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Goldberger-Treiman discrepancy
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The Golberger-Treiman discrepandyr=1—myga/f .G, is related to the asymptotic behavior of the
pionic form factor of the nucleon obtained from baryonic QCD sum rules. The result is9845<0.022.

PACS numbes): 11.40.Ha, 11.55.Fv, 11.55.Hx, 13.30.Ce

The Goldberger-Treiman relatiqGTR) [1] (P(p")|a,AFIN(p))=TI(q?) 'L_{(p’)y5l/{(p),

Myga=f -G, 1) q=p’—p. )
which relates the nucleon massy, the axial-vector cou-
pling constant inB decayg,, the 7 decay constant,., and
the 7-N coupling constanG ., is one of the most remark-
able relations of hadronic physics. Explicit chiral symmetry . .
breaking by the quark masses leads to small corrections to ~ 1'(£,0°)= _J f d*xd’y exp( —ipx)expliqy)
the GTR, the Goldberger-Treiman discrepai®fD) [2]

Access toll(q?) is provided by the study of the three-
point function[8]

g X(O|TYE(X)a,AL()WR(O0)[0),  (6)

NYA

f G’ @ \wheret= p? andd,A, =i(m,+mg)(Uysd) express the di-
vergence of the axial currents in terms of quark fields, and

which arises from the coupling of the divergence of the axial

Agr=1—

. . P_ T
vector current to thel®’=0" continuum. The evaluation of V= €ijkUi Cyalj ¥s Yo,
At was recently addressed in the framework of baryon chi- N T (7)
ral perturbation theory3]. On the experimental sidga W= €ijkdi Cyadj ¥5 74Uk

=1.267+0.004 andf ,=92.42 MeV are known to sufficient
precision, and most of the uncertaintyAry; results from the
uncertainty inG . The most recent determination Gf

from NN, NN, and«N data was by the Nijmegen gro{ig]:

are the nucleon current9]
Amplitude (6) contains nucleon double- and single-pole
contributions as well as a nonsingular contribution of the

continuum,
7)== (v - e,
which corresponds to ° (t-m2)?  (t—-md)
Agr=0.014+0.009. (3)  Wherecis the unknown coefficient of the single-pole contri-

bution and\ y represents the coupling of the nucleon to its
Similar results are obtained by the VPI grojfd. Larger ~ current,
values are given by Bugg and Machleid] and Loiseau

etal.[7]: (0| WEIP) =N\, , ©)
G_n=13.65:0.30 and where we have limited ourselves to the tensor structure
i ' vsq for simplicity. Any other choice is of coursa priori
which corresponds to valid, provided it leads to the stability of the calculation, as
will be shown to be the case here.
As7=0.056+0.02. (4) The next step is to evalual&(t,q?) in QCD. To this end

use is made of the operator product expansion of the currents
The result of theoretical calculations at the loop lef&] entering in Eq(6). The lowest dimensional operators, which
does not account even for the smaller value given by(8q. provide the dominant contributions at short distances, are the
in a parameter free way. unit operator and the operatayg andG,,G*”(=GG). As

The evaluation of the GTD involves an integral over thewe shall only use the coefficient ;¢ in the expansion of

imaginary part of the form factdd (g?), which describes the the currents entering into E¢6), the even dimensional op-
matrix element of the divergence of the axial current be-erators 1 andsG will be multiplied by the small quark mass
tween two nucleon states: mg, and their contribution will be greatly reduced as com-

pared to the one of the odd dimensional operafgr The

contribution of the latter was evaluated in the third of Refs.
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—2my(qq) [ t 1 MOf2m?
FQ°D<t,q2)=% =0+ gin-v M9(?) +¢/ (4% M?= —
27\ ex;{ M—ZN> My
1 1
— Zto(t,g?)+ ZIn(= %)+ |(ysd),
R\1 3 R
o 8 El(w q2+WE°(W>
with
—t
o 1d g dtex VE
1 dx —x(l—x)qz) VIVE X " :
It,2=f In( , (11 o JO 2
o(t,a%) ot—x(1-%)g? —t 1D 4 I=x%
(13
and —2mq(qq) given by the Gell-Mann-Oakes-Renner rela- yith
tion
R RIMZ .
E; Mz~ . x'exp(—x)dx. (14

—-2my(qa)=fim?, f,=0.0924 GeV. (12
II(s=g?) is an analytic function in the complexplane,
except for a simple pole at= m,zT and a right-hand cut run-
Expression(10) holds for botht andg? in the deep Eu- ning along the positive real axis frose=9m? to o

clidean region. The next step is to extrapolate to the nucleon 5

mass shell, i.e., to obtail ®“°(q?) from expression£3) and _ —2f,mIG,y _

(10) and the analytic properties @¥(t,q%). This extrapola- H(s)=—5= m2 e (15

tion to the mass shell is done over a large interval of the

variablest andg?. The method of QCD sum rules provides a furthermore,

tool for such an extrapolation, where the approximations are

well defined and where the numerical stability of the result 1(s=0)=2myga. (16)

provides a useful check of their validity. Note that the small Next consider the integral (142)[. (ds/s)(s

ness ofAgy results from the smallness of the quark masses, % I h ;. i o i
and is not calculated as the difference of large numbers. If mII(s), w €rem 1S-a mass parameler anc 1S a
losed contour consisting of a circle of large radRisand

this were the case the method of QCD sum rules would not g ; .

be accurate enough to be reliable. two straight Illn?s above, and belowl the.cut which run from
For q? fixed at a large negative valuE(t,q?) has a cut treshold toR".~ Cauchy’s theorem implies

on the positivet axis starting at=(my+m,)?, in addition

to the nucleon pole structure exhibited in Eg). Consider

now the Laplace type integra[10] (1/2mi)f.dtexp

—m'22myga—2 f .G (M2 —m'?)

1 (R ds

(—t/M?I'(t,0°) in the complext plane over a closed contour i —(s—m'?)Im m(s)

c consisting of a circle of large radiuR and two straight ™ Jom? S

lines above and below the cut which run from threshold to

R,M? is the usual “Borel mass” parameter. The exponential + i é E(s_ m’2) QC0(s) (17)
provides a convenient damping of the contribution of the 2 S ’

integral over the continuum. This contribution is of course acp )

unknown, and provides the main uncertainty in the QcpWwhere we have usel(s)=II~""(s) on the circle.

sum-rule approach. It could be greatly damped by decreasing 1he first term on right-hand side of EGJ)Z represents an

the parameteM2, but, as is well known, this enhances the integral over the unknown continuum. As'“ is varied be-

contribution of the higher-order unknown terms in the opera{Wween threshold ang, this integral changes sign, which im-

tor product expansion. We hope to obtain an intermediat®lies that it vanishes for some valuerof© which we adopt.

range ofM?2 for which the contribution of the continuum and Becausem’ is an unknown parameter that we shall vary

that of the higher-order terms are both negligible. If these

approximations are adequate, this will show up in the stabil-

|ty of the result. We shall find out that this is the case. On the IR’ need of course not be equal B but they are of the same

circle, T is well approximated by ?©P, except possibly for a order and any reasonable difference between them results only in

small region near the real axis. negligible numerical effects; thus we talRé =R to simplify the
We then obtain notation.
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within reasonable limits it is superfluous to include any con-ing of the continuum and large enough to justify the neglect
tribution of the continuum near threshold. The GTD thenof the contributions of higher-order condensates in the op-

follows from Eq.(17): erator product expansion, this should show up in the stability
) of expression(19). This means that the first term on the
A mZ N 1 1 jg ds [1QCP right-hand sidgRHS) of Eq. (19) should show a linear be-
ST M2 2f G m'22mi (s=m™) (s), havior which compensates for the linear variatiort 12 in

(18 some intermediate range ®12 (note that the curve need
show no horizontal plateau; this happens onlg”i&0). The

and, when expressiof13) for I1°”is used, value ofm’? is expected to be close t@lbeit smaller be-

m2 1 f 1 R cause of the weight factor 9/the maximum qf t.hen"(l.7
Agr=—rg | 1+ _”) . {El(_z) GeV?) bump. It seems reasonable to vary it in the range
m AmGon\my/ my M 1 GeV®=m’'?<1.5Ge\~. For the gluon condensate we use

AN M2 the standard valugx G G/ w)=0.012 Ge\. For((qq)?) the

choice (qg)? (vacuum saturation hypothesiss usually
3 m'? ( R )_ _J' f X(1=x)(RIM?) made, but as this seems to be too stringent an assumption

g Mz Fo| w2 [10], we take(qg?)=B(qq)?. Varying 3 between 1 and 3
has no noticeable effect on the result.

In Fig. 1 the first term on the RHS of E¢L9) is plotted
againstM? for m'?=1 Ge\? and 8=1. It clearly exhibits a
slow linear variation in the range 0.5G&YM?
<1.5GeV, which gives

y

"\ 2
S0 ME) || e (19

Xexp—y)

A2 is obtained in a similar fashion from a study of the

nucleonic two-point function d*x exp(gx)(0|T¥(x)¥(0)|0) Aer=0.022.
[9], with the result Varying m’2 as discussed above yields, finally,
2 6
-—my) M R 0.015sA47=0.022, (21)
<2”>4Aﬁex"(—m2 ):T (m—) o

which is consistent with the value given by E@®), and
m [ a GG 5 R clearly favors the smaller value @& .y .
—7< > EO(W) It is finally worth investigating the possibility that the
value of the quark condensa{gq) is much smaller than
4 ) what results from the GOR relatidiieg. (12)]. This is the
taT ((@q)%). (200 case, for example, in “generalized chiral perturbation
theory” [11]. We would then have

2

AGsz—T or 0.010sAg7=0.014. (22)

™

The choice ofM? in Eq. (19), as well as the consistency
of the method, is dictated by stability considerations. If there
are values oM? small enough to provide an adequate damp-
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