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Heavy quark potentials in quenched QCD at high temperature
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Heavy quark potentials are investigated at high temperatures. The temperature range covered by the analysis
extends fronil values just below the deconfinement temperature up to abiirdthe deconfined phase. We
simulated the pure gauge sector of QCD on lattices with temporal extents of 4, 6, and 8, with spatial volumes
of 32°. On the smallest lattice a tree level improved action was employed, while in the other two cases the
standard Wilson action was used. Beldwwe find a temperature-dependent logarithmic term contributing to
the confinement potential, and observe a string tension which decreases with rising temperature but retains a
finite value at the deconfinement transition. AbolUg the potential is Debye screened; however, simple
perturbative predictions do not apply.

PACS numbsd(s): 12.39.Pn, 05.70.Ce, 12.38.Gc

I. INTRODUCTION In the present paper we compute the static quark potential
in the pure gluonic sector of QCD. We investigate the tem-
The static quark potential at high temperatures is interestperature dependence of the potential over a range of tem-
ing for several reasons. Phenomenologically, the propertiegeratures from 0.8 to about four times the critical tempera-
of quark bound states, in particular of heavy quarkonia, cafure T¢. The analysis is based on gluon configurations
be derived quite successfully from potential models. It isgenerated on lattices of size®32N ., with N,=4, 6, and 8.
then important to compute the temperature dependence dihis enables us to gain some control over finite lattice spac-
the potential, as this might lead to observable consequencéd3d artifacts. On the smallest lattice a tree level improved
in heavy-ion collision experiments. Notably, it has been sug9auge action was used, while on the two larger lattices a
gested to use the suppressionJsf and ¥’ production[1] standard_ Wilson action V\(as_employed. We go beyond previ-
as a signal for the quark-gluon plasma. For this purpose, us studies of the potential in so far the temperature range is

detailed knowledge of the temperature dependence of th overed more densely, anq also because a Iarg'e set of lattice
. istances was probed. This helps to extract fit parameters
potential appears very helpf{2].

S . . . with a higher reliability.
Moreover, it is well known that a linearly increasing po- The paper is organized such that Sec. Il summarizes the-
tential at large distances arises naturally from a string pictur%

f confi | i th f. h etical expectations on the behavior of the potential both
of confinement. As long as one stays in the confined phase g4,y and above the transition temperature. In Sec. Il we

QCD, string models then also predict a definite behavior ofyresent and discuss our results for the potential in the con-
the potential at finite temperaturg3-5]. These predictions  fined phase. Section IV contains our findings for tempera-

ought to be tested by lattice analyses. tures aboveT., and Sec. V contains the conclusion.
In the close vicinity of the deconfinement transition tem-
perature, the static quark potential and the mass gap, i.e., the Il. THEORETICAL EXPECTATIONS
potential integrated over perpendicular directions, are sensi-
tive to the order of the phase transition. In color (SUthe Throughout this paper the potential is computed from
observation of a finite mass gap at the critical temperatur@olyakov loop correlations
supports that the transition is of first ordgs], while in R R R
SU(2) a continuous decrease to zero with the appropriate (L(O)LT(R))=exp{— V(|R[,T)/T}, (2.2
Ising critical exponents was fourjd].
In the deconfined phase, asymptotic freedom suggests théthere

at high temperatures the plasma consists of weakly interact- LN
ing quarks and gluons. Previous numerical studi&s13| L(%) = —t e 29
have, however, shown that nonperturbative phenomena pre- ) 3 rLll Uo(X,7) 2.2

vail up to temperatures of at least several times the critical

temperature. In particular, the heavy quark potential did notlenotes the Polyakov loop at spatial coordinatedn the
show the simple Debye-screened behavior anticipated from lémit R—oc, the correlation function should approach the
resummed lowest-order perturbative treatmghd]. This  cluster valug(L(0))|2, which vanishes if the potential rises
might not be too surprising, as various nonperturbativeto infinity at large distancegconfinement and which ac-
modes may play a role in the long distance sector of thejuires a finite value in the deconfined phase.

plasma[15]. It is then important to quantify color screening  In the limit where the flux tube between two static quarks
effects by a genuinely nonperturbative approach. can be considered as a string, predictions about the behavior
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of the potential are available from computations of the leadas suggested by universality. In the present case of color
ing terms arising in string models. For zero temperature on&U(3), one expects a discontinuous behavior and a nonvan-

expects ishing string tension at the critical temperature.
In the deconfined phase, the Polyakov loop acquires a
m 1 nonzero value. Thus we can normalize the correlation func-
VIRI=Vo= p g toR, 23 ion to the cluster valug(L)|?, thereby removing the quark-

line self-energy contributions. Moreover, the quark-antiquark
whereV, denotes the self-energy of the quark liness the  pair can be in either a color singlet state or a color octet state.
string tension and the Coulomb-likeRLterm stems from  Since in the plasma phase quarks are deconfined, the octet
fluctuations of the strin§16]. Equation(2.3) generally gives  contribution does not vanishand the Polyakov loop corre-
a good description of the zero-temperature ground-state pdation is a color-averaged mixture of both:
tential, although it has been shoWh7] that the excitation
spectrum meets string model predictions only at large quark
pair separations. For nonvanishing temperatures below the
critical temperature of the transition to deconfinement, a

temperature-dependent potential has been complBéd At high temperatures, perturbation theory predidtd] that

1 8
e—v<R,T)/T:§e—vl<R,T)/T+ 5 e~ Va(RTIT 2.9

which can be expressed as V, andVj are related as
T 1 1 T _ 4
=\, —|——Z= il B V,=—-8Vg+0(g"). (2.9
V(R,T)=V, {12 6arctamZR'I') R+ o 3T

T Correspondingly, the color-averaged potential is given by
R+ E|n[1+(2RT)2].

2 1
+ =T?arctan =——

3 2RT V(RT) 1 ViRT) -
(2.4 T 16 T?Z (2.10
In the limit R>1/T, this goes over into Due to the interaction with the heat bath, the gluon acquires
a chromoelectric mass(T) as the IR limit of the vacuum
V(R,T)=Vo+| o— ZTz R+TIn(2RT), (2.5) pqlarizatior! tensor. To lowest order in perturbation theory,
3 this is obtained as
which had been calculated previou$hj. Note the logarith- m(T))\ 2 N, Np
mic term which originates from transverse momentum ( e_l_ ) =g ?C-i- 5 (2.11)

fluctuations: So far, it has been left open whether the string

tensiono appearing in Eq92.4) and(2.5) is identical to the .
zero-temperature value. In the context of a Iow—temperatur?éVhereg(T) dgnotes the temperature-dependent renarmalized
oupling,N. is the number of colors, andg the number of

or largeR expansion, the temperature-dependent terms apc—

ing in Eas(2.4 2 5) should. h .+ quark flavors. The electric mass is also known in next-to-
pearing in Egs(2.4) and (2.5 should, however, be consid rIg‘lading order[18], in which it depends on an anticipated

ered as thermal corrections to the zero-temperature strin e al ithouah th ic ol

tension. An explicitly temperature-dependent string tensio rom.omagneuc gluon mass aithoug t. € magneyc giuon

was computed by means of aDLexpansior3] mass itself cannot be calculated perturbatively. Fourier trans-
formation of the gluon propagator leads to the Debye-

a(T) T2\ 12 screened Coulomb potential for the singlet channel,
CURES 29 .
Vi(RT)=— —5—e MR, 2.1
whereT, was obtained as 1(RT) R (212
2 3 where a(T)=gZ(T)(N§—1)/(8wNC) is the renormalized
Te= m(D—2) (0). (2.7 T-dependent fine-structure constant. It has been str¢&Sgd

that Eq.(2.12 holds only in the IR limitR—c, because
Note, however, that fob — o the phase transition is of sec- momentum-dependent contributions to the vacuum polariza-
ond order, leading to a continuous vanishing of the stringion tensor have been neglected. On the other hand, indica-
tension at the deconfinement temperature. In colof2§U tions for the validitiy of the perturbative relatior€qs.
which also exhibits a second-order transition, it was estab2.10—(2.12] have been previously observed for tempera-
lished [7] that o(T) vanishes~(B.—8)", with a critical  tures larger than abouf/4 [12]. In any case, at temperatures
exponenty taking its three-dimensional Ising value of 0.63, just aboveT . perturbative arguments will not apply, so that

In the context of analyzing numerical data, this term was men- 2t is, however, small compared to the singlet part. This is true
tioned in Refs[6,9], and discussed in detail in Réf7]. perturbatively{see Eq(2.9)] as well as numerically10].
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FIG. 3. The same as Fig. 1, except fdt=8 (case 1). The
FIG. 1. The potentials in units set by the temperature atdhe critical coupling isgB.=6.0609(9)[20].

values analyzed foN_ =4 (case ). The critical coupling for this

action on our lattice size has been determine 4.0729(3 . . .
[25]. bas 3) groups. Each heatbath iteration is supplemented by four

overrelaxation stepg23]. To improve the signal in calcula-
we have chosen to attempt a parametrization of the numerg%sv\?;spggs:;@‘ééoOFpofzg%a\t/gEg”tugig;‘; gglt‘ggfgg?;i%?
cal data with the more general anspto)| 20 000—-30 000 measurements separated by one sweep.
V(R,T) e(T) The_ second set of da(d_i) was obtaingd as a by-product
=~ ®’Te e HDR (2.13  of earlier work, the analysis of the equation of sf&@]. The
(RT) gauge configurations used in the present study were gener-
ated with the standard Wilson gauge action on lattices of size
32x6 and 32x8. The same algorithm as for | was em-
aployed. The statistics amounts to 1000 to 4000 measure-
ments separated by ten sweeps for khe=6 data, and be-
tween 15000 and 30000 measurements at each sweep for
N,=8. The errors on the potentials as well as the fit param-
eters were determined by jackknife in both cases. Typically a
lll. RESULTS BELOW T, bin size of 1000 sweeps has been used, which is well beyond

The results to be presented here as well as in Sec. IV arttge estimated autocorrelation times,
P ' The lattice results for the potential at temperatures below

based on two different sets of data. The first set, referred tq, are shown in Figs. 1, 2, and 3. The correlation function
c .1, 2, .

as | in the following, was generated with a tree-level :
Svmanzik-imoroved oaude action consisting of 1. and 2 [Eqg. (2.1)] has been computed not only for on-axis separa-
y P gaug 9 tions but also for somén case | almost alloff-axis distance

X1 loops. The lattice size was 324. We used a - . . .
pseudoheatbath algorithm[21] with  Fabricius-Haan- vectorsR. Although the lattice spacing for tHé,=4 data is

Kennedy-PendletofFHKP) updating[22] in the SU?2) sub- larger than for the other two lattice sizes, rotational symme-
try is quite well satisfied due to the use of an improved

13 : : : : . . . . . action in this case. As we will focus on the intermediate-to-
large-distance behavior of the potential, it was not attempted
' ] to specifically treat the deviations from rotational invariance
1 VRTYT L - at small separations. Note that the distances covered by the
e ® ‘o data extend t&R T<4 for |, while in case Il we could obtain
signals up taRT=<2.
or . ' . : : . The potentials have first been fitted to Eg.4), with two
free parameters: the self-energy, and a possibly
temperature-dependent string tensiefT). These fits work
55 3 2% = ] rather well even when data at small separations are included,
sl i _ because the fit ansatz also accounts for R fiece in the
! 5.80 potential. The results to be quoted for the string tension
0 28 (Table ) have, however, been obtained when the data at
.. . RT [ , | &® small separations are excluded from the fit. Typically, a
0 02 04 08 08 T 12 a4 16 minimal distance oRT=1/2 was chosen. The fits are stable
FIG. 2. The same as Fig. 1, except Wc=6 (case I). The  under variation oRy,, in this ballpark, and return goog?
critical coupling isB.=5.8938(11)[20]. values. Varying the maximum distance to be fitted does not

with an arbitrary powed of the 1R term, an arbitrary coef-
ficiente(T), and a simple exponential decay determined by
general screening maggT). Only for T>T, and large dis-
tances we expect thatl—2 and w(T)—2m(T) [Eq.
(2.10], corresponding to two-gluon exchange.
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TABLE I. Results for the string tension in lattice units from fits substantial deviations from the zero-temperature string ten-
with Eg.(2.4). In those cases where two lines are printed for a givension. These deviations amount to about 10%T&E.=0.8,
B, the upper line refers to averages over the whole sample while thand become |arger when the temperature is raised.
Iowgr line takes into account only configurations which are in the  Cjose toT, the results fronN,=6 and 8 at first sight do
confined phase. not seem to agree with the numbers coming from khe
=4 lattices. However, recall that the 8) quenched theory

N, B e oa? exhibits a first-order transition with the coexistence of had-
4 3.95 0.804 0.2256) ron and plasma phases at the critical temperature. The tun-
4.00 0.886 0.1783) neling rate between the two phases decreases exponentially
4.02 0916 0.158%) ~exd —26X (N, /N,)?], where =0, /TS is the normalized
4.04 0.947 0.133@) interface tension. The lattices of data set Il have smaller
4.05 0.963 0.1263) aspect ratios ofN,/N,=4 and 5.33, respectively, than the
4.06 0.979 0.1118) N,=4 lattice, whpse aspect ratio is 8. Correspond[ngly, the
4.065 0.987 0.0978) ense.mble.of cqnflgurf\tmns o,f, the seconq set conf@nuse
4.07 0.995 0.08825) configurations in the wrong,” on deconfined phz_ase. In fact,
close toT,, Polyakov loop histograms reveal this two-state
6 5.80 0.832 0.09170) distribution forN.=6 and 8, with a clear separability be-
5.85 0.919 0.06323) tween the two Gaussian-like peaks. Such a two-state signal is
5.87 0.956 0.0528) absent for theN =4 data. Carrying out the averaging of the
5.89 0.993 0.02033) potential only over configurations with Polyakov loops in the
0.040G20) confined peak leads to the corrected data points in Fig. 4. At
temperatures not so close 1Q this separation of phases is
8 6.00 0.904 0.0386) no longer possible, as the Polyakov loop histogram has tails
6.04 0.967 0.0208) into the deconfined phase, but it is not clear where one
0.030415) should set the cut.
6.06 0.9985 0.0078) When we apply this correction, the agreement of the re-
0.019519 sults from the three different lattices is evident. This shows

that the temperature dependence of the string tension is not
. . ubject to severe discretization effects. Moreover, the func-
lead to noticeable changes of the results. This holds for a@onal form of the fit ansatdEq. (2.4)], as suggested by
three lattices. . . . ... string model calculations, describes the behavior of the lat-
The results for the string ztensmn, normgllzed .to the Criti-ice data quite well. However, with increasing temperature
cal temperature squared/Tc, are summarized in Fig. 4. \ye gpserve a substantial decrease of the string tension away
The temperature scale has been determined from measugsm its zero temperature-value. Since the fit and&a.
ments of the string tension dt=0 [20,26,27. The finite- 5 4] aready contains a/3T2 term, the decreasing slope of
temperature string tenszlon is compared to these results gig jinear part of the potential cannot solely be accounted for
zero temperaturey(0)/T¢, shown as the line in the figure. by this leading correction.
Quite clearly, in the investigated temperature range there are |n order to analyze the linear rising part of the potential in
a more model-independent way, in a second round of fits we

88 have compared our data with the ansatz

N=4 —m—

T
2 =0 —y—

3t o) corrected e~ 1 V(R,T)=Vo+ o(T)R+CTIn(2RT). 3.0

Note that this ansatz differs from E.5) in so far it sum-
L] | marizes all the linear dependence on the distaRdey an
. ) explicitly temperature dependent string tensig(T). Due to
- ) . ) . 4
sl .. its lacking of a 1R piece, this formula is very well capable
ﬁé of describing the data, but only if the fit is applied to large
distances oRT=1. For data set Il this requirement leaves
not too many data points to be fitted. In this case we checked
that Eqg.(3.1) is able to parametrize the potential. However,
since we do not have as much room to check for stability of
0 s s . s IMe | . . , the results as one would wish, we refrain from quoting re-
08 082 084 08 08 05 092 094 086 088 1 g jis for data set Il. In case | we do have enough distances,
FIG. 4. The string tension at nonvanishing temperature as ob@Nd obtain fits with googy” values which are stable under
tained from fits with Eq.(2.4). The line denotes the zero- variation of the minimal distance to be included in the mini-
temperature string tension. In both cases the string tension wa#ization.
normalized toT,. For an explanation of the “corrected” data In data set | we clearly observe the logarithmic term con-
points, see the text. tained in Eqs(2.5 and(3.1). The fits return values for the

05 ;
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TABLE IlI. Results for the string tension from fits with Eq. Recall that the string model prediction assumes a second-
(2.9. order transition with a continuous vanishing of the string
tension at the critical temperature. The deconfinement tran-
N, B TITe oa sition in pure SW3) Yang-Mills theory, however, is known
4 3.95 0.804 0.1598) to be of ﬁrst order. Thus a discontinuity_ at the critic_al_ tem-
perature is expected. To account for this, the coefficiants

2

2'82 g'gig g'ééﬁi andb in Eq. (3.2) are allowed to deviate from unity. In fact,
4'04 0'947 0'06%) the fit to the data, shown as the line in Fig. 5, results in the
4'05 0.963 Ol06 valuesa=1.21(5) ando=0.99Q5). This leads to a nonva-

' : -0603) nishing string tension at the critical temperature of
4.06 0.979 0.045®)
4.065 0.987 0.0316) o(Te)
4.07 0.995 0.02211) ——=0.12135). (3.9

o(0)

coefficientC of the logarithm which are equal to 1 within an This number can be converted into a value for (bleysica)
error margin of less than 10%. Moreover, if we fix the coef-mass gap at the transition pointyyn,d To)/T.=o(Tc)/ T2
ficient of the logarithmic term to 1, we obtain very stable =0.30(9). This is a bit below, but not incompatible with
results for the string tension when the minimum distance igarlier results of dedicated analyses of the order of the de-
varied betweenR,,,T=0.75 andR,;;T=2.5. Conversely, confinement transitionmg, T.)/T.=0.4-0.8, as summa-
fixing C to O leads to a decreasing string tension wRep,  fized in Ref.[6].
is raised, possibly leading to a plateauRgyt,, T=2. We thus Finally, we compared the string tensiet{T) defined in
cannot exclude a purely linear rise at very large distancedzd. (3.1 with the leading behaviar(0)— 7 T%/3 as given in
R=1.8 fm. However, the data can be described by Bd), Eq.(2.5). This is shown as the dotted line in Fig. 5. Similarly
including the logarithmic term over the whole distance rangdo Fig. 4, the comparison fails, reflecting that nonleading
explored. We take this as a confirmation of a logarithmicterms contribute substantially.
piece in the potential with a strength as anticipated from the
string model calculatiorj4] or, equivalently, a subleading IV. RESULTS ABOVE T,
powerlike 1R factor with power 1 contributing to the
Polyakov-loop correlation function.

Because of these findings, we fix this coefficient to 1 in
the following. The resulting string tension is given in Table LoLHB
Il and normalized to its zero temperature value is shown in V(IR T)=—T1 (L(O)L'(R)) @.1)

Above the critical temperature, we have normalized the
Polyakov loop correlations to their cluster value

Fig. 5. The temperature dependence compares well with the [(L(0))|?
(modified prediction [3] of the Nambu-Goto mode€lEq.
(2.6)], to eliminate the self-energy contributions. In principle, the
2\ 12 correlation function itself is periodic iR. Alternatively, one
ﬂ:a 1—bT— 3.2 can fit the potentiall[Eq. (4.1)] with a periodic ansatz:
o(0) T2 ' V(R)—V(R) +V(N,a—R). The second contribution turns

out to be very small at the distances fitted, and both proce-
dures lead to the same results for the fit parameters.

In the following we first concentrate on data set |, which
has somewhat better statistics and which, more importantly,
covers the explored range of distances more densely; see Fig.
6. As explained in Sec. Il, we fit the potentials abdyewith
the generalized screening ansgiz). (2.13], where the ex-
ponentd of the Coulomb-like part is treated as a free param-
eter. It turns out that the value of the exponent and the value
of the screening mags are strongly correlated. In particular
at higher temperatures it is difficult to obtain fit results which
are stable under the variation of the minimum distance in-
cluded in the fit. These fluctuations have been taken into
account in our estimates of the error bars.

In data set I, forB values greater than or equal to 4.15, we
observed that at large quark separations the Polyakov-loop

FIG. 5. The string tension as obtained from fits with Eg1),  Correlation decreases below the cluster value. In R it
normalized to its zero-temperature value. The line is the result of &/a@s argued that finite momentum contributions to the
fit to this ratio with the string model motivated ansfEr). (3.2].  vacuum polarization tensor can give rise to a modified
The data are compared with the lowest-order temperature effect gdcreening function which undershoots the exponential Debye
the linear part of the potentifEq. (2.5], shown as the dotted line. decay at intermediate distances, and approaches the infinite
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FIG. 6. The potentialy/(R,T) for the g8 values above3, ana- FIG. 8. Fit results for the screening maséT) [Eq. (2.13)], as

lyzed on theN =4 lattices. The Polyakov loop correlations have a function of the temperature. The lines denote the comparison with
been normalized to their cluster value. Potentials and distances atie perturbative predictions(T)=Am{(T); see the text.
given in units of the temperature.

=AmI(T), with m(T) as given in Eq.(2.11). For the

distance limit from below. Despite the high, yet limited, pre- temperature-dependent renormalized Coup@ﬁT), the
cision of our data, we are not in the position to conform thistwo-loop formula
suggestion. Instead, we have, in the above-mentioned cases,
taken an operational approach, and added an overall constant 27T
to our fit ansatz. g 4(T)=2b, In(A—_

In Fig. 7 we summarize the results for the exponent. At Ms
temperatures very close T., the exponend is compatible
with 1. When the temperature is increased slighd\starts
rising to about 1.4 for temperatures up td 2 Between two
and three timesT., the exponent centers around 1.5, al-. : .
though the error bcars tend to become rather large. A value pg to the data points at the two highest temperatufes,

2, as predicted by perturbation theory, seems to be ruled out 2Te, é(_ea}[QS toHa value 0.4\: _1.82if0t.hlS, wh||<t:h f's ctlrc])se to
however, in the investigated temperature range. € prediction. HOWEVET, In view ot the results for the expo-

- - td we regard this as an accidental coincidence. This is
The results for the screening magg¢T) obtained from nen .
the same fits with E¢(2.13 are shown in Fig. 8. The screen- furthe_r supported by analysé]sS]_ in color SU2), where the
ing mass turns out to be small but finite just abdye and electric gluon mass was pbtamed from gluon prppagators
rises rapidly when the temperature is increased. It reachesfgd gotrg tthethsmglk()at pOtednt'Ml’ Stafel:Eq(Z.lz)bHr?re_n ";as
value of about 25 at temperatures around I.5 and i)un (O)a efcr)fservel masls ollows fa € a\myH( )
seems to stabilize there also. Figure 8 also includes a comi= +:6Me *(T). If this result could be transferred to the case

parison with lowest-order perturbation theoryy(T) of' SU(3), and Ref.[10] provided some early evidence for
this, we would havew(T)=1m,(T) contrary to the pertur-
bative value of 2.

by
+b—0|n

21 (277 4.2
n— .
Aws

was used, wher@ . /Ays=1.14(4)[27,28, and the lattice
scale was set by the lowest Matsubara frequengy .2Per-
turbation theory predicts the factérto be 2. Indeed, adjust-

1.8

d(m) ' ' ' The potentials abové&, from data set Il are very similar
7 T to the ones already discussed. Fits with E913 with a free
16 F 1 exponent do work, and return parameter values in the same
sl ® | ballpark as in case I. However, because of the much smaller
| number of distances probed in this set, the fit results are not
141 1 as reliable as in case |. Therefore we have chosen to carry
120§ + | out fits with Eq.(2.13), but with d kept fixed. For compari-

son, data set | has also been treated this way.

12r The general feature of these fits is that increasirigpm

11 1 1.0 to 2.0 leads to decreasing numbers for the screening
1k ] mass. For instance, aff3, we obtainu/T~3 for d=1.0,
whereas withd=2.0 the result for the screening mass is
ulT~2. Similar shifts occur at all temperatures. The quality
of the fits, however, is not always the same. Typically, at
temperatures close @, fits with d=2 return unacceptable
FIG. 7. Fit results for the exponediof the Coulomb-like part of  x? values, while, foiT=2T,, the x? values are equally good
the potential abové&, [Eq.(2.13], as a function of the temperature. for all values ofd and cannot be used to distinguish between
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88 ; ; ; ; ; T NZ4 —m ture of the deconfinement transition are well parametrized by
N=6 —e— formulas which have been derived within string models. In
WTyT N=8 —v— . L .
¢ 1 particular, the presence of a logarithmic term with the pre-
{ % dicted strength could be established. However, the obtained
251 } $ %‘f . ¥ ¥ 1 string tension shows a substantial temperature dependence
{ which is not in accord with the leading string model result.
2r g ] Instead, we find a decrease of the string tension which is
i compatible with being proportional toT{—bT)¥? in the
1'5'2 critical region belowT.. At the critical temperature the
string tension retains a finite value o&(T.)/c(0)
=0.121(35), consistent with a first-order transition.

Above the deconfinement transition the potentials show a
screened powerlike behavior. By comparing the data with
. . . . . e perturbative predictions, we can further strengthen earlier
15 2 25 3 35 4 45 5 claims that these predictions do not properly describe the
potentials up to temperatures of few times the critical one. In
particular, it can be excluded that the exchange of two gluons
with an effective chromoelectric mass is the dominant
screening mechanism. Judging from the exponent of tRe 1/

the various exponent values anymore. This observation fierm in the pc.)tential,.at temperatures closd {at Seems that
nicely into the picture as shown in Fig. 7. the complex interactions close to the phase transition arrange

As an example of the temperature dependence of th@ﬁemse!ves in such a way as to be effectively describable by
screening mass at fixed| in Fig. 9 we show our results at some k!nd of one-gluon exchange..At temperatures of about
d=1.5 for all three different lattice sizes. Recall that a valuel-5—3 timesTc we observe a behavior which could be inter-
of d~1.5 was favored at all temperaturés=1.2T of data pfete@' as a mixture of one- and tvyo-gluon exchanges. The
set I. The general behavior is similar to that shown in Fig. gFesulting screening mass scales with the temperajufe)
the screening mass is small close T and starts to rise ~2-2T, @ perturbative decrease due to the temperature-
quickly. It reaches a kind of plateau with a value @fT ~ dependent renormalized couplirgfT) is not really seen.
~2.5 for temperatures between roughlyT,%nd 3T, . For Thus it is very likely that nonperturbative phenomena and
temperatures beyondT3, the N.=8 data may inéicate a higher-order perturbative contributions are needed to explain

slow decrease with rising temperature. The main conclusioff'® OPserved screening behavior in the investigated tempera-

to be drawn from Fig. 9 is that the results from the differenttUre range.
lattices, i.e., at different lattice spacings, are in agreement

FIG. 9. The screening mags from fits with Eq.(2.13 with a
fixed value ofd=1.5 for the exponent. The results from all three
different lattice sizes are drawn as a function of the temperature.

with each other within the error bars. Thus, in the investi- ACKNOWLEDGMENTS
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