current is de- ~ A*(X)=AL(X)7a, A&y (X)=—ifapAL(X);
rived. Finally, we compute the gluon polarization tensor.

Il. TRANSPORT THEORY APPROACH

F., and F,, are the mean-field stress tensors with a color

index structure analogous to that of the four potentials. The

background field is generated by the color curi@and the
The distribution function of hardanti-)quarks Q(p,x) respective equation is

[Q(p,x)] is a HermitianN.X N, matrix in color spacéfor a D F%(x)=j"(X) )

SU(N,) color groug; x denotes the space-time quark coor- ® ’

dinate andp is its momentum. The four-momentum  \ye note that the set of transport equati¢ds (5) is cova-

=_(E,p) is assumed to satisfy the mass-shell constraint;gnt with respect to the gauge transformatié (2).
Since both quarks and gluons are treated as massless par-

ticles the constraint ip?=0. We also mention here that the
spin of quarks and gluons is taken into account as an internal . o
degree of freedom. The distribution function transforms un- We discuss here how the plasma, whichas average

A. Transport equations

B. Plasma color response

der local gauge transformatidvl as colorless, homogeneous, and stationary, responds to small
; color fluctuations. The distribution functions are assumed to
Q(p,X)=M(x)Q(p,x)M(X). (1) be of the form
The color indices are here and in the most cases below sup- Qij(p,x)=n(p) §ij + 6Qij (P,X), (6)

pressed. The distribution function of hard gluons is a Her-

mitian (N2—1)x (N2—1) matrix which transforms as Qij(P.X)=N(P) i + Qi (P.X),

Gap(P,X) =Ng(P) Sapt 6Gap(P,X),

G(p,X) = M(x)G(p,x) M '(x), 2
where the functions describing the deviation from the color-
where less state are assumed to be much smaller than the respective
Map(X)=Tr[ 7aM(x) 7pM (%) ] colorless functions. The same is assumed for the momentum

gradients of these functions. Tl@nti-)quark and gluon dis-

with 7,, a=1,... ,Nﬁ—l being the SUK,) group genera- tribution functionsn(p), W(p), ng(p), reduce in equilib-
tors in the fundamental representation. rium to the Fermi-Dirac or Bose-Einstein form, i.e.,

The color current is expressed in the fundamental repre- .
sentation as n(p)= exp(|p|— )/ T+1’ @)

. d*p — _

J“(X)Z—gf WPM[Q(RX)—Q(D,X) n(p)= exp(pl+ )T+ 1"
i - - M

- N_CTr[Q(va)_Q(pix)]'i'Z'Tafachbc(piX) )

2
(3 "y(P) = o =1

whereg is the QCD coupling constant,,. are the structure whereT and u denote the temperature and quark chemical

constants of th& U(N.) group. potential, respectively, while the factor of 2 occurs due to the
The distribution functions of quarks and gluons are asspin degrees of freedom. The number of quark flavors is

sumed to satisfy the following collisionless transport equa-assumed to be equal to one.

tions: Substituting Eq(6) in Eq. (3) one gets
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=g~ 1 (3)(y—
8Q(p,x)— 8Q(p,X) Gp(X)=E""0(t) 5" (x—vt),

. p
J”(X)=—9f (2m)%2E ZEPM
1 o with t being the Oth component of[ x*=(t,x)], andv de-
— N—Tr[ 6Q(p,x)—6Q(p,Xx)] noting the parton velocity, i.ey=p/E.
¢ Substituting the solution§10) in Eq. (8) one finds the

+ 2i 75 f 450G pe(PX) | (8) color current of the gauge covariant form which reads

As seen, the current occurs due to the deviation from the jM(x)zgzj —dprpﬂp“
colorless state. Let us also observe here that not only (2m)°2E
(anti-)quarks but also gluons contribute to the currésit Xf d"'yG (X—Y)U(X,Y)Fy (YU (Y,X) —— (p)
Thus, the current is of essentially a non-Abelian nature. p,
Now, we substitute the distribution functio8) into the (11)
transport equationg!). Assuming that the stress tensor is of —
P d &) g wheref(p)=n(p)+n(p)+2Ncny(p)-

the same order a8Q, 6Q or 4G and linearizing the equa- Now, we are going to perform the Fourier transform of

tions with respect t@Q, 5Q, and 5G we get the induced currentl1). Before this step however, we ne-
glect the terms which are not of the leading ordeg.iThen,

p*D,,8Q(p,X) = — gp“F ,,(X) n(p) , (9) the transportert) are approxir_na_ted by unity and t_he s_tress
p, tensorF,, by 4,A,—d,A, . Within such an approximation,
o &F(p) the Fourier-transform-induced curretitl), which is no
p#D ,6Q(p,x) =gpF ,.(X) i longer gauge covariant, equals

ang(p) _ f(p) k'p”
#D,8G(P,X) = — gP F, (X) —o—. “k=2f » M A(K).
P*DuG(pX) = =~ gprFuu(X) —5 = 1"0=9" ] e Zp, T (k)
12
We keep here the covariant derivatives to maintain the gauge 12
covariance of the equations. The induced currenjt“(k) can be expressed as
To solve the equations such as E®.one usually uses,
see, e.g.[6,8], the gauge parallel transporter defined in the jg(k)zngg(k)A‘;(k),

fundamental representation as

y with IT#” being the gluon polarization tensor. Transforming
U(x,y)=7>exp{—igf dz,A*(z)|,
X

Eq. (12) to the adjoint representation one finds

where P denotes the ordering along the path fronio y. (k) =g f &f(p) K'p”
There is an analogous formula of the gauge transporter (277)32E N pok,+i0" '
U(x,y) in the adjoint representation. Usind and ¢/ one (13

finds the solutions of Eqg9) as
It should be noted here that the polarization tensor is propor-

tional to a unit matrix in the color space.
oQ(p.x) = —gJ dy Gp(x—y) Now we are going to show that the polarization tensor is
an(p) transversal i.e., k, I*"(k)=0. Let us first consider
XUXY)PHF ., (Y)U(Y,X) op, (10) k,I1#°(k). One |mmed|ately finds from Eq13) that
5Q(pax):gf d4pr(X—Y) k HMO(k)___klj d3p ﬂf(p)
in(p) @m®
XU Y)PAF L (NUY.X) — =, . _
Py The indicesl,m,n=1,2,3 refer to the coordinates of three
vectors. The energy density carried by partons is expected to
oG(p,x)= —gf d*yGp(x—y) be finite. Thereforef (p=0) must vanish. Consequently, the
o(P) above integral vanishes as well. Performing a partial integra-

an
Xu(x,y)p“]-'w(y)U(y,x)a—, tion and demanding thdt(p=%)=0, one also proves that
Py k, I1#M(k)=0. Analogously, it can be also shown that

whereG,(x) is the retarded Green’s function which satisfies 1“" (k) =I1"(k).
the equation

11l. DIAGRAMMATIC APPROACH
P Gp(x)= 6" (x)
In this section we consider the diagrammatic hard loop
and equals approach to anisotropic systems. Specifically, we compute
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the.QCD polarization tensor and _the_quark self-energy for ajyheren(p) (n(p)) is, as previously, théanti-quark distri-
arbitrary parton momentum distribution. bution function[14] that reduces in equilibrium to the form
(7). Performing the trace in Eq14) and suppressing the

A. Polarization tensor color indices, we find the retarded gluon self-energy as

The contribution from the quark loop to the gluon self-
energy in the case of one quark flavor is of the form

d*p
(2m)

i
14500 = 5 00’ |

’ . d*p
21y*S(a)y"S(p)], (14 H“V(k)Zlng _[a*p"+p*a"—g*"(q-p)]
(27)
whereq=p—k andSis the bare quark propagator. Since we ~ - - -
are dealing with a non-equilibrium situation we adopt the X[Ap()AR(P) +AA(@)AR(P)], (16)
real time formalism. Within the Keldysh representatjas],
which has been shown to be especially convenient in the
hard loop approximatiofl5], there are retardedR), ad- = -
vanced @), and symmetric(F) propagators which in the WN€reé  Srar(P)=PArar(p). ~ Terms  containing

case of massless quarks are given by Aa(9)Aa(p) andAg(g)Agr(p) have been neglected as they
b vanish after integrating ovey,.
Spalp)=———, First, we will consider the spatial components of the po-
’ p*+isgr(po)0” larization tensor. The other components follow from it using
Se(p)=—2mip{[1—n(p)]O(po) the transversality of the polarization tensor, as we will dis-
- cuss below. After performing the integration oveg, we
+[1-n(p)]O(—po)}8(p?), (15  obtain

2p'p™—K'p™— p'k™+ 8'™(— w|p| + k- p) . 2p'p™—k'p™—p'k™+ 8™ (w|p| + k- p)
—20|p|+2k-p+k2—isgn(|p|—w)0"  2w|p|+2k-p+k:—isgn—|p|—w)0" ]|
(17

g’ [ d°p fy(p)
Hlm K)=— — q
(k) 2f(277)3 |pl

wherew is the Oth component &, i.e.,k=(w,k) andf,(p)=n(p)+n(p). Here the vacuum part has been neglected because
it is suppressed compared to the matter part in the hard loop approximation.

Adopting the hard loop approximation we assume that the internal momenta are much larger than the externakgne, i.e.,
k,<p, . Note that for arbitrary anisotropic distributions we have to require the hard loop condition for each component of the

momenta, whereas in the isotropic casé¢k|<|p| suffices. Expanding the expression in the square brackets for small external
momenta yields

p'p™ . p'p™ . —k'|om—|0'km+5"“(—w||o|+k-|0)+ —k'p™—p'k™+ 8" (w|p|+k-p)
—o|p|+k-p—i0"  w|p|+k-p+i0" 2(—wlp|+k-p—i0*) 2(w|p|+k-p+i0*)

plpme plpme
 2(—w|p|+k-p—i0")2  2(w|p|tk-p+i0T)2’

(18)

In equilibrium the first two terms vanish after integrating oyerThis also holds out of equilibrium if we assunig(—p)
=f4(p). Then, we arrive at the final result

9?2 [ d®p f(p) (Kp™+p'k™)(w|p|—k-p)+8™(w|p|—k-p)?=p'p™(w?~|k|?)
Hlm k)= — , 19
0==3 (2m)® Il (w|p|—k-p+i0*)? 9
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where we replaceél,(p) byf(p)zn(p)+ﬁ(p)+2|\|0ng(p). anq are absent in the semiclalssic.al approximation. As ex-
The point is that in the hard loop limit the gluonic contribu- Plained above, the extra contribution appears to be gauge
tions to the polarization tensor have the same structure as tiedependent. Second, for equilibrium distribution functions
quark oneg20] and only the distribution function and the (7) the integrals ovefp| and over the angle in E¢19)
color factor change. For essentially the same reason, tH@ctorize. Then, it is easy to show that Efj9) reduces to the
QCD polarization tensor, computed even with the completavell-known hard thermal loop resy21] where the polariza-
expression(18) without assumingf(—p)=f(p), is gauge tion tensor has only two independent components and de-
independent in the hard loop approximation. Indeed, théends onw and|k|.

gluon polarization tensor has the same structure as the pho- Owing to transversality, the timelike components[bt”

ton one in the hard loop limit. Since the one-loop photonfollow from TI'™.  Indeed, I1°"(k)=k'II'"(k)/w and
polarization tensor contains no gauge boson propagator it H.°%(k)=k'k™I'™(k)/w?. In order to prove the transversality
gauge independent. Consequently, the same holds for ti the hard loop polarization tensor in the case of anisotropic
gluon polarization tensor. The res(itt9) is fully equivalent  distributions, we computé,IT1#"(k). Considering first the

to Eq. (13) obtained within the semiclassical kinetic theory. quark loop contribution, we get

In order to show the equivalence, one performs a partial

integration in Eq(13) and immediately gets E19). How- d*p
ever, we do not need to assume the reflection symmetry of kMH/“’(k)=ing 2L2(k-p)p”— p%k’—k?p”]
the distribution function to derive E¢13). (2m)

Two more comments are in order here. First, if we do not ~ ~ ~ ~
assume the reflection symmetryfdgp) the first two terms in X[Ap(A)AR(P) +AA(Q)AE(P)]. (20
Eqg. (18) will contribute, leading to contributions in the po-
larization tensor that dominate over the hard loop redt  After integrating overp, we find

o= [ 8P falP) 2(w|p| —k-p)[p|—k?|p| L —2(-olpl-k-p)lp[+Kp]
# 2J) 2m?3 Ipl | —2w|p|+2k-p+k2=isgr|p|-w)0" 2w|p|+ 2k p+kZ—isgr—|p|—w)0*
(21)
and
) Hﬂm(k):_g_zf d°p fq(p) 2(w|p|—k-p)p"—k*p" L 2-olpl-k-ppm-k%pT
: 2J) 2m)?® Ipl | —20|p|+2k-p+k2—isgn|p|—w)0* 2w|p|+2k-p+k2—isgr—|p|—w)0*|
(22

Expanding the integrands in these expressions for small e)WhereCFE(Nﬁ—l)/NC and nowg=k—p. Adopting again
ternal momenta analogously to E{8), it is easy to show the Keldysh representation, the gluon propagators in the
that Egs.(21) and (22) vanish in the hard loop approxima- Feynman gauge are given by

tion. This also holds if the gluon loop contribution is added

as they have the same structure in the hard loop approxima-

. Apa()=—————
tion. Ral)= T sarag) 0"

B. Fermion self-energy Ar(Q)= —2mi[1+ng(q)]8(d?). (24)

As mentioned in the Introduction, the diagrammatic tech—SlJppreSSing the color indces, we find for the retarded quark
. ; : S?If-energy
nigue has the advantage over the semiclassical transpor
theory approach that it can be easily extended to fermionic 4
: : ) dp - ~
self-energies. Therefore, we discuss the hard loop quark self- 3 (k)= Igchf BARP)AL(Q)+AR(P)AA(Q)
energy for anisotropic momentum distributions. Using the (2m)*

Feynman gauge, the one-loop quark self-energy is found as

+Ar(P)AR(Q) +AA(P)AR(T)]. (25
4
Ei-(k)=2iCF5i-92J d’p S(p)A(q), (23 The matter part of Eq(25 can be decomposed into two
. . (2m)* contributions which read after integrating ovey
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3 (k):g_ch d*p ng(p) (@=P)yo—(k=p)-7y N (@+p)yo—(k—p) -7y
' 8 ) (2m® Ipl | —20|p|+2k-p+K2+isgiw—|p))0"  2w|p|+2k-p+k2+isgHw+]|p))0*
and
E(k):g_ch d°p n(p)+n(p) ~PYotpy . PYo+p-y
2 167 ) (2m)3 |p| —2w|p|+2k-p+k3+isgnw—|p|)0"  2w|p|+2k-p+k3+isgw+|p))0* ]

(27)

In contrast to the polarization tensor, we need to expand thEquivalently, the dispersion relations are given by the posi-
square brackets in E@26) only to the first order for small tions of the pole of the effective gluon propagator. Due to the

external momenta, leading to transversality oflI#” not all components of[*” are inde-
pendent from each other and consequently the dispersion
—PYotp-y PYo+P- ¥ equation(30) can be simplified. For this purpose we intro-
(28)  duce the color permittivity tensoe'™(k). Because of the

_— . _— I + . i + ) .
2w|p|+2k-p—i0" 2w|p|+2k-p+i0 relation

Assuming again the reflection symmetry for the distribution

functions, we obtain the final gauge-independent result in the

hard loop approximation

MK E'(K)EM(K) =TT#"(K)A,(K)A,(K),

whereE is the chromoelectric vector, the permittivity can be
expressed through the polarization tensor as

gchf dp  2n4(p)+n(p)+n(p)

(k)= —
=15 (2m)3 Ipl 1
€M(k)=8m+ FH'm(k). (31)
YotV-¥ (29
w+v-k+i0*’ There are two other equalities which follow from the trans-

versality of IT#”, Namely,
In the case of isotropic distributiori29) reduces to the well-

known hard thermal loop resulR2], where the self-energy %k)=[ €™(k)— &'™Mk'k™,
for massless quarks contains only two independent scalar
functions depending omw and |k|. Giving up the reflection T1'°(Kk) =[ €™ (k) — 8™ k™.

symmetry of the distribution functions does not introduce

new dominant terms in this case since the self-energy folygjng the permittivity tensor the dispersion equation gets the
lows already from the lowest order ternt®8). We have form

adopted this symmetry to treblt and2 in exactly the same
way. defk?6'm—k'k™— w2eM(k)]=0 (32)

IV. DISPERSION RELATIONS with

The gluon polarization tensor and quark self-energy can ) 5 |
be used to determine the dispersion relations of glyples- M) — S Q_J d°p v af(p)
mons and quarks in the quasistatic and quasihomogeneous € (k)= 20) (27)° y—k-v+i0t op"
but anisotropic state of the quark-gluon plasma.

Knp™
X

(33

k-v
(1__)5nm+
w

A. Gluon dispersion equation

The background gluon field#(k) satisfies the following

equation of motion: In the isotropic state there are only two independent com-

ponents of the permittivity tensor
[k2gH =k k" —T1#7(K) JA (k) =0.
€M(k) = er(K)[8M—k'k™k?)] + e (k)k'k™K?,
Therefore, the general plasmon dispersion equation is of the
form and the dispersion equati@82) splits into two equations

def k2g#* — k#k”—IT#*(k)]=0. (30) er(k)=k%w?  €(k)=0.
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The permittivity tensor(33) was calculated for the tropic momentum distribution. Another method has been
strongly elongated parton momentum distributfgp) and it  used in[17,24] to study anisotropic relativistic QED plasmas
was found[4,5] that there are unstable solutions of the dis-in a strong magnetic field. The system has been assumed

persion equationi32). there to be in equilibrium and dressed propagators corre-
sponding to electrons in Landau levels have been adopted. In
B. Quark dispersion equation this way, anisotropic distributions arise although the distri-

The quark dispersion relations are determined by th&ution functions depend only on the energy.

poles of the hard loop resummed quark propagator or equiva- As already mentioned, the semiclassical kinetic theory (_)f
lently are found as solutions of the equation quarks and gluons has been shown so far to be fully consis-

tent with the QCD dynamics only for quasiequilibriy&,9].
The considerations presented here demonstrate that the
defp—2(p)]=0. (34) equivalence holds for the systems which are far from equi-

librium although the space-time homogeneity must be in-
One sees in Eq29) that the spinor structure a is very  voked. Thus, the reliability of the kinetic theory methods is
simple:2(p) = ¥*X ,(p). However, we also include here the improved and in particular, the stability analysis of the par-
scalar part which is relevant for the massive quarks. Then,ton system form the early stage of ultrarelativistic heavy-ion

collisions, which has been based on the linearized kinetic

3(p)=y*3 ,(p)+C(p). (35)  equations[4,5] is substantiated.

The main advantage of the diagrammatic approach over
the transport one is that it allows for a systematic perturba-
tive extension to higher-order effects. Also the fermion self-
energy for anisotropic systems can be calculated in this way.
5 ) Having the QCD polarization tensor and quark self-energy

[(p“=2#(P)(P,—2,(P))—C%(P)]°=0.  (36)  derived here, one can construct effective gluon and quark
propagators from the Dyson-Schwinger equation.
When the momentum distribution is isotropic, the struc- The poles of the effective propagators deternjiia Egs.

Substituting the expressid5) into Eq.(34) and computing
the determinant as explained in Appendix 1[28], we get

ture of X further simplifies[22]: (32), (36)] the parton dispersion relations in an anisotropic
quark-gluon plasma. In the isotropic plasma, the dispersion
E(p)=A(p)poy°+ B(p)p- v+ C(p). relations for gluons and quarks show two branches and start

from the same energy at zero moment[2i]. The point is
that in this case there is no direction preferred and the lon-
gitudinal and transverse components of the dielectric func-
tion are identical when the momentum vanishes. For the an-
(1—A(p))?p3— (1—B(p))?p?—C?(p)=0. isotropic systems with a preferred direction even at zero
momentum, we expect additional branches and the degen-
eracy at zero momentum to be removed. In equilibrium all
modes are stable or damped due to the Landau mechanism.
In the present work we have considered an anisotropi¢n the case of anisotropic systems growing modes, i.e., insta-
relativistic plasma which is either in equilibrium and the an-bilities, are possible. The unstable modes were argued to
isotropy is caused by external fields or the plasma is out obccur in the parton system from the early stage of ultrarela-
equilibrium. In the first case we deal with the homogeneougivistic heavy-ion collisions[4,5]. Since the characteristic
and static systems while in the second one it can be treated &ise of instability development was estimated to be rather
qguasihomogenous and quasistatic for sufficiently shorsmall(below 1 fmfk) these instabilities can significantly in-
space-time intervals. An example of the first case is the magiuence the temporal evolution of the parton system.
netized plasma, while of the second one the parton system Also the quark dispersion relations following from the
from the early stage of relativistic heavy-ion collisions whereeffective quark propagator are of physical relevance, as they
we encounter a strong anisotropy in the momentum distribulead in equilibrium to interesting structures, e.g., van Hove
tion. peaks, in the dilepton production rafg5], which might
The QCD polarization tensor has been computed in tweserve as a signature for the quark-gluon plasma formation. It
ways. We have first applied the linear-response methotias to be seen whether these structures also survive in the
within the semiclassical transport theory and then the dianonequilibrium case.
grammatic hard loop approach. The two methods are equiva- When the plasma is in thgsotropig equilibrium state the
lent (but the distribution functions have to possess a refleczero-frequency limit of the longitudinal component of the
tion symmetry, i.e., f(—p)=f(p). When using the polarization tensor in the hard thermal loop limitl{(
diagrammatic approach we have referred to the real time=11,5), which is identified with the lowest order Debye
formalism since the systems under consideration are, in gerscreening mass, is finite. The transverse compohéht
eral, out of equilibrium. According to the hard loop approxi- = (8,,— kikm/|k|?)I1,,/2], on the other hand, shows no
mation, we have used bare propagators for the internal linestatic magnetic screening. The situation is much more com-
of the polarization tensor which exhibit an explicit aniso- plicated in the anisotropic plasma. The screening length de-

Then, the dispersion equation reads

V. DISCUSSION
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pends on the orientation of the vectof5], see alsq26]. only the general formalism to study anisotropic systems of
The diagrammatic approach, following the hard loop re-quantum fields.

summation techniqugl0,15, allows for a systematic calcu-

lation of observables, s_uch as the energy Ios_s of energetic ACKNOWLEDGMENTS

partons or the production of photons and dilept¢a8].

Now, the program can be extended to the anisotropic quark- We are very grateful to the National Institute of Nuclear

gluon plasma although one has to choose a specific form dfheory at Seattle where this project was initiated during the

the parton momentum distribution. We leave all these issue¥/orkshop Non-equilibrium Dynamics in Quantum Field

for future investigations. Here we have intended to provideTheory.
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