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Radius stabilization and anomaly-mediated supersymmetry breaking
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We analyze in detail a specific 5-dimensional realization of a ‘‘brane-universe’’ scenario where the visible
and hidden sectors are localized on spatially separated 3-branes coupled only by supergravity, with supersym-
metry breaking originating in the hidden sector. Although general power counting allows order 1/MPlanck

2

contact terms between the two sectors in the 4-dimensional theory from exchange of supergravity Kaluza-Klein
modes, we show that they are not present by carefully matching to the 5-dimensional theory. We also find that
the radius modulus corresponding to the size of the compactified dimension must be stabilized by additional
dynamics in order to avoid runaway behavior after supersymmetry breaking and to understand the communi-
cation of supersymmetry breaking. We stabilize the radius by adding two pure Yang-Mills sectors, one in the
bulk and the other localized on a brane. Gaugino condensation in the 4-dimensional effective theory generates
a superpotential that can naturally fix the radius at a sufficiently large value that supersymmetry breaking is
communicated dominantly by the recently discovered mechanism of anomaly mediation. The mass of the
radius modulus is large compared tom3/2. The stabilization mechanism requires only parameters of order one
at the fundamental scale, with no fine-tuning except for the cosmological constant.

PACS number~s!: 12.60.Jv, 11.10.Kk, 11.25.Mj, 11.30.Pb
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I. INTRODUCTION

Supersymmetry~SUSY! breaking communicated by su
pergravity~SUGRA! is a very natural and attractive solutio
to the hierarchy problem. In its usual incarnation, th
mechanism requires only a hidden sector that breaks SU
and the presence in the effective theory below the Pla
scale of the following higher-dimension operators conne
ing the hidden and visible sector fields:

Leff;E d4u
1

M4
2
S†S@Q†Q1~HuHd1H.c.!#

1E d2u
1

M4
@SWaWa1~S†HuHd1H.c.!#.

~1.1!

Here,M4 is the 4-dimensional Planck scale,S is a field in
the hidden sector witĥFS&Þ0, Q is a matter field in the
visible sector,Hu,d are Higgs fields, andWa is a field
strength for the standard model gauge group. This sim
setup generates all required soft SUSY breaking terms
order ^FS&/M4;m3/2 ~including them term @1#!.

The main drawback of this scenario is that it does
explain why the squark masses generated from the t
*d4uS†SQ†Q approximately conserve flavor, as required
avoid excessive flavor-changing neutral currents. Refere
@2# proposed an elegant solution to this problem in the c
text of higher-dimensional theories. It was pointed out tha
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the visible and hidden sectors are localized on spatially se
rated ‘‘3-branes,’’ then contact terms of the form Eq.~1.1!
can be suppressed even though they are not forbidden by
symmetry of the low-energy theory. This can be easily u
derstood by focusing on the effectiveD-dimensional theory
(D.4) below the string scaleM, but above the compactifi
cation scale 1/r . If the hidden and visible branes are sep
rated by a distance of orderr, then the contribution from the
exchange of bulk fields of massM@1/r is suppressed by the
Yukawa factore2Mr . We also expect the contributions o
extended objects with string-scale tensions to be expon
tially suppressed bye2Mr . We see that stringy physics gen
erates only exponentially small contact terms in t
D-dimensional effective theory. When we match t
D-dimensional theory to the 4-dimensional low-energy
fective theory, a more careful analysis is required to sh
that the exchange of supergravity Kaluza-Klein~KK ! excita-
tions does not lead to contact Ka¨hler terms of order 1/M4

2.
We perform this analysis for a specific model in this pap
with the result that no such terms are generated. Thus, a
the effective interactions of the form of Eq.~1.1! are highly
suppressed, and SUSY breaking must be communicated
different way.

Reference@2# further argued that, given this suppressi
of the terms in Eq.~1.1!, the leading contribution to SUSY
breaking in the visible sector arises at loop level, and
directly related to the conformal anomaly. This mechani
applied to gaugino masses andA terms was independentl
discovered in Ref.@3#, which also gave a detailed discussio
of the exactness of the result. In this ‘‘anomaly-mediat
supersymmetry breaking’’~AMSB! scenario, all soft SUSY
breaking parameters are completely predicted up to an o
all scale by anomalous dimensions and conserve flavor
high degree. This leads to interesting testable predictions
©2000 The American Physical Society08-1
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MARKUS A. LUTY AND RAMAN SUNDRUM PHYSICAL REVIEW D 62 035008
the gaugino masses@2–4#. Unfortunately, the slepton mass
squared terms are predicted to be negative if the visible
tor is the minimal supersymmetric standard model. Th
have been several suggestions in the literature for nat
solutions to this problem@5#.

In this paper we investigate the basic features of
AMSB scenario in detail in a specific 5-dimensional effe
tive field theory. The theory consists of minim
5-dimensional SUGRA compactified on aS1/Z2 orbifold.
The two (311)-dimensional boundaries of this space cor
sponding to the orbifold fixed-points serve as the ‘‘
branes’’ on which the hidden and visible sectors are loc
ized. The higher SUSY of the 5-dimensional theory
broken explicitly down toN51in 4 dimensions by the orbi
fold projection. This setup is very similar to the five
dimensional effective theory arising from heterotic M theo
after Calabi-Yau compactification of six of the eleven d
mensions@6–9#, but our field content is the minimal on
required for consistency of the five-dimensional effect
theory. In particular, the Calabi-Yau moduli do not appear
light fields in our five-dimensional model. This accounts f
the substantial differences between AMSB and other an
ses of supersymmetry breaking in the heterotic M-theory s
nario. We defer consideration of non-minimal field conte
for later work. Our final result is that anomaly mediation
the leading source of SUSY breaking in the visible secto
the radius is sufficiently large, but it is crucial to take in
account the dynamics of the radius of the compactified
mension. While our analysis is limited to a speci
5-dimensional theory with a particular mechanism for sta
lizing the radius, we believe that these features are m
general.

Starting with the 5-dimensional theory described abo
we construct the 4-dimensional effective theory below
compactification scale to analyze SUSY breaking. As
ready mentioned, a crucial feature of the effective theory
the presence of a radius modulus corresponding to the siz
the compactified dimension. In particular, if this modulus
not stabilized we will show that its equations of motion set
zero the supersymmetry breaking order parameter
AMSB, namely the four-dimensional SUGRA auxiliary sc
lar. This agrees with a direct five dimensional SUGR
analysis, where there are no bulk fields which can trans
the effect of such an order parameter to the visible sec
This naturally raises doubts as to whether AMSB occurs
this scenario@9#. A related issue is the fact that the radi
modulus must be stabilized in order to cancel the cosmol
cal constant in the presence of SUSY breaking. We sh
that if the bare bulk cosmological constant is zero, there is
potential for the radius modulus, but the low-energy cosm
logical constant cannot be cancelled. In the presence
bulk cosmological constant, SUSY breaking gives t
modulus a runaway potential.

The picture changes completely when a stabilizat
mechanism is introduced for the radius. We propose a st
lization mechanism for the radius modulus that relies entir
on gaugino condensation and SUSY breaking. The mec
nism requires two super-Yang-Mills~SYM! sectors, one in
the bulk and one localized on a 3-brane, as well as a SU
03500
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breaking sector localized on the hidden 3-brane. Up
matching to the 4-dimensional theory, the bulk SYM sec
gives rise to a 4-dimensional SYM sector with a gauge c
pling that depends on the radiusr. This gives rise to an
r-dependent gaugino condensate which, together with
brane-localized gaugino condensate, gives a stabilizing
tential for the radius modulus.1 The radius is naturally large
comparedM5 if the condensation scale of the 3-brane sup
Yang-Mills sectorLbdy is small compared toM5. The radius
depends only logarithmically onLbdy, we can obtain a suf-
ficiently large radius for anomaly mediation to dominate
the theory is strongly coupled near the scaleM5.2 Since the
condensation scale of the 3-brane super-Yang-Mills secto
naturally exponentially small compared to the fundamen
scale, this mechanism does not require the introduction
small parameters at the fundamental scale. SUSY brea
~and fine-tuning! is required to cancel the net low-energ
cosmological constant. The mass of the radius modulu
large compared tom3/2, and the effective theory below thi
scale is of the ‘‘sequestered’’ form proposed in Ref.@2#. The
general lesson we draw from this is that AMSB works pr
vided that moduli are stabilized. Our stabilization is simil
in spirit to the racetrack mechanism@12#, but it does not
require large gauge groups and our results follow from
completely systematic effective field theory analysis.

This paper is organized as follows. In Sec. II we descr
the 5-dimensional model and carry out the matching to
4-dimensional effective theory. We show that there are
O(1/M4

2) contact terms between the hidden and visible s
tors, and that the cosmological constant cannot be cance
in the absence of a mechanism for radius stabilization.
Sec. III, we show how gaugino condensation can fix the
dius, and show that anomaly mediation works in this s
nario. Section IV contains our conclusions.

II. FROM 5 TO 4 DIMENSIONS

A. The 5-dimensional model

We consider minimal~ungauged! 5-dimensional SUGRA
compactified on aS1/Z2 orbifold with matter and gauge
fields localized on the two orbifold boundaries. This syste
is relatively simple to study because the orbifold projecti
explicitly breaks the supersymmetry of the 5-dimensio
theory ~8 real supercharges! down toN51in 4 dimensions
~4 real supercharges!.

The on-shell Lagrangian for the bosonic fields
5-dimensional SUGRA is@13#

1A similar mechanism can be used to stabilize the radius in n
supersymmetric theories@10#. This may be interesting for solution
of the hierarchy problem involving extra dimensions that are o
slightly larger than the fundamental scale@11#.

2It is interesting that even for strong coupling, this mechani
gives a radius that is naturally close to the scale where bulk gr
tational loops give a contribution to soft masses comparable to
contributions of anomaly mediation. We will not pursue this pos
bility here.
8-2
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LSUGRA,552M5
3FA2g(5)~ 1

2 R (5)1 1
4 HMNHMN!

1
1

6A6
eMNPQRBMHNPHQR1fermion termsG ,

~2.1!

where M ,N, . . . 50, . . . ,3,5, are 5-dimensional spacetim
indices, andHMN5]MBN2]MBN is the field strength for the
graviphotonBM . Under theZ2 parity, the fields transform a
f(x5)°6f(2x5), where the parity assignments of th
bosonic fields are given in Table I. The orbifold projectio
keeps only those field configurations that are even underZ2.

We assume that there are fields localized on the orbi
boundaries, so these must be coupled to SUGRA. The
grangian has the form

L55LSUGRA,51d~x5!Lvis1d~x52pr !Lhid . ~2.2!

We will not need the details of the bulk-boundary couplin
in Lvis andLhid , but it is important for us to know that suc
couplings exist and preserveN51SUSY. As shown in Ref.
@14# for 5-dimensional gauge- and hypermultiplets, the co
plings of bulk and boundary fields can be worked out in
straightforward fashion if the auxiliary fields of the bu
theory are known. Building on earlier work@15#, an explicit
off-shell formulation for 5-dimensional SUGRA was re
cently given by Zucker@16#. Following Ref. @14#, one first
decomposes the 5-dimensional SUGRA multiplet into o
shell multiplets of the unbroken 4-dimensionalN51 SUSY.
In addition to theN51SUGRA multiplet, this yields two
vector multiplets~with vector fieldsg5m and Bm) with odd
orbifold parity, and one chiral multiplet~with real scalar
fields g55 and B5) with even parity. It should then be pos
sible to couple these multiplets toN51fields localized on
the boundaries using the usualN51superfield calculus.

B. Matching to 4 dimensions

We now consider integrating out the KK modes of t
5-dimensional SUGRA multiplet at the scaler to obtain a
4-dimensional effective theory. We are interested in effe
of order 1/M4

2;1/(rM 5
3), which means that we can restri

attention to tree-level effects in the SUGRA fields.@In the
normalization of the SUGRA fields given in Eq.~2.1!, the
propagator for all bosonic SUGRA fields is of order 1/M5

3.#

TABLE I. Bosonic fields of 5-dimensional SUGRA with the
Z2 parity assignments. The parity assignments of the gravipho
fields are fixed by the the Chern-Simons term.

Field Z2 parity

gmn 1

g5m 2

g55 1

Bm 2

B5 1
03500
ld
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There are SUGRA loop effects suppressed by additio
powers of 1/(M5r )3;1/(M4r )2. For some values ofr these
effects could be interesting@2#. Here we will simply assume
that r is sufficiently large that these loop effects can be n
glected. The matching of the SUGRA fields at the tree le
is performed simply by using the metric

ds25gmn~x!dxmdxn1r 2~x!dq2, ~2.3!

whereqP@0,p# is a coordinate for the compact dimensio
andgmn(x), r (x) parametrize the massless metric and rad
modulus fields.~We are implicitly expanding about a fla
metric, so the zero-mass KK modes are independent ofq.!
Ignoring the boundary fields for the moment, the boso
terms in the 4-dimensional effective theory are

L4522pM5
3A2g(4)F r

2
R (4)1

1

2r
]mBq]mBqG . ~2.4!

Note that there is no explicit kinetic term for the radiu
modulus. After anr-dependent Weyl rescaling of the metri
a kinetic term for the radius modulus is generated~with the
correct sign!. The couplings of the radius modulus to boun
ary fields is very different in the two bases. Before We
rescaling, there are no couplings ofr to boundary fields at
leading order in the low-energy expansion. This is becaur
arises from fluctuations ofg55, which by general covariance
can only couple to the 55 component of the matter str
tensor. This component vanishes for matter confined
3-branes, at leading order in 1/M5. At higher order in deriva-
tives and 1/M5, we can write terms containing the curvatu
tensor that depend on derivatives ofr but these will be a
small correction. In the rescaled basis the radius modulus
non-derivative couplings to fields localized on the branes

Equation~2.4! is to be matched to the most general L
grangian describing 4-dimensional SUGRA coupled to
modulusT. Using the superconformal approach to SUGR
@17#, this can be written as

LSUGRA,45E d4uf†f f ~T†,T!, ~2.5!

where

f511u2Ff ~2.6!

is the conformal compensator. We do not include a super
tential in Eq.~2.5! becauseT has no potential in this approxi
mation.~Recall that we are not including a bulk cosmolog
cal constant.! After integrating out the auxiliary fields, the
bosonic terms of Eq.~2.5! are

n

8-3
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LSUGRA,45A2g(4)F1

6
fR (4)2

1

4 f
~ f T]mT2H.c.!

3~ f T]mT2H.c.!2 f T†T]mT†]mT

1fermion termsG , ~2.7!

where f T5] f /]T, etc. An important point is that Eq.~2.7!
must be matched to Eq.~2.4! without Weyl rescaling. The
reason is that if boundary fields are included, the theory
pressed in terms of the Weyl-rescaled metric contains o
non-derivative couplings to the radius modulus. Kahler ter
involving bothT and boundary terms necessarily contain d
rivative interactions ofT, the only consistent way to match
if the Kahler terms areT-independent. Equation~2.4! then
shows that there is an explicit kinetic term for only one
the real scalar fields inT, so we must havef T†T[0. This
implies thatf is the sum of a holomorphic plus antiholomo
phic function, so we can make a field redefinition so thaf
52M5

3
•(T1T†). Writing T5T11 iT2, we have

LSUGRA,452M5
3E d4uf†f~T1T†! ~2.8!

52M5
3A2g(4)FT1

3
R (4)1

1

2T1
]mT2]mT2

1fermion termsG . ~2.9!

Comparing this with Eq.~2.4!, we can identify

Re~T!53pr , Im~T!5A6pBq . ~2.10!

Equation~2.8! has the ‘‘no-scale’’ form considered long ag
@18#. The essential new ingredient in the present case is
the no-scale form is stable under radiative corrections
cause the cutoff of the 4-dimensional theory is of orderr
!M4.

We now consider the fields localized on the orbifo
boundaries. We are particularly interested in contact inte
tions between the hidden and visible sectors. The only c
tact interaction of order 1/M4

2 in the 4-dimensional effective
theory that is not forbidden by symmetries is

1

M4
2E d4u~S†S!~Q†Q!5

4

M4
2 ~cScQ!~ c̄Sc̄Q!1•••

~2.11!

where we have explicitly shown the 4-fermion compone
The only diagrams that can contribute to the 4-fermion te
in Eq. ~2.11! at order 1/M4

2 consist of tree-level exchange o
bosonic SUGRA fields. The bulk-boundary couplings can
involve any suppression by 1/M5, otherwise the final resul
will be less than 1/M4

2. It may appear that these conclusio
are invalidated by power-divergent loop graphs with a cut
of order M5. However, general renormalization theory te
03500
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us that the divergent contributions will have the same str
ture as local terms in the effective field theory, and theref
do not give new effects.

Now, the exchange of Kaluza-Klein excitations of th
graviton couple to derivatives of the fermion fields and the
fore cannot yield a term of the form Eq.~2.11!. Couplings of
the graviphoton to boundary fields are restricted by the o
fold projection and graviphoton gauge invariance

dBM5]Ma, a~2x5!52a~x5!. ~2.12!

Boundary fields cannot be charged under this symmetry
causeBm vanishes on the boundary. The only term consist
with these constraints that can give rise to the 4-fermion te
in Eq. ~2.11! has the form

DL55d~x5!H5mKvis
m 1d~x52pr !H5mKhid

m ~2.13!

whereKm is a dimension-3 current constructed from boun
ary fields; its precise form will be determined by matching
the 4-dimensional theory.

The power-counting argument above shows that
~2.13! will give rise to contact terms of order 1/M4

2 from
tree-level exchange ofBm fields. We can determine thes
terms by integrating outBm using its classical equations o
motion. Imposing periodicity and consistency with the orb
fold projection, we obtain

]5Bm5
1

M5
3 Fd~y!Kvis

m 1d~y2pr !Khid
m 2

1

2pr
~Kvis1Khid!

mG .
~2.14!

In this computation it was important that we considered
Bq field to be independent ofx5, corresponding to the zero
mode (ImT) of the five-dimensional field. Substituting bac
into the Lagrangian and integrating over the compact dim
sion to obtain the 4-dimensional effective theory, we obt
the contact terms3

DL452
1

r
]mBq~Kvis1Khid!

m

2
1

4pM5
3r

~Kvis1Khid!
m~Kvis1Khid!m . ~2.15!

We compare this with the contact terms in the 4-dimensio
SUGRA with matter fields:

L45E d4uf†f@2M5
3~T1T†!1 f vis1 f hid#. ~2.16!

3This procedure also gives rise to terms proportional
d(0)•(Kvis

2 1Khid
2 ) in the 4-dimensional effective theory; these a

cancelled by boundary terms proportional tod(0) in the
5-dimensional theory. For a discussion of the origin of these ter
see Refs.@7,14#.
8-4
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As argued above,f vis and f hid are independent ofT because
any dependence would imply a coupling ofr ~and henceg55)
to brane fields~without Weyl rescaling!. We therefore obtain

L452
1

2T1
]mT2Jm2

1

8M5
3T1

JmJm1•••. ~2.17!

HereJm5Jvis
m 1Jhid

m with

Jm5 i ~ f a]mfa2H.c.!1 f a
bcasmc̄b, ~2.18!

where f a
b5]2f /(]Fa

†]Fb), etc.
Comparing Eqs.~2.15! and ~2.17! and using Eq.~2.10!,

we see that matching the]mBqKm term requires

Km5
1

A6
Jm. ~2.19!

With this identification, theJmJm contact terms also match
This matching would be spoiled by additional contact ter
of the form Eq.~2.11!, so we conclude that these operato
are absent in the 4-dimensional effective theory.

Putting together the various pieces, the four-dimensio
effective theory below the compactification scale has
general form

L452M5
3E d4uf†f~T1T†!1Lhid1Lvis , ~2.20!

where Lhid is made out of only hidden sector and fou
dimensional supergravity~off-shell! multiplets andLvis is
made out of only visible sector and four-dimensional sup
gravity multiplets. Both are independent of theT chiral mul-
tiplet.

C. The role of the radius

We now consider SUSY breaking on the hidden-sec
boundary in the theory above. We will show that the pr
ence of an unstabilized radius modulus gives rise to se
difficulties in this scenario when SUSY is broken in the h
den sector.

Independently of how SUSY is broken, it is easy to s
from Eq. ~2.20! that theFT equation of motion setsFf50.
This implies that there are no contact terms between the
ible and hidden sectors in this theory, consistent with the
that there is no propagating bulk scalar field in the SUG
multiplet that could mediate such terms. This makes it rat
mysterious how SUSY breaking can be communicated fr
the hidden to the visible sector@9#, especially sinceFf is the
order parameter for AMSB in the visible sector@2,3#.

This feature also gives rise to difficulties in cancelling t
cosmological constant. SUSY breaking on the hidden-se
boundary gives rise to a nonzero vacuum energy indepen
of the radius modulusT. In generic four-dimensiona
SUGRA models this positive contribution to the cosmolo
cal constant can be cancelled by negative SUGRA contr
tions arising fromFfÞ0, but this mechanism is clearly no
available here. One can attempt to remedy this by addin
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SUSY-preserving five-dimensional cosmological constan
the theory. To linear order in the cosmological constant,
effect of this is to add a superpotential term linear inT to Eq.
~2.20!. The potential arising from this theory is now

V52
k

M5
3

Re~T!1Vhid , ~2.21!

whereVhid is the vacuum energy from hidden sector SUS
breaking, andk sets the size of the bulk cosmological co
stant. However, this introduces a new problem, namely r
away behavior for the radius modulus.4 We see that we can
not obtain an appropriate setting for AMSB without addi
new physics to stabilize the modulus.

We mention that another means of breaking SUSY is
not have a hidden sector which breaks SUSY by itself b
rather to simply have a constant superpotential on a br
~and no bulk cosmological constant!. Then one finds that
FTÞ0, butFf50, so SUSY is broken but the cosmologic
constant vanishes. This is the basic no-scale mechanism
SUSY breaking@18#. We do not pursue this scenario he
because it involves the vanishing of the AMSB order para
eterFf .

III. RADIUS STABILIZATION

We now show that the problems found above are sol
by dynamically stabilizing the modulus. This modulus mu
be stabilized in any case for phenomenological reasons.~The
radius modulus must have a mass larger than of or
1 cm21 to avoid conflict with post-Newtonian tests of gra
ity @19#.! We will focus on a specific mechanism for stab
lizing the radius modulus that requires only a super-Ya
Mills ~SYM! sector in the bulk, and another SYM sector o
one of the boundaries. We assume that the bulk cosmolog
constant is negligible; this is natural because of the prese
of bulk SUSY.

A. Bulk super-Yang-Mills sector

We begin by discussing the bulk SYM sector. At the co
pactification scale 1/r , this theory matches onto
4-dimensional SYM theory with a gauge coupling that d
pends onr. The scale where the effective 4-dimension
SYM theory becomes strong therefore depends onr, and
gaugino condensation generates a dynamical superpote
that depends on the modulusT. The fact that the dynamica
superpotential forT is generated by supersymmetric dynam
ics rather than induced by SUSY breaking in the hidd
sector allows the mass of the modulus to be large compa
to m3/2. This means that below the scale of the radius mo
lus, the effective theory has the ‘‘sequestered’’ form d

4WhenT becomes sufficiently large, the linearized approximati
for the effect of a bulk cosmological constant is no longer valid. W
have checked that including the full non-linear effects does not s
the runaway behavior.
8-5
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MARKUS A. LUTY AND RAMAN SUNDRUM PHYSICAL REVIEW D 62 035008
cussed in Ref.@2#, and the leading contribution to SUS
breaking in the visible sector comes from anomaly med
tion.

The bulk SYM multiplet consists of a vector fieldAM , a
real scalarF, and a symplectic Majorana gauginol j ( j
51,2). These fields are taken to transform under the orbi
projection as shown in Table II. The even fields form anN
51 SYM multiplet V, while the odd fields form anN51
chiral multipletC. These fields can be coupled to the boun
ary fields using the usual rules for constructingN51 invari-
ants.~For more details, see Ref.@14#.!

We assume that the fields on the boundaries are
charged under the bulk SYM sector. However, there are
general higher-dimension operators coupling the bulk SY
fields to the boundary fields. Using a normalization of t
fields where the gauge coupling is factored out of the kine
terms

L55
1

g5
2

trF2
1

4
FMNFMN1]MF]MF1•••G , ~3.1!

the bulk SYM propagator is proportional tog5
2;1/M5.

Therefore, exchange of SYM fields between the bounda
can give rise to contact terms of order 1/M4

2;1/(rM 5
3) only

if there are boundary couplings of order 1/M5. However, it is
easy to see that no such terms are possible unless ther
singletS on the boundary, in which case we can write

DL55d~y!E d2u
1

M5
S tr~W aWa!1H.c., ~3.2!

whereW a is the field strength of theN51 SYM field V.
@Note that boundary couplings involving theN51 chiral
multiplet C are restricted by gauge invariancedC5 i ]5a,
a(2x5)51a(x5).# If there are singlets in both the hidde
and visible sector, this will induce contact terms betwe
them only at the 1-loop level, and the presence of two SY
propagators in the leading diagram means that the effects
suppressed by 1/M5

4, and therefore negligible.@The contact
terms are Kahler terms byU(1)R invariance.# We conclude
that introducing the bulk SYM sector does not introduce n
contact terms into the effective 4-dimensional theory.

We now construct the 4-dimensional effective theory
the bulk SYM sector. When we perform the KK decompo
tion, the odd fields have KK masses starting at 1/r and are
therefore integrated out. The even fields have a massless
mode, which becomes a 4-dimensional SYM sector in

TABLE II. Fields of 5-dimensional super-Yang-Mills secto
with their Z2 parity assignments.

Field Z2 parity

Am 1

A5 2

F 2

l1 1

l2 2
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effective theory. The tree-level matching condition for t
effective 4-dimensional gauge coupling is

1

g4
2

5
2pr

g5
2

. ~3.3!

Becauseg4 depends onr, gaugino condensation in the effec
tive 4-dimensional SYM sector will give rise to KK masse
starting at 1/r , and are therefore integratedT-dependent dy-
namical superpotential.

TheT dependence of the dynamical superpotential can
determined exactly using holomorphy arguments@20#. The
holomorphic 4-dimensional gauge couplingS51/(2g4

2)
1••• is given exactly by

S~m51/g5
2!5

2T

3g5
2

1c, ~3.4!

wherec is a real constant that parametrizes the scheme
pendence. It may appear that cancelling large logs requ
us to match at a scalem;1/r :

S~m51/T!5
? 2T

3g5
2

1c. ~3.5!

However, for m,1/r this leads to@for an SU(N) gauge
group#

S~m!5
? 2T

3g5
2

1
3N

16p2
ln~mT!1c. ~3.6!

The logarithmic dependence onT implies that 1/g4
2}Re(S)

depends on Im(T)}Bq . But from the 5-dimensional theory
we know thatBq is derivatively coupled, so this is impos
sible. It is easy to see that the only way to avoid this cont
diction consistent with holomorphy is Eq.~3.4!. We have
also checked that carefully evaluating the threshold corr
tions due to the infinite tower of SYM KK states also repr
duces Eq.~3.4!. The dynamical scale of the theory is ther
fore

Lbulk}
1

g5
2

e232p2T/(9Ng5
2). ~3.7!

In order to obtain believable numerical estimates we n
to estimate the constant of proportionality in Eq.~3.7!. This
can be done using ‘‘naive dimensional analysis’’~NDA!
@21,22#.5 The principle of NDA is that in a strongly couple
theory with no small parameters, both the fundamental
the effective theory become strongly coupled~in the sense
that loop corrections are order 1! at the same scale. To est
mateL, note that NDA implies that if the gauge couplin
and the radius are chosen so that the fundamental theo

5NDA is applied to higher-dimension theories with branes in R
@23#.
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strongly-coupled at a scaleL0, then L;L0. The strong-
coupling value of the 5-dimensional gauge coupling is

g5
2ustrong;

l 5

NL0
, ~3.8!

where l 5524p3 is the ~inverse of the! 5-dimensional loop
counting parameter, and we have taken into account thN
dependence appropriate for the largeN limit. The strong-
coupling value of the radius is where the KK modes ha
mass of orderL0:

r ustrong5
1

3p
Tustrong;

1

L0
. ~3.9!

This implies that the strong-coupling value of the expon
tial in Eq. ~3.7! is order 1, and we obtain

Lbulk;
l 5

Ng5
2

e232p2T/(9Ng5
2). ~3.10!

The dynamical superpotential generated in the 4-dimensi
effective theory is therefore

Wbulk,dyn;
1

Nl4
Lbulk

3 ;
l 5
3

l 4N4g5
6

e232p3T/(3Ng5
2). ~3.11!

Using l 5524p3 and l 4516p2, the dimensionless prefacto
is l 5

3/ l 45864p7.33106. However, this estimate depend
sensitively on the value used forl 5, and should be regarde
as very uncertain. Nonetheless, it is clear that the prefa
will be large unless NDA is completely misleading.6

B. Boundary super-Yang-Mills sector

In addition to the bulk SYM sector, we assume that t
theory contains a SYM sector localized on one of the bou
aries. As with the bulk SYM, we assume that there are
matter fields charged under the SYM gauge group. If t
SYM sector is in the hidden sector, there is no danger fr
flavor-violating higher-dimension contact terms. If it is in th
visible sector, the lowest-dimension potentially flavo
violating operator is

DL5;d~y!E d4u
1

M5
3

Q†Q tr~WaWa!1H.c., ~3.12!

whereWa is the field strength of the boundary SYM mult
plet. This gives flavor-violating interactions suppressed
(Lbdy/M5)3, whereLbdy is the dynamical scale. This is neg
ligible for the values ofLbdy we will be interested in~see
below!, and we conclude that the boundary SYM sector m
be either in the hidden or the visible sector.

6In this connection, it may be worthwhile to point out that exa
results obtained inN52 theories spectacularly confirm the expe
tations of NDA @24#.
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C. 4-dimensional effective theory

Now we are ready to analyze the 4-dimensional effect
theory, including all sectors. Below the scale 1/r , the
4-dimensional theory consists of 4-dimensional SUGRA a
the modulusT coupled to the bulk and boundary SYM se
tors. In addition, the theory contains the visible and hidd
sectors, which we do not specify explicitly. We now wri
the effective Lagrangian below the scalesLbulk and Lbdy
where the SYM sectors become strong, and below the s
of SUSY breaking in the hidden sector. In this regime, t
only light fields are the SUGRA fields, the modulusT, the
Goldstino from the SUSY breaking sector, and the visib
sector fields. The effective Lagrangian is

Leff52M5
3E d4uf†f~T1T†!

1S E d2uf3@c1ae2bT#1H.c.D2Vhid1•••.

~3.13!

Here

c;
1

l 4
Lbdy

3 ~3.14!

arises from gaugino condensation in the boundary SY
theory ~we neglectN dependence in the boundary SYM
theory!;

a;
l 5
3

l 4N4g5
6

, b5
32p2

3Ng5
2

~3.15!

arise from gaugino condensation in the bulk SYM theo
and Vhid.0 is the vacuum energy generated by the SU
breaking sector. We have chosen not to add a 5-dimensi
cosmological constant. The constantc can be chosen real b
a U(1)R rotation, buta is in general complex. The term
omitted in Eq.~3.13! contain the interactions of the visibl
sector fields and a Goldstino from SUSY breaking in t
hidden sector~which will eventually become the longitudina
components of the massive gravitino!. The terms involving
the Goldstino can be included using a non-linear realizat
of SUSY coupled to SUGRA@25#, but are not relevant for
computing the effective potential forT; the same is true for
the visible sector interactions.

The superpotential in Eq.~3.13! is exact, but the Kahler
potential contains unknownO(1/M4

4) corrections from loop
corrections and higher-dimension operators. These will
shown to give small corrections below.

We now turn to the minimization of the scalar potentia
neglecting corrections to the Ka¨hler potential. The scalar po
tential obtained from Eq.~3.13! is

V5
1

M5
3 $~3c* bae2bT1H.c.!

1b@b~T1T†!16#uau2e2b(T1T†)%1Vhid . ~3.16!

t
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Note that the first term is proportional to the boundary SY
gaugino condensate. Only the first term in Eq.~3.16! de-
pends on Im(T). Minimizing with respect to Im(T), we ob-
tain the effective potential forT15Re(T):

V5
1

M5
3 $26buauucue2bT112b~bT113!uau2e22bT1%1Vhid .

~3.17!

The term in brackets is a sum of two different exponenti
with opposite signs, the negative sign in the first term aris
from the minimization with respect to Im(T). As T1→` the
first term dominates, and the potential approaches1Vhid
from below. Provided the second term dominates for sm
T1 there will be a nontrivial minimum with vacuum energ
below 1Vhid . This means that the parameters can be
justed to give a vanishing cosmological constant.

We look for a minimum withb^T1&@1. Explicitly carry-
ing out the minimization we find that

b^T1&e
2b^T1&.

3ucu
2uau

;
N4Lbdy

3 g5
6

l 4l 5
3

, ~3.18!

where we have neglected terms suppressed by power
1/(b^T1&). Note that^T1& can be made arbitrarily large b
makingLbdy small compared to 1/g5

2. ~The loop suppression
factors also tend to increase^T1&.! The vacuum energy at th
minimum is

^V&.2
3ucu2

M4
2

1Vhid , ~3.19!

where M4
25M5

3pr . The fact that the first term is negativ
allows us to choose the parameters to fine-tune the cos
logical constant to zero.

Because the superpotential has non-trivialT dependence
theFT equation of motion no longer setsFf50. Instead we
have

^Ff&.
ucu

M4
2

. ~3.20!

SUSY is broken, and the gravitino mass is

m3/2;
Vhid

1/2

M4
;

ucu

M4
2

, ~3.21!

so that^Ff&;m3/2.
The mass of the radius modulus is computed from

^V9&.
6b2ucu2

M4
2

, ~3.22!

where the primes denote differentiation with respect toT1.
The kinetic term forT1 arises from mixing with the metric; i
can be made manifest by making aT1-dependent Weyl trans
03500
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formation. This gives a kinetic term;M4
2(]T1)2/T1

2, and the
physical mass of the radius modulus is

mr
2;

b2ucu2

M4
4 ^r &2. ~3.23!

It is easy to see that the other real scalar and the ferm
component ofT also get a mass of this order. Comparin
with Eq. ~3.21!, we see that

mr

m3/2
;b^r &@1. ~3.24!

Since the modulus is heavy we can integrate it out of
effective theory. The different component fields inT have
mass differences of ordermr , so this is not an approximatel
supersymmetric threshold; also it is easy to see thatFT does
not vanish (̂FT&;^r &^Ff&). However,T couples to visible
sector only through higher-dimension derivative interactio
~recall that the modulus is the zero mode of the fiv
dimensional graviton polarized transverse to the branes!, so
this does not give a contribution to SUSY breaking in t
visible sector at order 1/M4

2. We conclude that at order 1/M4
2,

the effective theory below the modulus mass is precisely
‘‘sequestered form’’ proposed in Ref.@2#: the visible sector
is coupled only to a geometrically flat four-dimension
SUGRA background with broken SUSY (FfÞ0).

We now return to the question of the corrections to t
Kähler potential in Eq.~3.13!. The Kähler potential contains
unknown O(1/M4

4) corrections from loop corrections an
higher-dimension operators, and one might worry that th
are more important than the exponentially~in T) suppressed
effects in the superpotential. This does not occur because
potential vanishes in the limit where the superpotential v
ishes, so the Ka¨hler corrections enter multiplicatively. Thi
ensures the stability of the results above, in that the Ka¨hler
corrections to the modulus potential are of order 1/(rM 5)
smaller than the leading potential we computed.

We now show that this scenario for radius stabilizati
can give rise to a sufficiently large radius without introdu
ing small numbers or fine tuning. From Eq.~3.18!, the sta-
bilized value of the radius is

r;
Ng5

2

l 5
lnS l 5

3

M5
2^Ff&N~Ng5

2!3D . ~3.25!

Because the radius depends logarithmically on the fun
mental parameters, we cannot obtain hierarchies of m
orders of magnitude. In fact, because of the factor 1l 5
;1023 multiplying the logarithm in Eq.~3.25!, the bulk
SYM gauge couplingg5 must be large, and the fundament
theory must be close to strongly coupling.

The simplest assumption is that both gravity and the b
SYM sector become strong at a single scaleL0. NDA gives
L0;( l 5)1/3M5;10M5, and we will take this scale to be th
fundamental scale of the theory~e.g. the scale of string–M
theory excited states!. Using the NDA estimates forL0 and
g5

2, we obtain
8-8
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r;
1

L0
lnS L0

N^Ff& D . ~3.26!

Using ^Ff&;100 TeV andl 4M4
2; l 5M5

3r , we obtain~for N
52)

r;
30

L0
, L0;231018 GeV. ~3.27!

This is sufficient to suppress FCNC effects from mass
string states, but bulk gravitational loops give contact ter
suppressed by@2#

1

l 4M4
2r 2

;
1

l 5M5
3r 3

;
1

L0
3r 3

;431025. ~3.28!

This gives a contribution to soft scalar mass-squared term
order ^Ff&2/(L0r )3;(600 GeV)2, which is comparable to
the contribution from anomaly mediation. It is interestin
that this mechanism for radius stabilization can naturally s
bilize the radius at a value where loop effects are importa
This may give a solution to the problem of negative slep
masses, but we will not pursue this point here.

Another possibility is that the bulk SYM sector becom
strong at a scaleLgaugethat is smaller than the scaleLgrav.
Here, Lgauge is a fundamental scale of new strong physi
while Lgrav is not directly a physical scale, but correspon
to a weak gravitational coupling at the fundamental sc
L gauge. This occurs naturally if the gauge interactions prop
gate in fewer dimensions than gravity in the fundamen
theory. ForLgauge/Lgrav;

1
10 , we obtainrLgrav;160. This is

sufficient to suppress gravitational loop effects, and also s
presses flavor-changing contributions from string–M-the
states at the scaleLgauge. We have also checked that th
contact terms from bulk gauge fields are negligible. Th
estimates are quite rough, but we conclude that it is v
plausible that this mechanism can give a sufficiently la
radius so that anomaly mediation dominates.

IV. CONCLUSIONS

We have studied a five-dimensional model with bran
localized visible and hidden sectors localized on ‘‘3-brane
and shown that when the compactification radius is prop
stabilized, the transmission of supersymmetry breaking
J.

S.
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the visible sector proceeds by the mechanism of anom
mediation. Although the radius modulus participates stron
in the supersymmetry breaking, it does not contribute to s
visible sector masses at order 1/M4

2 because it does not di
rectly couple to the visible brane. The stabilization mech
nism for the radius modulus employed in this paper is v
simple, involving gaugino condensates in the bulk and o
brane. The bulk gauge fields do not give additional contrib
tions to visible soft masses due to the constraints of ga
invariance. The advantage of this mechanism is that it gi
a non-perturbative superpotential for the modulus aris
from field-theoretic mechanisms that are under theoret
control. It is also possible that that such a superpoten
could also arise from non-perturbative string–M-theory
fects due to extended states.

This work is evidence that anomaly-mediated supersy
metry breaking gives a model-independent contribution
soft supersymmetry breaking in the visible sector at or
1/M4

2 in any model with SUSY breaking on a hidden-sect
brane, and stabilized moduli. If there are no additional lig
bulk fields that give a larger contribution, anomal
mediation dominates, giving a natural solution to the sup
symmetric flavor problem as well as potentially testable p
dictions. These features can be upset by the presenc
additional bulk fields with significant couplings to the visib
sector.7 Knowledge of the true string theory vacuum, or e
periment, is required to find out if such light non-minim
bulk fields are present.
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@7# P. Hořava, Phys. Rev. D54, 7561~1996!.
@8# I. Antoniadis and M. Quiros, Nucl. Phys.B505, 109~1997!; Z.
8-9



i,

s.

-

.

-
.

ys.
l.
,

n-

MARKUS A. LUTY AND RAMAN SUNDRUM PHYSICAL REVIEW D 62 035008
Lalak and S. Thomas,ibid. B515, 55 ~1998!; E. Dudas, Phys.
Lett. B 416, 309 ~1998!; A. Lukas, B. A. Ovrut, and D.
Waldram, Nucl. Phys.B532, 43 ~1998!; K. Choi, H. B. Kim,
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