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Approximated fourth order calculation of the vacuum wave function
of „2¿1… dimensional SU„3… lattice gauge theory
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We propose a scheme to improve the coupled cluster expansion in lattice gauge theory~LGT!, based on the
application of the random phase approximation, in order to approximate a wave function in terms of a linear
combination of Wilson loops. Using this method, we study the vacuum energy and vacuum wave function in
(211)D SU~3! LGT up to fourth order. The vacuum energy is lower than that obtained by the unimproved
approach. The coefficientsm0 ,m2 of the vacuum wave function show good scaling behavior and convergence.

PACS number~s!: 11.15.Ha, 12.38.Gc
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I. INTRODUCTION

QCD has been accepted to be the most successful g
theory of strongly interacting particles. QCD in the pu
gauge sector possesses a nontrivial vacuum structure
bound states called glueballs. In 1980, Greensite@1# argued
that the vacuum state of SU(N) lattice gauge theory~LGT!
should be exp@R(U)#. Using the Kogut-Susskind Hamiltonia
@2#

H5
g2

2a F(
l

El
22

2

g4 (
p

Tr~Up1Up
†!G , ~1!

he obtained the Schro¨dinger eigenvalue equation for th
vacuum wave function:

(
l

$@El
a ,@El

a ,R~U !##1@El
a ,R~U !#@El

a ,R~U !#%

2
2

g4 (
p

Tr~Up1Up
†!5

2a

g2 eV , ~2!

whereg is the coupling constant,eV the vacuum energy,El
a

the ‘‘chromoelectric’’ field on the linkl, and R(U) is a
single sum over the lattice of clusters consisting of Wils
loops at fixed relative orientation and separation@3#.

However, it is difficult to find the exact solution of Eq
~2!. As far as we know, no exact solution has been repor
Many numerical@1,4–6# and analytical efforts@3,7–13# have
been made. Some significant results and progress wer
ported. In 1993, Guoet al. @10# developed an approximat
scheme with the eigenvalue equations truncated accordin
the continuum limit, and calculated them0 ,m2 of the
vacuum wave function and 011 glueball mass of
(211)-dimensional SU~2! LGT @10,11#, wherem0 and m2
are long wavelength expansion coefficients defined
@6,10,12#
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C0~U !5N expF2
m0

e2 E d2xTrF22
m2

e6 E d2xTr~DF !2

1higher order termsG , ~3!

with F being the field strength tensor andD the covariant
derivative. The low order results ofm0 ,m2 and the glueball
mass show good scaling behavior@10,11#, but the high order
~the fifth order! results ofm0 ,m2 and the glueball mass ar
not satisfactory@14#.

There are many difficulties in doing high order calcul
tion. One is the rapid proliferation of clusters which occur
the ~strong coupling perturbation theory! order increases. A
more difficult problem is how to distinguish the independe
graphs ~i.e., clusters! in expansions. The system of bas
functions used in coupled cluster expansions is overcomp
because the gauge group elements are unimodular. Fo
ample, in the case of SU~2! LGT, the unimodular condition
is Ui j Ukle ike j l 52, which can be expressed as a more co
venient form in cluster expansions,

Tr~U1V!5Tr~U !Tr~V!2Tr~UV!, ~4!

wheree i j is asymmetric withe1251, andU, V are any ele-
ment of the SU~2! group, or any gauge link or connecte
path on a lattice which comprise the graphs. Using Eq.~4!,
one may find the relations among the graphs and elimin
redundancies@3,10#, but it depends heavily on one’s exper
ence. Therefore, it is not reliable when the number of gra
becomes large and the configurations of graphs are comp
For example, the total number of independent bases in
fourth order calculation of (211)-dimensional SU~2! LGT
is reported to be 70 in Ref.@10#, while it is 69 in Ref.@3#.
The unimodular condition of the SU~3! group is more com-
plicated. This is the main reason why we have not continu
the study of Refs.@12#, @13# to obtain higher order~for ex-
ample, the fourth order! results.
©2000 The American Physical Society05-1
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The main purpose of this work is to circumvent the abo
problems. At first, let us review the idea of random pha
approximation~RPA! briefly @15#. In the Hubbard model, the
transverse magnetic susceptibility is

x†,2~qW ,t !5
1

N (
KW

^^uKW ~qW ,t !;S†~2qW ,0!&&v1 ih , ~5!

where uKW (qW ,t)5C
KW 1qW ,↓
†

(t)CKW ,↑(t), S1(qW ,0)5(KW C
KW ,↑
†

(0)

3CKW 1qW ,↓(0), KW ,qW are the momenta of electrons,C
KW ,↑
†

is a

creation operator of electrons with momentumKW and up
spin,CKW ,↑ is the corresponding annihilation operator,N is the
volume of lattice, and

^^uKW ~qW ,t !;S†~2qW ,0!&&5 iu~ t !^@uKW ~qW ,t !,S1~2qW ,0!#&,
~6!

with angular brackets denoting an average over the vac
state andu(t) the u function. In momentum representatio
the Hamiltionian of Hubbard model is

H5HT1HI , ~7!

where

HT5(
KW ,s

EKW C
KW ,s

†
CKW ,s ,~s5↑,↓! ~8!

and

HI5
U

N (
KW ,KW 8,qW 8

C
KW 1qW 8,↑
†

C
KW 82qW 8,↓
†

CKW 8,↓CKW ,↑ , ~9!

with U being the average value of Coulomb potential ene
@16#. The time-dependent Green function and its dynam
equation are

G~ t,0!5^^uk~qW ,t !;S†~2qW !&&

5E
2`

`

eivt^^ukW~qW ,v!;S†~2qW !&&dv, ~10!

i
d

dt
G~ t,0!52d~ t !^@ukW~qW ,t !,S†~2qW !#&

1^^@ukW~qW ,t !,H#;S†~2qW !&&, ~11!

where

@ukW~qW ,t !,HI #52
U

N (
KW ,qW 8

@C
KW 1qW 8,↑
†

C
kW1qW 2qW 8,↓
†

CkW ,↑CKW ,↑

2C
kW1qW ,↓
†

C
KW 2qW 8,↓
†

CKW ,↓CkW2qW 8,↑#. ~12!

Because this term cannot be expressed as a linear com
tion of ukW(qW ,t), Eq. ~11! is difficult to solve. Using the RPA
a pair of fermion operators in Eq.~12! is replaced by its
average value, and Eq.~12! becomes
03450
e
e

m

y
l

na-

@ukW~qW ,t !,HI #'2
U

N (
KW

@~^CKW ,↑
†

CKW ,↑&2^CKW ,↓
†

CKW ,↓&!ukW~qW ,t !

2~^CkW ,↑
†

CkW ,↑&2^CkW1qW ,↓
†

CkW1qW ,↓&!uKW ~qW ,t !#,

~13!

where ^CkW ,s

†
CkW ,s& is a fermion distribution function. Using

this method, the chains are truncated, and the equations
closed and can be solved.

The RPA may also be used in solving the Schro¨dinger
eigenvalue equation~2!. In the coupled cluster expansions
wave functions, the coupled clusters~graphs! consist of
products of Wilson loops. When a graph consists of t
Wilson loops, we replace one of them by its vacuum aver
according to the RPA, so each cluster contains only o
loop, which makes the distinguishing of independent gra
very simple and also makes the number of clusters at e
order decrease very much. Therefore, by adopting the R
we can avoid the above two problems simultaneously. In
ducing the average value of a Wilson loop in coupled clus
expansions has been proposed in Ref.@3#. In that paper, the
authors also pointed out the dominance in the vacuum w
function of clusters involving only a single loop. Howeve
just like the usual coupled cluster method, their shift
coupled cluster method suffers the above two problems
because the independent bases they used are similar to
used in the usual coupled cluster expansions. In addition,
truncation scheme we use is different from theirs: we w
adopt the truncation scheme proposed in Ref.@10#, which is
more effective and simpler.

In this paper, we use the above approach to calcu
the vacuum wave function and vacuum energy
(211)-dimensional SU~3! LGT up to fourth order. We will
give the details of calculating third order wave function
well as the vacuum energy and present the results from
ond to fourth order.

II. APPROXIMATION OF THE VACUUM WAVE
FUNCTION

The wave function of the vacuum state is assumed to

uV&5exp@R~U !#u0&, ~14!

where the bare vacuum stateu0& is defined to beEl u0&50.
The vacuum state and energyeV satisfy the lattice Schro¨-
dinger equation

HuV&5eVuV&, ~15!

which results in Eq.~2!. R(U) in Eq. ~2! is expanded in
order of the graphs@10,12,17#,

R~U !5(
i

Ri~U !, ~16!

whereRi is a linear combination of thei th order graphs with
the coefficients to be determined. Generally, the te
@El ,Ri #@El ,Rj # will produce some new graphs which a
5-2
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different from the graphs with order from 1 to (i 1 j 21); we
define them as the (i 1 j )th order graphs. Therefore, the tru
cated Schro¨dinger equation at orderM is

(
l

H FEl ,FEl ,(
i 51

M

Ri~U !G G1 (
i 1 j <M

@El ,Ri~U !#

3@El ,Rj~U !#J 2
2

g4 (
p

Tr~Up1Up
†!5

2a

g2 eV ,

~17!

with a being the lattice spacing. The dimensionless coupl
constantg is related to the invariant coupling constante by
g25e2a in the case of (211)-dimensional SU~3! LGT.

SupposeRi and Rj are linear combinations of graph
which contain only one Wilson loop; then, the new grap
produced by@El ,Ri #@El ,Rj # will contain at most two loops.
If there is a connected overlapping graph, we transform
into unconnected overlapping graph with the unimodu
condition

Ai 1 j 1
Ai 2 j 2

Ai 3 j 3
e j 1 j 2 j 3

5e i 1i 2i 3
, ~18!

whereA is any group element of SU~3!. Applying the RPA
to all those graphs which contain two loops, i.e., replac
one of the two Wilson loops with its vacuum average val
we get all new graphs composed of only one Wilson lo
Now the independent bases are obtained directly, and
number of independent graphs is much smaller than that
fore applying the RPA, especially at high order.

In the above RPA, when the sizes of two Wilson loops
different, we replace the small one with its vacuum avera
and let the large one remain unchanged. For example,

~19!

We do so because it is the easiest and simplest way to a
the RPA. Another reason is due to physical consideratio
The vacuum or exciting states possess definite correla
lengths. Only when the space occupied by glueball is c
ered with the Wilson loops is the calculation efficient, so
replace the small loop with its vacuum average and pres
the large loop in Eq.~19!.

In the following ~the graphsGi , j are shown in Fig. 1!, we
present the detailed calculation with orderM53. Let

R15c0~G1,11G1,1
† !5c0G1,11H.c. ~20!

SubstitutingR1 into Eq. ~17!, we have
03450
g

s

it
r

g
,
.
he
e-

e
e

ly
s.
n
-

ve
@E,G1,1#@E,G1,1#522FG2,12

1

3
G1,1G1,1G

12FG2,a2
1

3
G2,bG

'22G2,112^G1,1
0 &G1,124G1,1

† ,

~21!

where^G1,1
0 &5 1

2 @^G1,1&1^G1,1
† &# and ^G1,1&5^G1,1

† &, and

FIG. 1. ~a! The first, second, and third order independent gra
used in the approximate third order calculation.~b! The other
graphs used in the approximate third order calculation.~c! The
fourth order independent graphs used in the approximate fo
order calculation.
5-3
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@E,G1,1#@E,G1,1
† #'G2,21G2,2

† 26. ~22!

Therefore, we obtain the second order approximation ofR:

R25c1G2,11c2G2,21H.c. ~23!

Similarly, we obtain the third order approximation ofR:

R35b1G3,11b2G3,21b3G3,31b4G3,4

1b5G3,51b6G3,61H.c. ~24!

There are six independent graphs inR3 @see Fig. 1~a!#. The
coefficients of each independent graph on both sides of
~17! should be equal to each other, which leads to

~G3,11H.c.!F32

3
b124c0c1G50,

~G3,21H.c.!F32

3
b222c0c1G50,

~G3,31H.c.!@13b314c0~c12c2!#50,

~G3,41H.c.!@13b412c0~c12c2!#50,

~G3,51H.c.!F46

3
b514c0c2G50,

~G3,61H.c.!F46

3
b612c0c2G50,

~G2,11H.c.!@8c122c0
212c0~3c1^G1,1

0 &15c2!

12^G1,1
0 &~b31b4!#50,

~G2,21H.c.!F31

3
c212c0

212c0~3c115c2^G1,1
0 &!

12^G1,1
0 &~b51b6!G50,

FIG. 2. m0 andm2 as a function ofb56/g2. The crosses stand
for the second order results ofm0 and m2 , the diamonds for the
third order results ofm0 and m2 , and the squares for the fourt
order of resultsm0 andm2 ,
03450
q.

~G1,11H.c.!F16

3
c02

2

g4 12c0
2~^G1,1

0 &22!

2c0~11^G1,1
0 &!~6c1110c2!1c2^G1,1

0 &G50,

w05212c0
2, ~25!

where w0 is defined by WuV&5w0uV& with W
5(2a/g2)H, and therebyw05(2a/g2)eV .

In order to solve Eq.~25!, we must determinêG1,1& first.
According to the Feynman-Hellman theorem, we make
following change@3#:

W→W1c08~G1,11G1,1
† !. ~26!

Using ^G1,1&5^G1,1
† &, we have

2^G1,1
0 &5

]w0

]c08
U

c
0850

5224c0

]c0

]c08
U

c
0850

. ~27!

Solving the above algebraic equations, we can obtain
wave function of the vacuum state on the lattice. In the c
tinuum limit, the wave function has the form of Eq.~3!
@6,10,12#. Expanding clusters in order of the spacinga, we
get the coefficientm0 ~or m2! as a linear combination of the
coefficientsci andbi , consequently, and obtain the functio
of m0 ~or m2! against 1/g2.

III. RESULTS AND DISCUSSIONS

In Fig. 2, we present the results ofm0 ,m2 vs b56/g2

from second order to fourth order. The crosses stand for
second order results ofm0 and m2 , the diamonds for the
third order results, and the squares for the fourth order
sults. From Fig. 2, we see that the three curves ofm0 ~or m2!
show very good scaling behavior and a convergent trend
the weak coupling regionb56.5– 12.5. It is interesting tha
the curves of the third and fourth order results are overlap
in the scaling region, which proves that the approach is
fective and convergent. From the fourth order results,
obtain

FIG. 3. The vacuum energy againstb. The squares stand for th
second order results ofw0 , the triangles for the third order result
of w0 , and the circles for the fourth order of results ofw0 .
5-4
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m050.802560.0051,

m2520.074960.0054,

where the errors are the standard errors resulted from
fourth order data in the scaling region. In Ref.@12#, the es-
timated values resulting from the third order calculation
m0'0.5411 andm2'20.0781, but there is no proof to sho
that the results are convergent, and the scaling behavio
the results is not as good as that in this paper.

As far as we know, such results as the above which sh
good convergent behavior at relatively low order have
been reported before@3,11,13,17#. It is perhaps because tha

FIG. 4. The vacuum energy vsb. The dashed curve stands fo
the third order vacuum energy obtained without using the R
@12#, while the solid curve stands for that obtained with the RP
method.
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when we do theM th order calculation, the unoverlappin
loop graphs with orderM have no contribution to the calcu
lation of the former (M21) order wave function when hav
ing not used the RPA@11,12# while they have in our presen
scheme@we see the coefficients of the third unoverlappi
loop graphsb1–b6 emerge in the third order equations~25!#.

The curves ofw0 againstb from second order to fourth
order are plotted in Fig. 3. The three curves are close to e
other and also show good convergent behavior. For comp
son, we give the results of the third order vacuum ene
obtained through the approach with~solid curve! and without
~dashed curve! the RPA, respectively, in Fig. 4. We see th
the energy obtained with the RPA is lower than that witho
the RPA. This show the reasonableness of our pres
scheme.

In summary, using the RPA, we succeed in overcom
the two problems, i.e., the problem of the rapid proliferati
of clusters as the order of approximated calculation rises
the problem of how to distinguish independent bases in
coupled cluster expansions. The computed results of SU~3!
LGT in 211 dimensions show that our scheme is reasona
@18#.
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