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Approximated fourth order calculation of the vacuum wave function
of (2+1) dimensional SU3) lattice gauge theory
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We propose a scheme to improve the coupled cluster expansion in lattice gauge(ti@&brybased on the
application of the random phase approximation, in order to approximate a wave function in terms of a linear
combination of Wilson loops. Using this method, we study the vacuum energy and vacuum wave function in
(2+1)D SU3) LGT up to fourth order. The vacuum energy is lower than that obtained by the unimproved
approach. The coefficienjsy, u, of the vacuum wave function show good scaling behavior and convergence.
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I. INTRODUCTION Lo o

Yo(U)=N exp[ - ?J d?xTrF?— ggf d’xTr(DF)?
QCD has been accepted to be the most successful gauge
theory of strongly interacting particles. QCD in the pure )

gauge sector possesses a nontrivial vacuum structure and +higher order term}s ©)
bound states called glueballs. In 1980, Greenditeargued
that the vacuum state of SN lattice gauge theoryL GT)
should be exR(U)]. Using the Kogut-Susskind Hamiltonian
[2]

with F being the field strength tensor amithe covariant
derivative. The low order results @fy,u, and the glueball
mass show good scaling behavj@0,11], but the high order
. ) (the fifth ordej results ofug,u, and the glueball mass are
_9 2 4 + not satisfactory 14].
H= pIS g“zp Tr(Up+Up) |, @ There are many difficulties in doing high order calcula-
tion. One is the rapid proliferation of clusters which occur as
the (strong coupling perturbation thegrgrder increases. A
more difficult problem is how to distinguish the independent
graphs(i.e., clusters in expansions. The system of basis
functions used in coupled cluster expansions is overcomplete
> {[EX,[EX,R(U)IT+[EX,R(U)I[EX,RU)T} because the gauge group elements are unimodular. For ex-
1 ample, in the case of SB) LGT, the unimodular condition

he obtained the Schdinger eigenvalue equation for the
vacuum wave function:

5 5 is UjjUy€icej =2, which can be expressed as a more con-
- > Tr(U,+ uh= _?EQ (2) ~ venient form in cluster expansions,
9 p P ’

Tr(UV)=Tr(U)Tr(V)—Tr(UV), (4)

whereg is the coupling constang, the vacuum energyg?
the “chromoelectric” field on the linkl, and R(U) is @  whereg;; is asymmetric withe;,=1, andU, V are any ele-
single sum over the lattice of clusters consisting of Wilsonment of the S(2) group, or any gauge link or connected
loops at fixed relative orientation and separafi8h path on a lattice which comprise the graphs. Using @y.

However, it is difficult to find the exact solution of Eq. one may find the relations among the graphs and eliminate
(2). As far as we know, no exact solution has been reportedredundancie$3,10], but it depends heavily on one’s experi-
Many numerica[1,4—6] and analytical effort§3,7—13 have  ence. Therefore, it is not reliable when the number of graphs
been made. Some significant results and progress were rbecomes large and the configurations of graphs are complex.
ported. In 1993, Gueet al. [10] developed an approximate For example, the total number of independent bases in the
scheme with the eigenvalue equations truncated according fourth order calculation of (2 1)-dimensional S(2) LGT
the continuum limit, and calculated thgg,u, of the s reported to be 70 in Ref10], while it is 69 in Ref.[3].
vacuum wave function and 0" glueball mass of The unimodular condition of the SB) group is more com-
(2+1)-dimensional S(2) LGT [10,11], where uy and w, plicated. This is the main reason why we have not continued
are long wavelength expansion coefficients defined byhe study of Refs[12], [13] to obtain higher ordeffor ex-
[6,10,13 ample, the fourth orderesults.
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The main purpose of this work is to circumvent the above R U + + .
problems. At first, let us review the idea of random phasel 6k(d.t),H]~— NZ [({Cy ;Ck,1)—(Cy | Ck,1)) Bk(a.1)
approximationRPA) briefly [15]. In the Hubbard model, the K
transverse magnetic susceptibility is —(<CE,TCM>—<CE+a,lCﬁ+q,¢>)9k(¢t)],

13

X" =<2 (6:(6,0;8(=6,0)) wiiy, (B
K

Z| -

Where<CE ,Ck.0) is a fermion distribution function. Using

where 9&(‘7,0:CT,@@,l(t)CK,T(t)’ S+(6|10)22+ZCT|Z,T(O) this method, the chains are truncated, and the equations are
3 . T closed and can be solved.

X Ck+q,(0), K,q are the momenta of electron§, , is a The RPA may also be used in solving the Scfinger

creation operator of electrons with momentunand up  eigenvalue equatiof®). In the coupled cluster expansions of

spin,Cx ; is the corresponding annihilation operatiris the ~ wave functions, the coupled clustetgraphg consist of

volume of lattice, and products of Wilson loops. When a graph consists of two
Wilson loops, we replace one of them by its vacuum average
((6c(G,1);S"(—a,0)) =i 0(t)([ x(d.,t),S"(—6,0]), according to the RPA, so each cluster contains only one

(6)  loop, which makes the distinguishing of independent graphs
_ _ very simple and also makes the number of clusters at each
with angular brackets denoting an average over the vacuuyder decrease very much. Therefore, by adopting the RPA,
state andd(t) the ¢ function. In momentum representation, \ye can avoid the above two problems simultaneously. Intro-
the Hamiltionian of Hubbard model is ducing the average value of a Wilson loop in coupled cluster
expansions has been proposed in R&f. In that paper, the
authors also pointed out the dominance in the vacuum wave
function of clusters involving only a single loop. However,
just like the usual coupled cluster method, their shifted
coupled cluster method suffers the above two problems too,
Hi= E EQCE +CKo(T=1) (8)  because the independent bases they used are similar to those
K,o ’ used in the usual coupled cluster expansions. In addition, the
truncation scheme we use is different from theirs: we will
adopt the truncation scheme proposed in RE®)], which is
more effective and simpler.
CEﬂﬁ/ TCE'—& lCPZ’,LCIZ,Tv 9) In this paper, we use the above approach to calculate
" : : the vacuum wave function and vacuum energy of
(2+1)-dimensional S(B) LGT up to fourth order. We will
with U being the average value of Coulomb potential energyive the details of calculating third order wave function as
[16]. The time-dependent Green function and its dynamicalvell as the vacuum energy and present the results from sec-

H:HT+H|, (7)

where

and

M

H U
1= N .
NK

AXO

equation are ond to fourth order.
_ N N
G(t,0)=((0(q,1);S'(—a))) Il. APPROXIMATION OF THE VACUUM WAVE
o FUNCTION
_ iwt = oty _ &
f_ooe (0(q,0);S(=q))do, (10 The wave function of the vacuum state is assumed to be

|Q)=exd R(U)1|0), (14)

d
i —G(t,00=—8(t)([ 6x(d,t),S"(—§
dt (10 OLaGH.S (-] where the bare vacuum sta® is defined to beE,|0)=0.
. oty & The vacuum state and energy satisfy the lattice Schro
+<<[0k(q1t)lH]1S ( q)>>’ (11) dinger equation

where HIQ) = €0l ), (15
U T 1 which results in Eq(2). R(U) in Eq. (2) i ded i
(G.8).H = — — ct o co.co g{2). R(U) in Eqg. (2) is expanded in
[OK(G.0.H N%,[ K+, 1 7 ktd—gr, | kT order of the graph§10,12,17,
i T o
CkJrCi,lCK*E]’!lCK'le_q,’T]. (12) R(U):Z RI(U)v (16)
I

Because this term cannot be expressed as a linear combina-

tion of 6(q,t), Eq.(11) is difficult to solve. Using the RPA, whereR,; is a linear combination of theh order graphs with

a pair of fermion operators in Eq12) is replaced by its the coefficients to be determined. Generally, the term
average value, and E¢L2) becomes [E|,Ril[E;,R;] will produce some new graphs which are
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different from the graphs with order from 1 to{j—1); we
define them as théd ¢ j)th order graphs. Therefore, the trun- M
cated Schrdinger equation at ordeM is

M
«[5 . o

§|: ‘ =S 'Z'l RilV) +i+j§;M [Ei,Ri(U)] * "zl:j .

2 2a G“I:IB Gys Eﬂ:‘ Gs,sl:n__)u:l

X[E,Ri(U)]}— = > Tr(Up+U)=—€q, @
9 g
17
Gfl D G ‘:l

with a being the lattice spacing. The dimensionless coupling - G Li] G [jD
constantg is related to the invariant coupling constanby B e e
g’=e?a in the case of (2 1)-dimensional S(B) LGT. (b)

SupposeR; and R; are linear combinations of graphs

which contain only one Wilson loop; then, the new graphs >
produced by E;,R ][ E;,R;] will contain at most two loops. m_‘ rﬂ—‘
If there is a connected overlapping graph, we transform it » _

into unconnected overlapping graph with the unimodular

A1y A Pigig€iipis ™ Eigigig (18 I:F—‘ j-g lj% I(—E_’_j
whereA is any group element of S8). Applying the RPA % ;l ,I;_L—>‘ Dpj
to all those graphs which contain two loops, i.e., replacing | || h |

one of the two Wilson loops with its vacuum average value, |—>|
we get all new graphs composed of only one Wilson loop. BED I(:n-_)| IjEIDD
Now the independent bases are obtained directly, and the
number of independent graphs is much smaller than that be-
fore applying the RPA, especially at high order.

In the above RPA, when the sizes of two Wilson loops are

different, we replace the small one with its vacuum average
and let the large one remain unchanged. For example,

Y

~(_]

(19 (c)

FIG. 1. (a) The first, second, and third order independent graphs
We do so because it is the easiest and simplest way to applised in the approximate third order calculatidb) The other
the RPA. Another reason is due to physical considerationggraphs used in the approximate third order calculati@). The
The vacuum or exciting states possess definite correlatiofpurth order independent graphs used in the approximate fourth
lengths. Only when the space occupied by glueball is covorder calculation.
ered with the Wilson loops is the calculation efficient, so we
replace the small loop with its vacuum average and preserve
the large loop in Eq(19).

In the following (the graphss; ; are shown in Fig. i we

present the detailed calculation with orddr=3. Let

1
[E,G11l[E,Gy4]=— 2{62,1_ §Gl,lGl,l}

1
2 Goa—3G2n

~ 0 T
R1:C0(Gl,1+ GI’]_):C()G]_']_"' H.c. (20) ~_262,1+ 2<Gl,l>Gl,1_4Gl,l’
(21)

SubstitutingR, into Eq. (17), we have where(G} ) =3[(G1 )+ (G1 )] and(G, )=(G! ), and
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FIG. 2. ug and u, as a function of3=6/g2. The crosses stand
for the second order results of, and u,, the diamonds for the
third order results ofuy and u,, and the squares for the fourth
order of resultsuy and u,,

[E.G14l[E.G] 1]~Gy+ G}, 6. (22
Therefore, we obtain the second order approximatioR:of
R,=¢1G; 11+ €,G, 1+ H.C. (23
Similarly, we obtain the third order approximation &f

R3=b1G31+b,G3 51+ 0b3G5 5+ 0G5 4
+0b5G3 5+ bgG3 6t H.C. (24

There are six independent graphsRg [see Fig. 18)]. The
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FIG. 3. The vacuum energy agai&tThe squares stand for the
second order results of,, the triangles for the third order results
of wy, and the circles for the fourth order of resultsvef.

16 2 a0
(G1’1+ HC) ?CO_E+2CO(<GL1>_2)
—Co(1+(GY ))(6cy+10c,) +cx(GY )| =0,

wo=—12c2, (25)

where wy is defined by W|Q)=w,|Q) with W
=(2a/g?)H, and therebyw,=(2a/g?) e, .

In order to solve Eq(25), we must determinéG, j) first.
According to the Feynman-Hellman theorem, we make the
following chang€ 3]:

coefficients of each independent graph on both sides of Eq. W W+ cy(Gy 4+ Gh)' (26)

(17) should be equal to each other, which leads to

32
§b1_4COC1 = 0,

(Gzy+H.c)

(GzptH.c) =0,

32
3 b,—2cqcy

(G3,3+ HC)[13b3+4CO(Cl_ Cz)] = O,

(G341t H.c)[130,+2Co(C;—Cy)]=0,

(GzstH.c) =0,

46
3 bs+4cqc,

:0,

46
? b6 + ZCOCZ

(GzgtH.C)

(Gyat+H.c)[8c;— 2§+ 2¢o(3c1(GY ) +5¢,)
+2(G? ) (bg+hy)]=0,

31
(Gy ot H.C) 3 Cot 2C5+2C0(3¢1+5¢,(GY 1))

+2(G] )(bs+bg) | =0,

Using (G, 1)=(G1 ), we have

=~ 240057

ot 27

r_
co—O

Solving the above algebraic equations, we can obtain the
wave function of the vacuum state on the lattice. In the con-
tinuum limit, the wave function has the form of E@)
[6,10,13. Expanding clusters in order of the spaciagwe
get the coefficienj (or ) as a linear combination of the
coefficientsc; andb;, consequently, and obtain the function

of uq (or u,) against 1g2.

Ill. RESULTS AND DISCUSSIONS

In Fig. 2, we present the results gfy,u, vs B=6/g>
from second order to fourth order. The crosses stand for the
second order results gk, and u,, the diamonds for the
third order results, and the squares for the fourth order re-
sults. From Fig. 2, we see that the three curveg ofor u,)
show very good scaling behavior and a convergent trend in
the weak coupling regio=6.5—12.5. It is interesting that
the curves of the third and fourth order results are overlapped
in the scaling region, which proves that the approach is ef-
fective and convergent. From the fourth order results, we
obtain
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2 A R R S A L when we do theMth order calculation, the unoverlapping

[ ] loop graphs with ordeM have no contribution to the calcu-

] lation of the former M —1) order wave function when hav-

. ing not used the RPAL1,17 while they have in our present

] schemelwe see the coefficients of the third unoverlapping

1 loop graphdy;—bg emerge in the third order equatiof25)].

; The curves ofw, againstg from second order to fourth

A order are plotted in Fig. 3. The three curves are close to each

] other and also show good convergent behavior. For compari-

son, we give the results of the third order vacuum energy
8 obtained through the approach wigolid curve and without

(dashed curvethe RPA, respectively, in Fig. 4. We see that
FIG. 4. The vacuum energy v& The dashed curve stands for the energy obtained with the RPA is lower than that without

the third order vacuum energy obtained without using the RPAhe RPA. This show the reasonableness of our present
[12], while the solid curve stands for that obtained with the RPAgcheme.

|
(-3
Y

|
N
T

Vacuum energy w,
&
T

[

method. In summary, using the RPA, we succeed in overcoming
the two problems, i.e., the problem of the rapid proliferation
mo=0.8025+0.0051, of clusters as the order of approximated calculation rises and
the problem of how to distinguish independent bases in the
ma=—0.0748£0.0054, coupled cluster expansions. The computed results dBSU
where the errors are the standard errors resulted from t 1(38} in 2+1 dimensions show that our scheme is reasonable

fourth order data in the scaling region. In REE2], the es-

timated values resulting from the third order calculation are

Ho~0.5411 andu,~ —0.0781, but there is no proof to show ACKNOWLEDGMENTS
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