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We consider a lattice discretization of a covariantly gauge-fixed Abelian gauge theory. The gauge fixing is
part of the action defining the theory, and we study the phase diagram in detail. As there is no BRST symmetry
on the lattice, counterterms are needed, and we construct those explicitly. We show that the proper adjustment
of these counterterms drives the theory to a new type of phase transition, at which we recover a continuum
theory of(free) photons. We present both numerical dode-loop perturbative results, and show that they are
in good agreement near this phase transition. Since perturbation theory plays an important role, it is important
to choose a discretization of the gauge-fixing action such that lattice perturbation theory is valid. Indeed, we
find numerical evidence that lattice actions not satisfying this requirement do not lead to the desired continuum
limit. While we do not consider fermions here, we argue that our results, in combination with previous work,
provide very strong evidence that this new phase transition can be used to define Abelian lattice chiral gauge
theories.

PACS numbd(s): 11.15.Ha

[. INTRODUCTION gauge degrees of freedom, represented by the longitudinal
part of the gauge field.

In this paper we continue our investigation of the gauge- This leads to the following simple questions, both of
fixing approach to the construction of lattice chiral gaugewhich can be addressed without simulating the full theory
theories. In this approach, gauge invariance is broken botimcluding all its dynamical degrees of freedott) When we
through the gauge-fixing terms and through the fermionsturn off the transverse part of the gauge field, do we obtain a
This requires adding a complete set of counterterms to thtéheory of free(chiral) fermions in the correct representation
theory, in addition to the gauge-fixing terms, and these counef the gauge grougin the Abelian case, with the correct
terterms will need to be tuned. Showing that this can be donehargeg decoupled from the longitudinal modes? A(®)
corresponds to demonstrating that the phase diagram comen we turn off the fermions, do we obtain a theory of free
tains a continuous phase transition which can be employed tphotons, again decoupled from the longitudinal degrees of
construct the desired continuum chiral gauge thegarg]. freedom?

Here, we will restrict ourselves to the Abelian case. This It is well known that(mosbh small perturbations of the
avoids many of the subtle questions concerning Gribov copgauge-invariant compact lattice formulation of &llJgauge
ies which arise in the non-Abelian case. In particular, ittheory do not change the nature of {t8eak-coupling con-
makes it possible to drop the ghost sector from consideratiotinuum limit (they correspond to irrelevant directions].

[3], while still testing many of the key elements in this ap- However, previous work has shown that there are generic
proach to lattice chiral gauge theories. obstructions to the construction of chiral gauge theories in a
We will employ (a generalization ofthe lattice gauge- symmetric phaséfor reviews, see Ref$6,7]) which can be

fixing action proposed in Ref4]. Since we wish to maintain traced back8] to the Nielsen-Ninomiya theoref®]. In our
close contact with standard weak-coupling perturbatiorapproach, gauge fixing plays an essential role in the con-
theory, we consider a lattice version of the Lorentz gaugestruction of the theory. This means that the coupling in front
(Other gauges may work as well, but we believe that it isof the gauge-fixing action has to be large enough to bring us
important to restrict oneself to a renormalizable gau@  to a new type of continuous phase transition in the phase
the lattice, i.e., in the regulated theory, there is no gauge adiagram, at which both questions above can be answered
Becchi-Rouet-Stora-TyutiBRST) symmetry, and both the affirmatively.
transverse gauge fields and the fermions will couple to the We have addressed questi@l in previous work[10—
14]. We showed that, in the “reduced” model, in which only
the fermions and the longitudinal gauge fields are kept, in-

*Email address: bock@physik.uni-siegen.de deed a new type of phase transition occurs. At this phase
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dress the second question. We turn off the fermions, and weecently, a gauge-invariant construction @nomaly-fre¢

ask whether this new phase transition survives when thébelian chiral gauge theories on the lattice has been pro-
transverse degrees of freedom are present, and in particulfogsed, based on a Dirac operator satisfying the Ginsparg-
whether it allows us to construct a theory of free photons aWilson relation[15] (for the non-Abelian case, see Ref.
the transition. We would like to emphasize that, even thoughl,16]). The problems with the violation of gauge invariance
without fermions, this is not a new continuum theory, ourdiscussed above do not apply in this cageey might if a
critical point corresponds to a new type of universality class92uUge non-invariant approximation of the Dirac operator is
This is the key element that allows us to couple fermionsUS€d, however An essential ingredient is that the fermion
chirally to the gauge fields, without running into the prob- Mmeasure includes a gauge-field dependent phase factor which

lems which made many previous attempts unsuccesgiul. is determined by requiring the theory to be gauge invariant

summary of the different scaling regions contained in theand local. So far, however, no explicit expression of the fer-

phase diagram of our model can be found in Sec. I E. mion measure was given, mgkmg this approach as yet not
In addition to this fundamental question, we also addresg'UItable for a numerical Investigation.
. . T Another approach which is currently pursued by several

a more technical issue. It was argued in RéR]

' groups is the interpolatiofor two cutoffy approach[17].

. . . : 10NSome interesting results in a two-dimensional toy model can
of the lattice version of the gauge-fixing action. A naive ya tound in Ref[18].

“standard” discretization of the Lorentz gauge-fixing action
(1/72¢) fd*x(9- A)? will lead to the occurrence of a dense set
of lattice Gribov copies(with no continuum counterpart

This corresponds to a large class of uncontrolled, rough fluc- The central idea of the gauge-fixing approach is to control
tuations in the lattice theory, and may well spoil the exis-the gauge degrees of freedom by a gauge-fixing procedure.
tence of the critical point we are after. The lattice gauge-The starting point is the gauge-fixed action in the continuum,
fixing action proposed in Ref4] does not suffer from this the “target theory.” Correlation functions of the target
problem, and it is this action that we have used in our pretheory in the continuum satisfy Slavnov-Taylor identities, as
vious work. Here, we introduce a one-parameter class of lata consequence of the gauge symmetry. For an Abelian gauge
tice gauge-fixing actions, which interpolates between the nagroup, which will be the subject of this paper, the target
ive discretization and the one of R&4]. This corresponds to action in the continuum is of the form
adding a direction to the phase diagram, and we explore the
dependence _of the phas_e structu_re on this new direction. Se=Sc a(A) +Se HAL UL PR +Segi(AL), (2.1

The organization of this paper is as follows. In Sec. Il we

give the full action for a gauge-fixed (1) gauge theory, where S;, G(AM):%fd4X F/z,w designates the gauge action,

including a complete set of counterterms. In particular, WeSC,F(A,u;wL ) is the chiral fermion action, ang, g¢(A,)

introduce the parameter, which interpolates between the the gauge-fixing action. Here, we will consider the Lorentz
naive gauge-fixing action and that of Rpf], and we discuss  gauge, which is renormalizable, and therefore allows us to
the above mentioned lattice Gribov copies. We argue thagtudy the(relevant part of thephase diagram in perturbation
~standard lattice perturbation theory should be valid as long aheory. No ghosts are needed in the Abelian case, and hence-
r is large enough. In Sec. Ill we present analytic results inforth we will not introduce any ghosts on the lattice either
preparation of a high-statistics numerical study of this model[3]. We then have
We first explain the nature of the new phase transition
(which we will denote as the “FM-FMD transition”from 1
the classical potential, and then provide a simpleminded Sc,g,f_(A#)=2—§J d*x
mean-field analysis of the model. Since there is good quali-
tative agreement between mean field and our numerical re- _ o )
sults, we also give an overview of the structure of the phas#here¢ is the gauge-fixing parameter. The goal is now to
diagram at this stage. We end this section with a calculatioffanscribe the target theory defined by the act@) to the
of the one-loop lattice photon propagator, and use it to delattice using compact lattice Imk vanable; and the Haar mea-
termine some of the counterterms at one loop. We also corfUre as integration measure in the path integral.
sider a(compositg scalar two-point function. Then, in Sec. _ The fermion action leads to violations of the Slavnov-
IV, we present our numerical results, which constitute thelaylor identities if we use any one of the standard lattice
main part. First we discuss in detail how we determined thdermion formulations, such as Wilson, staggered or domain-
phase diagram_ After that’ we Compute vector and Sca|dwa|| fel’mlonS, which are. n ConﬂICt with chiral gauge InV.aI.‘I-
two-point functions numerically, and compare them withance. Moreover, we will consider a class of gauge-fixing
perturbation theory in order to determine whether we do interms, dependent on a continuous parametemhey will
deed obtain a theory of free photons at the FM-FMD transidead to additional violations of the Slavnov-Taylor identities.
tion. Finally, we summarize and discuss our findings in theThe Slavnov-Taylor identities are restored in the continuum
last section. There are two appendixes containing varioubmit by adding a finite number of counterterms to the action,
technical details. and appropriately tuning their coefficienf] in the con-
We would like to end this section with mentioning that, tinuum limit.

1. MODEL

2
% &#AM) , (2.2
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such lattice Gribov copies is displayed in Fig. 1, where we
setg,=—1 at sitex=xy andg,= +1 at all sitesx+# Xx,. The
U, fields on the links attached to the sitg(thick lines are
equal to—1 whereas th&J ,, fields on all other linkgthin
lines) are equal to+1. These lattice Gribov copies are a
high momentum lattice artifact with no counterpart in the
0 continuum. (They should not be confused with continuum
Gribov copies, which are a long-distance phenomenioims
clear that perturbation theory around only one of the absolute
minima of Sg(U)+S37'(U), in particular the classical
vacuumU =1, may not give a valid description of the

FIG. 1. Example of a lattice Gribov copy. Shown is only a theory, and the phase diagram cotéahd will) turn out very
two-dimensional projection of the four-dimensional lattice. The different from what one would expect from naive perturba-
U, fields on all the links attached to=x, (thick lines are equal ~ tion theory. _ _ _
to —1 and all othetU ,, fields are equal to one. Itis however possible to remove the unwanted lattice Gri-

bov copies of the classical vacuutand therefore, by conti-

In this paper, we will drop the fermion sector and, asnuity, of field configurations perturbatively close to the
mentioned in Sec. |, focus on the question whether the lattickacuum by adding a higher dimensional operator to the
discretization of the target action with(1) symmetry pro- gauge-fixing action in Eq2.5). This procedure is similar to
vides a valid formulation of a theory of free photons on theWilson's idea of removing the species doublers of the naive
lattice. The lattice action is formulated in terms of the com-lattice fermion action by adding an operator of dimension
pact link variabled) ,,=exp(agA,,), with g the gauge cou- larger than fourthe Wilson term. Such higher dimensional
pling and a the lattice spacingwhich we will set to one operators do not affect the small-momentum behavior of the
throughout this paprThe lattice action is then given by the theory, but can be used to change the behavior at large mo-
expression menta.

The gauge-fixing action we will use in this paper is given
S=Sg(U)+ Sy 1(U)+ S (U), (2.3 by the expression

whereSg(U) is the gauge actiory, ;(U) the gauge fixing, A . 1
and S.,(U) the counterterm action on the lattice. For the Sg,f_(U)=ng'"}‘_’e(U)+rKE [Z(CX+ Cl)z—Bi},
lattice transcription of the gauge actidy g(A,) we em- X

ployed the standard plaquette action 2.8
1 where
SelV)= 72 2 {1-ReUu (24
u<v
Cy=2> Tyy(V), (2.9
where U ,,,=U U, 5 LH;UIX is the usual lattice g
plaquette variable. The lattice transcription of the gauge- Voo 4V 2
fixing action is more subtle. A naive lattice discretization of B,= > ( pRRE (2.10
Eqg. (2.2 leads to ® 2
2
. - _ and
sg?;Ye(U):Kg (2#‘, AMVMX) , (2.5
+
where E](U)xyzg {Uﬂx5x+/},y+Uﬂx_l}ﬁxfﬁ,y_Z(Sx,y}
(2.11)
Vx=ImU,,, (2.6)
is the covariant lattice Laplacian. In E.8 we have mul-
1

2.7) tiplied the higher dimensional operator by a new paranteter
29%&’ ' which can be viewed as the analogue of the Wilson param-
eterr that multiplies the Wilson term. It can be shown that
and AV =V ,x—V,x—, (A, is the backward nearest- the actionSg(U)+ S, ((U) has, forr>0, a unique absolute
neighbor lattice derivatiye The problem with the naive lat- yinimum atu =1 [4] so that, forr>0, standard pertur-
tice discretization is that the classical vacuum of the actiomation theory ﬁg is valid. The gauge-fixing action provides
Se(U) +Sg’r (U) is not unique[2]. It is easy to see that a continuous interpolation between the naive gauge-fixing

Se(U) +S571'(U) has absolute minima for a dense set of 4.tion (2.5 (f=0) and the gauge-fixing action at=1

lattice  Gribov copiesU ,,=g,19,,,, of the classical which was introduced previously in Ré#] and was used in
vacuumU =1 for particular sets ofj,. An example of Refs.[10-14,19.

K=

034507-3



BOCK, LEUNG, GOLTERMAN, AND SHAMIR PHYSICAL REVIEW D62 034507

We will study ther dependence of the phase diagram of In Eg.(2.14 we made the integration over the longitudi-
the purely bosonic theory, and explore the effects of the lathal gauge degrees of freedog explicit. It is easy to see
tice Gribov copies on the phase structure. Obviously, latticéhat Eq.(2.13 follows from Eq. (2.14 by performing the
Gribov copies introduce rough gauge degrees of freedom. Bauge transformatiof2.15 with g,= ¢ and using the fact
is therefore conceivable that lattice Gribov copies at small that/D¢=1 [5]. The longitudinal modes can be viewed as
give rise to a disordered or symmetric phase. It has beefroup-valued H'ngs fieldg, . We will therefore denote in
argued earlier that a chiral gauge theory cannot be obtaindf#€ following S(¢,U ,x#y. ;) as the action in the “Higgs
in such a phasg8]. This would teach us that, in the gauge- picture” and S(U) as the action in the “vector picture.”

fixing approach to lattice chiral gauge theories, one needs tBoth pictures are equivalent and every observable in the vec-
chooser of order one tor picture has, according to E(R.15, a counterpart in the

Finally, we have to specify the counterterm action. It con-199S picture. The path integral in the Higgs picture is in-
tains all relevant and marginal operators which are allowed/@ant under the local transformation
by the exact lattice symmetrig¢4]. In the case of the (1) T
gauge theory there are six such terms: P Ul 4 (216

Finally, we mention here that id space-time dimensions the

S (U)=—« U .+uUfx—x ATIm U )2 path integralg2.13 and(2.14) are invariant under the addi-
alU) % Ut Uind 12;' % (& wx) tional discrete symmetrgwith all A\;=0)

_)\22 E (A;Im UMX)Z UMX—>—UMX, K— — k—8d«kr,
X

K—>7<, r—r, g—gdg, (2.17

_)\32 (% Al Im UMX)Z

which implies that we can restrict ourselves to tke
) > —A4dxr region of the (,«,r) phase diagram. In the fol-
N> (2 (Im qu)z) lowing we will refer to

X V22

k=—4dxr (2.18
“Ns 2 (ImU 0% (2.12
X u

as the symmetry surface, or symmetry ligmint) if x or

. . (and T are kept fixed.
The term proportional toc is a mass counterterm for the

: : : - At k=0 and\;=0, i=1,...,5, themodel reduces to
auge field. It is the only dimension-2 counterterm. All other o ST . !
gougterterms are of din{ension 4. An expansiorgishows the U1) gauge-Higgs model with group-valued Higgs fEaIds.
that the counterterms with coefficienks, A, and\; are  The resulting &,g) phase diagram corresponds to tke

wave-function renormalization counterterms. The terms with=0 hyperplane of the four-dimensionat,@g, x.r) phase dia-

the coefficients\, and\s are, to leading order ig, quartic  gram (for x=0 the model is independent of. In the limit

in the gauge potential, and are needed to eliminate phOtOQHO the phase diagram of the gauge-HiggS model reduces
self-interactions. The coefficients of the counterterms have tgy that of the four-dimensionaXY model. This phase dia-

be tuned such that the SIaVnOV'Taylor identities are SatiSfiegram of theXY model contains three phases: a ferromagnetic
in the continuum limit(cf. Sec. lll Q. Note that terms such (FM) or broken phase at> xkpy.py~0.15, a paramagnetic
as%,2,(A,Im U0 ,(Im U,,)? do not occur because of (PM) or symmetric phase at kpy.py< k< Key.pm, @nd an

the symmetryUMx—>ULX. However, such counterterms will antiferromagnetid AM) phase atk<— kgypy. The k>0
have to be considered once the theory is coupled to fermiongegion is mapped by the symmet{®.17 into the k<0 re-

The path integral is defined by gion. This implies that the FM phase is mapped into the AM
phase and vice versa. The FM-PM transition, and, because of
the symmetry(2.17), also the PM-AM phase transitions are

Z:j DUex —S(U)] (213 second-order phase transitions. gt O the FM phase tumns
into a Higgs phase and the PM phase into a Coulomb phase,
which we will still denote as FM and PM phases, respec-

=f DUD¢ex;{—S(¢:[UMX¢X+,;)], (2.149  tively. There is strong evidence that also the FM-PM phase
transition atg>0 is of second ordef20]. The spectrum in
the FM phase contains a massive vector boson with quantum
rnumbersJPC=1" and a massive Higgs boson with quan-
tum numbersJ®=0"*. The masses of both particles are
expected to scale when is tuned towards the second-order
FM-PM phase transition. The spectrum in the Coulomb
g _ + phase contains only a massless photon if one keeps away
U= U= 0xU 1y - (219 from the FM-PM phase transitiof2l]. The model in the

where the actiors(U) is given in Eq.(2.3), and the integra-
tion over the link variables is performed with the usual Haa
measure. Only the gauge action in Eg.3) is invariant un-
der the local gauge transformation
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Coulomb phase provides a valid formulation of free photonsanalyze the spectrum near the FM-FMD phase transition in
on the lattice but, as we explained before, because of thperturbation theory.

strongly fluctuating longitudinal gauge modes, it is not pos-

sible to formulate a chiral gauge theory with a gauge non- A. Constant-field approximation

invariant fermion action in that phase. The spectrum near the
FM-PM phase transition contains, apart from the massless
photon, also positronium-like bound states of scdlats. At U, =expigA,), (3.1)
large g and smallx the phase diagram contains a confining a .

(CF) phase, which is separated from the PM phase by avhereA, is a space-time-independent vector potential. After

In the constant-field approximation we set

phase transition, located gt=1. inserting Eqg.(3.1) into Eq. (2.3 all terms which contain
In Refs.[10-14, we have studied the @) model with  derivatives of the gauge field vanish, and we obtain an ex-
\i=0, i=1,...,5, in thereduced limit where the gauge pression for the classical potential density. Expanding the

coupling is tuned to zero, while keeping= 1/(2g%¢) fixed  resulting expression in powers gf we find
(reduced mode! In this limit the transverse gauge degrees of

freedom are gone and only the dynamics of the longitudinas _ 2 2, E 67 2 4
gauge degrees of freedom remains. The path integral of thi{s/C'(A”) “19 % Aut 329 Kr{(% A”) ( % A“)
reduced model is given by EQ.14 with all link variables )

set equal to 1. The phase diagram of the reduced model at +... _)\494[ E AZ| +...

T=1 contains, apart from the FM and PM phases, also a new w

type ferromagnetic directiondFMD) phase where the vec-
tor field Im b, , condenses and hypercubic rotation in- —)\594[2 AL+ } (3.2
“

variance on the lattice is brokeof. ther = 1 plane of Fig. 6,

which is very similar to the =1 reduced-model phase dia- where the ellipses represent terms which are of higher order

gram. in g2. A massless non-interacting photon is obtained for
The phase transition between the FM and FMD phases=0, \,=0 andAs=0. The relationk= kgy.pqp=0 de-

which, as we will see, is also present in the fullmodel, fines a critical surface in the three-dimensionad, ,7)

plays a crucial role in the gauge-fixing approach. While theyhase diagram where the photon mass vanishes. We will see

photon is massive in the FM phase, one obtains a massle . X ~ o~ .
photon by tuninge, from within the FM phase, towards this f??)?r: tzheartotgs ggtrlt(fj ?L;g\ljgl?gfgc‘%%gk’r) is shifted away

FM-FMD phase transition. Tuning all other counterterms as The minimization of the classical potential densig2)
well should then lead to a theory of free, relativistic photons.for N.—X.=0 shows that i
We should note here that is the only relevant counterterm 4705
parameter, whereas all the are marginal. We therefore (gA,)=0,
may expect that onlg needs to be tuned nonperturbatively, a
while, with a given numerical precision, a one-loop or even
tree-level determination of thg; will suffice. Indeed, the (9A.) for < Kemem
results which we will present in the following sections pro- (3.3
vide evidence of this. for u=1, ... 4(see Ref[4], which also deals with the case
With chiral fermions, we demonstrated that, in the re-),+0, As#0). This implies thatk=kgyemp=0 corre-
duced limit, the fermion spectrum contains only the desire(kponds to a phase transition between the FM phase where
chiral stated12-14. (A,) vanishes and the gauge boson has a nonzero mass, and
The phase diagram at smallis expected to look similar - the FMD phase with a nonvanishing vector condengajg .
to the phase diagram of the reduced model, since the transhe hypercubic rotation invariance on the lattice is broken in
verse components of the gauge fields are still very small. Weghe FMD phase by the nonvanishing vector condensate.
will show in the following sections that even at a relatively  The constant-field approximation is supposed to provide a
large value oy (9=0.6) the phase diagram is qualitatively gaiistactory description of the model only at lafge 1/g?,
very similar to the one for the reduced modelr # 1. where strongly fluctuating gauge configurations are sup-
pressed by a small Boltzmann weight and the smoother
gauge configurations are well approximated by a constant
1. ANALYTICAL RESULTS field. Indeed, as we will see, a perturbative expansion start-
ing from the constant-field approximation can be developed

In this section we present our analytical results. Sectio : _ Lo~ 9
[l A deals with the constant-field approximation, which al- %y expandingU ,x=exp(gA,,) and settingx = 1/(2¢9%),

ready gives some insight into the phase structure. In Sedvith ¢ fixed. The situation is different at smaki where
Il B we will determine the (. %.7) phase diagram at fixed rough longitudinal fields are not sufficiently suppressed. This

small g in the mean-field approximation. The Countertermpicture is confirryed by our previous investigation of the re-
coefficientsk, \;, N, and\; are calculated to one-loop duced model ar=1, where we find indeed a FM-FMD

order in perturbation theory in Sec. Ill C. In Sec. Ill D we phase transition at large (consistent with the constant field-

for k= kem-rvp »

== (|k— kpmpmpl [ (BKT)) Y4,
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FIG. 2. The (,«) phase diagrams at=1 [(a) and (b)] andt=0.2[(c) and (d)]. The plots on the left were obtained by a mean-field
calculation, and those on the right by Monte Carlo simulations ohlatéice. The dash-dotted lines mark the symmetry [iufeEq. (2.18)].

The perturbative result for the FM-FMD transitions is represented in the plots on the right by solid lines. The relation between the
perturbative and Monte Carlo results will be discussed in Sec. IV A.

approximatiol, but an FM-PM phase transition at small B. Mean field calculation of the phase diagram

The emergence of the disordered PM phase at sinialidue In the following we set again=0, i=1,....5, and

to the dominance of rough gauge field configurations. Equadetermine the phase boundaries in the«r) space. The
tion (3.2 shows that the classical potential density dependsnean-field analysis for gauge theories on the lattice is am-
only on the produckr. This suggests that a small valuerof biguous as it is in conflict with local gauge invariar/@&?2].

~ For gauge-Higgs models the mean-field calculation in the
has the same effect as a small valuecand that the “small

" vector picture leads to a wrong phase structure at small val-
k" region aroundr=0 might indeed be filled with a PM ues ofx, whereas the mean-field approximation in the Higgs

phase. This conjecture will be confirmed by our mean-fieldpicture leads to a phase diagram which, at least qualitatively,
analysis and Monte Carlo simulations. complies at smalk with Monte Carlo simulations. Since we
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0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

K K

FIG. 3. Same as Fig. 2, but for=0.1[(a) and(b)] and O[(c) and(d)]. Note that the symmetry line ift) and(d) coincides with thec=0
axis.

are interested in the phase diagram at smallve performed grams obtained from the Monte Carlo simulations are dis-
our mean-field analysis in the Higgs picture. Here, we willplayed in the right columns. They will be discussed in more
only describe the results, while relegating all the technicali-detail in Sec. IV A but a first glimpse shows that they are, in
ties to Appendix A. most cases, similar to the mean-field phase diagrams.

All the results we are going to present in the following The dash-dotted lines in Figs. 2-5 mark the symmetry
were obtained aig=0.6, scanning the three-dimensional line (2.18); we only determined the phase diagram above that
(k,x,r) phase diagram aj=0.6 by keeping eithek or r line. The error bars in the mean-field phase diagrams mark
fixed. [We also performed a few scans of the four-the distance between two successive points in our scans of

dimensional §,x, %,T) parameter space in thedirection at 1€ phase diagrarfef. Appendix A. _

T=1, x=0 and several values af and find that the transi- _ F19ures 2a) and 2b) show the f, ) phase diagram at
tion to the confining phase occurs always at valueggof =1. There is a PM phase for smakt| and small «|, and
which are larger than 0BThe resulting two-dimensional for large’x there is a phase-transition line separating an FM
sections through thex( x,r)-phase diagram are displayed in @nd an FMD phase. The plots in Figs. 2 and 3 show that the
the left columns of Figs. 2—5. The corresponding phase diasituation remains qualitatively the same whers lowered.
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—05 | l\'\'z FMD I }

NICHEE o A

L C LV
. -0.5 0 0.5 1
"~

FIG. 4. The (.r) phase diagrams for=0.05[(a) and(b)] and 0.2[(c) and(d)]. The mean-field phase diagrams are displayed again on
the left, and those from the Monte Carlo simulations on the right. The dash-dotted line is the symmetry line. The perturbative result for the
FM-FMD transitions is represented in the plots on the right by solid lines. The relation between the perturbative and Monte Carlo results will
be discussed in Sec. IV A.

The phase diagram at=0 contains at smak and«x a PM L
phase, as for>0. The mean-field calculation, however, pre- I
dicts that, at =0, the region at large and small «| is filled

L i FM
L Ex.
by an FMD phase, which is in conflict with our Monte Carlo o g %’*"

[ ‘lxxxx
simulations(plot in the right columf, which show that the ¢ | FJ?IZ
PM phase extends to very largewith no sign of an FMD [ |

phase. We therefore believe that the FMD phase at I]érige I |
an artifact of the mean-field approximatiéwhich tends to [ :
favor ordered over disordered phasddgures 4 and 5 show - (o) ;

{b)
three (k,r) phase-diagram plots at fixadvalues. The phase s o 05
diagrams atk=0.05 and 0.2 look very similar to those at '
fixed T>0. For k<0<T or r<0<x we find an FM-AM

9=0.6, ®=0.8, 4*]

b=
«
Il
o
o
55t
1
o
o4
M-

3

1
T
'T‘x;‘%;

& T TR

PM

o

0.5 1

-2

FIG. 5. Same as Fig. 4 but far=0.8.
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K phase transition sheets are separated by an FM-AM-PM tri-
critical line (not shown in Fig. & The projections of these
=0 tricritical lines onto a constant-plane are shown in Fig (3

. (mean field and in Fig. 7b) (Monte Carlg. We see that the
discrepancy between the mean field and Monte Carlo results

at r=0 correlates with the fact that the mean-field and
Monte Carlo locations of these tricritical lines differ slightly.

N oM In the mean field, the PM phase endsxat0.3, and the
) Ve FM-FMD-PM and FM-AM-PM lines merge into an FM-

FMD-AM tricritical line, whose projection approaches the

\

—

/] FMD " AM T=0 axis fork=.
PM - In the mean-field approximation we find that the FM-PM
/ transition is second order at=0 (this is the “standard”
AM gauge-Higgs modgl It is still second order ak>0 andr
FIG. 6. Schematic three-dimensional plot of the%,7) phase =1, but changes into a first order phase transition when

diagram in the range from=0 toT=1, %=0 to x=1. The two lowered. Similarly we find that the FM-FMD transition is of

dashed lines on the front faces of the phase diagram cube indicag&cond order at=1, but of first order at smalt. The
the position of the symmetry surfafEq. 2.19 on those faces. The FM-AM phase transition is always of first order.
thick line represents the FM-FMD-PM tricritical line.

C. Perturbative determination of the counterterm coefficients
phase transition which coincides with the symmetry line, Eq.

(2.18. Figure 5 shows again that the mean-field calculation The counterterm coefficients, A,+X; and\, can be
at%=0.8 does not lead to a PM phase at srall calculated order by order in perturbation theory by demand-
K=U.

. ing the Slavnov-Taylor identit
We have compiled the Monte Carlo results for theI g vnov-taylort 'y
(x,x,r) phase diagram into a schematic graph, shown in Fig.

6. The FMD phase at large andr =0 is not shown in that
graph since, as we said, there is no evidence from Monte

Carlo simulations that the FMD extends downrte 0. Fig-

ure 6 shows that the FM-PM and FM-FMD phase-transitionto be satisfied in the continuum limi&—0. (The Slavnov-
sheets are separated by a tricritical line where three phasdsylor identity does not determine the other linear combina-
(FM, PM and FMD meet; we will call this the FM- tion, A;-\3, because it corresponds to a gauge-invariant op-
FMD-PM line. Similarly, also the FM-PM and FM-AM erator)

> PLAAALPIAL(Q))=E8(p+Q) (3.4
y7ad

(o) ]
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i
|
i
I
1
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I
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! i
L | = 4 L |
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—os | JL i
Fo s Jb
. IR
. g=0.6 IR 9=0.6, 4* ]
L | 4 L | 4
_1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 I 1 1 | 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 | 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
K K

FIG. 7. Projection of the FM-FMD-PM and FM-AM-PM tricritical lines ontoxa= const plane obtained by a mean-field calculatian
and by a Monte Carlo simulatiotb). The FM-FMD-PM and FM-AM-PM tricritical lines in@) appear to merge into an FM-FMD-AM

tricritical line at largex. The two solid curves irfb) are to guide the eye.
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First, we transcribe the left-hand side of E§.4) to a
finite lattice,

W<p>=% P.PAYL(P), (3.5

wheref)ﬂzz sin(p,/2) is the lattice momentum, and

;y ImU ,Im vaexp[ip(x—y)]>
(3.6

A7 (p)= !
M g2|_3-|-

is the vector two-point function in momentum space, with
L3T the lattice volume of a cylindrical lattice of spatial ex-

tentL and temporal extent. The vector propagatoxxy(p)

is now computed to a given order gf. The resulting ex-

pression forAXV(p), and hence also fow/(p), will be a
function of the counterterm coefficients.

The counterterm coefficients are then determined such

that in the continuum limit

limW(p) = ¢

a—0

3.7

(keeping the physical volume fixgdSimilarly, the coeffi-

cients\, and A5 of the quartic counterterms can be calcu-

lated by requiring the Slavnov-Taylor identity

> PLAK AALPIAL(DA, (KAL)

nrpo

=&[8(p+q)(k+)+8(p+k)s(q+1)

+8(p+1)s(g+k)] (3.8
to be satisfied in the continuum limé—0.
After inserting
AMX:Ep explip-x)exp(ip ,/2)A,(p), (3.9

with £,=(L®T) '=,, into the action(2.3), we obtain from
the term bilinear in vector potentidl,(p) for the tree-level
vector propagator

PHYSICAL REVIEW D62 034507
AX’ﬁ”(p)=zw(gz>[<mz+(1+x192>h2+x2925i>5w

1 o -1
—(1—E—Aagz)p,¢py+22a,fe(p)} ., (312

with

lr\./
2,99 =1-g752 [AL(0 + A7) (313

and

3P p) =39 (p)+3C (p), (3.14

1~~ R
2 2 ALk
k «

292

E%L(p) =
LA ~

+ 7 pi}k‘, > AVO)Kk)cog(k,/2)

1= P
_52[( 2 AX,’LEO)(k)kakM 5,uv

2

~—

g
PV

3

L& e
P2 AX'5°><k>kMkvl PPy, (3.19

gZ
E;Gtv(p): - ?

> pa2 [RCAyO ) +kZAY k)
a k

-2k k, AV O k)]

n=ap 6,4.w_92 Ek: AIL\:,’V(O)(I()R,LLRV

—2 RiAY;“”(k)] PP, (3.16

E%L(p) andEﬁ‘V(p) are, respectively, the contributions from
the gauge-fixing and plaquette actions. TAdactor, Eq.

v.(0) o, 1\. . |1 (3.13, originates from the fact that we used the composite
AP = (pT+m)d,,—| 1 £/PuPy] operator In ,, instead ofA,,, in the definition ofAY (p).
(3.10  On a symmetric latticei.e., L=T) the self-energies are
where 29[~ 1 o~ 1
E%L’(p)z ra ry— §(|1l+3| 12+ p,ZJ K11~ Zl 1] [Ouv
m?=2kg2. (3.11)
¢ K [ L l11—112) 8,4, (PP
We included the mass counterterm in the tree-level propaga- g|fumgMe 2" (1117112 80 |PuP
tor, since it also functions as an infrared cutoff. (3.17
We have calculated the critical values of the coefficients '

K, N1, Ay and\jto one-loop order in perturbation theory. _ . ) s I
To one-loop order the vector propagator is 3 (P)=—09°Q1— 112[IP|*8,— PP, ] (3.19
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(note that the last expression is transverse, as it shoyld be IR L L

with lattice integrals

=3 AV, (319
k

|W=r§k‘,\JA,V;§°>(k)RMRV, (3.20

=§Axg0>(k)ki. (3.21)

k
The Slavnov-Taylor identity, Eq(3.7), is satisfied to one-
loop order for

1/-(1 1
K:KFM-FMD:_E[r(z—"xl(g_l))_gg}: (3.22

1 1 1
)\z—g E_z 1"‘2(5_1) X2+Z(§_1)(X1+X3)
(3.23
and
B ~1( 1)
)\1+)\3——FZ 1_5 X3, (324)
with
~ k4
X,= > —==0.09511), (3.25
< [k|*
=1
Xo=2 > |2—o 15491), (3.26
CokikE 11 B
x3—2k W—§(Z—xl)—o.05151), (3.27)

in the limits L, T—o andm?—0. Equation(3.22 provides

PHYSICAL REVIEW [B2 034507

V& YYY N
ooo J
[ MW&A FNFN :
A
JL\U 0.95 |- 28 f -
L A AQ J
~ o ?Aﬁa
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~— A
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09 A _
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p2

FIG. 8. The ratioN(p)/¢ as a function op? on a 624 lattice at
the point @, x,r)=(0.6,0.8,1). See text.

(3.28

(1 3+¢
1714 4

__&»

which then determines; using Eq.(3.24.

As a check of our results, and to get a feeling for the
effects of the various counterterms, we have calculd¢éd)
in Eq. (3.5) to one-loop order, and plotted in Fig. 8 the ratio
W(p)/¢ as a function ofp? for 0<p,<m, u=1,... 4.
After tuning the counterterm coefficients this ratio should
approach 1 in the continuum limg—0. The inversion of
the 4x4 matrix in Eq.(3.12 was done numerically. The
ratio W(p)/¢é was computed on a’g4 lattice at the point

(g,x.r)=(0.6,0.8,1). We used antiperiodic boundary condi-
tions in the time direction to avoid the zero mode of the
propagator. The open triangles in Fig. 8 correspond to setting
k=0, \{=0, i=1,...,5. Theplot shows that the ratio
W(p)/¢ is clearly below 1 and, as shown by the irregulari-
ties, is not a continuous function ef. These irregularities

us with an expression for the FM-FMD phase boundary, toare caused by the part of the self-energy with the structure of

be comparedin Sec. IV A) with our Monte Carlo results.
One can also verify that in the limg—0, Eq.(3.22), turns
into the corresponding result for the reduced mojddl],

taking the limitg—0 such thatc in Eq. (2.7) is kept fixed,
i.e., é—oo. [Note that both\, and the sum\;+ X\ vanish in

the limit T—0. This happens because of a combination o

the A, counterterm. Settin@g, equal to the value obtained
from Eq.(3.23, one gets the values represented in Fig. 8 by
the squares. All irregularities disappear af¢ip)/¢ is a con-
tinuous function ofp?. The solid triangles in Fig. 8 were
obtained after settingc=kry.emp [EQ. (3.22] and the
fcrosses after setting also;+\; to the value determined
from Eq. (3.24). The graph shows the crosses to be very

two facts: forr =0 a ghost action can be added such that theyose to one for all momenta.

full action has an exact BRST symmetry on the |atfi28];

however, to one loop, the ghosts do not appear in the vacuum
polarization in the Abelian case. The mass counterterm does
not vanish forr =0 since BRST invariance allows for equal  In this subsection we discuss the particle spectrum. We
non-zero masses for the(l) gauge field and the Faddeev- mentioned already in Sec. Il that the particle spectrum in the
Popov ghost§We can fix\; and\ 5 if we demand the wave FM phase of the pure gauge-Higgs modelH0) contains a
function renormalization constant to be equal to 1 at themassive vector boson and a massive Higgs particle whose
one-loop level; then masses scale whens is tuned towards the FM-PM phase

D. Particle spectrum at the FM-FMD phase transition
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transition. On the other hand, at the FM-FMD phase transi- 1) gH
tion the action(2.3) is supposed to provide a new lattice @
discretization of a theory of free photons, with nothing else. X<>y
A Higgs particle associated with the longitudinal gauge de-

grees of freedom should be absent. Therefore, the particle % <(°)§ 9 © ®
spectrum has to change when crossing the FM-FMD-PM tri- ? <><>
critical line in the FM phase: afunstablé Higgs bound state @

should exist near the PM-FM transition, and not near the

FM-FMD transition. 2) GY

The question of the existence of a Higgs bound state is a
non-perturbative issue. In this section, we present perturba-
tive results for the various correlation functions that will be @ () o @0 O
used to probe the spectrum numerically in Sec. IV B. (d)

The vector propagator defined in E@.6) was already
calculated to one-loop order in the last section, and is giver}gun
by Eqg. (3.12. It is evident that one indeed obtains a free,
canonically normalized vector propagator if the four counterynich, if no bound state is present in the spectrum, should
term coefficients<, A;, A, and; are tuned towards the factorize for|x—y|— as
values given in Eqs3.22—(3.24),(3.28.

An operator containing the quantum numbers of the Higgs

FIG. 9. Feynman diagrams for the coordinate-space correlation
ctionsG! (Ix—y|) andG} (|x—y]).

H \Y%

particle is ReJ . The corresponding Higgs two-point func- Gl (Ix=y)=C,.[G, (Ix—=y]T? (3.33
tion on a cylindrical lattice is given by

where

AM ¢ )—i > ReU,ReU, exdip(x—
wlP)= 15| & ReUnReUyexdiptmyl), GY([x—y)=(IMU,,imU,,) (3.34
(3.29

is the vector correlation function, an@,, is a constant
which has been used for the numerical determination of thgvhich can be determined in perturbation theory.
Higgs boson mass in gauge-Higgs modes|. To leading order in perturbation theory we find

It is easy to verify that, to one-loop order,

g’ g*
Glullx=yD=Z (ALAL 0= T AL (335

1
H,(1 _ H
AL(p) = 5 g%exdi(p,—p,)/2]

g and
X2 AnOkAE O (p+k).  (3.30
K
G(IX=yD=0%AuAL)0=0"A)0,, (330
For smallp, we can extract the non-analytic part by replacing
the integrand with its continuum expression, and we obtaitwhere(- - - ), denotes the quantum average with the part of

(for m*=0 andL,T—x) the lattice actior(2.3) that is quadratic irA,,, and
1 1 [
> AnYp) :_(594)(47)2(3+ £)log p2. A%O=3 exdip(x-y)1AYO(p), (337
nv

non-analytic

(3.31
with AY(%(p) given in Eq.(3.10. Substituting Eqs(3.35
It is obviously not possible to conclude from this perturba-and(3.36) into Eq. (3.33 leads to
tive calculation alone that a Higgs particle does not exist.

However, one may compare a nonperturbative evaluation of 1

the same correlation function with the perturbative result. If CW=§. (3.38

they agree, this provides evidence that a Higgs bound state

does not occur in the theory, and this is what we will inves-

tigate in Sec. IV B. The expressions in Eqé3.35 and(3.36 are represented by
Another equivalent way of looking at this is to consider Feynman diagrams(d) and 2a) in Fig. 9, respectively. Note

the coordinate-space correlation function that, to leading order in perturbation theory, factorization

holds without any tuning of the six counterterm coefficients

GY (|x—y))=(ReU ,ReU,,)—(ReU ,}{ReU,,), Ky Ai, .o Ns
ul =YD =(ReU )~ (ReU 4 We now wish to verify explicitly that factorization holds

(3.32 also to next-to-leading order ig?. To this order we obtain
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" g* by . uting to the figure-8 diagram in E¢B4) contains two one-
G ([x—yh)= Z<AuxAvy(1_Sl( o loop integrals. The various terms can thus be divided into
two classes: either both derivatives are acting on propagators
g® s 4 P inside the same loofEq. (B5)] or each of the two deriva-
- 4_8<AMXAVy+A,uxAvy>O tives is acting inside a different lodjEq. (B6)]. A dimen-
sional analysis then shows that the terms in @§) do not
give a contribution at large distancéhey give only contact
terms in momentum spaceThe only contribution at large
separations comes from the terms in E5). In each term,
the loop integral containing none of the derivatives from the
vertex behaves at large separatitxs y| as the leading or-
der term(AZ% A2 ), which, in the limitm—0, is logarithmic
where S designates all terms of the lattice acti@®3 divergent for vanishing external momentum. The second in-
which are quartic in the gauge potenti), . Similarly, we  tegral contains the two derivatives and approaches a constant
find, for GXV(|x—y|), for vanishing external momentum, thus leading to a contri-
bution to the constar€ ,, . Therefore, forlx—y|—»,

g’ 9°
[AV,(O)Z( 1— ?[AV,(O) +AV’(O) )

T o | Pexowy pXoux T vy, vy

1
- §<A2 xArzzySI(4)>0] ) (3.39

o

G (IX=YD=0%(A A, (1-S))o

4
g
A A AT ALY — 1 (ALALS ) =gC G, (Ix—y )12+ 0(g%).
6 123 %% uXT vy,

(3.43
2
=g2[AV*X(°) ( 1— g_[Av,X(O)XJr AV-(0) ) As a check(for the casew=v), and in order to determine
py A the constanC(?), we have numerically computed the three
ratios
_ (4)
<AMxAny| )0]. (3.40 <A2 A2 S|(4)>(l)f
o . . r(x—yl)=— Lo (3.44
The various diagrams that contribute®' andGV are dis- gZAM;(flzy
played in Fig. 9. Diagrams(h), 1(c), 2(b) and Zc) corre-
spond to the terms in Eq$3.39 and (3.40 which are pro- (A2 A2 Syl
portional to[AMXY#X.ﬂLAVy,Vy], an_d give only a contribution 2\V.02 .
to the wave-function renormalization constant. The four- mX.my
point vertices in diagrams(d)—1(f) [we will refer to dia-
gram Xf)] as the “figure-8 diagram)'and diagram @) arise 2 A2 (AN Il
(4) . : H <A xA ySI >O
from §*. The integral expressions for those diagrams are r(x—y))=— 2 —— (3.46
. . . 24 V,(0)2 ’ .
given in Appendix B. 9°A iy
In perturbation theory, one expects th@l';,,(lx—yl)
~(G},,(Ix—y[))? for large|x—y]|. Here, we show this to be 2 A2 c(anif 2 A2 c(ANILI
true also at two loops. It can easily be verified that, afterWhZere2 (4)<'§f‘fﬁAMYS' ,>0 " (AuwhuySi 7)o q antfj
squaringG),(|x—yl|), diagrams 2a), 2(b) and 2c) combine (ALxALySi)o are given in Eqs(B4), (B5) and (B6) o

into 1(b) and Xc) and that similarly 2a) and 2d) combine Appendix B respectively. We have choserandy as two

into 1(d) and Xe). The Higgs correlation function can then on-axis p0|_nts. 4The ratios were c_:om_puted on a symmetrlc
be written as lattice of sizeL™ at the same point in the phase diagram

[(g,x,k,r)=(0.4,0.1,0.2,1) where the numerical simula-
1 tions were performeccf. Sec. IV B 3. If factorization holds,
G;}jv(|X—Y|): §+92C213>[GXV(|X_V|)]2 the two ratios (|x—y|) andr'(|x—y|) should exhibit a pla-
teau at large separatioz—y|. As an example we have
plottedr (|x—y|) in Fig. 10@ as a function ofx—y|/L for
L=14 (crossepand 16(triangles. The plot shows that we
obtain indeed a plateau at large-y|. In Fig. 10b) we have
where plotted the mid points, i.e. the valuesrqi_/2), r'(L/2) and
1 r'"(L/2), as a function of 1/2=(a/LP"%)? where LPWs
C(1V)=—(KW+ K,,) (3.42 =al is a fixed physical scale arais the lattice spacing. We
4 see thatr!"(L/2) indeed vanishes in the limi—0. In con-
[cf. Eq. (3.19] and(AfoAiy (4)>éf is the contribution from  ast, the ratios(L/2) andr'(L/2) approach a non-zero value

the figure-8 diagram whose explicit form can be found in™ this limit. The constanC{;) is then given by
Appendix B. While the formulas in Appendix B are compli- 1
cated, the essential physics is simple. The ve8gX con- c@=Z
tains two(lattice) derivatives, and each of the terms contrib- Ke 4

g4
— 7 (ALALS) +0(g®), (34D

limr(L/2)=0.121). (3.47

L—oo
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FIG. 10. () The ratior (]x—y|) as a function ofx—y|/L for L=14 (crossepand 16(triangles, with periodic boundary conditiongb)
The ratiosr (L/2), r'(L/2) andr"(L/2) displayed as a function of 17. The straight lines irib) are to guide the eye.

1 .
Foor ztSe constant€(}) and C,,, we find the valuegfor g

(1) —
c(Y=0.32771) and

20(1) 2(2) =
C c)+g?c?)=0.571616).

wp 2 +9
(3.48

correlation length. The longitudinal degrees of freedom are
non-propagating; namely, they have a finite correlation

length as long as no electric charges are presentxTdrel x
terms are both irrelevant. A gauge-invariant description of
the PM phase is provided by the Higgs pictusee Sec. )l
Since, however, all operators with long range correlations
can be constructed from the gauge-field ofdpd are gauge
invariany, the scaling region is a free-photon theory.

(2) FM-PM line. Here the Higgs field scales. Theterm

The above arguments do not lead to a constraint on the couis marginal, whereas all the terms proportionaktare still

terterm coefficients\;, \,, N3 and « at this order. It is
however clear that our above arguments are true only, if
=X\5=0, which is consistent to this order gf. At higher

orders, factorization holds only when the countertemms
and A5 are tuned appropriately(Note that then for any
N1, Ny and\jz the theory is free in tha—0 limit.)

E. Summary of scaling limits

The model introduced in Sec. Il has a rich phase diagram.

Taking for definiteness =1, the @,«,«x) phase diagram
contains for smalg four dlstlnct critical regions:

The PM phase.

The FM-PM line.

The FM-FMD line.

The FM-FMD-PM tricritical point.

irrelevant. This can be inferred heuristically by writing the
action in the Higgs picture and assuming canonical dimen-
sions for the gauge and Higgs field. The FM-PM line is thus
in the same universality class as the gauge-Higgs model with
an unconstrained Higgs field. The existence of a light Higgs
particle is verified explicitly in Sec. IV B 2.

We also demonstrate there that the perturbative expansion
developed in the previous subsections fails to describe the
FM-PM transition.

(3) FM-FMD transition. Here thex and x terms are rel-
evant and marginal respectively. The divergent correlation

length is achieved by letting scale like 14, and at the
same time tuninge to its critical value. The scaling degrees
of freedom include all four components of the lattice gauge
field. This is accounted for by perturbation theory in the
vector picture, as developed in the previous subsections.

If only « is tuned, the scaling region near the FM-FMD

The first two critical regions have been extensively studied irtransition describes a renormalizable vector theory with an

the past(see Sec. )| while the third one is the main topic of
the present paper. We summarize here the key properties
the first three critical regions, aiming to clarify the distinc-
tions between thenffor a discussion of the tricritical point
see Ref[24]).

(1) PM phase. Inside the PNCoulomb phase only the

indefinite-norm Hilbert spacéafter analytic continuation to
Minkowski space After tuning the rest of the counterterms
so that Slavnov-Taylor identities are satisfiéd the con-
tinuum limit a—0), one can define a physical subspace with
a unitary time-evolution operator. This physical subspace co-
incides with the physical space defined by taking the con-

transverse polarizations of the gauge field have a divergeninuum limit anywhere inside the PM phase.
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IV. NUMERICAL RESULTS parameter which allows to distinguish the FMD phase from
the other phases can be defined on the lattice by the expres-

In all our Monte Carlo simulations we sat;=\,=\3 sion

=N,=A5=0. The action depends then only on the four pa-

rametersy, x, « andr. We have seen in the previous sec- 1 1 2
tion that, for the quantities we will considex,=X5=0 in V= \/_ ST =S Imu (4.7)
perturbation theory to the order we have taken into account. 470 L4 % T '

This means that we can set them equal to zero also in our
numerical computations, as long as the latter agree well witiyhich reduces in the constant-field approximation to
perturbation theory(within our precision with the same (1S sirf(gA )]1,2 On a small lattice. the svstem tunnels
choice of values. In addition, we will be mainly concerned:*~# 98I O L y
with factorization(cf. previous section which should work from one of the 16 d|scr§te minima in E@.3) to the others.
for any choice of\;, A, andXs. Th|s4|s the reason why, in EQ4..7), we topk the mpdulus of
(L)Zm U, . The summation ovex is to project onto
zero momentum.
The Monte Carlo simulations were done with a standard
For the determination of thex(x,r)-phase diagram we 9-hit Metropolis algorithm, and were performed either in the
have to construct observables which allow us to locate th¥€ctor or in the Higgs picture. We wrote two codes and
various phase transitions. The observables we used are thréecked that the results obtained in the two pictures are con-

A. Phase diagram

internal energies sistent. The vector-picture simulations require less CPU time
since only the gauge fields have to be updated. However, the
9 autocorrelation time for gauge non-invariant quantities turns
Ep=— 7 —=InZ, (4.)  out to be slightly larger for the vector-picture simulations.
6L" dg We furthermore find that the Higgs-picture simulations per-

form slightly better in regions of the phase diagram where

Eo_ i iln 2 4.2 metastabilities occufthe region near the FM-PM phase tran-
T ogL4dak ' sition atr=0 and largex). Most of our simulations were
carried out in the vector picture.
1 9 We have explored the phase diagram agairg&t0.6,
ot=——— =InZ (4.3  and, as in the mean-field analysis, we kept either the value of
' 64L" Ik

« or of T fixed and scanned the two-dimensionalT) or
(x,x) plane. At each point of the scan we accumulated 5000
Metropolis sweeps, which were preceded by 3000 equilibra-
> tion sweeps. The observables in E¢s4)—(4.7) were mea-

which in the vector picture are given by the expressions

(4.4) sured after each sweep. We corrected for autocorrelation
time effects by multiplying the statistical error bars wifa =
where 7 is an estimate for the integrated autocorrelation

1 time, which for the local observabldggd.4)—(4.7) is in the
E« <2 ReU,Lx>, (4.5 range between 2 and 5. Most of the phase diagram scans

4
LT xe were performed on a*attice. A few runs at =1 were also
done on an 8 lattice.
E(C —ch? In Figs. 11a)—11(c) we have displayed the various ob-
4> X servables(4.4)—(4.7) for some exemplary scans across the
FM-FMD [Fig. 11(a)], the FMD-PM [Fig. 11b)] and the

]> 4.6 FM-PM phase transitiorjFig. 11(c)]. Figure 11a) shows

' ' that the order parametdtis very small in the FM phase and

rises sharply at the FM-FMD transition. The fact thais

These quantities are not order parameters, and hence do ralso non-zero in the FM phase is a finite-size effect. The
vanish in any of the various phases, but they signal phasiternal energie€, andEgy; show a sharp kink at the phase
transitions by an abrupt change. In the case of a second ord&ansition, whereag&, changes only very little. The transi-
phase transition we expect to find, in the infinite-volumetion seems to be of second order, in accordance with our
limit, an “S”-like curve with an infinite slope at the phase mean field results and with perturbation theory.
transition. At a first-order phase transition the internal ener- The position of a phase transition on a finite lattice can be
gies exhibit a jump. On a finite lattice, however, it is difficult defined in different wayse.g., the position of the maximum
to distinguish between first- and second-order phase transof the specific heat, or the real part of the partition function
tions, and it is usually necessary to perform a careful finitezero with the smallest imaginary pgrand these transition
size scaling analysis to settle the question of the order. In thpoints will all differ slightly from each other by an amount
FMD phase the hypercubic rotation invariance is broken bywhich vanishes in the infinite-volume limit. In our case we
the non-vanishing vector condensata,,)#0. A true order have identified the FMD-FM phase transition from the point

1
Ep=— ReU
b 6L4<x,u2<» o

Eqs 1<2

917 GaLt\ &

F

1
7(CxtCH?*=B;
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FIG. 11. Scans across the FM-FMB), FMD-PM (b) and FM-PM(c) phase transitions. The three curvegahwhich are labeled by the

numbers(1), (2), (3) were obtained at¥,r)=(0.01,1), (.r)=(0.05,0.15) and#,r)=(0.05-0.30). The estimated positions of the phase
transitions are marked in all graphs by the vertical dotted lines.

where the slope oV is maximal, but one should keep in FM-PM transition changes from second to first order when
mind that the position of the phase transition in the infinite-;g |q\vered from 1 to—0.3 at*>0. This agrees with our

volume limit will slightly deviate from that value. mean-field calculation. In contrast to the mean-field calcula-
The observables for a scan across the FMD-PM phasgon, our Monte Carlo simulations seem to indicate that the
transition atr =1 are shown in Fig. 1(b). We believe that EM-EMD transition is of second order at small
this phase transition is of second order which agrees with the We have Comp”ed our results for the various phase tran-
findings from our mean-field calculation. The point where giiiqns into (<, %)- or (x,7)-phase-diagram plots, which are
thg slope ofV is maximal always coincides nicely vyith the displayed on the right in Figs. 2-5. We have again deter-
point where the slopes &, andEg are maximal. Finally, mined the phase diagram only above the symmetry lines
we have displayed in Fig. 1d) the internal energf, for  (dash-dotted lines in Figs. 2);5ut we checked with a few
three scans across the FM-PM transitipfl) r=1, « scans that the phase diagram is indeed symmetric with re-
=0.01;(2) T=0.15, x=0.05;(3) T=—0.3, k=0.05/ as a  Spect to those lines. A schematic three-dimensional phase
function of k. The plot indicates that the order of the diagrams of the >0 region is shown in Fig. 6. Qualitatively,
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the Monte Carlo phase diagrams comply nicely with thegral X, in Eqg. (3.22 on a 4" and & lattice which again did

mean-field results, which are displayed on the left in Figsnot result in a significant change of the situation encountered

2-5, and which were discussed already in Sec. Il B. in Fig. 2. We therefore believe that the observed deviations
As mentioned already in Sec. Ill B, a difference betweenare due to higher loop corrections. They become smaller for

the mean-field and Monte Carlo phase diagrams is observeghallerr. This is not unreasonable: as long as perturbation
atr=0 [Figs. 3c) and 3d)]. The mean-field approximation theory applies, some couplings are proportionai tso that
predicts an FMD phase at=0.25, |«|=0.125. This is not  higher loop terms maybe less important for smafier(Of
confirmed by the Monte Carlo simulations which give Strong . irse whefl is too small perturbation theory breaks down
evidence that this region is filled by a PM phase. The Monte ' i ' ~
Carlo simulations indicate that the PM phase extends to ver@!l 109€ther, as is clear from the case 0, where we do not

~ . . . L ven find an FM-FMD transition, numerically.
large values ofk but, on the basis of the simulations, it is of
course impossible to decide if it ends at a finite valug o0br
if it extends tok =c. Figure 7 shows that the observed dif- B. Vector and Higgs two-point functions

ference atr =0 is connected to the fact that in case of the To see whether the spectrum at the FM-FMD phase tran-
mean-field calculation the FM-FMD-PM fricritical linén  sition indeed contains only a massless photon we have com-
Fig. 7 we displayed a projection of that line to a constant- puted the vector and Higgs two-point functions numerically.

plane penetrates through the=0 plane and atk~0.3 , ,
merges with the FM-AM-PM line into a FM-FMD-AM line, 1. Vector two-point function
whose projection approaches asymptoticallytked axis at . In our Monte\:/ Carlq simulations we computed the correla-
large k. The FMD phase extends therefore slightly into thetion function A ,(p) in Eq. (3.6). \\/Ne have se.=v and
T<0 half space. In contrast, in the case of the Monte CarI(PM:O' _The two-point functlo_nsAM(p), '“:1.’2’3’ were
simulation, we find that the FM-FMD-PM line stays in the d€términed for a table of lattice momempawhich lead to
different values oprZEVMp,Z,. Finally, we took the aver-
age of the three two-point functiormxﬂ(p), n=123. All
Monte Carlo simulations were performed at=0, i
=1,...,5

For the above choices, we first derive a simplified expres-
S sion for the vector two-point function to one-loop order,
and b are very similar for the FM-FMD-PM and FM- \jhich can then easily be compared with the Monte Carlo

AM-PM Iineg. o . results. After settinge=v=1 andp,=0, the one-loop vec-
The continuum limit relevant for the gauge-fixing ap- tor two-point function in Eq(3.12 can be written as
proach should be performed by approaching the FM-FMD

phase transition from the FM sidaway from the tricritical

line at which the FM-FMD transition surface ends, for in-

stance af~1). Our Monte Carlo simulations indicate that ~ AY;P(p)=
this transition is of second order. In the next section, we will

show that the particle spectrum in this continuum limit con-

>0 half space, and approaches the0 plane from above.

The FMD phase resides only in the>0 half space. The
solid curves in Fig. {b) are to guide the eye, and were ob-

tained by fitting the empiricahnsatz = +a/(x+b) to the
data witha andb constants. It turns out that the constaats

211(92)
AV-O(p)~1+3(p)

] 11p,=0

tains only a massless vector particle, the photon. The =Z1(g*)[A"p)

FM-PM phase transition at smail near the FM-FMD-PM —AVOp)s(p)AV-O(p)+ - - Ji1p, =0,
line and the whole FM-AM phase transition seem to be of

first order, and no continuum theory can be defined at those (4.9
transitions.

Finally, we compare our one-loop result fegy.evp [EQ.
(3.22] with our Monte Carlo results. The one-loop results
for kxememp @re represented in the graphs on the right in
Figs. 2—5 by the solid lines. They agree reasonably well with
our Monte Carlo data. In the region of the FM-FMD phase
transition we find that the departure of the perturbative re-
sults from the Monte Carlo data is in all cases smaller than (4.9
two standard deviations. In some cagsse for instance the

phase diagram at=1 in Fig. Ab)], however, the one-loop
curve is systematically above the numerical results. To see
this deviation is due to finite-size effects we repeated some_> ", 2" . -~ AV,(0).

of the scans across the FM-FMD phase transition on ‘an SFAT’[ 29 K.t.ls alr?zady msclluded i zb;re((:f' Eq. (3'15@]'
lattice. The obtained transition points are marked by the open er wriing a. (314 as \;L(Vo)p)_aﬂ(p) wy
circles in Fig. 2b). They do not significantly deviate from *bu.(P)P.P, and Eq. (3.10 as A,,7(p)=A(P)J,,
our data on the %4lattice. We also evaluated the lattice inte- + B(p) p.pP,, and using the fact that; =0, we obtain

with

S (P)=(N19%P?| + M20%P%) 8, + N30%p 0, + S22 p),

hereZ,,(g?) is the wave-function renormalization constant
Eq. (3.13 and 3°¥{p) is the self-energy in Eq3.19
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FIG. 12. The inverse vector two-point functi¢points with error bars The long-dashed line is the tree-level result, and the solid line the
one-loop result. The latter is almost on top of a lineatdfitort dasheso the data(a) shows results foxk=0.01, while(b) shows a blowup

of the small momentum region for=0.8, 0.4 and 0.01.
AYiD(p)=Z1(gD[A(P) + A(P)ay(p)A(P) + - Tp —o
Z14(9%)

= . (4.10
m2+(1+x1)§1 p2+a,(p)

Note that the expression in E@L.10 does not depend aox,
and\5 as we sep;=0. This also implies that we will not

the latter being very close to the FM-FMD transition point. A
linear fit (short dashésto the numerical results can, within
the resolution of the plots, hardly be distinguished from the
one-loop curve. The gauge coupligdgs 0.4 and the lattice
size is 624. The perturbative expressions fthe inverses

of) AY{9(p) andA (Y (p) were evaluated on a lattice of the
same size. We have measured the vector two-point function
AXM(p) on 2x 10° configurations which were generated by

see any effects of the Lorentz-symmetry-breaking part of th@ur 5-hit Metropolis program. The error bars were again
one-loop self-energy in our data. In the following we set alsoccomputed by multiplying the standard deviation witte 7

N\, equal to zero since in our Monte Carlo simulations wewherer is an estimate of the integrated autocorrelation time
have also not included this counterterm. On a lattice which i®btained from the autocorrelation function.

asymmetric in space and tinag(p) is given by the expres-
sion

o’r ?

g
a1(p)lp,=0= 2¢ [3l117+ 144 = ?[Zl 12t gt Tl

1 Ao A
= 5972(J12- 112 (P + P3)

+p3(Jd1atda—2119)], (4.11)

where the integrals,, andJ,,, are given in Eqs(3.20 and

(3.21).

From these results we draw two conclusions: the fact that
a linear fit works very well confirms that the theory is a
theory of free photons near the FM-FMD transition, and the
good agreement with perturbation theory implies that this
can be understood in perturbation theory, as explained in
Sec. Il

For comparison, we have repeated this analysis at a series

of points near the FM-PM phase transition, &t 0 andr
=1. We found that the perturbative results do not converge
(one loop is not close to tree leyelnd also do not describe
the numerical data in this cageiith deviations well over
100%. We also determined the vector boson mags by

In Fig. 12 we plotted the results of our numerical compu-fitting an ansatzZy /(p®+mg) to the numerical data of the
tation of the inverse vector propagator in momentum SPacg,ecior two-point function at smallp|2. We find that the

as a function ofp|>. The long-dashed and solid lines repre- gptained vector boson mass, shows qualitatively the same
sent tree-level and one-loop perturbation theory evaluationg dependence as reported in REZ1] for the U1) gauge-

of the same quantity, at values of the parameters equal

those used in the numerical computation. In Figial,Zhese
are (k,x,r)=(0.01,0.2,1), while in Fig. 1) we show an
enlargement of the small-momentum region fok,r()

=(0.2,1) and three different values ef 0.8, 0.4 and 0.01,

tHiggs model. The vector boson mass decreases when

lowered from the FM side towards the FM-PM transition.
However, it does not vanish at the phase transition which is
probably, like in the W1) gauge-Higgs model, a finite-size
effect.
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(3.3). The solid lines in Fig. 13 were obtained by evaluating
Eqg. (3.30 on a lattice of the same size and for the same
parameter values as used in the simulations. We find that the
perturbative formulg3.30 describes the data very we(lA
similar behavior was discovered before in the reduced limit

of the model afr =1 for the left-handed neutral and right-
handed charged fermion propagators, which also exhibit
such a logarithmic singularity at small momenta, and do not
exist as bound states; see Ré¢f2,13.)

Again for comparison, we looked also at the Higgs two-

point function near the FM-PM phase transitiorkat 0 and
g=0.6. We find thatcgy,.py=~0.18. We find that in this case,

in accordance with expectations, the spectrum at the FM-PM
phase transition contains a massive Higgs particle, giving
rise to a pole inAl'j#(p). To extract the Higgs boson mass
o l—_ v 1 we fitted theA™(p) ~! data at small momenta to the ansatz

R (m?+|p|?)/Zy . The Higgs boson mass decreases whés
\p|2 lowered toward the FM-PM phase transition but, because of
finite size effects, does not vanish at the phase transition
"~ (again, as in Ref{21]). We also find that, as in the case of
ted as a function ofp|* for a series of points near the FM-FMD  the vector two-point function, perturbation theory does not

phase transition &3=0.4, x=0.2 andr=1. The error bars mark describe the PM side of the FM-FMD-PM tricritical line.
the Monte Carlo results. The lattice size is agai@4 The pertur-

bative result§Eq. (3.30] are represented by the solid lines.

400

300

200

AR (p)~

100

FIG. 13. The inverse Higgs two-point functiah,'ju(p)’l, plot-

3. Factorization

2. Higgs two-point function The results of the previous section already give strong

As mentioned before, the spectrum at the FM-FMD phasévi_dence that the Higgs two-poin_t _function in the continuum
transition should contain only a massless photon and n#mit at the FM-FMD phase transition does not have a pole,
Higgs particle. In this section we present the Monte Carloand that consequently a Higgs particle does not exist in the
results for the Higgs two-point function, and compare themspectrum. In Sec. 1llD we have shown that, to next-to-
with the analytic formulas derived in Sec. lll D. leading order in perturbation theory, the Higgs two-point

We have computed the momentum space Higgs two-poirfiunction in coordinate space factorizes into the product of
function in Eq.(3.29. As in the case of the vector two-point two vector two-point functiondEq. (3.33]. For Ay;=\5

function, we have set=u andp,=0. The Higgs correla- =0, factorization holds to this order for arbitrary values of
tion function was determined for the same lattice momentdhe other counterterm coefficients.
as the vector two-point function. In this section we will investigate whether factorization

To see if the two-point function leads to a pole we havealso holds non-perturbatively, which would imply that a
plotted, in Fig. 13, A" (p)~! as a function of|p|? Higgs bound state does not exist. To this end, we have com-
! ! L7

_ ~2 i _ puted the Higgs and vector two-point correlation functions
2, ,P;, for severalk values near the FM-FMD phase tran G,'jM(|X—Y|) and GX,L(|X—Y|) in Eqs. (3.32 and (3.34 in

sition. The simulations were performed @t 0.4, and atx our Monte Carlo simulations as function pf—y| wherex

=0.2 andr=1. The numerical data are represented in Fig.andy were chosen to be two on-axis points. The simulations
13 by the error bars. The five data sets from the top to boty e carried out at the pointg(x, %.r)=(0.4,0.1,0.2,1)

tom correspond to‘:HO'S' 0.4,03,0.1 and 0.01. Ateagh  hich js located in the FM phase near the FM-FMD phase
we have measured;; (p) on 2x10° equilibrium configu-  tansition. As in our other Monte Carlo simulations, we have
rations which were again generated with the 5-hit Monteset)\lz ... =\g=0. (Strictly speaking, we expect factoriza-
(_Zarlo algorithm. As in the case of the ve_ctor MO-point func-tion only to hold for the properly tuned values of andAs,
tion, we corrected for the autocorrelation time effects bypt to the extent that our simulation results agree with our
multiplying the standard deviation by a factor 2. Our  perturbative results, we do not expect to see the difference:
Monte Carlo simulations indicate that the FM-FMD phasect. end of Sec. lll. The lattice size is again®@4. We find
transition is situated at~0. that enormous statistics is required to obtain a stable signal
If the pole scenario were correct, th], (p) * data at  for G (Ix—yl). This is partly due to the subtraction in Eq.
sufficiently small momenta should fall on a straight line, for(3.32)_ We used translation invariance on the lattice to im-
«\ kem-pvp - What we find, however, is that, when lowering prove the signal. We have accumulated in total about 27
« towards the FM-FMD phase transition, a cusp emerges ak 10° Metropolis sweeps. The Higgs- and vector-correlation
small momenta. Evidently, the data at small> do not fall  functions were measured after each sweep.
on a straight line. The cusp is due to the logarithm in Eq. In Fig. 14 we plotted the ratio
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FIG. 14. The ratioR(]x—y|) as a function ofx—y| at a point FIG. 15. The raticR(|x—y|) as a function ofx—y] at a point

near th? FM'FMD phase tran_sltlc{r(g,K,K,r):(0.4,0.;,q.1 1). near the FM-PM phase transitidiig, «, x,r) = (0.4,0.08,0.15,1])
The _Iattlce SIze 1S &_4' The ho_rlz_ontal dashed an_d §0_I|d lines were The lattice size is 4. The horizontal solid line and the triangles
obtained by evaluating the ratio in E@.12) in the infinite volume were obtained by evaluating the ratio in Hd.12 to leading and
limit to leading and next-to-leading order in perturbation theorynext-to-leading order in perturbation theory.

[Egs.(3.38 and(3.48)]. The triangles were obtained by evaluating
G (Ix—y]) andG} ,(Ix—yl) in Eq. (4.12 to next-to-leading or-

. ; . ; ment with the perturbative result as strong indication that
der on the same lattice as used in the simulations.

factorization holds, and that consequently the spectrum near
the FM-FMD phase transition does not contain a Higgs par-

GH(Ix=y]) ticle. We repeated the same calculation at a point in the FM
R(Ix—=y|)= &V (—yD T (412 phase near the FM-PM phase transition where a Higgs par-
[ W(|X yhl ticle is known to exist. The Monte Carlo simulations were

_ _ performed at ¢, x, x,r) =(0.4,0.08,0.015,1) with less statis-
as a function ofix—y|. The error bars of the ratio were tics, about 5<10° Metropolis sweeps. Figure 15 shows
calculated by a blocking procedure. Figure 14 shows that thgjearly that, in contrast to Fig. 14, the ratR(|x—y|) de-
Monte Carlo data foR(|x—y|) (crossep are, within error  pends strongly ofix—y| (notice also the difference in ordi-
bars, independent ofx—y|, indicating that factorization npate scale between Figs. 14 and,1&nd seems to oscillate
holds also non-perturbatively. In fact, factorization sets inyhen the separatiolx—y| is increased. The solid lines and
almost immediatelyboth perturbatively and numerically  the triangles represent again the leading and next-to-leading

From our calculation in Sec. Ill D it follows that this ratio order perturbative results for the ratio, both far off from the

is equal to 1/2 to leading order in perturbation theory. Figuré\ionte Carlo data. It is obvious that factorization does not
14 shows that the Monte Carlo results are indeed very closgg|d on the PM side of the EM-FMD-PM tricritical line.

to this value, marked by the dashed line. We find however

that the data at small distances where the error bars are

smallest are systematically above this value by a small

amount. To understand this small discrepancy, we have com- In this paper we investigated the gauge sector of the
puted the ratio also to next-to-leading order in perturbatiorgauge-fixing approach for the case of &l)Jgauge group.
theory. The next-to-leading order result 0y, ,,, which was  This approach provides a completely new non-perturbative
computed in Sec. Il D in the infinite volume limit, is repre- formulation of a Y1) gauge theory on the lattice, which is
sented in Fig. 14 by the horizontal solid line, which is indeedmore complicated than Wilson’s manifestly gauge-invariant
much closer to the numerical data. In addition, we have alseompact formulation, but closer in spirit to the continuum
evaluated all Feynman diagrams in Fig. 9 numerically on théormulation, for which gauge fixing is indispensable. Gauge
same lattice and for the same parameter values as used in tfi@ng allows us to control the longitudinal degrees of free-
Monte Carlo simulations. Figure 14 shows that the next-todom which otherwise, as we mentioned in Sec. I, form a
leading order result foR(|x—y|) (triangles agree within  central obstruction to the construction of lattice chiral gauge
two standard deviations for all separatiomxs-y| with the  theories.

Monte Carlo data. We consider the—y| independence of The action is rather complicated in comparison with the
our Monte Carlo results foR(|]x—y|) and the good agree- Wilson plaquette action. Apart from the Wilson plaquette

V. CONCLUSION AND OUTLOOK
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term and the gauge-fixing term, it also includes six countersimulations in that region are hampered by strong metasta-

terms whose coefficients have to be adjusted such thajilities. These findings strongly suggest that for 0 (i.e.
Slavnov-Taylor identities are restored in the continuum limit.najve gauge fixingno phase transition in the desired univer-
We have demonstrated in this paper that this new latticgality class of the continuous FM-FMD transiti¢found at

formulation reproduces the desired properties of the corff—1 and large enougk) occurs. This implies that the na-

tinuum theory at a new type of continuous phase transitiony o ¥_ o action does not lead to a theory of free photons,

the F,M'FMD transition. The spectrum'conta[ns at ,th's ph‘_"‘s%nd is unsuitable for the construction of lattice chiral gauge
transition only a massless photon, while a Higgs-like excitayyeories. It is likely that this is related to the dense set of
tion, associated with propagating longitudinal gauge degreeI
of freedom, does not exist.

This new phase transition occurs in a region of the phas

Rttice Gribov copies which occurs at=0, since they rep-
resent unsuppressed rough fluctuations of the longitudinal

. ; : 4 _~gauge field. In addition, our mean-field results indicate that
diagram accessible to weak-coupling lattice perturbatio ~ . .
theory, as one would expect from the close relation to th or small nonzera the FM-FMD transition maxbecome first
continuum theory. In perturbation theory, by construction,order, which would imply that small values ofshould be
the theory(without fermiong at the phase transition is a avoided altogether.
theory of free massless photons. The very good agreement Our previous results on the fermion spectrum in the re-
between one-loop perturbation theory and numerical resultduced mode[12], combined with the results of this paper,
makes us confident that this is also true non-perturbatively provide what we consider to be convincing evidence that the

As mentioned above, in order to make this work, sixgauge-fixing approach does indeed lead to a viable non-
counterterms need to be adjusted. Only one of thse  perturbative lattice formulation of chiral gauge theories for
gauge-field mass ternas dimension smaller than 4. Figure Abelian gauge groups. We would like to emphasize that a
12(b) shows that a non-perturbative tuning of the gaugekey element of this approach lies in the fact that lattice per-
boson mass counterterftowards the continuous FM-FMD turbation theory provides a valid approximation to our lattice
transition is technically possible. One expects that the othettheory (including fermiong11,12).
counterterms can be reliably calculated in perturbation We believe that, in addition, our gauge-fixed lattice for-
theory. Our results indicate that this is indeed true: withinmulation has matured to the point where it may be used as an
our numerical precision, we find that we can do with just thealternative to other gauge-fixing methods for Abelian theo-
tree-level values of all dimension four counterterfidter-  ries. In the traditional approach, one first performs a Monte
natively, the counterterm coefficients, . .. A5 too can be  Carlo update using only the gauge actig. (2.4)]. Then, a
determined non-perturbatively. To this end one has to use thgequence of gauge transformations is performed, aiming to
Slavnov-Taylor identitieg3.4) and (3.8) at somep?= u2.] find the “best” configuration on the same orbit. For ex-
Adding fermions to the theory will require a few additional @mple, in the Landau-gauge method one attempts to maxi-
counterterms, butusing a fermion formulation with shift mize ReZ, U, ,. A well-known problem is that local al-
symmetry[25]) all of those have dimension four, and we gorithms cannot(and do not always find the global
expect that they can be calculated in perturbation theory agaximum. Some specific obstructions of global nature have
well. This means that the fact that counterterms are require€en described in the literatusee e.g. Ref.26] and refer-
does not make this formulation of lattice chiral gauge theo-€nces therein
ries particularly expensive. In contrast, in our approach one always performs the

It is clear that the precise form of the lattice action shouldMonte Carlo update on the entire gauge-field space, with one
be chosen such that lattice perturbation theory applies. It i§ingle Boltzmann weight. While the actiof2.3) is more
therefore important to construct the lattice gauge-fixing accomplicated, this approach may nevertheless have several
tion such that the dense set of lattice Gribov copies of thé@dvantages(l) one has all systematic errors completely un-
perturbative vacuumU,,=1), which occurs for a naive der control;(2) we believe that global featurde.g. double
discretization of the gauge-fixing action, is removed by addDirac sheet$26]) do not cause any special difficulty in our
ing higher-dimensional operatorévith dimension 6 or approach, and that this is related to the fact that at no stage is
highed. For comparison, we studied also the limit whereour Monte Carlo update constrained to stay only on a single
those higher-dimensional terms are omittéy settingT orbit; (3) finally, as mentioned earlier, we find that our pho-

=0), such that these lattice Gribov copies are present. odpn propagator IS in excel_lent_ agreement with theoretical ex-
L . . . ~ pectation.(In order to maintain the good agreement of the
numerical results for this naive choice show that, at small

h . EM-PM h - . ; i yphoton propagator with the continuum theory for all four-
there Is an . type phase transition, In a universalityy,,menta we expect that, of the five marginal counterterms,
class different from the FM-FMD transitiofthere is even

id that the EM-PM oh i tion is of f at least the one-loop, counterterm should be included in
some evidence that the - phase transition 1S 0 "Sthe Monte-Carlo update; see Sec. Ill C, in particular the dis-
order, implying that a continuum limit cannot be performed

~ cussion of Fig. 8.

at all. The situation at largec is very unclear since the  Coming back to the program of constructing chiral lattice
FM-PM phase transition is “wedged[in the (x,x,r) phase gauge theories, as a next step the gauge-fixing approach
diagran] between two tricritical lines, resulting in a very should be generalized to non-Abelian gauge groups. This,
complicated phase structure, where four phases get vemven without fermions, is a difficult task. The main obstacle
close to each other. We furthermore find that the numericails the existence of “continuum” Gribov copid27], which
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occur in non-Abelian theories, in addition to the lattice Gri- The corresponding magnetic fields were replaced by
bov copies discussed in this paper. It is well known that the

determinant of the Faddeev-Popov operator can be negative hy=h, (A3)
for some of these continuum Gribov copies, giving rise to a d
non-positive integration measure. It is therefore very Iikelyan

that the weighting of gauge configurations in the path inte- H, = hy, expiA ). (A4)

gral will deteriorate due to the presence of these continuum e a

Gribov copies. In the worst case, contributions from differentThe 4+d mean fields ¢, u, h,, hy and A,, u
Gribov copies may even cancel each otfibis is in fact not =1, ... d, are space-time independent. Using these expres-
unlikely, in view of Neuberger’'s theorerf23]). This ob-  sions we obtained for the free energy

stacle may be circumvented by adopting a gauge-fixing pro-
cedure as proposed in Ref®8,29. An advantage of this F(¢,h
procedure is that thégauge-field integration measure is
guaranteed to be positive. A possible disadvantage of this
method is the fact that the counterpart of the Faddeev-Popov
action is a highly non-local functional of the gauge fields.

[} 1u1hu 1A;K17<1?)

=L% 2¢h,+2duh,—logly(2h,)—d log I4(2h,)

This makes a perturbative analysis, and, in particular, the 1 4 o L
construction of the counterterm action non-trivial. Work on - Ed(d—l)—z(u4—1)+2 2 fO(UA Kk, ¢
this is in progress. 9 =1

Another project for future investigation concerns fermion- (A5)

number violation. Most lattice chiral fermion actiofisclud- _ ] ) o
ing that of Ref. [12]) can be written in the form WhereL is the extent of thed-dimensional lattice in each

2yy¥xDyxy(U) iy, with D, ,(U) the lattice Dirac operator. direction, and
Obviously, this action(and also the fermion measuirare

WA kT = — 204d7T W1+T
invariant under an exact global ) symmetry which, at first P A k1) = = 2(4dwer + k) UR(A) + 1(14T)

glance, seems to be in contradiction with fermion-number 1.

violation [30]. However, Ref[31] demonstrated, in a two- X U[2F(A)*—d]+ 1—6KYU2F(2A)
dimensional toy model, that fermion-number violation can

still occur despite this exact symmetry. The central observa- X (2d+1), (AB)

tion is that fermionic states are excitations relative to the
vacuum. The global (1) symmetry prohibits a given state to f@(u,A;k, k.1 ) =2kUZF(A)2(r — 1)
change fermion number, but nothing prevents the ground

. . 1
state to change when an external field is applied. We expect L STUBUPF(2A)2— 4[2(d+ 1)

that a similar phenomenon may explain how fermion-number 64
violating processes take place in our four-dimensional dy- 5
namical theory. +(d=1)u]JF(2A)+4d(1+2d)
+d(2d—-5)u?}, (AT)
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APPENDIX A and
We look for a translation-invariant solution, choosing the 1(~

mean-field ansatz |0(h)= ; o da eX[ﬁXi h COSa). (All)

b=, (A1) It can be checked that the above expressionAoeduces in
the limit u—1 andr—1 to the free energy which we ob-
U, x=uexpiA,). (A2)  tained before in the reduced modéD].
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The values of the 4d mean fields which are realized at a Equations(A14),(A15) can have multiple solutions and it is
given point in the &,x,T) parameter space are determinedtherefore important to insert the various solutions back into
from the absolute minimum of the free energy. The localthe free energy to find out which of them corresponds to the
extrema of the free energy are obtained by solving the 4absolute minimum. Since it is difficult to find a closed ex-
+d saddle-point equations pression for the solutions of the saddle-point equations
(A12)—-(A15), we minimized the free energy numerically.
oF d( |1(2h¢)] B

9 _ We setd=4.
ah, lo(2hy,)

(AL2) This was done in the following steps: The two saddle

point equationgAl12) and (A13) were used to express the
9F dgl u 11(2hy)| a1g ~ Magnetic fieldsh, andh, in terms of ¢ andu. The free
B lo(2hy) | (AL3) energy depends then only @n uandA,, . The saddle-point
equation(Al4) has the solutions

IF (o
A, {C(p,u;k,k,I)

L A,=(2,2,2,2),(£A,2,2,2), ... (A, ZA, XA, £A),
+B(¢,u;k,k,r)cosA }sinA =0, (A14)

(A19)
dF dF
—=0, —=0, (A15)
de au

wherez=0,7 and cosA=—C/B (provided |C/B|<1). We
where have inserted each of these solutions back into the free en-
ergy Fin Eq. (A5), which is now only a function of andu.
1,(h)= dlo(h) (A16) Note that in the PM phase, whege=0, A, remains unde-
termined because all the dependence of the free energy on
A, [cf. Eq.(A5)] disappears. The minimization with respect
and to ¢ andu was done numerically by discretizing the,(1)-
o~ o A~ ~ > space by a fine grid and calculating the free energy on each
Clo,uik, k,1)=—2kUp "+ 4x(1+T)u" F(A) site of that grid. Finally we have picked the absolute mini-
~ o~ 2 4 ~~ 5 mum among the variou& , solutions in Eq(A19). The only
Far(r = L)UTe"F(A) —8dxruge®, solutions forA,, which lead to an absolute minimum of the
(A17)  free energy turn out to b&,=(0,0,0,0), r,7,,7) and
(£A,=A, A, =A) (with A#0,7), which correspond re-
spectively to FM, AM and FMD phases.
After this procedure we obtain at a given point in the
1 phase diagram a numerical value for each of the eight mean
D2, 4r9,,2 _ fields ¢, u, h,, h, andA,, w=1,...,4. Thephase tran-
o 4te BBUFA)~[2(d+1) sitions, finall§, were Iocaltted by monitoring ¢ andA as a

_— 1.
B(g,U;k,k,r)=+ ZKr(1+ 2d)u2(,02

1 function of the four coupling constants x, « andr. For
+(d—1)u?]}+ =[2F(2A) locating the FM-PM and FMD-PM boundaries, we used the
2 fact that =0 on the PM side an&>0 on the FM and
1 FMD side of the transition. Similarly, the FM-FMDAM-
—(d—1)Ju*e®+ Z[F(ZA)—d]u%8 . FMD) phase transition was located using the fact that
=0 (A=) inthe FM(AM) phase and\+# 0,7 in the FMD
(A18) phase.

APPENDIX B

In this appendix we give the explicit expressions ¢8r,,A,,, S), and(A2,A% S*),. We find
<AMxAny|(4)>O: 92§k: eik(X*y)ei(k V)/ZE AV (0)( k)zbare( k)AV (O)( ) (Bl)

and
(A2 A2 Syo= (A2 A2 SDY 0+ (A2 AZ SV 0o+ (A2 AZ SN, (B2)

where (A2 AZ s(")39, <A2 AZ SM)5° and (A2 A2 S{V)i are the contributions that correspond to the Feynman diagrams
1(d), 1(e) and Xf) in F|g
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et Veltu” v>’2(2 AuP(pri)x 2 Ay ‘°><p>2p0<p>AX§°><p>)l,

(A2 A2 3(4)>(1)d:<A2 A2 5(4)>(1)e292§k:

uxMvy uxPvy
(B3)
(AoAS, S o= (ALAL S+ (ALAL S, (B4)
(AL S )0 =972 eikwe“kukv)’z( 2 E AP p+K)p,(PFK),
S o (q+k), 2 -
x2 % ARO(@AL g +k)cosycos——o—— 7 E {Z AV O A (p+K)p,py
X% A¥g(°)(q)A¥;,(°)(q+k)] +(u<~v)], (B5)

<A2 A2 S|(4)>éf,||2922
k P p

) ) 1 n~ o
eyl v>’2( { = Y AV“”(p)AV<°>(p+k>pp<p+k>,,§ ; AYO(q)AY©

X(q+K)qy(q+K),+ 2 E AV<°’<p>Ax£°’<p+k>E)p<p’+‘k@ AV O() A% +K)a,(GF+K),

) +k
Z AV O(p)AYO(p+k)p, COb(ID h AX,;(O)(q)AXx(O)(Mk)qpcoL2 h
J2N

| =

+

7 >N

1 —~ N [ ~
5 2 2 AP p P (P2 ALI@ALaHOG(E TR,

J2N

+

N| -

zp V (O)(p)AV (0)(p+ k)p)\(p'i' k))\E AV (0)(q)AV (0)(q+ k)ap(ﬂ)P

28

1SS AV Op) AN (p+k)p,(pFK), > AGO(D)AYO(g+K)a,(GFK),
Aop q

p

+(u—v)|, (B6)

=22 2 AP AT O (p+ KPP TR AX;,<°’<q>A¥x‘°><q+k)&mﬂ‘kn]
pN P q

where the self- energﬁbare(p) in Egs.(B1) and (B3) is given in EQ.(3.14). The terms in Eqs(BS) and (B6) which are
proportional to 1¢ are the contribution from the gauge-fixing action and all other terms arise fro Mt,hpart of the plaquette
action.
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