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We analyze in detail a specific 5-dimensional realization of a “brane-universe” scenario where the visible
and hidden sectors are localized on spatially separated 3-branes coupled only by supergravity, with supersym-
metry breaking originating in the hidden sector. Although general power counting allows oMéran],(
contact terms between the two sectors in the 4-dimensional theory from exchange of supergravity Kaluza-Klein
modes, we show that they are not present by carefully matching to the 5-dimensional theory. We also find that
the radius modulus corresponding to the size of the compactified dimension must be stabilized by additional
dynamics in order to avoid runaway behavior after supersymmetry breaking and to understand the communi-
cation of supersymmetry breaking. We stabilize the radius by adding two pure Yang-Mills sectors, one in the
bulk and the other localized on a brane. Gaugino condensation in the 4-dimensional effective theory generates
a superpotential that can naturally fix the radius at a sufficiently large value that supersymmetry breaking is
communicated dominantly by the recently discovered mechanism of anomaly mediation. The mass of the
radius modulus is large comparedrns,,. The stabilization mechanism requires only parameters of order one
at the fundamental scale, with no fine-tuning except for the cosmological constant.

PACS numbsefs): 12.60.Jv, 11.10.Kk, 11.25.Mj, 11.30.Pb

I. INTRODUCTION the visible and hidden sectors are localized on spatially sepa-
rated “3-branes,” then contact terms of the form Ef.1)
Supersymmetry(SUSY) breaking communicated by su- can be suppressed even though they are not forbidden by any
pergravity(SUGRA) is a very natural and attractive solution symmetry of the low-energy theory. This can be easily un-
to the hierarchy problem. In its usual incarnation, thisderstood by focusing on the effecti@dimensional theory
mechanism requires only a hidden sector that breaks SUSYD>4) below the string scal#l, but above the compactifi-
and the presence in the effective theory below the Planckation scale 1/ If the hidden and visible branes are sepa-
scale of the following higher-dimension operators connectrated by a distance of ordeythen the contribution from the
ing the hidden and visible sector fields: exchange of bulk fields of madé> 1/r is suppressed by the
Yukawa factore M". We also expect the contributions of
1 extended objects with string-scale tensions to be exponen-
CeﬁNf d49W§TE[QTQ+(Hqu+ H.c)] tially suppressed bg ™', We see that stringy physics gen-
4 erates only exponentially small contact terms in the
1 D-dimensional effective theory. When we match the
+f dzaM—[EW“Wa+(ETHUHd+ H.c)]. D-dimensional theory to the 4-dimensional low-energy ef-
4 fective theory, a more careful analysis is required to show
(1.1)  that the exchange of supergravity Kaluza-KIéi#K) excita-
tions does not lead to contact Kar terms of order M2,
Here,M, is the 4-dimensional Planck scal®,is a field in ~ We perform this analysis for a specific model in this paper,
the hidden sector withFy)#0, Q is a matter field in the with the result that no such terms are generated. Thus, all of
visible sector,H, 4 are Higgs fields, andV, is a field the effective interactions of the form of E(L.1) are highly
strength for the standard model gauge group. This simplguppressed, and SUSY breaking must be communicated in a
setup generates all required soft SUSY breaking terms adifferent way.
order(Fx)/M 4~mg, (including thex term[1]). Referencd 2] further argued that, given this suppression
The main drawback of this scenario is that it does notof the terms in Eq(1.1), the leading contribution to SUSY
explain why the squark masses generated from the terroreaking in the visible sector arises at loop level, and is
[d*63 "> Q'Q approximately conserve flavor, as required todirectly related to the conformal anomaly. This mechanism
avoid excessive flavor-changing neutral currents. Referencapplied to gaugino masses aAdterms was independently
[2] proposed an elegant solution to this problem in the condiscovered in Refl3], which also gave a detailed discussion
text of higher-dimensional theories. It was pointed out that ifof the exactness of the result. In this “anomaly-mediated
supersymmetry breakinglAMSB) scenario, all soft SUSY
breaking parameters are completely predicted up to an over-
*Email address: mluty@physics.umd.edu all scale by anomalous dimensions and conserve flavor to a
"Email address: sundrum@leland.stanford.edu high degree. This leads to interesting testable predictions for
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the gaugino massg2—4]. Unfortunately, the slepton mass- breaking sector localized on the hidden 3-brane. Upon
squared terms are predicted to be negative if the visible seenatching to the 4-dimensional theory, the bulk SYM sector
tor is the minimal supersymmetric standard model. Theregives rise to a 4-dimensional SYM sector with a gauge cou-
have been several suggestions in the literature for naturflling that depends on the radius This gives rise to an
solutions to this problerf5]. r-dependent gaugino condensate which, together with the

In this paper we investigate the basic features of thdrane-localized gaugino condensate, gives a stabilizing po-
AMSB scenario in detail in a specific 5-dimensional effec-tential for the radius modulusThe radius is naturally large
tive field theory. The theory consists of minimal comparedM s if the condensation scale of the 3-brane super-
5-dimensional SUGRA compactified on $/Z, orbifold. ~ Yang-Mills sectorA 4y is small compared tMs. The radius
The two (3+ 1)-dimensional boundaries of this space corre-d€pends only logarithmically oA ,q,, we can obtain a suf--
sponding to the orbifold fixed-points serve as the “3- ficiently large radius for anomaly mediation to dominate if

. 2 .

branes” on which the hidden and visible sectors are localthe theory is strongly coupled near the schle.” Since the
ized. The higher SUSY of the 5-dimensional theory iscondensation scale of the 3-brane super-Yang-Mills sector is
broken explicitly down to\=1in 4 dimensions by the orbi- naturally exponentially small compared to the fundamental
fold projection. This setup is very similar to the five- scale, this mechanism does not require the introduction of
dimensional effective theory arising from heterotic M theorySmall parameters at the fundamental scale. SUSY breaking
after Calabi-Yau compactification of six of the eleven di- (@nd fine-tuning is required to cancel the net low-energy
mensions[6—9], but our field content is the minimal one cosmological constant. The mass of the radius modulus is
required for consistency of the five-dimensional effectivelarge compared tang;,, and the effective theory below this
theory. In particular, the Calabi-Yau moduli do not appear a$c@le is of the “sequestered” form proposed in Rej. The
light fields in our five-dimensional model. This accounts forgeneral lesson we draw from this is that AMSB works pro-
the substantial differences between AMSB and other analy\-"ded that moduli are stabilized. Our stabilization is similar
ses of supersymmetry breaking in the heterotic M-theory scel SPirit to the racetrack mechanisfd2], but it does not
nario. We defer consideration of non-minimal field content’€quire large gauge groups and our results follow from a
for later work. Our final result is that anomaly mediation is COMPpletely systematic effective field theory analysis.
the leading source of SUSY breaking in the visible sector if ~ThiS paper is organized as follows. In Sec. Il we describe
the radius is sufficiently large, but it is crucial to take into the 5-dimensional model and carry out the matching to the

account the dynamics of the radius of the compactified di#-dimensional effective theory. We show that there are no

mension_ Wh||e our ana'ysis iS ||m|ted to a Speciﬁc O(l/M 4) contact terms betWeen the h|dden a.nd V|S|b|e sec-

5-dimensional theory with a particular mechanism for stabiiors, and that the cosmological constant cannot be cancelled

lizing the radius, we believe that these features are mor# the absence of a mechanism for radius stabilization. In

general. Sec. lll, we show how gaugino condensation can fix the ra-
Starting with the 5-dimensional theory described abovedius, and show that anomaly mediation works in this sce-

we construct the 4-dimensional effective theory below thenario. Section IV contains our conclusions.

compactification scale to analyze SUSY breaking. As al-

ready mentioned, a crucial feature of the effective theory is

the presence of a radius modulus corresponding to the size of Il. FROM 5 TO 4 DIMENSIONS

the compactified dimension. In particular, if this modulus is

not stabilized we will show that its equations of motion set to

zero the supersymmetry breaking order parameter for We consider minima{ungaugei5-dimensional SUGRA

AMSB, namely the four-dimensional SUGRA auxiliary sca- compactified on aS'/Z, orbifold with matter and gauge

lar. This agrees with a direct five dimensional SUGRAfields localized on the two orbifold boundaries. This system

analysis, where there are no bulk fields which can transmits relatively simple to study because the orbifold projection

the effect of such an order parameter to the visible secto€xplicitly breaks the supersymmetry of the 5-dimensional

This naturally raises doubts as to whether AMSB occurs irfheory (8 real supercharggslown to N’=1in 4 dimensions

this scenarid9]. A related issue is the fact that the radius (4 real supercharggs

modulus must be stabilized in order to cancel the cosmologi- The on-shell Lagrangian for the bosonic fields of

cal constant in the presence of SUSY breaking. We shovp-dimensional SUGRA i§13]

that if the bare bulk cosmological constant is zero, there is no

potential for the radius modulus, but the low-energy cosmo-

logical constant cannot be cancelled. In the presence of aip simjlar mechanism can be used to stabilize the radius in non-

bulk cosmological constant, SUSY breaking gives thissypersymmetric theorig40]. This may be interesting for solutions

modulus a runaway potential. of the hierarchy problem involving extra dimensions that are only
The picture changes completely when a stabilizatiorslightly larger than the fundamental scéil].

mechanism is introduced for the radius. We propose a stabi-2t is interesting that even for strong coupling, this mechanism

lization mechanism for the radius modulus that relies entirelyives a radius that is naturally close to the scale where bulk gravi-

on gaugino condensation and SUSY breaking. The mechaational loops give a contribution to soft masses comparable to the

nism requires two super-Yang-MillSYM) sectors, one in  contributions of anomaly mediation. We will not pursue this possi-

the bulk and one localized on a 3-brane, as well as a SUSH¥ility here.

A. The 5-dimensional model
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TABLE |. Bosonic fields of 5-dimensional SUGRA with their There are SUGRA loop effects suppressed by additional
Z, parity assignments. The parity assignments of the graviphotopowers of 1/(Msr)3~ 1/(M4r)2. For some values af these
fields are fixed by the the Chern-Simons term. effects could be interestir@]. Here we will simply assume
thatr is sufficiently large that these loop effects can be ne-

Field Z, parity glected. The matching of the SUGRA fields at the tree level

Upr + is performed simply by using the metric

95u N ds?=g, (x)dxtdx’+ r(x)d o2, 2.3

Oss + ©

B, -

Bs + _ _ . .
whered e[0,7] is a coordinate for the compact dimension,
andg,,,(x), r(x) parametrize the massless metric and radius
modulus fields.(We are implicitly expanding about a flat

Lsusras=—ME V=g®(:R O+ 1HMNH ) metric, so the zero-mass KK modes are independerit.pf
Ignoring the boundary fields for the moment, the bosonic
1 terms in the 4-dimensional effective theory are
+ ——= e"NPRRB HypH or+ fermion termg,
6\/6 MANPHIQR
r 1
(2.3) L4==2aME =g SR D+ - 0"Byi,By|. (2.4
where M,N, ...=0,... 3,5, are 5-dimensional spacetime

indices, andHyn=duBn— duBy is the field strength for the
graviphotonB), . Under theZ, parity, the fields transform as Note that there is no explicit kinetic term for the radius
(x°)— = ¢(—x°), where the parity assignments of the modulus. After an-dependent Weyl rescaling of the metric,
bosonic fields are given in Table I. The orbifold projection a kinetic term for the radius modulus is generataith the
keeps only those field configurations that are even udder correct sigi. The couplings of the radius modulus to bound-
We assume that there are fields localized on the orbifolcry fields is very different in the two bases. Before Weyl
boundaries, so these must be coupled to SUGRA. The Laescaling, there are no couplings oto boundary fields at
grangian has the form leading order in the low-energy expansion. This is because
arises from fluctuations ajss, which by general covariance
Ls=Lsyerast IX°) Lys+ 8(x°=m1)Lia. (2.2 can only couple to the 55 component of the matter stress
. . . __tensor. This component vanishes for matter confined to
We will not need the details of the bulk-boundary COUp“ngS3-branes, at leading order inLL. At higher order in deriva-

In Lyjs and Lyq, but it is important for us to know that such e gng 1M, we can write terms containing the curvature
couplings e.X'St af‘d preser/é=1SUSY. As shown in Ref. tensor that depend on derivatives obut these will be a
[1.4] for 5-dimensional gauge- _and hypermultiplets, the COUsmall correction. In the rescaled basis the radius modulus has
pllngs of bulk and b_oun(_jary flelds_ can b_e worked out in 3non-derivative couplings to fields localized on the branes.
straightforward fashion if the auxiliary fields of the bulk Equation(2.4) is to be matched to the most general La-
theory are known. Building on earlier woft5], an explicit grangian describing 4-dimensional SUGRA coupled to a

off-shell. formulation for 5—dimensjona| SUGRA Was e modulusT. Using the superconformal approach to SUGRA
cently given by Zuckef16]. Following Ref.[14], one first [17], this can be written as

decomposes the 5-dimensional SUGRA multiplet into off-
shell multiplets of the unbroken 4-dimensiound=1 SUSY.

In addition to the N'=1SUGRA multiplet, this yields two
vector multiplets(with vector fieldsgs, andB,) with odd ﬁSUGRAAzf d*0¢Tof(TT,T), (2.5
orbifold parity, and one chiral multipletwith real scalar

fields gs5 and Bs) with even parity. It should then be pos-
sible to couple these multiplets t&=1fields localized on

the boundaries using the usull= 1superfield calculus. where

B. Matching to 4 dimensions b=1+ 02F¢ (2.6)

We now consider integrating out the KK modes of the
5-dimensional SUGRA multiplet at the scaleto obtain a
4-dimensional effective theory. We are interested in effectss the conformal compensator. We do not include a superpo-
of order IM3~1/(rM2), which means that we can restrict tential in Eq.(2.5) becausd has no potential in this approxi-
attention to tree-level effects in the SUGRA fieldl the  mation.(Recall that we are not including a bulk cosmologi-
normalization of the SUGRA fields given in E(.1), the cal constan}. After integrating out the auxiliary fields, the
propagator for all bosonic SUGRA fields is of ordeMﬁ’.] bosonic terms of E¢2.5) are
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1 1 us that the divergent contributions will have the same struc-
Lsucras V—9@ ngM)— 27 (frd"T—H.c) ture as local terms in the effective field theory, and therefore
do not give new effects.
X(fTaﬂT—H.C.)—fT‘rTﬂ’“TT&MT Now, the exchange of Kaluza-Klein excitations of the

graviton couple to derivatives of the fermion fields and there-
2.7) fore cannot yield a term of the form E(2.11). Couplings of
' the graviphoton to boundary fields are restricted by the orbi-
fold projection and graviphoton gauge invariance

+fermion term%,

where f;=9f/dT, etc. An important point is that Eq2.7)

must be matched to Eq2.4) without Weyl rescaling. The SBu=dma, a(—x°)=—a(x>). (212
reason is that if boundary fields are included, the theory ex-

pressed in terms of the Weyl-rescaled metric contains onlBoundary fields cannot be charged under this symmetry be-
non-derivative couplings to the radius modulus. Kahler term%ausee,ﬂ vanishes on the boundary. The only term consistent
involving bothT and boundary terms necessarily contain de-with these constraints that can give rise to the 4-fermion term
rivative interactions off, the only consistent way to match is in Eq. (2.11) has the form

if the Kahler terms arél-independent. Equatiof2.4) then

shows that there is an explicit kinetic term for only one of ALs=8(x%)Hs, Kl+ 8(X5— mr)Hs, KEy  (2.13

the real scalar fields i, so we must havé;+;=0. This

implies thatf is the sum of a holomorphic plus antiholomor- \yherek # is a dimension-3 current constructed from bound-
phic function, so we can make a field redefinition so that 4y fields; its precise form will be determined by matching to

=—MZ-(T+T"). Writing T=T,+iT,, we have the 4-dimensional theory.
The power-counting argument above shows that Eg.
ESUGRA,E—Mgf d*0¢T(T+TT) (2.9 (2.13 will give rise to coqtact terms of order I\ﬂ/_ﬁ from
tree-level exchange oB, fields. We can determine these

terms by integrating ouB,, using its classical equations of

T 1 jon. | [ jodicity and consistency with the orbi-
T W e .y L motion. Imposing periodicity y
Msv—g [ 3t 1(9MT2(9MT2 fold projection, we obtain

+fermion terms. 2.9 1 1
% @9 g =] 8y)Kti Sy = mKfy— 5 (Ky Knig) .
|\/|5 r
Comparing this with Eq(2.4), we can identify (214
ReT)=3nr, Im(T)= \/677519- (2.10 In this computation it was important that we considered the

B, field to be independent ofs, corresponding to the zero-
mode (ImT) of the five-dimensional field. Substituting back

Equation(2.8) has the “no-scale” form considered long ago k ) : :
dpto the Lagrangian and integrating over the compact dimen-

[18]. The essential new ingredient in the present case is th , : : . .
the no-scale form is stable under radiative corrections be$!on 0 obtain the 4-dimensional effective theory, we obtain

cause the cutoff of the 4-dimensional theory is of order 1/ the contact termis
<M,.
We now consider the fields localized on the orbifold 1
. . . . . AL;=——09,Bs(Kist+Kpig)*
boundaries. We are particularly interested in contact interac- 4 ro* o(Kuist Knia)
tions between the hidden and visible sectors. The only con-

tact interaction of order M2 in the 4-dimensional effective
4 (Kyist Khig)“(KyisT Kpig) - (2.19

theory that is not forbidden by symmetries is B 47TM§r
1 4 —— We compare this with the contact terms in the 4-dimensional
WJ d*0(2"2)(Q'Q) = W(lﬂzlﬂq)(lﬁzlﬂqﬁ o SUGRA with matter fields:
4 4

(2.1))

where we have explicitly shown the 4-fermion component.
The only diagrams that can contribute to the 4-fermion term
in Eq. (2.11) at order 1W|f1 consist of tree-level exchange of

bosonic SUGRA fields. The bulk-boundary couplings cannot srp;g procedure also gives rise to terms proportional to

involve any Suppreszsion by Mlis, otherwise the final result 50y (k2 .+K2,) in the 4-dimensional effective theory; these are
will _be |e_35 than M 3. It may appear that these CO_nC|US|0nS cancelled by boundary terms proportional t(0) in the
are invalidated by power-divergent loop graphs with a cutoffs-dimensional theory. For a discussion of the origin of these terms,

of order M. However, general renormalization theory tells see Refs[7,14.

Lo [ 404" gL METHT) + (et ). (210
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As argued abovef, ;s and f,q are independent of because SUSY-preserving five-dimensional cosmological constant to

any dependence would imply a couplingrafand henceyss) the theory. To linear order in the cosmological constant, the

to brane fieldgwithout Weyl rescaling We therefore obtain effect of this is to add a superpotential term linealito Eq.
(2.20. The potential arising from this theory is now

2Ty * 8M3T; V= —SRET)+ Vi, (2.21)
5
Here J#=J& + Jfiy with
— whereV,,q is the vacuum energy from hidden sector SUSY
J=i(f 0t R H.e) + oy, (218 hid a9

breaking, and sets the size of the bulk cosmological con-
stant. However, this introduces a new problem, namely run-
away behavior for the radius modulti®Ve see that we can-
not obtain an appropriate setting for AMSB without adding
new physics to stabilize the modulus.
We mention that another means of breaking SUSY is to
Kﬂ:i‘],;‘ (2.19 not have a hidden sector which breaks SUSY by itself but
\/E rather to simply have a constant superpotential on a brane
(and no bulk cosmological constanfThen one finds that
With this identification, theJ*J, contact terms also match. F{#0, butF ,=0, so SUSY is broken but the cosmological
This matching would be spoiled by additional contact termsconstant vanishes. This is the basic no-scale mechanism of
of the form EqQ.(2.11), so we conclude that these operatorsSUSY breaking[18]. We do not pursue this scenario here
are absent in the 4-dimensional effective theory. because it involves the vanishing of the AMSB order param-
Putting together the various pieces, the four-dimensionagterF .
effective theory below the compactification scale has the
general form

wheref?,=3?f/(a®1odP), etc.
Comparing Eqgs(2.195 and (2.17 and using Eq(2.10,
we see that matching thg,B ,K* term requires

lll. RADIUS STABILIZATION

L4=— Mgf d*0pTd(T+TH + Lrig+ Lo, (2.20 We now show that the problems found above are solved
by dynamically stabilizing the modulus. This modulus must
be stabilized in any case for phenomenological reaqdie
radius modulus must have a mass larger than of order
1 cm ! to avoid conflict with post-Newtonian tests of grav-
ity [19].) We will focus on a specific mechanism for stabi-
lizing the radius modulus that requires only a super-Yang-
Mills (SYM) sector in the bulk, and another SYM sector on
one of the boundaries. We assume that the bulk cosmological
C. The role of the radius constant is negligible; this is natural because of the presence

We now consider SUSY breaking on the hidden-secto®f bulk SUSY.
boundary in the theory above. We will show that the pres-
ence of an unstabilized radius modulus gives rise to severe
difficulties in this scenario when SUSY is broken in the hid-
den sector. We begin by discussing the bulk SYM sector. At the com-

Independently of how SUSY is broken, it is easy to sedPactification scale 1/ this theory matches onto a
from Eq. (2.20 that theF; equation of motion set6 ,=0. 4-dimensional SYM theory with a gauge couplmg tha_t de-
This implies that there are no contact terms between the vig2eénds onr. The scale where the effective 4-dimensional
ible and hidden sectors in this theory, consistent with the faceYM theory becomes strong therefore dependsroand
that there is no propagating bulk scalar field in the SUGRAJaugino condensation generates a dynamical superp_otentlal
multiplet that could mediate such terms. This makes it rathefhat depends on the moduliis The fact that the dynamical
mysterious how SUSY breaking can be communicated fron$uPerpotential foff is generated by supersymmetric dynam-

the hidden to the visible sectf®], especially sinc& , is the ics rather than induced by SUSY breaking in the hidden
order parameter for AMSB in the visible secf@:3]. sector allows the mass of the modulus to be large compared

This feature also gives rise to difficulties in cancelling thet0 Ma;2- This means that below the scale of the radius modu-
cosmological constant. SUSY breaking on the hidden-sectdtS: the effective theory has the “sequestered” form dis-
boundary gives rise to a nonzero vacuum energy independent
of the radius modulusT. In generic four-dimensional
SUGRA models this positive contribution to the cosmologi- “whenT becomes sufficiently large, the linearized approximation
cal constant can be cancelled by negative SUGRA contribufor the effect of a bulk cosmological constant is no longer valid. We
tions arising fromF ,# 0, but this mechanism is clearly not have checked that including the full non-linear effects does not stop
available here. One can attempt to remedy this by adding the runaway behavior.

where L;q is made out of only hidden sector and four-
dimensional supergravityoff-shell) multiplets andZ,;s is
made out of only visible sector and four-dimensional super
gravity multiplets. Both are independent of thehiral mul-
tiplet.

A. Bulk super-Yang-Mills sector
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TABLE II. Fields of 5-dimensional super-Yang-Mills sector effective theory. The tree-level matching condition for the

with their Z, parity assignments. effective 4-dimensional gauge coupling is
Field Z, parity 1 27r
—=—. (3.3

A, T 9 O

A5 -

) - Becausay, depends om, gaugino condensation in the effec-
AL + tive 4-dimensional SYM sector will give rise to KK masses
A2 _ starting at I/, and are therefore integratdddependent dy-

namical superpotential.

The T dependence of the dynamical superpotential can be
cussed in Ref[2], and the leading contribution to SUSY determined exactly using holomorphy argumef#6]. The
breaking in the visible sector comes from anomaly mediaholomorphic 4-dimensional gauge coupling=1/(2g2)
tion. + .- is given exactly by

The bulk SYM multiplet consists of a vector fiel,, a
real scalar®, and a symplectic Majorana gauging (] 5
=1,2). These fields are taken to transform under the orbifold S(n=1/g5)= 352 +c, (3.9
projection as shown in Table Il. The even fields form/sn 95

=1 SYM multiplet V, while the odd fields form alW=1  \herec is a real constant that parametrizes the scheme de-

chiral multiplet¥. These fields can be coupled to the bound-pendence. It may appear that cancelling large logs requires
ary fields using the usual rules for constructigs 1 invari-  ys to match at a scale~ 1/

ants.(For more details, see Réfl4].)

We assume that the fields on the boundaries are un- ?
charged under the bulk SYM sector. However, there are in S(,LL=1/T)=—2+C. (3.5
general higher-dimension operators coupling the bulk SYM 305

fields to the boundary fields. Using a normalization of the
fields where the gauge coupling is factored out of the kinetid
terms group|

owever, for u<1/r this leads to[for an SU(N) gauge

?2T+ NI( T+ (3.6
=— n C. .
39 1672 a

1 1
Lo=—tr| = ZFYNFyy+ MOay@+---|, (3D S(w)

93

the bulk SYM propagator is proportional tg§~1/M5. The logarithmic dependence dnimplies that 1g;>Re(S)

Therefore, exchange of SYM fields between the boundaried®Pends on Ini()<B,,. But from the 5-dimensional theory
can give rise to contact terms of ordeMZ~1/(rM3) only W€ know thatB, is derivatively coupled, so this is impos-

if there are boundary couplings of ordeMLd. However, it is sible. It is easy to see that the only way to avoid this contra-

easy to see that no such terms are possible unless there iéj' tion consistent with holomorphy_ is Eq3.4. We have
singletS on the boundary, in which case we can write also checked that carefully evaluating the threshold correc-

tions due to the infinite tower of SYM KK states also repro-

1 duces Eq(3.4). The dynamical scale of the theory is there-

A£5=5(y)f dzﬁM—Str(W“Wa)JrH.c., (3.2 fore
5

where W is the field strength of thev=1 SYM field V. Abmkocie*&"z“(g'“gg). (3.7)
[Note that boundary couplings involving th&=1 chiral gé

multiplet ¥ are restricted by gauge invariané® =ids«, ) ) ] ]
a(—x5) =+ a(x5).] If there are singlets in both the hidden !N order to obtain believable numerical estimates we need

and visible sector, this will induce contact terms betweerfO €stimate the constant of proportionality in E8.7). This
them only at the 1-loop level, and the presence of two SYMEaN bes done using “naive dimensional analysi€NDA)
propagators in the leading diagram means that the effects aké1,22.> The principle of NDA is that in a strongly coupled
suppressed by MZ, and therefore negligibléThe contact theory with no small parameters, both the fundamental and
terms are Kahler terms by (1)g invariance] We conclude e effective theory become strongly coupléd the sense
that introducing the bulk SYM sector does not introduce newat 100p corrections are ordey at the same scale. To esti-
contact terms into the effective 4-dimensional theory. mate A, note that NDA implies that if the gauge coupling
We now construct the 4-dimensional effective theory forand the radius are chosen so that the fundamental theory is

the bulk SYM sector. When we perform the KK decomposi-

tion, the odd fields have KK masses starting at drid are

therefore integrated out. The even fields have a massless zeréNDA is applied to higher-dimension theories with branes in Ref.
mode, which becomes a 4-dimensional SYM sector in thg23].
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strongly-coupled at a scald,, then A~A,. The strong- C. 4-dimensional effective theory

coupling value of the S-dimensional gauge coupling is Now we are ready to analyze the 4-dimensional effective

| theory, including all sectors. Below the scaler,1the

g§|stmng~ 5 (3.8  4-dimensional theory consists of 4-dimensional SUGRA and
NAg the modulusT coupled to the bulk and boundary SYM sec-
g3 , . . tors. In addition, the theory contains the visible and hidden
wherel;=24w" is the (inverse of the 5-dimensional 100p  gectors, which we do not specify explicitly. We now write
counting parameter, gnd we have takgn _into accounfthe o ofractive Lagrangian below the scaldg, and A g,
dependence appropriate for the lamyelimit. The strong- \;here the SYM sectors become strong, and below the scale
coupling value of the radius is where the KK modes havéy 5yysy preaking in the hidden sector. In this regime, the
mass of orden: only light fields are the SUGRA fields, the modullisthe
1 1 Goldstino from the SUSY breaking sector, and the visible

r|5tmng:3_w'r|mng~ A_o' (3.9 sector fields. The effective Lagrangian is

This implies that the strong-coupling value of the exponen-  Lett= — Mgf d*0gTp(T+TT)
tial in EqQ. (3.7) is order 1, and we obtain

ls 2 p +(f d?0¢3c+ae T+ H.c.|—Vygt---.
Apuie= — e 2rTIONG), (3.10
NG (3.13

The dynamical superpotential generated in the 4-dimensionddere
effective theory is therefore L

Cc~
4

E Abay (3.14

NG

1.3

303 T/(aNGE
WbU|k-dyn~N_|4Abqu~ g~ 327 T/(3Ngg) (3.11)

arises from gaugino condensation in the boundary SYM

Using ls= 2472 andl,=16x2, the dimensionless prefactor :228%.(\’\/63 neglectN dependence in the boundary SYM

is 13/1,=864mr"=3x10°. However, this estimate depends

sensitively on the value used fbty, and should be regarded 3 30772

. o 5 ar
as very uncertain. Nonetheless, it is clear that the prefactor a~——, = 5 (3.15
will be large unless NDA is completely misleadifig. 1,N*g2 3Ngs

arise from gaugino condensation in the bulk SYM theory;
N and V,4>0 is the vacuum energy generated by the SUSY

In addition to the bulk SYM sector, we assume that thepreaking sector. We have chosen not to add a 5-dimensional
aries. A; with the bulk SYM, we assume that there are NG U(1)g rotation, buta is in general complex. The terms
matter fields charged under the SYM gauge group. If thigymitted in Eq.(3.13 contain the interactions of the visible
SYM sector is in the hidden sector, there is no danger fronygctor fields and a Goldstino from SUSY breaking in the
flavor-violating higher-dimension contact terms. If it is in the pigden sectofwhich will eventually become the longitudinal
violating operator is the Goldstino can be included using a non-linear realization
of SUSY coupled to SUGRA25], but are not relevant for

AL~ 5(y)j d40$QTQtr(WaWa)+ H.c., (3.12 computing the effective potential far, the same is true for
5

B. Boundary super-Yang-Mills sector

the visible sector interactions.

The superpotential in Eq3.13 is exact, but the Kahler
whereW? is the field strength of the boundary SYM multi- potential contains unknowﬁ)(lle) corrections from loop
plet. This gives flavor-violating interactions suppressed bycorrections and higher-dimension operators. These will be
(Abay/Ms)?, whereA 4, is the dynamical scale. This is neg- shown to give small corrections below.

ligible for the values ofA 4, we will be interested insee We now turn to the minimization of the scalar potential,
below), and we conclude that the boundary SYM sector mayneglecting corrections to the Kker potential. The scalar po-
be either in the hidden or the visible sector. tential obtained from Eq3.13 is

1
V=—{(3c*bae "T+H.c)

8In this connection, it may be worthwhile to point out that exact Mz
results obtained iofvV=2 theories spectacularly confirm the expec- N
tations of NDA[24]. +b[b(T+TT)+6]al?e T T} +V,iy. (3.16
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Note that the first term is proportional to the boundary SYMformation. This gives a kinetic termMﬁ(aTl)lez, and the
gaugino condensate. Only the first term in E8.16 de-  physical mass of the radius modulus is

pends on Im{). Minimizing with respect to Im(), we ob-
tain the effective potential fof ;= Re(T): o~ b2|<:|2

< r?. (3.23

1
=—{—6blal|cle PT1+2b(bT,+3)|al?e "1} + V, 4. _
Mg{ lallel (bTy+3)lal F Vi It is easy to see that the other real scalar and the fermion

(3.17 component ofT also get a mass of this order. Comparing
with Eq. (3.21), we see that

The term in brackets is a sum of two different exponentials
with opposite signs, the negative sign in the first term arising
from the minimization with respect to Irfii(. As T;— the
first term dominates, and the potential approacheg,y
from below. Provided the second term dominates for smalSince the modulus is heavy we can integrate it out of our
T, there will be a nontrivial minimum with vacuum energy effective theory. The different component fields Thhave
below + V4. This means that the parameters can be admass differences of ordem, , so this is not an approximately

m;
m—3/2~b<r>>1 (3.29

justed to give a vanishing cosmological constant. supersymmetric threshold; also it is easy to see Fyatloes

We look for a minimum withb(T,)>1. Explicitly carry-  not vanish (F1)~(r)(F4)). However,T couples to visible
ing out the minimization we find that sector only through higher-dimension derivative interactions
(recall that the modulus is the zero mode of the five-

3|c| N“Abdyg5 dimensional graviton polarized transverse to the brarses

b(Ty)e ™M= : (3.189  this does not give a contribution to SUSY breaking in the
visible sector at order M3. We conclude that at orderNI£,

er effective theory below the modulus mass is precisely the
sequestered form” proposed in RgR]: the visible sector

is coupled only to a geometrically flat four-dimensional
SUGRA background with broken SUSY(,#0).

We now return to the question of the corrections to the

2fa 8

where we have neglected terms suppressed by powers
1/(b(T,)). Note that{(T;) can be made arbitrarily large by
making A4, small compared to gé (The loop suppression
factors also tend to increa¢€,).) The vacuum energy at the

minimum 1s Kahler potential in Eq(3.13. The Kanler potential contains
3)c[? unknowrj O(llMﬁ) corrections from Ioop corrections and
(V)=— —+Vyq, (3.19  higher-dimension operators, and one might worry that these
2 are more important than the exponentidily T) suppressed

effects in the superpotential. This does not occur because the
where M3=M27r. The fact that the first term is negative potential vanishes in the limit where the superpotential van-
allows us to choose the parameters to fine-tune the cosmdishes, so the Kaer corrections enter multiplicatively. This
logical constant to zero. ensures the stability of the results above, in that thal&a
Because the superpotential has non-triiialependence, corrections to the modulus potential are of order W¢)
the F+ equation of motion no longer sefs,=0. Instead we  smaller than the leading potential we computed.

have We now show that this scenario for radius stabilization
can give rise to a sufficiently large radius without introduc-

| ing small numbers or fine tuning. From E@.18), the sta-

(Fg)= W (3.20 bilized value of the radius is
4
] . . Ng5 lg
SUSY is broken, and the gravitino mass is r~—2In _ (3.25
vi2 (g ls M§<F¢>N(N9§)3
hid |[C
mg/ZNM_IANM_4’ (3.2)  Because the radius depends logarithmically on the funda-

mental parameters, we cannot obtain hierarchies of many
orders of magnitude. In fact, because of the factdg 1/
~10"2 multiplying the logarithm in Eq.(3.25, the bulk
SYM gauge couplings must be large, and the fundamental
b2lc[2 theory must be close to strongly coupling.
(V") = 6b°|c| , (3.22 The simplest assumption is that both gravity and the bulk
M2 SYM sector become strong at a single scalge NDA gives
Ao~ (I5)®M5~10M 5, and we will take this scale to be the
where the primes denote differentiation with respecfio  fundamental scale of the theofg.g. the scale of string—M-
The kinetic term fofT, arises from mixing with the metric; it theory excited stat¢sUsing the NDA estimates fak, and
can be made manifest by making adependent Weyl trans- gé, we obtain

so that(F 4)~mg,.
The mass of the radius modulus is computed from
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1 Ao the visible sector proceeds by the mechanism of anomaly-

r~ A—|n(m) . (3.29 mediation. Although the radius modulus participates strongly

0 ¢ in the supersymmetry breaking, it does not contribute to soft
Using (F 4)~100 TeV andI4Mi~I5M§r, we obtain(for N visible sector masses at ordell\/ﬂﬁ’ because it does not di-

=2) rectly couple to the visible brane. The stabilization mecha-

nism for the radius modulus employed in this paper is very

30 8 simple, involving gaugino condensates in the bulk and on a

Ay Ag~2X10" GeV. (327 prane. The bulk gauge fields do not give additional contribu-

tions to visible soft masses due to the constraints of gauge

This is sufficient to suppress FCNC effects from massivanvariance. The advantage of this mechanism is that it gives

string states, but bulk gravitational loops give contact term& non-perturbative superpotential for the modulus arising

suppressed bj2] from field-theoretic mechanisms that are under theoretical
control. It is also possible that that such a superpotential
1 1 1 could also arise from non-perturbative string—M-theory ef-

" -5
4Xx10°°. (3.28 fects due to extended states.

This work is evidence that anomaly-mediated supersym-

This gives a contribution to soft scalar mass-squared terms @fetry breaking gives a model-independent contribution to
order<F¢>2/(A0r)3~(600 GeVY, which is comparable to soft supersymmetry breaking in the visible sector at order
the contribution from anomaly mediation. It is interesting 1/Mj in any model with SUSY breaking on a hidden-sector
that this mechanism for radius stabilization can naturally stabrane, and stabilized moduli. If there are no additional light
bilize the radius at a value where loop effects are importantulk fields that give a larger contribution, anomaly-
This may give a solution to the problem of negative sleptormediation dominates, giving a natural solution to the super-
masses, but we will not pursue this point here. symmetric flavor problem as well as potentially testable pre-
Another possibility is that the bulk SYM sector becomesdictions. These features can be upset by the presence of
strong at a scaldé g, gcthat is smaller than the scalky, . add|t|o7nal bulk fields with significant couplings to the visible
Here, A gaugeis @ fundamental scale of new strong physics,sector. Knowledge of the true string theory vacuum, or ex-
while A g, is not directly a physical scale, but correspondsperiment, is required to find out if such light non-minimal
to a weak gravitational coupling at the fundamental scaldulk fields are present.
A gauge This occurs naturally if the gauge interactions propa-
gate in fewer dimensions than gravity in the fundamental
theory. FOrA gaygd A gray™= 75, We obtainr A g, ~ 160. This is
sufficient to suppress gravitational loop effects, and also sup- 1he authors would like to thank the Institute for Theoret-
presses flavor-changing contributions from string—M-theory.., Physics at Santa Barbara for hospitality during the
states at the scalfiga,e We have also checked that the o, rse of this work. We thank J. Bagger, T. Banks, J. Louis,
contact terms from bulk gauge fields are negligible. Thesg; peskin, E. Poppitz, L. Randall and F. Zwirner for com-
estimates are quite rough, but we conclude that it is very,enis and discussions on this work. M.A.L. was supported
plausible that this mechanism can give a sufficiently IargeOy the National Science Foundation under grant PHY-98-
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localized visible and hidden sectors localized on “3-branes”
and shown that when the compactification radius is properly
stabilized, the transmission of supersymmetry breaking to ‘For a phenomenologically interesting example, see R&i.
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