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Phase diagram and spectrum of gauge-fixed Abelian lattice gauge theory
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We consider a lattice discretization of a covariantly gauge-fixed Abelian gauge theory. The gauge fixing is
part of the action defining the theory, and we study the phase diagram in detail. As there is no BRST symmetry
on the lattice, counterterms are needed, and we construct those explicitly. We show that the proper adjustment
of these counterterms drives the theory to a new type of phase transition, at which we recover a continuum
theory of~free! photons. We present both numerical and~one-loop! perturbative results, and show that they are
in good agreement near this phase transition. Since perturbation theory plays an important role, it is important
to choose a discretization of the gauge-fixing action such that lattice perturbation theory is valid. Indeed, we
find numerical evidence that lattice actions not satisfying this requirement do not lead to the desired continuum
limit. While we do not consider fermions here, we argue that our results, in combination with previous work,
provide very strong evidence that this new phase transition can be used to define Abelian lattice chiral gauge
theories.

PACS number~s!: 11.15.Ha
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I. INTRODUCTION

In this paper we continue our investigation of the gau
fixing approach to the construction of lattice chiral gau
theories. In this approach, gauge invariance is broken b
through the gauge-fixing terms and through the fermio
This requires adding a complete set of counterterms to
theory, in addition to the gauge-fixing terms, and these co
terterms will need to be tuned. Showing that this can be d
corresponds to demonstrating that the phase diagram
tains a continuous phase transition which can be employe
construct the desired continuum chiral gauge theory@1,2#.

Here, we will restrict ourselves to the Abelian case. T
avoids many of the subtle questions concerning Gribov c
ies which arise in the non-Abelian case. In particular,
makes it possible to drop the ghost sector from considera
@3#, while still testing many of the key elements in this a
proach to lattice chiral gauge theories.

We will employ ~a generalization of! the lattice gauge-
fixing action proposed in Ref.@4#. Since we wish to maintain
close contact with standard weak-coupling perturbat
theory, we consider a lattice version of the Lorentz gau
~Other gauges may work as well, but we believe that it
important to restrict oneself to a renormalizable gauge.! On
the lattice, i.e., in the regulated theory, there is no gauge
Becchi-Rouet-Stora-Tyutin~BRST! symmetry, and both the
transverse gauge fields and the fermions will couple to
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gauge degrees of freedom, represented by the longitud
part of the gauge field.

This leads to the following simple questions, both
which can be addressed without simulating the full theo
including all its dynamical degrees of freedom:~1! When we
turn off the transverse part of the gauge field, do we obta
theory of free~chiral! fermions in the correct representatio
of the gauge group~in the Abelian case, with the correc
charges!, decoupled from the longitudinal modes? And~2!
when we turn off the fermions, do we obtain a theory of fr
photons, again decoupled from the longitudinal degrees
freedom?

It is well known that ~most! small perturbations of the
gauge-invariant compact lattice formulation of a U~1! gauge
theory do not change the nature of its~weak-coupling! con-
tinuum limit ~they correspond to irrelevant directions! @5#.
However, previous work has shown that there are gen
obstructions to the construction of chiral gauge theories i
symmetric phase~for reviews, see Refs.@6,7#! which can be
traced back@8# to the Nielsen-Ninomiya theorem@9#. In our
approach, gauge fixing plays an essential role in the c
struction of the theory. This means that the coupling in fro
of the gauge-fixing action has to be large enough to bring
to a new type of continuous phase transition in the ph
diagram, at which both questions above can be answe
affirmatively.

We have addressed question~1! in previous work@10–
14#. We showed that, in the ‘‘reduced’’ model, in which on
the fermions and the longitudinal gauge fields are kept,
deed a new type of phase transition occurs. At this ph
transition, a continuum limit can be defined in which fre
chiral fermions with the correct charges emerge, decoup
from these longitudinal degrees of freedom. Here, we
©2000 The American Physical Society07-1
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dress the second question. We turn off the fermions, and
ask whether this new phase transition survives when
transverse degrees of freedom are present, and in partic
whether it allows us to construct a theory of free photons
the transition. We would like to emphasize that, even thou
without fermions, this is not a new continuum theory, o
critical point corresponds to a new type of universality cla
This is the key element that allows us to couple fermio
chirally to the gauge fields, without running into the pro
lems which made many previous attempts unsuccessful~A
summary of the different scaling regions contained in
phase diagram of our model can be found in Sec. III E.!

In addition to this fundamental question, we also addr
a more technical issue. It was argued in Ref.@2#
that one has to be very careful with the precise definit
of the lattice version of the gauge-fixing action. A nai
‘‘standard’’ discretization of the Lorentz gauge-fixing actio
(1/2j)*d4x(]•A)2 will lead to the occurrence of a dense s
of lattice Gribov copies~with no continuum counterpart!.
This corresponds to a large class of uncontrolled, rough fl
tuations in the lattice theory, and may well spoil the ex
tence of the critical point we are after. The lattice gaug
fixing action proposed in Ref.@4# does not suffer from this
problem, and it is this action that we have used in our p
vious work. Here, we introduce a one-parameter class of
tice gauge-fixing actions, which interpolates between the
ive discretization and the one of Ref.@4#. This corresponds to
adding a direction to the phase diagram, and we explore
dependence of the phase structure on this new direction

The organization of this paper is as follows. In Sec. II w
give the full action for a gauge-fixed U~1! gauge theory,
including a complete set of counterterms. In particular,
introduce the parameterr̃ , which interpolates between th
naive gauge-fixing action and that of Ref.@4#, and we discuss
the above mentioned lattice Gribov copies. We argue
standard lattice perturbation theory should be valid as lon
r̃ is large enough. In Sec. III we present analytic results
preparation of a high-statistics numerical study of this mod
We first explain the nature of the new phase transit
~which we will denote as the ‘‘FM-FMD transition’’! from
the classical potential, and then provide a simplemind
mean-field analysis of the model. Since there is good qu
tative agreement between mean field and our numerica
sults, we also give an overview of the structure of the ph
diagram at this stage. We end this section with a calcula
of the one-loop lattice photon propagator, and use it to
termine some of the counterterms at one loop. We also c
sider a~composite! scalar two-point function. Then, in Sec
IV, we present our numerical results, which constitute
main part. First we discuss in detail how we determined
phase diagram. After that, we compute vector and sc
two-point functions numerically, and compare them w
perturbation theory in order to determine whether we do
deed obtain a theory of free photons at the FM-FMD tran
tion. Finally, we summarize and discuss our findings in
last section. There are two appendixes containing vari
technical details.

We would like to end this section with mentioning tha
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recently, a gauge-invariant construction of~anomaly-free!
Abelian chiral gauge theories on the lattice has been p
posed, based on a Dirac operator satisfying the Ginsp
Wilson relation @15# ~for the non-Abelian case, see Re
@16#!. The problems with the violation of gauge invarian
discussed above do not apply in this case~they might if a
gauge non-invariant approximation of the Dirac operator
used, however!. An essential ingredient is that the fermio
measure includes a gauge-field dependent phase factor w
is determined by requiring the theory to be gauge invari
and local. So far, however, no explicit expression of the f
mion measure was given, making this approach as yet
suitable for a numerical investigation.

Another approach which is currently pursued by seve
groups is the interpolation~or two cutoff! approach@17#.
Some interesting results in a two-dimensional toy model
be found in Ref.@18#.

II. MODEL

The central idea of the gauge-fixing approach is to con
the gauge degrees of freedom by a gauge-fixing proced
The starting point is the gauge-fixed action in the continuu
the ‘‘target theory.’’ Correlation functions of the targe
theory in the continuum satisfy Slavnov-Taylor identities,
a consequence of the gauge symmetry. For an Abelian ga
group, which will be the subject of this paper, the targ
action in the continuum is of the form

Sc5Sc, G~Am!1Sc, F~Am ;cL ,cR!1Sc,g.f.~Am!, ~2.1!

where Sc, G(Am)5 1
4 *d4x Fmn

2 designates the gauge actio
Sc, F(Am ;cL ,cR) is the chiral fermion action, andSc, g.f.(Am)
the gauge-fixing action. Here, we will consider the Loren
gauge, which is renormalizable, and therefore allows us
study the~relevant part of the! phase diagram in perturbatio
theory. No ghosts are needed in the Abelian case, and he
forth we will not introduce any ghosts on the lattice eith
@3#. We then have

Sc, g. f.~Am!5
1

2jE d4xS (
m

]mAmD 2

, ~2.2!

wherej is the gauge-fixing parameter. The goal is now
transcribe the target theory defined by the action~2.1! to the
lattice using compact lattice link variables and the Haar m
sure as integration measure in the path integral.

The fermion action leads to violations of the Slavno
Taylor identities if we use any one of the standard latt
fermion formulations, such as Wilson, staggered or doma
wall fermions, which are in conflict with chiral gauge invar
ance. Moreover, we will consider a class of gauge-fixi
terms, dependent on a continuous parameterr̃ . They will
lead to additional violations of the Slavnov-Taylor identitie
The Slavnov-Taylor identities are restored in the continu
limit by adding a finite number of counterterms to the actio
and appropriately tuning their coefficients@1# in the con-
tinuum limit.
7-2
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In this paper, we will drop the fermion sector and,
mentioned in Sec. I, focus on the question whether the lat
discretization of the target action with U~1! symmetry pro-
vides a valid formulation of a theory of free photons on t
lattice. The lattice action is formulated in terms of the co
pact link variablesUmx5exp(iagAmx), with g the gauge cou-
pling and a the lattice spacing~which we will set to one
throughout this paper!. The lattice action is then given by th
expression

S5SG~U !1Sg. f.~U !1Sc.t.~U !, ~2.3!

whereSG(U) is the gauge action,Sg. f.(U) the gauge fixing,
and Sc.t.(U) the counterterm action on the lattice. For t
lattice transcription of the gauge actionSc, G(Am) we em-
ployed the standard plaquette action

SG~U !5
1

g2 (
x

(
m,n

$12ReUmnx%, ~2.4!

where Umnx5UmxUnx1m̂Umx1 n̂
†

Unx
† is the usual lattice

plaquette variable. The lattice transcription of the gau
fixing action is more subtle. A naive lattice discretization
Eq. ~2.2! leads to

Sg. f.
naive~U !5k̃(

x
S (

m
Dm

2VmxD 2

, ~2.5!

where

Vmx5Im Umx , ~2.6!

k̃5
1

2g2j
, ~2.7!

and Dm
2Vmx5Vmx2Vmx2m̂ (Dm

2 is the backward neares
neighbor lattice derivative!. The problem with the naive lat
tice discretization is that the classical vacuum of the act
SG(U)1Sg. f.

naive(U) is not unique@2#. It is easy to see tha
SG(U)1Sg. f.

naive(U) has absolute minima for a dense set
lattice Gribov copies Umx5gx1gx1m̂

† , of the classical
vacuumUmx51 for particular sets ofgx . An example of

FIG. 1. Example of a lattice Gribov copy. Shown is only
two-dimensional projection of the four-dimensional lattice. T
Umx fields on all the links attached tox5x0 ~thick lines! are equal
to 21 and all otherUmx fields are equal to one.
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such lattice Gribov copies is displayed in Fig. 1, where
setgx521 at sitex5x0 andgx511 at all sitesxÞx0. The
Umx fields on the links attached to the sitex0 ~thick lines! are
equal to21 whereas theUmx fields on all other links~thin
lines! are equal to11. These lattice Gribov copies are
high momentum lattice artifact with no counterpart in t
continuum.~They should not be confused with continuu
Gribov copies, which are a long-distance phenomenon.! It is
clear that perturbation theory around only one of the abso
minima of SG(U)1Sg.f.

naive(U), in particular the classica
vacuumUmx51, may not give a valid description of th
theory, and the phase diagram could~and will! turn out very
different from what one would expect from naive perturb
tion theory.

It is however possible to remove the unwanted lattice G
bov copies of the classical vacuum~and therefore, by conti-
nuity, of field configurations perturbatively close to th
vacuum! by adding a higher dimensional operator to t
gauge-fixing action in Eq.~2.5!. This procedure is similar to
Wilson’s idea of removing the species doublers of the na
lattice fermion action by adding an operator of dimensi
larger than four~the Wilson term!. Such higher dimensiona
operators do not affect the small-momentum behavior of
theory, but can be used to change the behavior at large
menta.

The gauge-fixing action we will use in this paper is giv
by the expression

Sg. f.~U !5Sg. f.
naive~U !1 r̃ k̃(

x
H 1

4
~Cx1Cx

†!22Bx
2J ,

~2.8!

where

Cx5(
y

hxy~U !, ~2.9!

Bx5(
m

S Vmx2m̂1Vmx

2 D 2

, ~2.10!

and

h~U !xy5(
m

$Umxdx1m̂,y1Umx2m̂
† dx2m̂,y22dx,y%

~2.11!

is the covariant lattice Laplacian. In Eq.~2.8! we have mul-
tiplied the higher dimensional operator by a new parameter̃
which can be viewed as the analogue of the Wilson para
eter r that multiplies the Wilson term. It can be shown th
the actionSG(U)1Sg. f.(U) has, forr̃ .0, a unique absolute
minimum atUmx51 @4# so that, forr̃ .0, standard pertur-
bation theory ing is valid. The gauge-fixing action provide
a continuous interpolation between the naive gauge-fix
action ~2.5! ( r̃ 50) and the gauge-fixing action atr̃ 51
which was introduced previously in Ref.@4# and was used in
Refs.@10–14,19#.
7-3



o
la
tic
.

ll
ee
in
e-
s

n
e

e
e

it

t
e
fie

f
ll
on

a

i-

as

’
ec-

n-

e
-

-

s.

ces
-
tic

M
e of
e

ase,
c-
se

tum
n-
re
er

b
way

BOCK, LEUNG, GOLTERMAN, AND SHAMIR PHYSICAL REVIEW D62 034507
We will study ther̃ dependence of the phase diagram
the purely bosonic theory, and explore the effects of the
tice Gribov copies on the phase structure. Obviously, lat
Gribov copies introduce rough gauge degrees of freedom
is therefore conceivable that lattice Gribov copies at smar̃
give rise to a disordered or symmetric phase. It has b
argued earlier that a chiral gauge theory cannot be obta
in such a phase@8#. This would teach us that, in the gaug
fixing approach to lattice chiral gauge theories, one need
chooser̃ of order one.

Finally, we have to specify the counterterm action. It co
tains all relevant and marginal operators which are allow
by the exact lattice symmetries@1#. In the case of the U~1!
gauge theory there are six such terms:

Sc.t.~U !52k(
mx

$Umx1Umx
† %2l1(

x
(
mn

~Dn
2Im Umx!

2

2l2(
x

(
m

~Dm
2Im Umx!

2

2l3(
x

S (
m

Dm
2Im UmxD 2

2l4(
x

S (
m

~ Im Umx!
2D 2

2l5(
x

(
m

~ Im Umx!
4. ~2.12!

The term proportional tok is a mass counterterm for th
gauge field. It is the only dimension-2 counterterm. All oth
counterterms are of dimension 4. An expansion ing shows
that the counterterms with coefficientsl1 , l2 and l3 are
wave-function renormalization counterterms. The terms w
the coefficientsl4 andl5 are, to leading order ing, quartic
in the gauge potential, and are needed to eliminate pho
self-interactions. The coefficients of the counterterms hav
be tuned such that the Slavnov-Taylor identities are satis
in the continuum limit~cf. Sec. III C!. Note that terms such
as (x(m(Dm

2Im Umx)(n(Im Unx)
2 do not occur because o

the symmetryUmx→Umx
† . However, such counterterms wi

have to be considered once the theory is coupled to fermi
The path integral is defined by

Z5E DUexp@2S~U !# ~2.13!

5E DUDf exp@2S~fx
†Umxfx1m̂!#, ~2.14!

where the actionS(U) is given in Eq.~2.3!, and the integra-
tion over the link variables is performed with the usual Ha
measure. Only the gauge action in Eq.~2.3! is invariant un-
der the local gauge transformation

Umx→Umx
g 5gxUmxgx1m̂

† . ~2.15!
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In Eq. ~2.14! we made the integration over the longitud
nal gauge degrees of freedomfx explicit. It is easy to see
that Eq. ~2.13! follows from Eq. ~2.14! by performing the
gauge transformation~2.15! with gx5fx

† and using the fact
that *Df51 @5#. The longitudinal modes can be viewed
group-valued Higgs fieldsfx . We will therefore denote in
the following S(fx

†Umxfx1m̂) as the action in the ‘‘Higgs
picture’’ and S(U) as the action in the ‘‘vector picture.’
Both pictures are equivalent and every observable in the v
tor picture has, according to Eq.~2.15!, a counterpart in the
Higgs picture. The path integral in the Higgs picture is i
variant under the local transformation

fx→hxfx , Umx→hxUmxhx1m̂
† . ~2.16!

Finally, we mention here that ind space-time dimensions th
path integrals~2.13! and~2.14! are invariant under the addi
tional discrete symmetry~with all l i50)

Umx→2Umx , k→2k28dk̃ r̃ ,

k̃→k̃, r̃→ r̃ , g→g, ~2.17!

which implies that we can restrict ourselves to thek

.24dk̃ r̃ region of the (k,k̃, r̃ ) phase diagram. In the fol
lowing we will refer to

k524dk̃ r̃ ~2.18!

as the symmetry surface, or symmetry line~point! if k̃ or
~and! r̃ are kept fixed.

At k̃50 and l i50, i 51, . . . ,5, themodel reduces to
the U~1! gauge-Higgs model with group-valued Higgs field
The resulting (k,g) phase diagram corresponds to thek̃

50 hyperplane of the four-dimensional (k,g,k̃, r̃ ) phase dia-
gram ~for k̃50 the model is independent ofr̃ ). In the limit
g→0 the phase diagram of the gauge-Higgs model redu
to that of the four-dimensionalXY model. This phase dia
gram of theXY model contains three phases: a ferromagne
~FM! or broken phase atk.kFM-PM'0.15, a paramagnetic
~PM! or symmetric phase at2kFM-PM<k<kFM-PM, and an
antiferromagnetic~AM ! phase atk,2kFM-PM. The k.0
region is mapped by the symmetry~2.17! into thek,0 re-
gion. This implies that the FM phase is mapped into the A
phase and vice versa. The FM-PM transition, and, becaus
the symmetry~2.17!, also the PM-AM phase transitions ar
second-order phase transitions. Atg.0 the FM phase turns
into a Higgs phase and the PM phase into a Coulomb ph
which we will still denote as FM and PM phases, respe
tively. There is strong evidence that also the FM-PM pha
transition atg.0 is of second order@20#. The spectrum in
the FM phase contains a massive vector boson with quan
numbersJPC5122 and a massive Higgs boson with qua
tum numbersJPC5011. The masses of both particles a
expected to scale whenk is tuned towards the second-ord
FM-PM phase transition. The spectrum in the Coulom
phase contains only a massless photon if one keeps a
from the FM-PM phase transition@21#. The model in the
7-4
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PHASE DIAGRAM AND SPECTRUM OF GAUGE-FIXED . . . PHYSICAL REVIEW D62 034507
Coulomb phase provides a valid formulation of free photo
on the lattice but, as we explained before, because of
strongly fluctuating longitudinal gauge modes, it is not po
sible to formulate a chiral gauge theory with a gauge n
invariant fermion action in that phase. The spectrum near
FM-PM phase transition contains, apart from the mass
photon, also positronium-like bound states of scalars@21#. At
largeg and smallk the phase diagram contains a confini
~CF! phase, which is separated from the PM phase b
phase transition, located atg'1.

In Refs. @10–14#, we have studied the U~1! model with
l i50, i 51, . . . ,5, in thereduced limit where the gaug
coupling is tuned to zero, while keepingk̃51/(2g2j) fixed
~reduced model!. In this limit the transverse gauge degrees
freedom are gone and only the dynamics of the longitud
gauge degrees of freedom remains. The path integral of
reduced model is given by Eq.~2.14! with all link variables
set equal to 1. The phase diagram of the reduced mod
r̃ 51 contains, apart from the FM and PM phases, also a
type ferromagnetic directional~FMD! phase where the vec
tor field Imfx

†fx1m̂ condenses and hypercubic rotation i

variance on the lattice is broken~cf. the r̃ 51 plane of Fig. 6,
which is very similar to ther̃ 51 reduced-model phase dia
gram!.

The phase transition between the FM and FMD phas
which, as we will see, is also present in the full U~1! model,
plays a crucial role in the gauge-fixing approach. While
photon is massive in the FM phase, one obtains a mass
photon by tuningk, from within the FM phase, towards thi
FM-FMD phase transition. Tuning all other counterterms
well should then lead to a theory of free, relativistic photo
We should note here thatk is the only relevant counterterm
parameter, whereas all thel i are marginal. We therefore
may expect that onlyk needs to be tuned nonperturbative
while, with a given numerical precision, a one-loop or ev
tree-level determination of thel i will suffice. Indeed, the
results which we will present in the following sections pr
vide evidence of this.

With chiral fermions, we demonstrated that, in the
duced limit, the fermion spectrum contains only the desi
chiral states@12–14#.

The phase diagram at smallg is expected to look similar
to the phase diagram of the reduced model, since the tr
verse components of the gauge fields are still very small.
will show in the following sections that even at a relative
large value ofg (g50.6) the phase diagram is qualitative
very similar to the one for the reduced model, ifr̃'1.

III. ANALYTICAL RESULTS

In this section we present our analytical results. Sect
III A deals with the constant-field approximation, which a
ready gives some insight into the phase structure. In S
III B we will determine the (k,k̃, r̃ ) phase diagram at fixed
small g in the mean-field approximation. The counterte
coefficientsk, l1 , l2 and l3 are calculated to one-loo
order in perturbation theory in Sec. III C. In Sec. III D w
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analyze the spectrum near the FM-FMD phase transition
perturbation theory.

A. Constant-field approximation

In the constant-field approximation we set

Umx5exp~ igAm!, ~3.1!

whereAm is a space-time-independent vector potential. Af
inserting Eq.~3.1! into Eq. ~2.3! all terms which contain
derivatives of the gauge field vanish, and we obtain an
pression for the classical potential density. Expanding
resulting expression in powers ofg, we find

Vcl~Am!5kH g2(
m

Am
2 1•••J 1

1

2
g6k̃ r̃ H S (

m
Am

2 D S (
m

Am
4 D

1•••J 2l4g4H S (
m

Am
2 D 2

1•••J
2l5g4H(

m
Am

4 1•••J , ~3.2!

where the ellipses represent terms which are of higher o
in g2. A massless non-interacting photon is obtained fork
50, l450 and l550. The relationk5kFM-FMD50 de-
fines a critical surface in the three-dimensional (k,k̃, r̃ )
phase diagram where the photon mass vanishes. We wil
later that the critical couplingkFM-FMD(k̃, r̃ ) is shifted away
from zero by perturbative corrections.

The minimization of the classical potential density~3.2!
for l45l550 shows that

^gAm&50, for k>kFM-FMD ,

^gAm&56~ uk2kFM-FMDu/~6k̃ r̃ !!1/4, for k,kFM-FMD ,

~3.3!

for m51, . . . ,4~see Ref.@4#, which also deals with the cas
l4Þ0, l5Þ0). This implies thatk5kFM-FMD50 corre-
sponds to a phase transition between the FM phase w
^Am& vanishes and the gauge boson has a nonzero mass
the FMD phase with a nonvanishing vector condensate^Am&.
The hypercubic rotation invariance on the lattice is broken
the FMD phase by the nonvanishing vector condensate.

The constant-field approximation is supposed to provid
satisfactory description of the model only at largek̃;1/g2,
where strongly fluctuating gauge configurations are s
pressed by a small Boltzmann weight and the smoot
gauge configurations are well approximated by a cons
field. Indeed, as we will see, a perturbative expansion st
ing from the constant-field approximation can be develop
by expandingUmx5exp(igAmx) and settingk̃51/(2jg2),
with j fixed. The situation is different at smallk̃ where
rough longitudinal fields are not sufficiently suppressed. T
picture is confirmed by our previous investigation of the
duced model atr̃ 51, where we find indeed a FM-FMD
phase transition at largek̃ ~consistent with the constant field
7-5
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FIG. 2. The (k,k̃) phase diagrams atr̃ 51 @~a! and ~b!# and r̃ 50.2 @~c! and ~d!#. The plots on the left were obtained by a mean-fie
calculation, and those on the right by Monte Carlo simulations on a 44 lattice. The dash-dotted lines mark the symmetry line@cf. Eq. ~2.18!#.
The perturbative result for the FM-FMD transitions is represented in the plots on the right by solid lines. The relation betw
perturbative and Monte Carlo results will be discussed in Sec. IV A.
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approximation!, but an FM-PM phase transition at smallk̃.

The emergence of the disordered PM phase at smallk̃ is due
to the dominance of rough gauge field configurations. Eq
tion ~3.2! shows that the classical potential density depe

only on the productk̃ r̃ . This suggests that a small value ofr̃

has the same effect as a small value ofk̃ and that the ‘‘small

k ’’ region around r̃ 50 might indeed be filled with a PM
phase. This conjecture will be confirmed by our mean-fi
analysis and Monte Carlo simulations.
03450
a-
s

d

B. Mean field calculation of the phase diagram

In the following we set againl i50, i 51, . . . ,5, and
determine the phase boundaries in the (k,k̃, r̃ ) space. The
mean-field analysis for gauge theories on the lattice is a
biguous as it is in conflict with local gauge invariance@22#.
For gauge-Higgs models the mean-field calculation in
vector picture leads to a wrong phase structure at small
ues ofk, whereas the mean-field approximation in the Hig
picture leads to a phase diagram which, at least qualitativ
complies at smallk with Monte Carlo simulations. Since w
7-6
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FIG. 3. Same as Fig. 2, but forr̃ 50.1 @~a! and~b!# and 0@~c! and~d!#. Note that the symmetry line in~c! and~d! coincides with thek50
axis.
il
al

g
al

r-

-
f
l
in
di

is-
re
in

try
hat
ark
s of

t

M
the
are interested in the phase diagram at smallk, we performed
our mean-field analysis in the Higgs picture. Here, we w
only describe the results, while relegating all the technic
ties to Appendix A.

All the results we are going to present in the followin
were obtained atg50.6, scanning the three-dimension
(k,k̃, r̃ ) phase diagram atg50.6 by keeping eitherk̃ or r̃
fixed. @We also performed a few scans of the fou
dimensional (g,k,k̃, r̃ ) parameter space in theg direction at
r̃ 51, k50 and several values ofk̃ and find that the transi
tion to the confining phase occurs always at values og
which are larger than 0.6.# The resulting two-dimensiona
sections through the (k,k̃, r̃ )-phase diagram are displayed
the left columns of Figs. 2–5. The corresponding phase
03450
l
i-

a-

grams obtained from the Monte Carlo simulations are d
played in the right columns. They will be discussed in mo
detail in Sec. IV A but a first glimpse shows that they are,
most cases, similar to the mean-field phase diagrams.

The dash-dotted lines in Figs. 2–5 mark the symme
line ~2.18!; we only determined the phase diagram above t
line. The error bars in the mean-field phase diagrams m
the distance between two successive points in our scan
the phase diagram~cf. Appendix A!.

Figures 2~a! and 2~b! show the (k,k̃) phase diagram a
r̃ 51. There is a PM phase for smalluk̃u and smalluku, and
for large k̃ there is a phase-transition line separating an F
and an FMD phase. The plots in Figs. 2 and 3 show that
situation remains qualitatively the same whenr̃ is lowered.
7-7
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FIG. 4. The (k, r̃ ) phase diagrams fork̃50.05@~a! and~b!# and 0.2@~c! and~d!#. The mean-field phase diagrams are displayed again
the left, and those from the Monte Carlo simulations on the right. The dash-dotted line is the symmetry line. The perturbative resu
FM-FMD transitions is represented in the plots on the right by solid lines. The relation between the perturbative and Monte Carlo re
be discussed in Sec. IV A.
e-

lo

at
The phase diagram atr̃ 50 contains at smallk̃ andk a PM
phase, as forr̃ .0. The mean-field calculation, however, pr
dicts that, atr̃ 50, the region at largek̃ and smalluku is filled
by an FMD phase, which is in conflict with our Monte Car
simulations~plot in the right column!, which show that the
PM phase extends to very largek̃ with no sign of an FMD
phase. We therefore believe that the FMD phase at largek̃ is
an artifact of the mean-field approximation~which tends to
favor ordered over disordered phases!. Figures 4 and 5 show
three (k, r̃ ) phase-diagram plots at fixedk̃ values. The phase
diagrams atk̃50.05 and 0.2 look very similar to those
fixed r̃ .0. For k̃,0, r̃ or r̃ ,0,k̃ we find an FM-AM
03450
FIG. 5. Same as Fig. 4 but fork̃50.8.
7-8
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PHASE DIAGRAM AND SPECTRUM OF GAUGE-FIXED . . . PHYSICAL REVIEW D62 034507
phase transition which coincides with the symmetry line, E
~2.18!. Figure 5 shows again that the mean-field calculat
at k̃50.8 does not lead to a PM phase at smallr̃ .

We have compiled the Monte Carlo results for t
(k,k̃, r̃ ) phase diagram into a schematic graph, shown in F
6. The FMD phase at largek̃ and r̃ 50 is not shown in that
graph since, as we said, there is no evidence from Mo
Carlo simulations that the FMD extends down tor̃ 50. Fig-
ure 6 shows that the FM-PM and FM-FMD phase-transit
sheets are separated by a tricritical line where three ph
~FM, PM and FMD! meet; we will call this the FM-
FMD-PM line. Similarly, also the FM-PM and FM-AM

FIG. 6. Schematic three-dimensional plot of the (k,k̃, r̃ ) phase

diagram in the range fromr̃ 50 to r̃ 51, k̃50 to k̃51. The two
dashed lines on the front faces of the phase diagram cube ind
the position of the symmetry surface@Eq. 2.18# on those faces. The
thick line represents the FM-FMD-PM tricritical line.
03450
.
n

.

te
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es

phase transition sheets are separated by an FM-AM-PM
critical line ~not shown in Fig. 6!. The projections of these
tricritical lines onto a constant-k plane are shown in Fig. 7~a!
~mean field! and in Fig. 7~b! ~Monte Carlo!. We see that the
discrepancy between the mean field and Monte Carlo res

at r̃ 50 correlates with the fact that the mean-field a
Monte Carlo locations of these tricritical lines differ slightly

In the mean field, the PM phase ends atk̃'0.3, and the
FM-FMD-PM and FM-AM-PM lines merge into an FM
FMD-AM tricritical line, whose projection approaches th
r̃ 50 axis for k̃5`.

In the mean-field approximation we find that the FM-P
transition is second order atk̃50 ~this is the ‘‘standard’’
gauge-Higgs model!. It is still second order atk̃.0 and r̃

51, but changes into a first order phase transition whenr̃ is
lowered. Similarly we find that the FM-FMD transition is o
second order atr̃ 51, but of first order at smallr̃ . The
FM-AM phase transition is always of first order.

C. Perturbative determination of the counterterm coefficients

The counterterm coefficientsk, l11l3 and l2 can be
calculated order by order in perturbation theory by dema
ing the Slavnov-Taylor identity

(
mn

pmqn^Am~p!An~q!&5jd~p1q! ~3.4!

to be satisfied in the continuum limita→0. ~The Slavnov-
Taylor identity does not determine the other linear combi
tion, l1-l3, because it corresponds to a gauge-invariant
erator.!

ate
FIG. 7. Projection of the FM-FMD-PM and FM-AM-PM tricritical lines onto ak5const plane obtained by a mean-field calculation~a!
and by a Monte Carlo simulation~b!. The FM-FMD-PM and FM-AM-PM tricritical lines in~a! appear to merge into an FM-FMD-AM

tricritical line at largek̃. The two solid curves in~b! are to guide the eye.
7-9
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First, we transcribe the left-hand side of Eq.~3.4! to a
finite lattice,

W~p!5(
mn

p̂mp̂nDmn
V ~p!, ~3.5!

wherep̂m52 sin(pm/2) is the lattice momentum, and

Dmn
V ~p!5

1

g2L3T
K (

x,y
Im UmxIm Unyexp@ ip~x2y!#L

~3.6!

is the vector two-point function in momentum space, w
L3T the lattice volume of a cylindrical lattice of spatial e
tent L and temporal extentT. The vector propagatorDmn

V (p)
is now computed to a given order ing2. The resulting ex-
pression forDmn

V (p), and hence also forW(p), will be a
function of the counterterm coefficients.

The counterterm coefficients are then determined s
that in the continuum limit

lim
a→0

W~p!5j ~3.7!

~keeping the physical volume fixed!. Similarly, the coeffi-
cientsl4 and l5 of the quartic counterterms can be calc
lated by requiring the Slavnov-Taylor identity

(
mnrs

pmqnkrl s^Am~p!An~q!Ar~k!As~ l !&

5j2@d~p1q!d~k1 l !1d~p1k!d~q1 l !

1d~p1 l !d~q1k!# ~3.8!

to be satisfied in the continuum limita→0.
After inserting

Amx5(
p̃

exp~ ip•x!exp~ ipm/2!Am~p!, ~3.9!

with (̃p5(L3T)21(p , into the action~2.3!, we obtain from
the term bilinear in vector potentialAm(p) for the tree-level
vector propagator

Dmn
V,(0)~p!5F ~ p̂21m2!dmn2S 12

1

j D p̂mp̂nG21

,

~3.10!

where

m252kg2. ~3.11!

We included the mass counterterm in the tree-level propa
tor, since it also functions as an infrared cutoff.

We have calculated the critical values of the coefficie
k, l1 , l2 andl3 to one-loop order in perturbation theor
To one-loop order the vector propagator is
03450
h

a-

s

Dmn
V,(1)~p!5Zmn~g2!F ~m21~11l1g2! p̂21l2g2p̂m

2 !dmn

2S 12
1

j
2l3g2D p̂mp̂n1Smn

bare~p!G21

, ~3.12!

with

Zmn~g2!512g2
1

2(k̃
@Dmm

V,(0)~k!1Dnn
V,(0)~k!# ~3.13!

and

Smn
bare~p!5Smn

g.f.~p!1Smn
G ~p!, ~3.14!

Smn
g.f.~p!5

2g2

j
F1

4
r̃(

k̃
(
a

Daa
V,(0)~k!k̂a

2

1
1

4
r̃ p̂m

2 (
k̃

(
a

Daa
V,(0)~k!cos2~ka/2!

2
1

2(k̃
(
a

Dam
V,(0)~k!k̂ak̂mGdmn

2
g2

j
F(

k̃
Dmm

V,(0)~k!

2
1

4
r̃(

k̃
Dmn

V,(0)~k!k̂mk̂nG p̂mp̂n , ~3.15!

Smn
G ~p!52

g2

2
F(

a
p̂a

2(
k̃

@ k̂a
2Dmm

V,(0)~k!1 k̂m
2 Daa

V,(0)~k!

22k̂ak̂mDam
V,(0)~k!#Gdmn2g2F(

k̃
Dmn

V,(0)~k!k̂mk̂n

2(
k̃

k̂m
2 Dnn

V,(0)~k!G p̂mp̂n . ~3.16!

Smn
g.f. (p) andSmn

G (p) are, respectively, the contributions from
the gauge-fixing and plaquette actions. TheZ factor, Eq.
~3.13!, originates from the fact that we used the compos
operator ImUmx instead ofAmx in the definition ofDmn

V (p).
On a symmetric lattice~i.e., L5T) the self-energies are

Smn
g.f.~p!5

2g2

j F r̃ I 112
1

2
~ I 1113I 12!1 p̂m

2 r̃ S K112
1

4
I 11D Gdmn

2
g2

j FK112
1

4
r̃ I 122

1

4
r̃ ~ I 112I 12!dmnG p̂mp̂n ,

~3.17!

Smn
G ~p!52g2~J122I 12!@ u p̂u2dmn2 p̂mp̂n# ~3.18!
7-10
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PHASE DIAGRAM AND SPECTRUM OF GAUGE-FIXED . . . PHYSICAL REVIEW D62 034507
~note that the last expression is transverse, as it should!
with lattice integrals

Kmn5(
k̃

Dmn
V,(0)~k!, ~3.19!

I mn5(
k̃

Dmn
V,(0)~k!k̂mk̂n , ~3.20!

Jmn5(
k̃

Dmm
V,(0)~k!k̂n

2. ~3.21!

The Slavnov-Taylor identity, Eq.~3.7!, is satisfied to one-
loop order for

k5kFM-FMD52
1

j F r̃ S 1

4
1X1~j21! D2

1

8
jG , ~3.22!

l25
r̃

j F 1

16
22S 11

1

4
~j21! DX21

1

4
~j21!~X11X3!G

~3.23!

and

l11l352 r̃
1

4 S 12
1

j DX3 , ~3.24!

with

X15(
k̃

k̂1
4

uk̂u4
50.0951~1!, ~3.25!

X25(
k̃

1

uk̂u2
50.1549~1!, ~3.26!

X35(
k̃

k̂1
2k̂2

2

uk̂u4
5

1

3 S 1

4
2X1D50.0516~1!, ~3.27!

in the limits L,T→` andm2→0. Equation~3.22! provides
us with an expression for the FM-FMD phase boundary
be compared~in Sec. IV A! with our Monte Carlo results
One can also verify that in the limitg→0, Eq.~3.22!, turns
into the corresponding result for the reduced model@10#,
taking the limitg→0 such thatk̃ in Eq. ~2.7! is kept fixed,
i.e., j→`. @Note that bothl2 and the suml11l3 vanish in
the limit r̃→0. This happens because of a combination
two facts: forr̃ 50 a ghost action can be added such that
full action has an exact BRST symmetry on the lattice@23#;
however, to one loop, the ghosts do not appear in the vac
polarization in the Abelian case. The mass counterterm d
not vanish forr̃ 50 since BRST invariance allows for equ
non-zero masses for the U~1! gauge field and the Faddee
Popov ghosts.# We can fixl1 andl3 if we demand the wave
function renormalization constant to be equal to 1 at
one-loop level; then
03450
e

o

f
e

m
es

e

l15S 1

4
2

31j

4
X2D , ~3.28!

which then determinesl3 using Eq.~3.24!.
As a check of our results, and to get a feeling for t

effects of the various counterterms, we have calculatedW(p)
in Eq. ~3.5! to one-loop order, and plotted in Fig. 8 the rat
W(p)/j as a function ofp2 for 0,pm,p, m51, . . . ,4.
After tuning the counterterm coefficients this ratio shou
approach 1 in the continuum limita→0. The inversion of
the 434 matrix in Eq. ~3.12! was done numerically. The
ratio W(p)/j was computed on a 6324 lattice at the point
(g,k̃, r̃ )5(0.6,0.8,1). We used antiperiodic boundary con
tions in the time direction to avoid the zero mode of t
propagator. The open triangles in Fig. 8 correspond to set
k50, l i50, i 51, . . . ,5. Theplot shows that the ratio
W(p)/j is clearly below 1 and, as shown by the irregula
ties, is not a continuous function ofp2. These irregularities
are caused by the part of the self-energy with the structur
the l2 counterterm. Settingl2 equal to the value obtaine
from Eq. ~3.23!, one gets the values represented in Fig. 8
the squares. All irregularities disappear andW(p)/j is a con-
tinuous function ofp2. The solid triangles in Fig. 8 were
obtained after settingk5kFM-FMD @Eq. ~3.22!# and the
crosses after setting alsol11l3 to the value determined
from Eq. ~3.24!. The graph shows the crosses to be ve
close to one for all momenta.

D. Particle spectrum at the FM-FMD phase transition

In this subsection we discuss the particle spectrum.
mentioned already in Sec. II that the particle spectrum in
FM phase of the pure gauge-Higgs model (k̃50) contains a
massive vector boson and a massive Higgs particle wh
masses scale whenk is tuned towards the FM-PM phas

FIG. 8. The ratioW(p)/j as a function ofp2 on a 6324 lattice at

the point (g,k̃, r̃ )5(0.6,0.8,1). See text.
7-11
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BOCK, LEUNG, GOLTERMAN, AND SHAMIR PHYSICAL REVIEW D62 034507
transition. On the other hand, at the FM-FMD phase tran
tion the action~2.3! is supposed to provide a new lattic
discretization of a theory of free photons, with nothing el
A Higgs particle associated with the longitudinal gauge
grees of freedom should be absent. Therefore, the par
spectrum has to change when crossing the FM-FMD-PM
critical line in the FM phase: an~unstable! Higgs bound state
should exist near the PM-FM transition, and not near
FM-FMD transition.

The question of the existence of a Higgs bound state
non-perturbative issue. In this section, we present pertu
tive results for the various correlation functions that will
used to probe the spectrum numerically in Sec. IV B.

The vector propagator defined in Eq.~3.6! was already
calculated to one-loop order in the last section, and is gi
by Eq. ~3.12!. It is evident that one indeed obtains a fre
canonically normalized vector propagator if the four count
term coefficientsk, l1 , l2 and l3 are tuned towards the
values given in Eqs.~3.22!–~3.24!,~3.28!.

An operator containing the quantum numbers of the Hig
particle is ReUmx . The corresponding Higgs two-point func
tion on a cylindrical lattice is given by

Dmn
H ~p!5

1

L3T
K (

x,y
ReUmxReUnyexp@ ip~x2y!#L ,

~3.29!

which has been used for the numerical determination of
Higgs boson mass in gauge-Higgs models@21#.

It is easy to verify that, to one-loop order,

Dmn
H,(1)~p!5

1

2
g4exp@ i ~pm2pn!/2#

3(
k̃

Dmn
V,(0)~k!Dmn

V,(0)~p1k!. ~3.30!

For smallp, we can extract the non-analytic part by replaci
the integrand with its continuum expression, and we obt
~for m250 andL,T→`)

(
mn

Dmn
H,(1)~p!U

non-analytic

52S 1

2
g4D 1

~4p!2
~31j2!log p2.

~3.31!

It is obviously not possible to conclude from this perturb
tive calculation alone that a Higgs particle does not ex
However, one may compare a nonperturbative evaluatio
the same correlation function with the perturbative result
they agree, this provides evidence that a Higgs bound s
does not occur in the theory, and this is what we will inve
tigate in Sec. IV B.

Another equivalent way of looking at this is to consid
the coordinate-space correlation function

Gmn
H ~ ux2yu!5^ReUmxReUny&2^ReUmx&^ReUnx&,

~3.32!
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which, if no bound state is present in the spectrum, sho
factorize forux2yu→` as

Gmn
H ~ ux2yu!5Cmn@Gmn

V ~ ux2yu!#2, ~3.33!

where

Gmn
V ~ ux2yu!5^Im UmxIm Uny& ~3.34!

is the vector correlation function, andCmn is a constant
which can be determined in perturbation theory.

To leading order in perturbation theory we find

Gmn
H ~ ux2yu!5

g4

4
^Amx

2 Any
2 &05

g4

2
Dmx,ny

V,(0)2 ~3.35!

and

Gmn
V ~ ux2yu!5g2^AmxAny&05g2Dmx,ny

V,(0) , ~3.36!

where^•••&0 denotes the quantum average with the part
the lattice action~2.3! that is quadratic inAm , and

Dmx,ny
V,(0) 5(̃ p

exp@ ip~x2y!#Dmn
V,(0)~p!, ~3.37!

with Dmn
V,(0)(p) given in Eq.~3.10!. Substituting Eqs.~3.35!

and ~3.36! into Eq. ~3.33! leads to

Cmn5
1

2
. ~3.38!

The expressions in Eqs.~3.35! and~3.36! are represented by
Feynman diagrams 1~a! and 2~a! in Fig. 9, respectively. Note
that, to leading order in perturbation theory, factorizati
holds without any tuning of the six counterterm coefficien
k, l1 , . . . ,l5.

We now wish to verify explicitly that factorization hold
also to next-to-leading order ing2. To this order we obtain

FIG. 9. Feynman diagrams for the coordinate-space correla
functionsGmn

H (ux2yu) andGmn
V (ux2yu).
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Gmn
H ~ ux2yu!5

g4

4
^Amx

2 Any
2 ~12SI

(4)!&0

2
g6

48
^Amx

2 Any
4 1Amx

4 Any
2 &0

5
g4

2 H Dmx,ny
V,(0)2S 12

g2

2
@Dmx,mx

V,(0) 1Dny,ny
V,(0) # D

2
1

2
^Amx

2 Any
2 SI

(4)&0J , ~3.39!

where SI
(4) designates all terms of the lattice action~2.3!

which are quartic in the gauge potentialAmx . Similarly, we
find, for Gmn

V (ux2yu),

Gmn
V ~ ux2yu!5g2^AmxAny~12SI

(4)!&0

2
g4

6
^AmxAny

3 1Amx
3 Any&0

5g2H Dmx,ny
V,(0) S 12

g2

2
@Dmx,mx

V,(0) 1Dny,ny
V,(0) # D

2^AmxAnySI
(4)&0J . ~3.40!

The various diagrams that contribute toGH andGV are dis-
played in Fig. 9. Diagrams 1~b!, 1~c!, 2~b! and 2~c! corre-
spond to the terms in Eqs.~3.39! and ~3.40! which are pro-
portional to@Dmx,mx

V,(0) 1Dny,ny
V,(0) #, and give only a contribution

to the wave-function renormalization constant. The fo
point vertices in diagrams 1~d!–1~f! @we will refer to dia-
gram 1~f!# as the ‘‘figure-8 diagram’’! and diagram 2~d! arise
from SI

(4) . The integral expressions for those diagrams
given in Appendix B.

In perturbation theory, one expects thatGmn
H (ux2yu)

;(Gmn
V (ux2yu))2 for largeux2yu. Here, we show this to be

true also at two loops. It can easily be verified that, af
squaringGmn

V (ux2yu), diagrams 2~a!, 2~b! and 2~c! combine
into 1~b! and 1~c! and that similarly 2~a! and 2~d! combine
into 1~d! and 1~e!. The Higgs correlation function can the
be written as

Gmn
H ~ ux2yu!5S 1

2
1g2Cmn

(1)D @Gmn
V ~ ux2yu!#2

2
g4

4
^Amx

2 Any
2 SI

(4)&0
1f1O~g8!, ~3.41!

where

Cmn
(1)5

1

4
~Kmm1Knn! ~3.42!

@cf. Eq. ~3.19!# and ^Amx
2 Any

2 SI
(4)&0

1f is the contribution from
the figure-8 diagram whose explicit form can be found
Appendix B. While the formulas in Appendix B are comp
cated, the essential physics is simple. The vertexSI

(4) con-
tains two~lattice! derivatives, and each of the terms contri
03450
-

e

r

uting to the figure-8 diagram in Eq.~B4! contains two one-
loop integrals. The various terms can thus be divided i
two classes: either both derivatives are acting on propaga
inside the same loop@Eq. ~B5!# or each of the two deriva-
tives is acting inside a different loop@Eq. ~B6!#. A dimen-
sional analysis then shows that the terms in Eq.~B6! do not
give a contribution at large distances~they give only contact
terms in momentum space!. The only contribution at large
separations comes from the terms in Eq.~B5!. In each term,
the loop integral containing none of the derivatives from t
vertex behaves at large separationsux2yu as the leading or-
der term^Amx

2 Any
2 &0 which, in the limitm→0, is logarithmic

divergent for vanishing external momentum. The second
tegral contains the two derivatives and approaches a con
for vanishing external momentum, thus leading to a con
bution to the constantCmn . Therefore, forux2yu→`,

2
g4

4
^Amx

2 Any
2 SI

(4)&0
1f5g2Cmn

(2)@Gmn
V ~ ux2yu!#21O~g8!.

~3.43!

As a check~for the casem5n), and in order to determine
the constantCmm

(2) , we have numerically computed the thre
ratios

r ~ ux2yu!52
^Amx

2 Amy
2 SI

(4)&0
1f

g2Dmx,my
V,(0)2

, ~3.44!

r I~ ux2yu!52
^Amx

2 Amy
2 SI

(4)&0
1f, I

g2Dmx,my
V,(0)2

, ~3.45!

r II~ ux2yu!52
^Amx

2 Amy
2 SI

(4)&0
1f, II

g2Dmx,my
V,(0)2

, ~3.46!

where ^Amx
2 Amy

2 SI
(4)&0

1f , ^Amx
2 Amy

2 SI
(4)&0

1f, I and
^Amx

2 Amy
2 SI

(4)&0
1f, II are given in Eqs.~B4!, ~B5! and ~B6! of

Appendix B respectively. We have chosenx and y as two
on-axis points. The ratios were computed on a symme
lattice of sizeL4 at the same point in the phase diagra

@(g,k,k̃, r̃ )5(0.4,0.1,0.2,1)# where the numerical simula
tions were performed~cf. Sec. IV B 3!. If factorization holds,
the two ratiosr (ux2yu) andr I(ux2yu) should exhibit a pla-
teau at large separationsux2yu. As an example we have
plotted r (ux2yu) in Fig. 10~a! as a function ofux2yu/L for
L514 ~crosses! and 16~triangles!. The plot shows that we
obtain indeed a plateau at largeux2yu. In Fig. 10~b! we have
plotted the mid points, i.e. the values ofr (L/2), r I(L/2) and
r II(L/2), as a function of 1/L25(a/Lphys.)2 where Lphys.

5aL is a fixed physical scale anda is the lattice spacing. We
see thatr II(L/2) indeed vanishes in the limita→0. In con-
trast, the ratiosr (L/2) andr I(L/2) approach a non-zero valu
in this limit. The constantCmm

(2) is then given by

Cmm
(2)5

1

4
lim

L→`

r ~L/2!50.12~1!. ~3.47!
7-13
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FIG. 10. ~a! The ratior (ux2yu) as a function ofux2yu/L for L514 ~crosses! and 16~triangles!, with periodic boundary conditions.~b!
The ratiosr (L/2), r I(L/2) andr II(L/2) displayed as a function of 1/L2. The straight lines in~b! are to guide the eye.
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For the constantsCmm
(1) and Cmm we find the values~for g

50.4)

Cmm
(1)50.3277~1! and

Cmm5
1

2
1g2Cmm

(1)1g2Cmm
(2)50.5716~16!.

~3.48!

The above arguments do not lead to a constraint on the c
terterm coefficientsl1 , l2 , l3 and k at this order. It is
however clear that our above arguments are true only ifl4
5l550, which is consistent to this order ing2. At higher
orders, factorization holds only when the countertermsl4
and l5 are tuned appropriately.~Note that then for any
l1 , l2 andl3 the theory is free in thea→0 limit.!

E. Summary of scaling limits

The model introduced in Sec. II has a rich phase diagr
Taking for definitenessr̃ 51, the (g,k,k̃) phase diagram
contains for smallg four distinct critical regions:

The PM phase.
The FM-PM line.
The FM-FMD line.
The FM-FMD-PM tricritical point.

The first two critical regions have been extensively studied
the past~see Sec. II!, while the third one is the main topic o
the present paper. We summarize here the key propertie
the first three critical regions, aiming to clarify the distin
tions between them~for a discussion of the tricritical poin
see Ref.@24#!.

~1! PM phase. Inside the PM~Coulomb! phase only the
transverse polarizations of the gauge field have a diverg
03450
n-

.

n

of

nt

correlation length. The longitudinal degrees of freedom
non-propagating; namely, they have a finite correlat
length as long as no electric charges are present. Thek andk̃
terms are both irrelevant. A gauge-invariant description
the PM phase is provided by the Higgs picture~see Sec. II!.
Since, however, all operators with long range correlatio
can be constructed from the gauge-field only~and are gauge
invariant!, the scaling region is a free-photon theory.

~2! FM-PM line. Here the Higgs field scales. Thek term
is marginal, whereas all the terms proportional tok̃ are still
irrelevant. This can be inferred heuristically by writing th
action in the Higgs picture and assuming canonical dim
sions for the gauge and Higgs field. The FM-PM line is th
in the same universality class as the gauge-Higgs model
an unconstrained Higgs field. The existence of a light Hig
particle is verified explicitly in Sec. IV B 2.

We also demonstrate there that the perturbative expan
developed in the previous subsections fails to describe
FM-PM transition.

~3! FM-FMD transition. Here thek and k̃ terms are rel-
evant and marginal respectively. The divergent correlat
length is achieved by lettingk̃ scale like 1/g2, and at the
same time tuningk to its critical value. The scaling degree
of freedom include all four components of the lattice gau
field. This is accounted for by perturbation theory in t
vector picture, as developed in the previous subsections

If only k is tuned, the scaling region near the FM-FM
transition describes a renormalizable vector theory with
indefinite-norm Hilbert space~after analytic continuation to
Minkowski space!. After tuning the rest of the counterterm
so that Slavnov-Taylor identities are satisfied~in the con-
tinuum limit a→0), one can define a physical subspace w
a unitary time-evolution operator. This physical subspace
incides with the physical space defined by taking the c
tinuum limit anywhere inside the PM phase.
7-14
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IV. NUMERICAL RESULTS

In all our Monte Carlo simulations we setl15l25l3
5l45l550. The action depends then only on the four p
rametersg, k, k̃ and r̃ . We have seen in the previous se
tion that, for the quantities we will consider,l45l550 in
perturbation theory to the order we have taken into acco
This means that we can set them equal to zero also in
numerical computations, as long as the latter agree well w
perturbation theory~within our precision! with the same
choice of values. In addition, we will be mainly concern
with factorization~cf. previous section!, which should work
for any choice ofl1 , l2 andl3.

A. Phase diagram

For the determination of the (k,k̃, r̃ )-phase diagram we
have to construct observables which allow us to locate
various phase transitions. The observables we used are
internal energies

Ep52
1

6L4

]

]g22
ln Z, ~4.1!

Ek52
1

8L4

]

]k
ln Z, ~4.2!

Eg.f.52
1

64L4

]

]k̃
ln Z, ~4.3!

which in the vector picture are given by the expressions

Ep5
1

6L4 K (
x,m,n

ReUmnxL , ~4.4!

Ek5
1

4L4 K (xm
ReUmxL , ~4.5!

Eg.f.5
1

64L4 K (x
H 1

4
~Cx2Cx

†!2

2 r̃ F1

4
~Cx1Cx

†!22Bx
2G J L . ~4.6!

These quantities are not order parameters, and hence d
vanish in any of the various phases, but they signal ph
transitions by an abrupt change. In the case of a second o
phase transition we expect to find, in the infinite-volum
limit, an ‘‘S’’-like curve with an infinite slope at the phas
transition. At a first-order phase transition the internal en
gies exhibit a jump. On a finite lattice, however, it is difficu
to distinguish between first- and second-order phase tra
tions, and it is usually necessary to perform a careful fin
size scaling analysis to settle the question of the order. In
FMD phase the hypercubic rotation invariance is broken
the non-vanishing vector condensate,^Am&Þ0. A true order
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parameter which allows to distinguish the FMD phase fro
the other phases can be defined on the lattice by the exp
sion

V5KA1

4
(
m

F 1

L4 (
x

Im UmxG 2L , ~4.7!

which reduces in the constant-field approximation

@ 1
4 (msin2(gAm)#1/2. On a small lattice, the system tunne

from one of the 16 discrete minima in Eq.~3.3! to the others.
This is the reason why, in Eq.~4.7!, we took the modulus of
(1/L4)(xIm Umx . The summation overx is to project onto
zero momentum.

The Monte Carlo simulations were done with a stand
5-hit Metropolis algorithm, and were performed either in t
vector or in the Higgs picture. We wrote two codes a
checked that the results obtained in the two pictures are c
sistent. The vector-picture simulations require less CPU t
since only the gauge fields have to be updated. However
autocorrelation time for gauge non-invariant quantities tu
out to be slightly larger for the vector-picture simulation
We furthermore find that the Higgs-picture simulations p
form slightly better in regions of the phase diagram whe
metastabilities occur~the region near the FM-PM phase tra
sition at r̃ 50 and largek̃). Most of our simulations were
carried out in the vector picture.

We have explored the phase diagram again atg50.6,
and, as in the mean-field analysis, we kept either the valu
k̃ or of r̃ fixed and scanned the two-dimensional (k, r̃ ) or
(k,k̃) plane. At each point of the scan we accumulated 50
Metropolis sweeps, which were preceded by 3000 equilib
tion sweeps. The observables in Eqs.~4.4!–~4.7! were mea-
sured after each sweep. We corrected for autocorrela
time effects by multiplying the statistical error bars withA2t
where t is an estimate for the integrated autocorrelati
time, which for the local observables~4.4!–~4.7! is in the
range between 2 and 5. Most of the phase diagram sc
were performed on a 44 lattice. A few runs atr̃ 51 were also
done on an 84 lattice.

In Figs. 11~a!–11~c! we have displayed the various ob
servables~4.4!–~4.7! for some exemplary scans across t
FM-FMD @Fig. 11~a!#, the FMD-PM @Fig. 11~b!# and the
FM-PM phase transition@Fig. 11~c!#. Figure 11~a! shows
that the order parameterV is very small in the FM phase an
rises sharply at the FM-FMD transition. The fact thatV is
also non-zero in the FM phase is a finite-size effect. T
internal energiesEk andEg.f. show a sharp kink at the phas
transition, whereasEp changes only very little. The transi
tion seems to be of second order, in accordance with
mean field results and with perturbation theory.

The position of a phase transition on a finite lattice can
defined in different ways~e.g., the position of the maximum
of the specific heat, or the real part of the partition functi
zero with the smallest imaginary part!, and these transition
points will all differ slightly from each other by an amoun
which vanishes in the infinite-volume limit. In our case w
have identified the FMD-FM phase transition from the po
7-15
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FIG. 11. Scans across the FM-FMD~a!, FMD-PM ~b! and FM-PM~c! phase transitions. The three curves in~c! which are labeled by the

numbers~1!, ~2!, ~3! were obtained at (k̃, r̃ )5(0.01,1), (k̃, r̃ )5(0.05,0.15) and (k̃, r̃ )5(0.05,20.30). The estimated positions of the pha
transitions are marked in all graphs by the vertical dotted lines.
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where the slope ofV is maximal, but one should keep i
mind that the position of the phase transition in the infini
volume limit will slightly deviate from that value.

The observables for a scan across the FMD-PM ph
transition atr̃ 51 are shown in Fig. 11~b!. We believe that
this phase transition is of second order which agrees with
findings from our mean-field calculation. The point whe
the slope ofV is maximal always coincides nicely with th
point where the slopes ofEk andEg.f. are maximal. Finally,
we have displayed in Fig. 11~c! the internal energyEk for
three scans across the FM-PM transition@~1! r̃ 51, k̃

50.01; ~2! r̃ 50.15, k̃50.05; ~3! r̃ 520.3, k̃50.05# as a
function of k. The plot indicates that the order of th
03450
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se

e

FM-PM transition changes from second to first order wher̃
is lowered from 1 to20.3 at k̃.0. This agrees with our
mean-field calculation. In contrast to the mean-field calcu
tion, our Monte Carlo simulations seem to indicate that
FM-FMD transition is of second order at smallr̃ .

We have compiled our results for the various phase tr
sitions into (k,k̃)- or (k, r̃ )-phase-diagram plots, which ar
displayed on the right in Figs. 2–5. We have again de
mined the phase diagram only above the symmetry li
~dash-dotted lines in Figs. 2–5!, but we checked with a few
scans that the phase diagram is indeed symmetric with
spect to those lines. A schematic three-dimensional ph
diagrams of ther̃ .0 region is shown in Fig. 6. Qualitatively
7-16
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the Monte Carlo phase diagrams comply nicely with t
mean-field results, which are displayed on the left in Fi
2–5, and which were discussed already in Sec. III B.

As mentioned already in Sec. III B, a difference betwe
the mean-field and Monte Carlo phase diagrams is obse
at r̃ 50 @Figs. 3~c! and 3~d!#. The mean-field approximation
predicts an FMD phase atk̃*0.25, uku&0.125. This is not
confirmed by the Monte Carlo simulations which give stro
evidence that this region is filled by a PM phase. The Mo
Carlo simulations indicate that the PM phase extends to v
large values ofk̃ but, on the basis of the simulations, it is
course impossible to decide if it ends at a finite value ofk̃, or
if it extends tok̃5`. Figure 7 shows that the observed d
ference atr̃ 50 is connected to the fact that in case of t
mean-field calculation the FM-FMD-PM tricritical line~in
Fig. 7 we displayed a projection of that line to a constank

plane! penetrates through ther̃ 50 plane and atk̃'0.3
merges with the FM-AM-PM line into a FM-FMD-AM line,
whose projection approaches asymptotically ther̃ 50 axis at
large k̃. The FMD phase extends therefore slightly into t
r̃ ,0 half space. In contrast, in the case of the Monte Ca
simulation, we find that the FM-FMD-PM line stays in th
r̃ .0 half space, and approaches ther̃ 50 plane from above.
The FMD phase resides only in ther̃ .0 half space. The
solid curves in Fig. 7~b! are to guide the eye, and were o
tained by fitting the empiricalansatz r˜56a/(k̃1b) to the
data witha andb constants. It turns out that the constantsa
and b are very similar for the FM-FMD-PM and FM
AM-PM lines.

The continuum limit relevant for the gauge-fixing a
proach should be performed by approaching the FM-FM
phase transition from the FM side~away from the tricritical
line at which the FM-FMD transition surface ends, for i
stance atr̃'1). Our Monte Carlo simulations indicate th
this transition is of second order. In the next section, we w
show that the particle spectrum in this continuum limit co
tains only a massless vector particle, the photon. T
FM-PM phase transition at smallr̃ near the FM-FMD-PM
line and the whole FM-AM phase transition seem to be
first order, and no continuum theory can be defined at th
transitions.

Finally, we compare our one-loop result forkFM-FMD @Eq.
~3.22!# with our Monte Carlo results. The one-loop resu
for kFM-FMD are represented in the graphs on the right
Figs. 2–5 by the solid lines. They agree reasonably well w
our Monte Carlo data. In the region of the FM-FMD pha
transition we find that the departure of the perturbative
sults from the Monte Carlo data is in all cases smaller th
two standard deviations. In some cases@see for instance the
phase diagram atr̃ 51 in Fig. 2~b!#, however, the one-loop
curve is systematically above the numerical results. To se
this deviation is due to finite-size effects we repeated so
of the scans across the FM-FMD phase transition on an4

lattice. The obtained transition points are marked by the o
circles in Fig. 2~b!. They do not significantly deviate from
our data on the 44 lattice. We also evaluated the lattice int
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gral X1 in Eq. ~3.22! on a 44 and 84 lattice which again did
not result in a significant change of the situation encounte
in Fig. 2. We therefore believe that the observed deviati
are due to higher loop corrections. They become smaller
smaller r̃ . This is not unreasonable: as long as perturbat
theory applies, some couplings are proportional tor̃ , so that
higher loop terms maybe less important for smallerr̃ . ~Of
course, whenr̃ is too small, perturbation theory breaks dow
all together, as is clear from the caser̃ 50, where we do not
even find an FM-FMD transition, numerically.!

B. Vector and Higgs two-point functions

To see whether the spectrum at the FM-FMD phase tr
sition indeed contains only a massless photon we have c
puted the vector and Higgs two-point functions numerica

1. Vector two-point function

In our Monte Carlo simulations we computed the corre
tion function Dmn

V (p) in Eq. ~3.6!. We have setm5n and
pm50. The two-point functionsDmm

V (p), m51,2,3, were
determined for a table of lattice momentap which lead to
different values ofp̂25(nÞmp̂n

2 . Finally, we took the aver-
age of the three two-point functionsDmm

V (p), m51,2,3. All
Monte Carlo simulations were performed atl i50, i
51, . . . ,5.

For the above choices, we first derive a simplified expr
sion for the vector two-point function to one-loop orde
which can then easily be compared with the Monte Ca
results. After settingm5n51 andp150, the one-loop vec-
tor two-point function in Eq.~3.12! can be written as

D11
V,(1)~p!5F Z11~g2!

DV,(0)~p!211S~p!
G

11,p150

5Z11~g2!@DV,(0)~p!

2DV,(0)~p!S~p!DV,(0)~p!1•••#11,p150 ,

~4.8!

with

Smn~p!5~l1g2u p̂2u1l2g2p̂m
2 !dmn1l3g2p̂mp̂n1Smn

bare~p!,

~4.9!

whereZ11(g
2) is the wave-function renormalization consta

in Eq. ~3.13! and Sbare(p) is the self-energy in Eq.~3.14!
@m252g2k is already included inDV,(0); cf. Eq. ~3.10!#.
After writing Eq. ~3.14! as Smn

bare(p)5am(p)dmn

1bmn(p) p̂mp̂n and Eq. ~3.10! as Dmn
V,(0)(p)5A(p)dmn

1B(p) p̂mp̂n , and using the fact thatp150, we obtain
7-17
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FIG. 12. The inverse vector two-point function~points with error bars!. The long-dashed line is the tree-level result, and the solid line
one-loop result. The latter is almost on top of a linear fit~short dashes! to the data.~a! shows results fork50.01, while~b! shows a blowup
of the small momentum region fork50.8, 0.4 and 0.01.
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D11
V,(1)~p!5Z11~g2!@A~p!1A~p!a1~p!A~p!1•••#p150

5
Z11~g2!

m21~11l1! (
nÞ1

p̂n
21a1~p!

. ~4.10!

Note that the expression in Eq.~4.10! does not depend onl2
andl3 as we setp150. This also implies that we will no
see any effects of the Lorentz-symmetry-breaking part of
one-loop self-energy in our data. In the following we set a
l1 equal to zero since in our Monte Carlo simulations
have also not included this counterterm. On a lattice whic
asymmetric in space and timea1(p) is given by the expres
sion

a1~p!up1505
g2r̃

2j
@3I 111I 44#2

g2

j
@2I 121I 141I 11#

2
1

2
g2@2~J122I 12!~ p̂2

21 p̂3
2!

1 p̂4
2~J141J4122I 14!#, ~4.11!

where the integralsI mn andJmn are given in Eqs.~3.20! and
~3.21!.

In Fig. 12 we plotted the results of our numerical comp
tation of the inverse vector propagator in momentum spa
as a function ofu p̂u2. The long-dashed and solid lines repr
sent tree-level and one-loop perturbation theory evaluat
of the same quantity, at values of the parameters equa
those used in the numerical computation. In Fig. 12~a!, these
are (k,k̃, r̃ )5(0.01,0.2,1), while in Fig. 12~b! we show an
enlargement of the small-momentum region for (k̃, r̃ )
5(0.2,1) and three different values ofk, 0.8, 0.4 and 0.01
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the latter being very close to the FM-FMD transition point.
linear fit ~short dashes! to the numerical results can, withi
the resolution of the plots, hardly be distinguished from t
one-loop curve. The gauge couplingg is 0.4 and the lattice
size is 6324. The perturbative expressions for~the inverses
of! Dmm

V,(0)(p) andDmm
V,(1)(p) were evaluated on a lattice of th

same size. We have measured the vector two-point func
Dmm

V (p) on 23105 configurations which were generated b
our 5-hit Metropolis program. The error bars were aga
computed by multiplying the standard deviation withA2t
wheret is an estimate of the integrated autocorrelation ti
obtained from the autocorrelation function.

From these results we draw two conclusions: the fact t
a linear fit works very well confirms that the theory is
theory of free photons near the FM-FMD transition, and t
good agreement with perturbation theory implies that t
can be understood in perturbation theory, as explained
Sec. III.

For comparison, we have repeated this analysis at a se

of points near the FM-PM phase transition, atk̃.0 and r̃
51. We found that the perturbative results do not conve
~one loop is not close to tree level!, and also do not describ
the numerical data in this case~with deviations well over
100%!. We also determined the vector boson massmV by

fitting an ansatzZV /( p̂21mV
2) to the numerical data of the

vector two-point function at smallu p̂u2. We find that the
obtained vector boson massmV shows qualitatively the sam
k dependence as reported in Ref.@21# for the U~1! gauge-
Higgs model. The vector boson mass decreases whenk is
lowered from the FM side towards the FM-PM transitio
However, it does not vanish at the phase transition which
probably, like in the U~1! gauge-Higgs model, a finite-siz
effect.
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2. Higgs two-point function

As mentioned before, the spectrum at the FM-FMD ph
transition should contain only a massless photon and
Higgs particle. In this section we present the Monte Ca
results for the Higgs two-point function, and compare th
with the analytic formulas derived in Sec. III D.

We have computed the momentum space Higgs two-p
function in Eq.~3.29!. As in the case of the vector two-poin
function, we have setn5m and pm50. The Higgs correla-
tion function was determined for the same lattice mome
as the vector two-point function.

To see if the two-point function leads to a pole we ha
plotted, in Fig. 13, Dmm

H (p)21 as a function of u p̂u2

5(nÞmp̂n
2 for severalk values near the FM-FMD phase tra

sition. The simulations were performed atg50.4, and atk̃
50.2 andr̃ 51. The numerical data are represented in F
13 by the error bars. The five data sets from the top to b
tom correspond tok50.8, 0.4, 0.3, 0.1 and 0.01. At eachk
we have measuredDmm

H (p) on 23105 equilibrium configu-
rations which were again generated with the 5-hit Mo
Carlo algorithm. As in the case of the vector two-point fun
tion, we corrected for the autocorrelation time effects
multiplying the standard deviation by a factor ofA2t. Our
Monte Carlo simulations indicate that the FM-FMD pha
transition is situated atk'0.

If the pole scenario were correct, theDmm
H (p)21 data at

sufficiently small momenta should fall on a straight line, f
k↘kFM-FMD . What we find, however, is that, when lowerin
k towards the FM-FMD phase transition, a cusp emerge
small momenta. Evidently, the data at smallu p̂u2 do not fall
on a straight line. The cusp is due to the logarithm in E

FIG. 13. The inverse Higgs two-point function,Dmm
H (p)21, plot-

ted as a function ofu p̂u2 for a series of points near the FM-FMD

phase transition atg50.4, k̃50.2 andr̃ 51. The error bars mark
the Monte Carlo results. The lattice size is again 6324. The pertur-
bative results@Eq. ~3.30!# are represented by the solid lines.
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~3.31!. The solid lines in Fig. 13 were obtained by evaluati
Eq. ~3.30! on a lattice of the same size and for the sa
parameter values as used in the simulations. We find tha
perturbative formula~3.30! describes the data very well.~A
similar behavior was discovered before in the reduced li

of the model atr̃ 51 for the left-handed neutral and righ
handed charged fermion propagators, which also exh
such a logarithmic singularity at small momenta, and do
exist as bound states; see Refs.@12,13#.!

Again for comparison, we looked also at the Higgs tw

point function near the FM-PM phase transition atk̃50 and
g50.6. We find thatkFM-PM'0.18. We find that in this case
in accordance with expectations, the spectrum at the FM-
phase transition contains a massive Higgs particle, giv
rise to a pole inDmm

H (p). To extract the Higgs boson mas
we fitted theDH(p)21 data at small momenta to the ansa

(mH
2 1u p̂u2)/ZH . The Higgs boson mass decreases whenk is

lowered toward the FM-PM phase transition but, because
finite size effects, does not vanish at the phase transi
~again, as in Ref.@21#!. We also find that, as in the case
the vector two-point function, perturbation theory does n
describe the PM side of the FM-FMD-PM tricritical line.

3. Factorization

The results of the previous section already give stro
evidence that the Higgs two-point function in the continuu
limit at the FM-FMD phase transition does not have a po
and that consequently a Higgs particle does not exist in
spectrum. In Sec. III D we have shown that, to next-
leading order in perturbation theory, the Higgs two-po
function in coordinate space factorizes into the product
two vector two-point functions@Eq. ~3.33!#. For l45l5
50, factorization holds to this order for arbitrary values
the other counterterm coefficients.

In this section we will investigate whether factorizatio
also holds non-perturbatively, which would imply that
Higgs bound state does not exist. To this end, we have c
puted the Higgs and vector two-point correlation functio
Gmm

H (ux2yu) and Gmm
V (ux2yu) in Eqs. ~3.32! and ~3.34! in

our Monte Carlo simulations as function ofux2yu wherex
andy were chosen to be two on-axis points. The simulatio
were carried out at the point (g,k,k̃, r̃ )5(0.4,0.1,0.2,1),
which is located in the FM phase near the FM-FMD pha
transition. As in our other Monte Carlo simulations, we ha
setl15•••5l550. ~Strictly speaking, we expect factoriza
tion only to hold for the properly tuned values ofl4 andl5,
but to the extent that our simulation results agree with
perturbative results, we do not expect to see the differen
cf. end of Sec. III.! The lattice size is again 6324. We find
that enormous statistics is required to obtain a stable sig
for Gmm

H (ux2yu). This is partly due to the subtraction in Eq
~3.32!. We used translation invariance on the lattice to i
prove the signal. We have accumulated in total about
3106 Metropolis sweeps. The Higgs- and vector-correlati
functions were measured after each sweep.

In Fig. 14 we plotted the ratio
7-19
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BOCK, LEUNG, GOLTERMAN, AND SHAMIR PHYSICAL REVIEW D62 034507
R~ ux2yu!5
Gmm

H ~ ux2yu!

@Gmm
V ~ ux2yu!#2

~4.12!

as a function ofux2yu. The error bars of the ratio wer
calculated by a blocking procedure. Figure 14 shows that
Monte Carlo data forR(ux2yu) ~crosses! are, within error
bars, independent ofux2yu, indicating that factorization
holds also non-perturbatively. In fact, factorization sets
almost immediately~both perturbatively and numerically!.

From our calculation in Sec. III D it follows that this rati
is equal to 1/2 to leading order in perturbation theory. Fig
14 shows that the Monte Carlo results are indeed very c
to this value, marked by the dashed line. We find howe
that the data at small distances where the error bars
smallest are systematically above this value by a sm
amount. To understand this small discrepancy, we have c
puted the ratio also to next-to-leading order in perturbat
theory. The next-to-leading order result forCmm , which was
computed in Sec. III D in the infinite volume limit, is repre
sented in Fig. 14 by the horizontal solid line, which is inde
much closer to the numerical data. In addition, we have a
evaluated all Feynman diagrams in Fig. 9 numerically on
same lattice and for the same parameter values as used
Monte Carlo simulations. Figure 14 shows that the next-
leading order result forR(ux2yu) ~triangles! agree within
two standard deviations for all separationsux2yu with the
Monte Carlo data. We consider theux2yu independence o
our Monte Carlo results forR(ux2yu) and the good agree

FIG. 14. The ratioR(ux2yu) as a function ofux2yu at a point

near the FM-FMD phase transition@(g,k,k̃, r̃ )5(0.4,0.1,0.1,1)#.
The lattice size is 6324. The horizontal dashed and solid lines we
obtained by evaluating the ratio in Eq.~4.12! in the infinite volume
limit to leading and next-to-leading order in perturbation theo
@Eqs.~3.38! and~3.48!#. The triangles were obtained by evaluatin
Gmm

H (ux2yu) andGmm
V (ux2yu) in Eq. ~4.12! to next-to-leading or-

der on the same lattice as used in the simulations.
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ment with the perturbative result as strong indication t
factorization holds, and that consequently the spectrum n
the FM-FMD phase transition does not contain a Higgs p
ticle. We repeated the same calculation at a point in the
phase near the FM-PM phase transition where a Higgs
ticle is known to exist. The Monte Carlo simulations we
performed at (g,k,k̃, r̃ )5(0.4,0.08,0.015,1) with less statis
tics, about 53106 Metropolis sweeps. Figure 15 show
clearly that, in contrast to Fig. 14, the ratioR(ux2yu) de-
pends strongly onux2yu ~notice also the difference in ordi
nate scale between Figs. 14 and 15!, and seems to oscillate
when the separationux2yu is increased. The solid lines an
the triangles represent again the leading and next-to-lea
order perturbative results for the ratio, both far off from t
Monte Carlo data. It is obvious that factorization does n
hold on the PM side of the FM-FMD-PM tricritical line.

V. CONCLUSION AND OUTLOOK

In this paper we investigated the gauge sector of
gauge-fixing approach for the case of a U~1! gauge group.
This approach provides a completely new non-perturba
formulation of a U~1! gauge theory on the lattice, which i
more complicated than Wilson’s manifestly gauge-invaria
compact formulation, but closer in spirit to the continuu
formulation, for which gauge fixing is indispensable. Gau
fixing allows us to control the longitudinal degrees of fre
dom which otherwise, as we mentioned in Sec. I, form
central obstruction to the construction of lattice chiral gau
theories.

The action is rather complicated in comparison with t
Wilson plaquette action. Apart from the Wilson plaque

FIG. 15. The ratioR(ux2yu) as a function ofux2yu at a point

near the FM-PM phase transition@(g,k,k̃, r̃ )5(0.4,0.08,0.15,1)#.
The lattice size is 6324. The horizontal solid line and the triangle
were obtained by evaluating the ratio in Eq.~4.12! to leading and
next-to-leading order in perturbation theory.
7-20
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PHASE DIAGRAM AND SPECTRUM OF GAUGE-FIXED . . . PHYSICAL REVIEW D62 034507
term and the gauge-fixing term, it also includes six coun
terms whose coefficients have to be adjusted such
Slavnov-Taylor identities are restored in the continuum lim
We have demonstrated in this paper that this new lat
formulation reproduces the desired properties of the c
tinuum theory at a new type of continuous phase transit
the FM-FMD transition. The spectrum contains at this ph
transition only a massless photon, while a Higgs-like exc
tion, associated with propagating longitudinal gauge degr
of freedom, does not exist.

This new phase transition occurs in a region of the ph
diagram accessible to weak-coupling lattice perturbat
theory, as one would expect from the close relation to
continuum theory. In perturbation theory, by constructio
the theory ~without fermions! at the phase transition is
theory of free massless photons. The very good agreem
between one-loop perturbation theory and numerical res
makes us confident that this is also true non-perturbative

As mentioned above, in order to make this work, s
counterterms need to be adjusted. Only one of those~the
gauge-field mass term! has dimension smaller than 4. Figu
12~b! shows that a non-perturbative tuning of the gau
boson mass counterterm~towards the continuous FM-FMD
transition! is technically possible. One expects that the ot
counterterms can be reliably calculated in perturbat
theory. Our results indicate that this is indeed true: with
our numerical precision, we find that we can do with just t
tree-level values of all dimension four counterterms.@Alter-
natively, the counterterm coefficientsl1 , . . . ,l5 too can be
determined non-perturbatively. To this end one has to use
Slavnov-Taylor identities~3.4! and ~3.8! at somep25m2.#
Adding fermions to the theory will require a few addition
counterterms, but~using a fermion formulation with shif
symmetry @25#! all of those have dimension four, and w
expect that they can be calculated in perturbation theory
well. This means that the fact that counterterms are requ
does not make this formulation of lattice chiral gauge th
ries particularly expensive.

It is clear that the precise form of the lattice action sho
be chosen such that lattice perturbation theory applies.
therefore important to construct the lattice gauge-fixing
tion such that the dense set of lattice Gribov copies of
perturbative vacuum (Umx51), which occurs for a naive
discretization of the gauge-fixing action, is removed by a
ing higher-dimensional operators~with dimension 6 or
higher!. For comparison, we studied also the limit whe
those higher-dimensional terms are omitted~by setting r̃
50), such that these lattice Gribov copies are present.
numerical results for this naive choice show that, at smalk̃,
there is an FM-PM type phase transition, in a universa
class different from the FM-FMD transition~there is even
some evidence that the FM-PM phase transition is of fi
order, implying that a continuum limit cannot be perform
at all!. The situation at largek̃ is very unclear since the
FM-PM phase transition is ‘‘wedged’’@in the (k,k̃, r̃ ) phase
diagram# between two tricritical lines, resulting in a ver
complicated phase structure, where four phases get
close to each other. We furthermore find that the numer
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simulations in that region are hampered by strong meta

bilities. These findings strongly suggest that forr̃ 50 ~i.e.
naive gauge fixing! no phase transition in the desired unive
sality class of the continuous FM-FMD transition~found at
r̃'1 and large enoughk̃) occurs. This implies that the na
ive, r̃ 50 action does not lead to a theory of free photo
and is unsuitable for the construction of lattice chiral gau
theories. It is likely that this is related to the dense set
lattice Gribov copies which occurs atr̃ 50, since they rep-
resent unsuppressed rough fluctuations of the longitud
gauge field. In addition, our mean-field results indicate t
for small nonzeror̃ the FM-FMD transition may become firs
order, which would imply that small values ofr̃ should be
avoided altogether.

Our previous results on the fermion spectrum in the
duced model@12#, combined with the results of this pape
provide what we consider to be convincing evidence that
gauge-fixing approach does indeed lead to a viable n
perturbative lattice formulation of chiral gauge theories
Abelian gauge groups. We would like to emphasize tha
key element of this approach lies in the fact that lattice p
turbation theory provides a valid approximation to our latti
theory ~including fermions@11,12#!.

We believe that, in addition, our gauge-fixed lattice fo
mulation has matured to the point where it may be used a
alternative to other gauge-fixing methods for Abelian the
ries. In the traditional approach, one first performs a Mo
Carlo update using only the gauge action@Eq. ~2.4!#. Then, a
sequence of gauge transformations is performed, aimin
find the ‘‘best’’ configuration on the same orbit. For e
ample, in the Landau-gauge method one attempts to m
mize Re(x,mUx,m . A well-known problem is that local al-
gorithms cannot ~and do not! always find the global
maximum. Some specific obstructions of global nature h
been described in the literature~see e.g. Ref.@26# and refer-
ences therein!.

In contrast, in our approach one always performs
Monte Carlo update on the entire gauge-field space, with
single Boltzmann weight. While the action~2.3! is more
complicated, this approach may nevertheless have sev
advantages:~1! one has all systematic errors completely u
der control;~2! we believe that global features~e.g. double
Dirac sheets@26#! do not cause any special difficulty in ou
approach, and that this is related to the fact that at no stag
our Monte Carlo update constrained to stay only on a sin
orbit; ~3! finally, as mentioned earlier, we find that our ph
ton propagator is in excellent agreement with theoretical
pectation.~In order to maintain the good agreement of t
photon propagator with the continuum theory for all fou
momenta we expect that, of the five marginal counterter
at least the one-loopl2 counterterm should be included i
the Monte-Carlo update; see Sec. III C, in particular the d
cussion of Fig. 8.!

Coming back to the program of constructing chiral latti
gauge theories, as a next step the gauge-fixing appro
should be generalized to non-Abelian gauge groups. T
even without fermions, is a difficult task. The main obsta
is the existence of ‘‘continuum’’ Gribov copies@27#, which
7-21
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occur in non-Abelian theories, in addition to the lattice G
bov copies discussed in this paper. It is well known that
determinant of the Faddeev-Popov operator can be neg
for some of these continuum Gribov copies, giving rise to
non-positive integration measure. It is therefore very like
that the weighting of gauge configurations in the path in
gral will deteriorate due to the presence of these continu
Gribov copies. In the worst case, contributions from differe
Gribov copies may even cancel each other~this is in fact not
unlikely, in view of Neuberger’s theorem@23#!. This ob-
stacle may be circumvented by adopting a gauge-fixing p
cedure as proposed in Refs.@28,29#. An advantage of this
procedure is that the~gauge-field! integration measure is
guaranteed to be positive. A possible disadvantage of
method is the fact that the counterpart of the Faddeev-Po
action is a highly non-local functional of the gauge field
This makes a perturbative analysis, and, in particular,
construction of the counterterm action non-trivial. Work
this is in progress.

Another project for future investigation concerns fermio
number violation. Most lattice chiral fermion actions~includ-
ing that of Ref. @12#! can be written in the form
(x,yc̄xDx,y(U)cy with Dx,y(U) the lattice Dirac operator
Obviously, this action~and also the fermion measure! are
invariant under an exact global U~1! symmetry which, at first
glance, seems to be in contradiction with fermion-num
violation @30#. However, Ref.@31# demonstrated, in a two
dimensional toy model, that fermion-number violation c
still occur despite this exact symmetry. The central obser
tion is that fermionic states are excitations relative to
vacuum. The global U~1! symmetry prohibits a given state t
change fermion number, but nothing prevents the gro
state to change when an external field is applied. We ex
that a similar phenomenon may explain how fermion-num
violating processes take place in our four-dimensional
namical theory.
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APPENDIX A

We look for a translation-invariant solution, choosing t
mean-field ansatz

fx5w, ~A1!

Umx5uexp~ iAm!. ~A2!
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The corresponding magnetic fields were replaced by

hx5hw ~A3!

and

Hmx5hu exp~ iAm!. ~A4!

The 41d mean fields w, u, hw , hu and Am , m
51, . . . ,d, are space-time independent. Using these exp
sions we obtained for the free energy

F~w,hw ,u,hu ,A;k,k̃, r̃ !

5LdH 2whw12duhu2 log I 0~2hw!2d log I 0~2hu!

2
1

2
d~d21!

1

g2
~u421!1(

i 51

4

w2i f ( i )~u,A;k,k̃, r̃ !J ,

~A5!

where L is the extent of thed-dimensional lattice in each
direction, and

f (1)~u,A;k,k̃, r̃ !522~4dk̃ r̃ 1k!uF~A!1k̃~11 r̃ !

3u2@2F~A!22d#1
1

16
k̃ r̃ u2F~2A!

3~2d11!, ~A6!

f (2)~u,A;k,k̃, r̃ !52k̃u2F~A!2~ r̃ 21!

2
1

64
k̃ r̃ u2$6u2F~2A!224@2~d11!

1~d21!u2#F~2A!14d~112d!

1d~2d25!u2%, ~A7!

f (3)~u,A;k,k̃, r̃ !52
1

16
k̃ r̃ u4@2F~2A!2

22~d21!F~2A!2d#, ~A8!

f (4)~u,A;k,k̃, r̃ !52
1

32
k̃ r̃ u4@F~2A!2d#2. ~A9!

The two quantitiesF(A) and I 0(h) are given by

F~A!5(
m

cosAm ~A10!

and

I 0~h!5
1

pE0

p

da exp~6h cosa!. ~A11!

It can be checked that the above expression forF reduces in
the limit u→1 and r̃→1 to the free energy which we ob
tained before in the reduced model@10#.
7-22



a
ed
ca

s
nto
the
x-
ns

y.

le
e

en-

y on
ct

ach
ni-

e

e
ean

he

PHASE DIAGRAM AND SPECTRUM OF GAUGE-FIXED . . . PHYSICAL REVIEW D62 034507
The values of the 41d mean fields which are realized at
given point in the (k,k̃, r̃ ) parameter space are determin
from the absolute minimum of the free energy. The lo
extrema of the free energy are obtained by solving the
1d saddle-point equations

]F
]hw

52LdH w2
I 1~2hw!

I 0~2hw!J 50, ~A12!

]F
]hu

52LddH u2
I 1~2hu!

I 0~2hu!J 50, ~A13!

]F
]Am

52Ld$C~w,u;k,k̃, r̃ !

1B~w,u;k,k̃, r̃ !cosAm%sinAm50, ~A14!

]F
]w

50,
]F
]u

50, ~A15!

where

I 1~h!5
dI0~h!

dh
~A16!

and

C~w,u;k,k̃, r̃ !522kuw214k̃~11 r̃ !u2w2F~A!

14k̃~ r̃ 21!u2w4F~A!28dk̃ r̃ uw2,

~A17!

B~w,u;k,k̃, r̃ !51
1

4
k̃ r̃ ~112d!u2w2

2k̃ r̃ X1
4

u2w4$3u2F~2A!2@2~d11!

1~d21!u2#%1
1

2
@2F~2A!

2~d21!#u4w61
1

4
@F~2A!2d#u4w8C.

~A18!
03450
l
4

Equations~A14!,~A15! can have multiple solutions and it i
therefore important to insert the various solutions back i
the free energy to find out which of them corresponds to
absolute minimum. Since it is difficult to find a closed e
pression for the solutions of the saddle-point equatio
~A12!–~A15!, we minimized the free energy numericall
We setd54.

This was done in the following steps: The two sadd
point equations~A12! and ~A13! were used to express th
magnetic fieldshw and hu in terms of w and u. The free
energy depends then only onw, u andAm . The saddle-point
equation~A14! has the solutions

Am5~z,z,z,z!,~6A,z,z,z!, . . . ,~6A,6A,6A,6A!,

~A19!

where z50,p and cosA52C/B ~provided uC/Bu,1). We
have inserted each of these solutions back into the free
ergyF in Eq. ~A5!, which is now only a function ofw andu.
Note that in the PM phase, wherew50, Am remains unde-
termined because all the dependence of the free energ
Am @cf. Eq. ~A5!# disappears. The minimization with respe
to w andu was done numerically by discretizing the (w,u)-
space by a fine grid and calculating the free energy on e
site of that grid. Finally we have picked the absolute mi
mum among the variousAm solutions in Eq.~A19!. The only
solutions forAm which lead to an absolute minimum of th
free energy turn out to beAm5(0,0,0,0), (p,p,p,p) and
(6A,6A,6A,6A) ~with AÞ0,p), which correspond re-
spectively to FM, AM and FMD phases.

After this procedure we obtain at a given point in th
phase diagram a numerical value for each of the eight m
fields w, u, hw , hu andAm , m51, . . . ,4. Thephase tran-
sitions, finally, were located by monitoringu, w andA as a
function of the four coupling constantsg, k, k̃ and r̃ . For
locating the FM-PM and FMD-PM boundaries, we used t
fact that w50 on the PM side andw.0 on the FM and
FMD side of the transition. Similarly, the FM-FMD~AM-
FMD! phase transition was located using the fact thatA
50 (A5p) in the FM~AM ! phase andAÞ0,p in the FMD
phase.
ams
APPENDIX B

In this appendix we give the explicit expressions for^AmxAmySI
(4)&0 and ^Amx

2 Amy
2 SI

(4)&0. We find

^AmxAnySI
(4)&05g2(

k̃
eik(x2y)ei (km2kn)/2(

rs
Dmr

V,(0)~k!Srs
bare~k!Dsn

V,(0)~k! ~B1!

and

^Amx
2 Any

2 SI
(4)&05^Amx

2 Any
2 SI

(4)&0
1d1^Amx

2 Any
2 SI

(4)&0
1e1^Amx

2 Any
2 SI

(4)&0
1f, ~B2!

where ^Amx
2 Any

2 SI
(4)&0

1d, ^Amx
2 Any

2 SI
(4)&0

1e and ^Amx
2 Any

2 SI
(4)&0

1f are the contributions that correspond to the Feynman diagr
1~d!, 1~e! and 1~f! in Fig. 9:
7-23
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^Amx
2 Any

2 SI
(4)&0

1d5^Amx
2 Any

2 SI
(4)&0

1e5g2(
k̃

Feik(x2y)ei (km2kn)/2S (
p̃

Dmn
V,(0)~p1k!3(

rs
Dmr

V,(0)~p!Srs~p!Dsn
V,(0)~p!D G ,

~B3!

^Amx
2 Any

2 SI
(4)&0

1f5^Amx
2 Any

2 SI
(4)&0

1f,I1^Amx
2 Any

2 SI
(4)&0

1f,II, ~B4!

^Amx
2 Any

2 SI
(4)&0

1f,I5g2(
k̃

Feik(x2y)ei (km2kn)/2S r̃

j (
r

(
p̃

Dmr
V,(0)~p!Dmr

V,(0)~p1k! p̂r~p1 k̂!r

3(
l

(
q̃

Dnl
V,(0)~q!Dnl

V,(0)~q1k!cos
ql

2
cos

~q1k!l

2
2

2

j (
rl

H (
p̃

Dmr
V,(0)~p!Dml

V,(0)~p1k! p̂rp̂l

3(
q̃

Dnr
V,(0)~q!Dnr

V,(0)~q1k!J D 1~m↔n!G , ~B5!

^Amx
2 Any

2 SI
(4)&0

1f,II5g2(
k̃
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where the self-energySmn
bare(p) in Eqs. ~B1! and ~B3! is given in Eq.~3.14!. The terms in Eqs.~B5! and ~B6! which are

proportional to 1/j are the contribution from the gauge-fixing action and all other terms arise from theFmn
4 part of the plaquette

action.
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@15# M. Lüscher, Nucl. Phys.B549, 295 ~1999!.
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@17# M. Göckeler and G. Schierholz, Nucl. Phys. B~Proc. Suppl.!

29B,C, 114~1992!; G. ’t Hooft, Phys. Lett. B349, 491~1995!;
P. Hernandez and R. Sundrum, Nucl. Phys.B455, 287 ~1995!;
B472, 334 ~1996!; G. T. Bodwin, Phys. Rev. D54, 6497
~1996!.

@18# P. Hernandez and P. Boucaud, Nucl. Phys.B513, 593 ~1998!.
@19# S. Basak and A. K. De, in Lattice ’99, Pisa, Italy

hep-lat/9909028.
@20# V. Azcoiti, G. di Carlo, and A. F. Grillo, Phys. Lett. B258,

207 ~1991!.
@21# H. G. Evertz, K. Jansen, J. Jersa´k, C. B. Lang, and T. Neuhaus
03450
e Nucl. Phys.B285, 590 ~1987!.
@22# J.-M. Drouffe and J.-B. Zuber, Phys. Rep.102, 1 ~1983!.
@23# H. Neuberger, Phys. Lett. B183, 337 ~1987!; 175, 69 ~1986!.
@24# J. Kuti, Nucl. Phys. B~Proc. Suppl.! 42, 113 ~1995!, and fur-

ther references therein.
@25# M. F. L. Golterman and D. N. Petcher, Phys. Lett. B225, 159

~1989!.
@26# I. L. Bogolubsky, V. K. Mitrjushkin, M. Müller-Preussker, P.

Peter, and N. V. Zverev, hep-lat/9910037.
@27# V. Gribov, Nucl. Phys.B139, 1 ~1978!.
@28# C. Parrinello and G. Jona-Lasinio, Phys. Lett. B251, 175

~1990!.
@29# D. Zwanziger, Nucl. Phys.B345, 461 ~1990!.
@30# T. Banks, Phys. Lett. B272, 75 ~1991!.
@31# W. Bock, J. Hetrick, and J. Smit, Nucl. Phys.B437, 585

~1995!.
7-25


