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Heavy quark potentials in quenched QCD at high temperature
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Heavy quark potentials are investigated at high temperatures. The temperature range covered by the analysis
extends fromT values just below the deconfinement temperature up to about 4Tc in the deconfined phase. We
simulated the pure gauge sector of QCD on lattices with temporal extents of 4, 6, and 8, with spatial volumes
of 323. On the smallest lattice a tree level improved action was employed, while in the other two cases the
standard Wilson action was used. BelowTc we find a temperature-dependent logarithmic term contributing to
the confinement potential, and observe a string tension which decreases with rising temperature but retains a
finite value at the deconfinement transition. AboveTc the potential is Debye screened; however, simple
perturbative predictions do not apply.

PACS number~s!: 12.39.Pn, 05.70.Ce, 12.38.Gc
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I. INTRODUCTION

The static quark potential at high temperatures is inter
ing for several reasons. Phenomenologically, the prope
of quark bound states, in particular of heavy quarkonia,
be derived quite successfully from potential models. It
then important to compute the temperature dependenc
the potential, as this might lead to observable conseque
in heavy-ion collision experiments. Notably, it has been s
gested to use the suppression ofJ/c andC8 production@1#
as a signal for the quark-gluon plasma. For this purpos
detailed knowledge of the temperature dependence of
potential appears very helpful@2#.

Moreover, it is well known that a linearly increasing p
tential at large distances arises naturally from a string pic
of confinement. As long as one stays in the confined phas
QCD, string models then also predict a definite behavior
the potential at finite temperatures@3–5#. These predictions
ought to be tested by lattice analyses.

In the close vicinity of the deconfinement transition te
perature, the static quark potential and the mass gap, i.e.
potential integrated over perpendicular directions, are se
tive to the order of the phase transition. In color SU~3! the
observation of a finite mass gap at the critical tempera
supports that the transition is of first order@6#, while in
SU~2! a continuous decrease to zero with the appropr
Ising critical exponents was found@7#.

In the deconfined phase, asymptotic freedom suggests
at high temperatures the plasma consists of weakly inter
ing quarks and gluons. Previous numerical studies@8–13#
have, however, shown that nonperturbative phenomena
vail up to temperatures of at least several times the crit
temperature. In particular, the heavy quark potential did
show the simple Debye-screened behavior anticipated fro
resummed lowest-order perturbative treatment@14#. This
might not be too surprising, as various nonperturbat
modes may play a role in the long distance sector of
plasma@15#. It is then important to quantify color screenin
effects by a genuinely nonperturbative approach.
0556-2821/2000/62~3!/034021~8!/$15.00 62 0340
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In the present paper we compute the static quark poten
in the pure gluonic sector of QCD. We investigate the te
perature dependence of the potential over a range of t
peratures from 0.8 to about four times the critical tempe
ture Tc . The analysis is based on gluon configuratio
generated on lattices of size 3233Nt , with Nt54, 6, and 8.
This enables us to gain some control over finite lattice sp
ing artifacts. On the smallest lattice a tree level improv
gauge action was used, while on the two larger lattice
standard Wilson action was employed. We go beyond pre
ous studies of the potential in so far the temperature rang
covered more densely, and also because a large set of la
distances was probed. This helps to extract fit parame
with a higher reliability.

The paper is organized such that Sec. II summarizes
oretical expectations on the behavior of the potential b
below and above the transition temperature. In Sec. III
present and discuss our results for the potential in the c
fined phase. Section IV contains our findings for tempe
tures aboveTc , and Sec. V contains the conclusion.

II. THEORETICAL EXPECTATIONS

Throughout this paper the potential is computed fro
Polyakov loop correlations

^L~0W !L†~RW !&5exp$2V~ uRW u,T!/T%, ~2.1!

where

L~xW !5
1

3
tr)

t51

Nt

U0~xW ,t! ~2.2!

denotes the Polyakov loop at spatial coordinatesxW . In the
limit R→`, the correlation function should approach th
cluster valueu^L(0)&u2, which vanishes if the potential rise
to infinity at large distances~confinement!, and which ac-
quires a finite value in the deconfined phase.

In the limit where the flux tube between two static quar
can be considered as a string, predictions about the beha
©2000 The American Physical Society21-1
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of the potential are available from computations of the le
ing terms arising in string models. For zero temperature
expects

V~R!5V02
p

12

1

R
1sR, ~2.3!

whereV0 denotes the self-energy of the quark lines,s is the
string tension and the Coulomb-like 1/R term stems from
fluctuations of the string@16#. Equation~2.3! generally gives
a good description of the zero-temperature ground-state
tential, although it has been shown@17# that the excitation
spectrum meets string model predictions only at large qu
pair separations. For nonvanishing temperatures below
critical temperature of the transition to deconfinement
temperature-dependent potential has been computed@5#,
which can be expressed as

V~R,T!5V02F p

12
2

1

6
arctan~2RT!G 1

R
1Fs2

p

3
T2

1
2

3
T2 arctanS 1

2RTD GR1
T

2
ln@11~2RT!2#.

~2.4!

In the limit R@1/T, this goes over into

V~R,T!5V01Fs2
p

3
T2GR1T ln~2RT!, ~2.5!

which had been calculated previously@4#. Note the logarith-
mic term which originates from transverse momentu
fluctuations.1 So far, it has been left open whether the stri
tensions appearing in Eqs.~2.4! and~2.5! is identical to the
zero-temperature value. In the context of a low-tempera
or large-R expansion, the temperature-dependent terms
pearing in Eqs.~2.4! and ~2.5! should, however, be consid
ered as thermal corrections to the zero-temperature s
tension. An explicitly temperature-dependent string tens
was computed by means of a 1/D expansion@3#

s~T!

s~0!
5S 12

T2

Tc
2D 1/2

, ~2.6!

whereTc was obtained as

Tc
25

3

p~D22!
s~0!. ~2.7!

Note, however, that forD→` the phase transition is of sec
ond order, leading to a continuous vanishing of the str
tension at the deconfinement temperature. In color SU~2!,
which also exhibits a second-order transition, it was est
lished @7# that s(T) vanishes;(bc2b)n, with a critical
exponentn taking its three-dimensional Ising value of 0.6

1In the context of analyzing numerical data, this term was m
tioned in Refs.@6,9#, and discussed in detail in Ref.@7#.
03402
-
e

o-

rk
he
a

re
p-

ng
n

g

b-

as suggested by universality. In the present case of c
SU~3!, one expects a discontinuous behavior and a nonv
ishing string tension at the critical temperature.

In the deconfined phase, the Polyakov loop acquire
nonzero value. Thus we can normalize the correlation fu
tion to the cluster valueu^L&u2, thereby removing the quark
line self-energy contributions. Moreover, the quark-antiqu
pair can be in either a color singlet state or a color octet st
Since in the plasma phase quarks are deconfined, the
contribution does not vanish,2 and the Polyakov loop corre
lation is a color-averaged mixture of both:

e2V~R,T!/T5
1

9
e2V1~R,T!/T1

8

9
e2V8~R,T!/T. ~2.8!

At high temperatures, perturbation theory predicts@14# that
V1 andV8 are related as

V1528V81O~g4!. ~2.9!

Correspondingly, the color-averaged potential is given by

V~R,T!

T
52

1

16

V1
2~R,T!

T2 . ~2.10!

Due to the interaction with the heat bath, the gluon acqu
a chromoelectric massme(T) as the IR limit of the vacuum
polarization tensor. To lowest order in perturbation theo
this is obtained as

S me
~0!~T!

T D 2

5g2~T!S Nc

3
1

NF

6 D , ~2.11!

whereg(T) denotes the temperature-dependent renormal
coupling,Nc is the number of colors, andNF the number of
quark flavors. The electric mass is also known in next-
leading order@18#, in which it depends on an anticipate
chromomagnetic gluon mass although the magnetic gl
mass itself cannot be calculated perturbatively. Fourier tra
formation of the gluon propagator leads to the Deby
screened Coulomb potential for the singlet channel,

V1~R,T!52
a~T!

R
e2me~T!R, ~2.12!

where a(T)5g2(T)(Nc
221)/(8pNc) is the renormalized

T-dependent fine-structure constant. It has been stressed@19#
that Eq. ~2.12! holds only in the IR limitR→`, because
momentum-dependent contributions to the vacuum polar
tion tensor have been neglected. On the other hand, ind
tions for the validitiy of the perturbative relations@Eqs.
~2.10!–~2.12!# have been previously observed for tempe
tures larger than about 4Tc @12#. In any case, at temperature
just aboveTc perturbative arguments will not apply, so th

- 2It is, however, small compared to the singlet part. This is tr
perturbatively@see Eq.~2.9!# as well as numerically@10#.
1-2
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HEAVY QUARK POTENTIALS IN QUENCHED QCD AT . . . PHYSICAL REVIEW D 62 034021
we have chosen to attempt a parametrization of the num
cal data with the more general ansatz@10#

V~R,T!

T
52

e~T!

~RT!d e2m~T!R, ~2.13!

with an arbitrary powerd of the 1/R term, an arbitrary coef-
ficient e(T), and a simple exponential decay determined b
general screening massm(T). Only for T@Tc and large dis-
tances we expect thatd→2 and m(T)→2me(T) @Eq.
~2.10!#, corresponding to two-gluon exchange.

III. RESULTS BELOW Tc

The results to be presented here as well as in Sec. IV
based on two different sets of data. The first set, referre
as I in the following, was generated with a tree-lev
Symanzik-improved gauge action consisting of 131 and 2
31 loops. The lattice size was 32334. We used a
pseudoheatbath algorithm@21# with Fabricius-Haan-
Kennedy-Pendleton~FHKP! updating@22# in the SU~2! sub-

FIG. 1. The potentials in units set by the temperature at thb
values analyzed forNt54 ~case I!. The critical coupling for this
action on our lattice size has been determined asbc54.0729(3)
@25#.

FIG. 2. The same as Fig. 1, except forNt56 ~case II!. The
critical coupling isbc55.8938(11)@20#.
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groups. Each heatbath iteration is supplemented by f
overrelaxation steps@23#. To improve the signal in calcula
tions of Polyakov loop correlation functions, link integratio
@24# was employed. For eachb value the data set consists o
20 000–30 000 measurements separated by one sweep.

The second set of data~II ! was obtained as a by-produc
of earlier work, the analysis of the equation of state@20#. The
gauge configurations used in the present study were ge
ated with the standard Wilson gauge action on lattices of s
32336 and 32338. The same algorithm as for I was em
ployed. The statistics amounts to 1000 to 4000 meas
ments separated by ten sweeps for theNt56 data, and be-
tween 15 000 and 30 000 measurements at each swee
Nt58. The errors on the potentials as well as the fit para
eters were determined by jackknife in both cases. Typical
bin size of 1000 sweeps has been used, which is well bey
the estimated autocorrelation times.

The lattice results for the potential at temperatures be
Tc are shown in Figs. 1, 2, and 3. The correlation functi
@Eq. ~2.1!# has been computed not only for on-axis sepa
tions but also for some~in case I almost all! off-axis distance
vectorsRW . Although the lattice spacing for theNt54 data is
larger than for the other two lattice sizes, rotational symm
try is quite well satisfied due to the use of an improv
action in this case. As we will focus on the intermediate-
large-distance behavior of the potential, it was not attemp
to specifically treat the deviations from rotational invarian
at small separations. Note that the distances covered by
data extend toRT&4 for I, while in case II we could obtain
signals up toRT&2.

The potentials have first been fitted to Eq.~2.4!, with two
free parameters: the self-energyV0 and a possibly
temperature-dependent string tensions(T). These fits work
rather well even when data at small separations are inclu
because the fit ansatz also accounts for a 1/R piece in the
potential. The results to be quoted for the string tens
~Table I! have, however, been obtained when the data
small separations are excluded from the fit. Typically,
minimal distance ofRT.1/2 was chosen. The fits are stab
under variation ofRmin in this ballpark, and return goodx2

values. Varying the maximum distance to be fitted does

FIG. 3. The same as Fig. 1, except forNt58 ~case II!. The
critical coupling isbc56.0609(9)@20#.
1-3
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KACZMAREK, KARSCH, LAERMANN, AND LÜTGEMEIER PHYSICAL REVIEW D62 034021
lead to noticeable changes of the results. This holds for
three lattices.

The results for the string tension, normalized to the cr
cal temperature squared,s/Tc

2, are summarized in Fig. 4
The temperature scale has been determined from mea
ments of the string tension atT50 @20,26,27#. The finite-
temperature string tension is compared to these result
zero temperature,s(0)/Tc

2, shown as the line in the figure
Quite clearly, in the investigated temperature range there

TABLE I. Results for the string tension in lattice units from fi
with Eq. ~2.4!. In those cases where two lines are printed for a giv
b, the upper line refers to averages over the whole sample while
lower line takes into account only configurations which are in
confined phase.

Nt b T/Tc sa2

4 3.95 0.804 0.2256~6!

4.00 0.886 0.1783~4!

4.02 0.916 0.1581~2!

4.04 0.947 0.1339~4!

4.05 0.963 0.1263~3!

4.06 0.979 0.1113~8!

4.065 0.987 0.0970~8!

4.07 0.995 0.0882~15!

6 5.80 0.832 0.0917~10!

5.85 0.919 0.0634~23!

5.87 0.956 0.0526~8!

5.89 0.993 0.0203~13!

0.0400~20!

8 6.00 0.904 0.0386~6!

6.04 0.967 0.0204~5!

0.0300~15!

6.06 0.9985 0.0078~7!

0.0195~15!

FIG. 4. The string tension at nonvanishing temperature as
tained from fits with Eq. ~2.4!. The line denotes the zero
temperature string tension. In both cases the string tension
normalized toTc . For an explanation of the ‘‘corrected’’ dat
points, see the text.
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substantial deviations from the zero-temperature string
sion. These deviations amount to about 10% atT/Tc50.8,
and become larger when the temperature is raised.

Close toTc the results fromNt56 and 8 at first sight do
not seem to agree with the numbers coming from theNt
54 lattices. However, recall that the SU~3! quenched theory
exhibits a first-order transition with the coexistence of ha
ron and plasma phases at the critical temperature. The
neling rate between the two phases decreases exponen
;exp@22ŝ3(Ns /Nt)

2#, where ŝ5s I /Tc
3 is the normalized

interface tension. The lattices of data set II have sma
aspect ratios ofNs /Nt54 and 5.33, respectively, than th
Nt54 lattice, whose aspect ratio is 8. Correspondingly,
ensemble of configurations of the second set contains~more!
configurations in the ‘‘wrong,’’ on deconfined phase. In fa
close toTc , Polyakov loop histograms reveal this two-sta
distribution for Nt56 and 8, with a clear separability be
tween the two Gaussian-like peaks. Such a two-state sign
absent for theNt54 data. Carrying out the averaging of th
potential only over configurations with Polyakov loops in t
confined peak leads to the corrected data points in Fig. 4
temperatures not so close toTc this separation of phases
no longer possible, as the Polyakov loop histogram has t
into the deconfined phase, but it is not clear where o
should set the cut.

When we apply this correction, the agreement of the
sults from the three different lattices is evident. This sho
that the temperature dependence of the string tension is
subject to severe discretization effects. Moreover, the fu
tional form of the fit ansatz@Eq. ~2.4!#, as suggested by
string model calculations, describes the behavior of the
tice data quite well. However, with increasing temperatu
we observe a substantial decrease of the string tension a
from its zero temperature-value. Since the fit ansatz@Eq.
~2.4!# already contains ap/3T2 term, the decreasing slope o
the linear part of the potential cannot solely be accounted
by this leading correction.

In order to analyze the linear rising part of the potential
a more model-independent way, in a second round of fits
have compared our data with the ansatz

V~R,T!5V01s~T!R1CT ln~2RT!. ~3.1!

Note that this ansatz differs from Eq.~2.5! in so far it sum-
marizes all the linear dependence on the distanceR by an
explicitly temperature dependent string tensions(T). Due to
its lacking of a 1/R piece, this formula is very well capabl
of describing the data, but only if the fit is applied to larg
distances ofRT>1. For data set II this requirement leave
not too many data points to be fitted. In this case we chec
that Eq.~3.1! is able to parametrize the potential. Howeve
since we do not have as much room to check for stability
the results as one would wish, we refrain from quoting
sults for data set II. In case I we do have enough distan
and obtain fits with goodx2 values which are stable unde
variation of the minimal distance to be included in the min
mization.

In data set I we clearly observe the logarithmic term co
tained in Eqs.~2.5! and ~3.1!. The fits return values for the
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HEAVY QUARK POTENTIALS IN QUENCHED QCD AT . . . PHYSICAL REVIEW D 62 034021
coefficientC of the logarithm which are equal to 1 within a
error margin of less than 10%. Moreover, if we fix the co
ficient of the logarithmic term to 1, we obtain very stab
results for the string tension when the minimum distance
varied betweenRminT50.75 and RminT52.5. Conversely,
fixing C to 0 leads to a decreasing string tension whenRmin
is raised, possibly leading to a plateau atRminT>2. We thus
cannot exclude a purely linear rise at very large distanc
R>1.8 fm. However, the data can be described by Eq.~3.1!,
including the logarithmic term over the whole distance ran
explored. We take this as a confirmation of a logarithm
piece in the potential with a strength as anticipated from
string model calculation@4# or, equivalently, a subleadin
powerlike 1/R factor with power 1 contributing to the
Polyakov-loop correlation function.

Because of these findings, we fix this coefficient to 1
the following. The resulting string tension is given in Tab
II and normalized to its zero temperature value is shown
Fig. 5. The temperature dependence compares well with
~modified! prediction @3# of the Nambu-Goto model@Eq.
~2.6!#,

s~T!

s~0!
5aS 12b

T2

Tc
2D 1/2

. ~3.2!

TABLE II. Results for the string tension from fits with Eq
~2.5!.

Nt b T/Tc sa2

4 3.95 0.804 0.1592~8!

4.00 0.886 0.1125~4!

4.02 0.916 0.0925~3!

4.04 0.947 0.0686~3!

4.05 0.963 0.0607~3!

4.06 0.979 0.0458~6!

4.065 0.987 0.0316~9!

4.07 0.995 0.0221~11!

FIG. 5. The string tension as obtained from fits with Eq.~3.1!,
normalized to its zero-temperature value. The line is the result
fit to this ratio with the string model motivated ansatz@Eq. ~3.2!#.
The data are compared with the lowest-order temperature effec
the linear part of the potential@Eq. ~2.5!#, shown as the dotted line
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Recall that the string model prediction assumes a seco
order transition with a continuous vanishing of the stri
tension at the critical temperature. The deconfinement tr
sition in pure SU~3! Yang-Mills theory, however, is known
to be of first order. Thus a discontinuity at the critical tem
perature is expected. To account for this, the coefficienta
andb in Eq. ~3.2! are allowed to deviate from unity. In fac
the fit to the data, shown as the line in Fig. 5, results in
valuesa51.21(5) andb50.990(5). This leads to a nonva
nishing string tension at the critical temperature of

s~Tc!

s~0!
50.121~35!. ~3.3!

This number can be converted into a value for the~physical!
mass gap at the transition point,mphys(Tc)/Tc5s(Tc)/Tc

2

50.30(9). This is a bit below, but not incompatible with
earlier results of dedicated analyses of the order of the
confinement transition,mphys(Tc)/Tc50.4– 0.8, as summa
rized in Ref.@6#.

Finally, we compared the string tensions(T) defined in
Eq. ~3.1! with the leading behaviors(0)2pT2/3 as given in
Eq. ~2.5!. This is shown as the dotted line in Fig. 5. Similar
to Fig. 4, the comparison fails, reflecting that nonleadi
terms contribute substantially.

IV. RESULTS ABOVE Tc

Above the critical temperature, we have normalized
Polyakov loop correlations to their cluster value

V~ uRW u,T!52T ln
^L~0!L†~RW !&

u^L~0!&u2 ~4.1!

to eliminate the self-energy contributions. In principle, t
correlation function itself is periodic inR. Alternatively, one
can fit the potential@Eq. ~4.1!# with a periodic ansatz:
V(R)→V(R)1V(Nsa2R). The second contribution turn
out to be very small at the distances fitted, and both pro
dures lead to the same results for the fit parameters.

In the following we first concentrate on data set I, whi
has somewhat better statistics and which, more importan
covers the explored range of distances more densely; see
6. As explained in Sec. II, we fit the potentials aboveTc with
the generalized screening ansatz@Eq. ~2.13!#, where the ex-
ponentd of the Coulomb-like part is treated as a free para
eter. It turns out that the value of the exponent and the va
of the screening massm are strongly correlated. In particula
at higher temperatures it is difficult to obtain fit results whi
are stable under the variation of the minimum distance
cluded in the fit. These fluctuations have been taken i
account in our estimates of the error bars.

In data set I, forb values greater than or equal to 4.15, w
observed that at large quark separations the Polyakov-
correlation decreases below the cluster value. In Ref.@19# it
was argued that finite momentum contributions to t
vacuum polarization tensor can give rise to a modifi
screening function which undershoots the exponential De
decay at intermediate distances, and approaches the in

a

on
1-5
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KACZMAREK, KARSCH, LAERMANN, AND LÜTGEMEIER PHYSICAL REVIEW D62 034021
distance limit from below. Despite the high, yet limited, pr
cision of our data, we are not in the position to conform t
suggestion. Instead, we have, in the above-mentioned c
taken an operational approach, and added an overall con
to our fit ansatz.

In Fig. 7 we summarize the results for the exponent.
temperatures very close toTc , the exponentd is compatible
with 1. When the temperature is increased slightly,d starts
rising to about 1.4 for temperatures up to 2Tc . Between two
and three timesTc , the exponent centers around 1.5,
though the error bars tend to become rather large. A valu
2, as predicted by perturbation theory, seems to be ruled
however, in the investigated temperature range.

The results for the screening massm(T) obtained from
the same fits with Eq.~2.13! are shown in Fig. 8. The screen
ing mass turns out to be small but finite just aboveTc , and
rises rapidly when the temperature is increased. It reach
value of about 2.5T at temperatures around 1.5Tc , and
seems to stabilize there also. Figure 8 also includes a c
parison with lowest-order perturbation theory,m(T)

FIG. 6. The potentialsV(R,T) for the b values abovebc ana-
lyzed on theNt54 lattices. The Polyakov loop correlations ha
been normalized to their cluster value. Potentials and distance
given in units of the temperature.

FIG. 7. Fit results for the exponentd of the Coulomb-like part of
the potential aboveTc @Eq. ~2.13!#, as a function of the temperature
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5Ame
(0)(T), with me

(0)(T) as given in Eq.~2.11!. For the
temperature-dependent renormalized couplingg2(T), the
two-loop formula

g22~T!52b0 lnS 2pT

LMS
D1

b1

b0
lnF2 lnS 2pT

LMS
D G ~4.2!

was used, whereTc /LMS51.14(4) @27,28#, and the lattice
scale was set by the lowest Matsubara frequency 2pT. Per-
turbation theory predicts the factorA to be 2. Indeed, adjust
ing to the data points at the two highest temperaturesT
.2Tc , leads to a value ofA51.8260.15, which is close to
the prediction. However, in view of the results for the exp
nent d we regard this as an accidental coincidence. This
further supported by analyses@13# in color SU~2!, where the
electric gluon mass was obtained from gluon propaga
and from the singlet potentialV1 ; see Eq.~2.12!. Here it was
found that the observed mass follows a behaviorme(T)
.1.6me

(0)(T). If this result could be transferred to the ca
of SU~3!, and Ref.@10# provided some early evidence fo
this, we would havem(T).1me(T) contrary to the pertur-
bative value of 2.

The potentials aboveTc from data set II are very simila
to the ones already discussed. Fits with Eq.~2.13! with a free
exponent do work, and return parameter values in the s
ballpark as in case I. However, because of the much sma
number of distances probed in this set, the fit results are
as reliable as in case I. Therefore we have chosen to c
out fits with Eq.~2.13!, but with d kept fixed. For compari-
son, data set I has also been treated this way.

The general feature of these fits is that increasingd from
1.0 to 2.0 leads to decreasing numbers for the scree
mass. For instance, at 3Tc , we obtainm/T'3 for d51.0,
whereas withd52.0 the result for the screening mass
m/T'2. Similar shifts occur at all temperatures. The qual
of the fits, however, is not always the same. Typically,
temperatures close toTc fits with d52 return unacceptable
x2 values, while, forT>2Tc , thex2 values are equally good
for all values ofd and cannot be used to distinguish betwe

re

FIG. 8. Fit results for the screening massm(T) @Eq. ~2.13!#, as
a function of the temperature. The lines denote the comparison
the perturbative prediction,m(T)5Ame

(0)(T); see the text.
1-6
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the various exponent values anymore. This observation
nicely into the picture as shown in Fig. 7.

As an example of the temperature dependence of
screening mass at fixedd, in Fig. 9 we show our results a
d51.5 for all three different lattice sizes. Recall that a va
of d'1.5 was favored at all temperaturesT*1.2Tc of data
set I. The general behavior is similar to that shown in Fig
the screening mass is small close toTc and starts to rise
quickly. It reaches a kind of plateau with a value ofm/T
'2.5 for temperatures between roughly 1.5Tc and 3Tc . For
temperatures beyond 3Tc , the Nt58 data may indicate a
slow decrease with rising temperature. The main conclus
to be drawn from Fig. 9 is that the results from the differe
lattices, i.e., at different lattice spacings, are in agreem
with each other within the error bars. Thus, in the inves
gated temperature range, color screening effects are no
properly described by simple perturbative predictions.

V. CONCLUSION

In this paper we have analyzed the heavy quark poten
at finite temperatures in the range 0.8Tc up to about 4Tc in
SU~3! Yang-Mills theory. We have done so on lattices wi
three different temporal extents, and found results consis
with each other. Moreover, the standard Wilson action
well as a tree-level improved Symanzik action were us
Again, consistency was observed. This indicates that fi
lattice spacing artefacts are not futilizing the analysis.

The potentials at temperatures below the critical tempe

FIG. 9. The screening massm from fits with Eq. ~2.13! with a
fixed value ofd51.5 for the exponent. The results from all thre
different lattice sizes are drawn as a function of the temperatur
03402
ts

e

:

n
t
nt
-
yet

al

nt
s
.

te
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ture of the deconfinement transition are well parametrized
formulas which have been derived within string models.
particular, the presence of a logarithmic term with the p
dicted strength could be established. However, the obta
string tension shows a substantial temperature depend
which is not in accord with the leading string model resu
Instead, we find a decrease of the string tension which
compatible with being proportional to (Tc2bT)1/2 in the
critical region belowTc . At the critical temperature the
string tension retains a finite value ofs(Tc)/s(0)
50.121(35), consistent with a first-order transition.

Above the deconfinement transition the potentials sho
screened powerlike behavior. By comparing the data w
perturbative predictions, we can further strengthen ear
claims that these predictions do not properly describe
potentials up to temperatures of few times the critical one
particular, it can be excluded that the exchange of two glu
with an effective chromoelectric mass is the domina
screening mechanism. Judging from the exponent of theR
term in the potential, at temperatures close toTc it seems that
the complex interactions close to the phase transition arra
themselves in such a way as to be effectively describable
some kind of one-gluon exchange. At temperatures of ab
1.5–3 timesTc we observe a behavior which could be inte
preted as a mixture of one- and two-gluon exchanges.
resulting screening mass scales with the temperature,m(T)
.2.5T, a perturbative decrease due to the temperatu
dependent renormalized couplingg(T) is not really seen.
Thus it is very likely that nonperturbative phenomena a
higher-order perturbative contributions are needed to exp
the observed screening behavior in the investigated temp
ture range.
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