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Goldberger-Treiman discrepancy

N. F. Nasrallah*
Faculty of Science, Lebanese University, Tripoli, Lebanon

~Received 15 October 1999; published 10 July 2000!

The Golberger-Treiman discrepancyDGT512mNgA / f pGpN is related to the asymptotic behavior of the
pionic form factor of the nucleon obtained from baryonic QCD sum rules. The result is 0.015&DGT&0.022.

PACS number~s!: 11.40.Ha, 11.55.Fv, 11.55.Hx, 13.30.Ce
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The Goldberger-Treiman relation~GTR! @1#

mNgA5 f pGpN , ~1!

which relates the nucleon massmN , the axial-vector cou-
pling constant inb decaygA , thep decay constantf p , and
thep-N coupling constantGpN , is one of the most remark
able relations of hadronic physics. Explicit chiral symme
breaking by the quark masses leads to small correction
the GTR, the Goldberger-Treiman discrepancy~GTD! @2#

DGT512
mNgA

f pGpN
, ~2!

which arises from the coupling of the divergence of the ax
vector current to theJp502 continuum. The evaluation o
DGT was recently addressed in the framework of baryon c
ral perturbation theory@3#. On the experimental sidegA
51.26760.004 andf p592.42 MeV are known to sufficien
precision, and most of the uncertainty inDGT results from the
uncertainty inGpN . The most recent determination ofGpN

from NN, NN̄, andpN data was by the Nijmegen group@4#:

GpN513.0560.08,

which corresponds to

DGT50.01460.009. ~3!

Similar results are obtained by the VPI group@5#. Larger
values are given by Bugg and Machleidt@6# and Loiseau
et al. @7#:

GpN513.6560.30,

which corresponds to

DGT50.05660.02. ~4!

The result of theoretical calculations at the loop level@3#
does not account even for the smaller value given by Eq.~3!
in a parameter free way.

The evaluation of the GTD involves an integral over t
imaginary part of the form factorP(q2), which describes the
matrix element of the divergence of the axial current b
tween two nucleon states:

*Email address: nsrallh@cyberia.net.lb
0556-2821/2000/62~3!/036006~4!/$15.00 62 0360
to

l

i-

-

^P~p8!u]nAn
1uN~p!&5P~q2!•Ū~p8!g5U~p!,

~5!
q5p82p.

Access toP(q2) is provided by the study of the three
point function@8#

G~ t,q2!52E E d4xd4y exp~2 ipx!exp~ iqy!

3^0uTCs
P~x!]mAm

1~y!C̄k
N~0!u0&, ~6!

where t5p2 and ]mAm
15 i (mu1md)(ūg5d) express the di-

vergence of the axial currents in terms of quark fields, an

Cs
P5e i jkui

TCgaujg5gadk ,
~7!

Ck
N5e i jkdi

TCgadjg5gauk

are the nucleon currents@9#
Amplitude ~6! contains nucleon double- and single-po

contributions as well as a nonsingular contribution of t
continuum,

G~ t,q2!5~g5q” !F2
lN

2 P~q2!mN

~ t2mN
2 !2 1

c

~ t2mN
2 !

1¯G , ~8!

wherec is the unknown coefficient of the single-pole cont
bution andlN represents the coupling of the nucleon to
current,

^0uCs
PuP&5lNUs , ~9!

and where we have limited ourselves to the tensor struc
g5q” for simplicity. Any other choice is of coursea priori
valid, provided it leads to the stability of the calculation,
will be shown to be the case here.

The next step is to evaluateG(t,q2) in QCD. To this end
use is made of the operator product expansion of the curr
entering in Eq.~6!. The lowest dimensional operators, whic
provide the dominant contributions at short distances, are
unit operator and the operatorsq̄q andGmnGmn(5GG). As
we shall only use the coefficient ofg5q” in the expansion of
the currents entering into Eq.~6!, the even dimensional op
erators 1 andGG will be multiplied by the small quark mas
mq , and their contribution will be greatly reduced as com
pared to the one of the odd dimensional operatorq̄q. The
contribution of the latter was evaluated in the third of Re
@8#:
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GQCD~ t,q2!5
22mq^q̄q&

2p2 F t

q2 ln~2t !1
1

8
ln~2t !

2
1

4
tI 0~ t,q2!1

1

4
ln~2q2!1¯G~g5q” !,

~10!

with

I 0~ t,q2!5E
0

1 dx

t2x~12x!q2 lnS 2x~12x!q2

2t D , ~11!

and22mq^q̄q& given by the Gell-Mann-Oakes-Renner rel
tion

22mq^q̄q&5 f p
2 mp

2 , f p50.0924 GeV. ~12!

Expression~10! holds for botht and q2 in the deep Eu-
clidean region. The next step is to extrapolate to the nucl
mass shell, i.e., to obtainPQCD(q2) from expressions~8! and
~10! and the analytic properties ofG(t,q2). This extrapola-
tion to the mass shell is done over a large interval of
variablest andq2. The method of QCD sum rules provides
tool for such an extrapolation, where the approximations
well defined and where the numerical stability of the res
provides a useful check of their validity. Note that the sma
ness ofDGT results from the smallness of the quark mass
and is not calculated as the difference of large numbers
this were the case the method of QCD sum rules would
be accurate enough to be reliable.

For q2 fixed at a large negative value,G(t,q2) has a cut
on the positivet axis starting att5(mN1mp)2, in addition
to the nucleon pole structure exhibited in Eq.~8!. Consider
now the Laplace type integral@10# (1/2p i )*cdt exp
(2t/M2)G(t,q2) in the complext plane over a closed contou
c consisting of a circle of large radiusR and two straight
lines above and below the cut which run from threshold
R,M2 is the usual ‘‘Borel mass’’ parameter. The exponent
provides a convenient damping of the contribution of t
integral over the continuum. This contribution is of cour
unknown, and provides the main uncertainty in the QC
sum-rule approach. It could be greatly damped by decrea
the parameterM2, but, as is well known, this enhances th
contribution of the higher-order unknown terms in the ope
tor product expansion. We hope to obtain an intermed
range ofM2 for which the contribution of the continuum an
that of the higher-order terms are both negligible. If the
approximations are adequate, this will show up in the sta
ity of the result. We shall find out that this is the case. On
circle,G is well approximated byGQCD, except possibly for a
small region near the real axis.

We then obtain
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PQCD~q2!1c8~q2!M25
M6f p

2 mp
2

2p2lN
2 expS 2mN

2

M2 DmN

3F E1S R

M2D 1

q2 1
3

8M2 E0S R

M2D

2
q2

4M4 E
0

1

dxE
0

R
dt expS 2t

M2D
q22

t

x~12x!

G ,

~13!

with

Ei S R

M2D5E
0

R/M2

xi exp~2x!dx. ~14!

P(s5q2) is an analytic function in the complexs plane,
except for a simple pole ats5mp

2 and a right-hand cut run
ning along the positive real axis froms59mp

2 to `:

P~s!5
22 f pmp

2 GpN

s2mp
2 1¯ ; ~15!

furthermore,

P~s50!52mNgA . ~16!

Next consider the integral (1/2p i )*c8(ds/s)(s
2m82)P(s), where m8 is a mass parameter andc8 is a
closed contour consisting of a circle of large radiusR8 and
two straight lines above and below the cut which run fro
threshold toR8.1 Cauchy’s theorem implies

2m822mNgA22 f pGpN~mp
2 2m82!

5
1

p E
9mp

2

R ds

s
~s2m82!Im p~s!

1
1

2p i R ds

s
~s2m82!pQCD~s!, ~17!

where we have usedP(s)5PQCD(s) on the circle.
The first term on right-hand side of Eq.~17! represents an

integral over the unknown continuum. Asm82 is varied be-
tween threshold andR, this integral changes sign, which im
plies that it vanishes for some value ofm82 which we adopt.
Becausem8 is an unknown parameter that we shall va

1R8 need of course not be equal toR, but they are of the same
order and any reasonable difference between them results on
negligible numerical effects; thus we takeR85R to simplify the
notation.
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FIG. 1. The first term on the right-hand sid
of Eq. ~19! plotted againstM2. Its linear variation
for M2*0.4 GeV2 compensates for the secon
term c9M2.
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within reasonable limits it is superfluous to include any co
tribution of the continuum near threshold. The GTD th
follows from Eq.~17!:

DGT5
mp

2

m82 1
1

2 f pGpNm82

1

2p i R ds

s
~s2m82!PQCD~s!,

~18!

and, when expression~13! for PQCD is used,

DGT5
mp

2

m82 H 11
1

4p2GpN
S f p

mN
D 1

lN
2 expS 2

mN
2

M2D FE1S R

M2D

2
3

8

m82

M2 E0S R

M2D2
1

4 E0

1

dxE
0

x~12x!~R/M2!
dy

3exp~2y!S y

x~12x!
2

m82

M2 D G J 1c9M2. ~19!

lN
2 is obtained in a similar fashion from a study of th

nucleonic two-point function*d4x exp(iqx)^0uTC(x)C(0)u0&
@9#, with the result

~2p!4lN
2 expS 2mN

2

M2 D 5
M6

4
E2S R

M2D
2

p2

2 K asGG

p L M2E0S R

M2D
1

32

3
p4^~ q̄q!2&. ~20!

The choice ofM2 in Eq. ~19!, as well as the consistenc
of the method, is dictated by stability considerations. If th
are values ofM2 small enough to provide an adequate dam
03600
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ing of the continuum and large enough to justify the negl
of the contributions of higher-order condensates in the
erator product expansion, this should show up in the stab
of expression~19!. This means that the first term on th
right-hand side~RHS! of Eq. ~19! should show a linear be
havior which compensates for the linear variation ofc9M2 in
some intermediate range ofM2 ~note that the curve nee
show no horizontal plateau; this happens only ifc950!. The
value of m82 is expected to be close to~albeit smaller be-
cause of the weight factor 1/s! the maximum of thep8~1.7
GeV2! bump. It seems reasonable to vary it in the ran
1 GeV2&m82&1.5 GeV2. For the gluon condensate we us
the standard valuêasGG/p&50.012 GeV2. For ^(q̄q)2& the
choice ^q̄q&2 ~vacuum saturation hypothesis! is usually
made, but as this seems to be too stringent an assump
@10#, we take^qq2&5b^qq&2. Varying b between 1 and 3
has no noticeable effect on the result.

In Fig. 1 the first term on the RHS of Eq.~19! is plotted
againstM2 for m8251 GeV2 andb51. It clearly exhibits a
slow linear variation in the range 0.5 GeV2,M2

,1.5 GeV2, which gives

DGT50.022.

Varying m82 as discussed above yields, finally,

0.015&DGT&0.022, ~21!

which is consistent with the value given by Eq.~3!, and
clearly favors the smaller value ofGpN .

It is finally worth investigating the possibility that th
value of the quark condensate^q̄q& is much smaller than
what results from the GOR relation@Eq. ~12!#. This is the
case, for example, in ‘‘generalized chiral perturbati
theory’’ @11#. We would then have

DGT.
mp

2

m8
or 0.010&DGT&0.014. ~22!
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