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Flavor-conserving CP phases in supersymmetry and implications for exclusivé8 decays
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We study rare exclusivB decays based on the quark-level transitior s(d)! "1 ~, wherel =e or u, in the
context of supersymmetric theories with minimal flavor violation. We present analytic expressions for various
mixing matrices in the presence of n&@WP-violating phases, and examine their impact on observables involv-
ing B and B decays. An estimate is obtained f@P-violating asymmetries iB—K®[*1~ and B
—p(m)| 1~ decays for the dilepton invariant mass region 1.2 &aX|+-<My,,. As a typical result, we
find a CP-violating partial width asymmetry of about6% (—5%) in the case oB— 7 (B— p) in effective
supersymmetry with phases 6f(1), taking into account the measurement of the inclusivesy branching
fraction. On the other han@; P asymmetries of less than 1% are predicted in the cafe-oK*). We argue
that it is not sufficient to have addition@lP phases 0©(1) to observe larg€ P-violating effects in exclusive
b—s(d)I "1~ decays.

PACS numbd(s): 13.20.He, 11.30.Er, 12.60.Jv

I. INTRODUCTION We place particular emphasis @P-violating effects as-

sociated with the partial rate asymmetry betwéeand B
Within the standard modéSM), CP violation is caused decays as well as the forward-backward asymmetry of the
by a non-zero complex phase in the Cabibbo-Kobayashit—. Within the SM these effects turn out to be unobservably
Maskawa(CKM) quark mixing matrix 1]. While the experi-  gmall (=103 in the decaysB—K®)*I~ [21], and
mentally observed indired@ P violation in the neutral kaon

System, ex , can be accommodated n Fhe SM’_ it IS s“_” aN However, in models with neve P-violating phases in addi-
open question whether the SM descriptiorGd? violation is 5 1o the single phase of the CKM matrix, larger effects
consistent with the new experimental result on dirf€®  may occur due to the interference of amplitudes with differ-
violation, €'/ €, since the theoretical prediction of its pre- ent phases. The purpose of the present analysis is to explore
cise value suffers from large hadronic uncertainfi2s On  Cp-violating observables in the aforementioned FCNC reac-
the other hand, if the baryon asymmetry of the universe hagons that could provide evidence of a non-standard source of
been generated via baryogenesis at the electroweak phage violation, and hence may be useful in analyzing super-
transition, the CKM mechanism @ P violation cannot ac- symmetry in future collider experiments.
count for the observed amount of baryon asymmetry. This The paper is organized as follows. In Sec. Il, we exhibit
feature could be a hint of the existence GP-violating  the various mixing matrices of the minimal supersymmetric
sources outside the CKM matrf]. standard model(MSSM) in the presence of additional
Important tests of the SM are provided by flavor-changingC P-violating phases. Within such a framework we discuss
neutral current(FCNC) reactions involvingB decays[4],  different scenarios for the SUSY parameters. In Sec. lll, we
thus offering an opportunity to search for supersymmetricare primarily concerned with the short-distance matrix ele-
extensions of the SNI5,6]. There are at present only a few ment and Wilson coefficients governibg-s(d)I 7|~ in the
FCNC processes which have been observed experimentally)SSM. We also briefly describe an approximate procedure
but the situation will change considerably after the comple+to incorporate quark antiquark resonant intermediate states—
tion of B factories in the near future. _ namelyp,w, and thel/ family—which enter through the
In this work, we analyze the exclusive decay decay chairb—s(d)Vqg—s(d)l *1~. Section IV is devoted
—K®)[*1~ andB— p(m)I I~ in the context of supersym- to the exclusive decay mode8—K®*)I*|~ and B
metry (SUSY) with minimal particle content and-parity ~ —(p)l 1=, where formulas are given to calcula@P
conservatiori7,8]. The inclusive reactioB— X¢ *1~ within ~ @symmetries which can be determined experimentally by
supersymmetric models has been extensively studied in Refgeasuring the difference & andB events. In Sec. V, we
[5,9—14 and, more recently, in Ref17]. New physics ef- present our numerical results fGP-violating observables in
fects in the exclusive channels have been investigated ithe non-resonant domain 1.2 GeWl+-<My,,, taking
Refs.[18-20. into account experimental bounds on r&@elecays such as
b—sy. We summarize and conclude in Sec. VI. The analytic
formulas describing the short-distance effects in the presence
*Email address: krueger@gtae3.ist.utl.pt of SUSY as well as the explicit expressions for the form
"Email address: fromao@alfa.ist.utl.pt factors are relegated to the Appendixes.

amount to only a few percent iB—p(m)l "1~ [21,23.
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[l. THE MINIMAL SUPERSYMMETRIC STANDARD the EDM’s include cancellations among different SUSY con-
MODEL tributions[23,24], and nearly degenerate heavy sfermions for
the first two generations while being consistent with natural-

e::a:zle ;V:;S'Z’nthri[)ee?gprje.\g l;?#rceﬁgzsvflagg?irnhe ness bounds. The latter can be realized within the context of
9 ’ ge nu vioiating p ppear so-called “effective SUSY” modeld25], thereby solving

mass matrices as well as the couplings. After an appropriatﬁa]e SUSY FCNC an€P problems

redefinition of fields one ends up with at least two new To get an idea how supersymmetry affe@® observ-
CP-violating phases, besides the phase of the CKM matm%bles in rareB decays, we will consider as illustrative ex-

2 e QCD vacuur gl which canolbe el aweples e fllwng ypes of SUSY moces:
tions at somé high scale only two new physical phases ariseg; (1) MSSM_coupIed tN=1 supergravity W.'th a universal
. . o eSUSY-breaklng sector at the grand unification scale.

namelye,,, associated with the Higgsino mass parameter "y o cive SUSY with near degeneracy of the heavy
in the superpotential angd,  connected with the soft SUSY-  first and second generation sfermions.
breaking trilinear mass terms. In the present analysis, we restrict ourselves to the discus-

In order to fulfill the severe constraints on the electricsion of flavor-diagonal sfermion mass matrices—that is, we
dipole momentEDM’s) of electron and neutron, one gen- assume the CKM matrix to be the only source of flavor

erally assumes that the new phases are less ({0 ?). mixing.!
Since there is no underlying symmetry which would force
the phases to be small, this requires fine-tuning. Of course, A. Mixing matrices and new CP-violating phases

one can relax the tight constraint on these phases by having _ ) . .
masses of the superpartners in the TeV region; this heavy TNiS subsection concerns the mass and mixing matrices
SUSY spectrum may, however, lead to an unacceptably |arg|@levant' to our analysis. In what follows, we will adopt the
contribution to the cosmological relic density. conventions of Ref|26].

It has recently been pointed out by several authors that it
is possible to evade the EDM constraints so that phases of
O(1) still remain consistent with the current experimental The mass-squared matrix of the charged Higgs bosons
upper limits. Methods that have been advocated to suppressads

1. Charged Higgs-boson mass matrix

, Bu tanB+ M3, sirB+t, /v, Bu+ M3, sinBcosp
M .= , 2.1
He Bu+ M3 sinB cosB Bu cotB+ M3, codB+t,/v, @
|

with —cosB  sing
=| . (2.9

1 sinB cosgB

B,uzEsinZ,B(mﬁl+mﬁ2+2|,u|2), (2.2)

Before proceeding, we should mention that radiative correc-

tions to the Higgs potential induce complex VEV’s. As a

matter of fact,CP violation in the Higgs sector leads to an

additional phase which, in the presence of chargino and neu-

tralino contributions, cannot be rotated away by reparametri-

HereB and u refer to the complex soft SUSY-breaking and zation of fi(_al_ds[27]. As a result, the radiatively in.duced

Higgsino mass parameters respectiverl}ﬁ are the soft phas_e modifies the squark, ch_arglno, and_neutralmo mass
1.2 matrices. In the present analysis, we set this phase equal to

SUSY breaking Higgs-boson masses at the electroweajgrq.

scale, and, , stand for the renormalized tadpoles. The mix-

ing anglep is defined as usual by t@=v,/vy, with vy,

denoting the tree level vacuum expectation val(égV'’s)

of the two neutral Higgs fields. In E€R.2) we have adjusted We now turn to the &6 squark mass-squared matrix

the phase of th@ parameter in such a way thBj is real at ~ which can be written as

tree level, thereby ensuring that the VEV's of the two Higgs

fields are real. Consequently, the mass matrix becomes real”

and can be reduced to a diagonal form through a blorthOQO'lone should keep in mind that renormalization group effects in-

- di 2
nal transformation M 2)?=0M;,.O". At the tree level, duce flavor off-diagonal entries in the sfermion mass matrices at the
i.e.t;=0 in Eq.(2.1), we have weak scalgsee below

2 2, 2
| |2:_EM2+mH23|nZB my, cosB
# 27 cos 28

(2.3

2. Squark mass matrices
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2 2 2

i 2
, AL MaLRe "%a o MBLL:VEKM(MD)LLVCKM+M%
AR 9RR —glvl%cos 28(3— 2 sirtoy)1, (2.93
in the (g, ,qr) basis, and can be diagonalized by a unitary
matrix Ry such that M%LR= Mp|Ap— u* tangl|, (2.9p
(Mgia%2=RaM§R£. (2.6) 1
2 2 2 2 :
MZ  =(M3)rrtM5—= M3 cos 28 sirf by, (2.99
For subsequent discussion it is useful to define the36  PRrr (Mp)rrt M =3 Mz cos 28 W
matrices
ep=arg Ap— u* tangl). (2.90

auy .. = . ar)_. = ) =

(Ta=(Radai, (M= (Ry)aiva, d U’D’(2_7) Here 6,, denotes the Weinberg angle represents a 33

_ ) unit matrix, (Mé)LL and (l\/l%)RR are Hermitian scalar soft

with U and D denoting up- and down-type quarks respec-p,qq matrices, andqyy is the usual CKM matrix. In deriv-

tively. Working in the so-called “super-CKM” basig6] in . .

which the 3<3 quark mass matricel, and M, are real "9 Eq. (22'93’ we have used the refation M(‘%)'-'-

and diagonal, the submatrices in E8.5) take the form =VEm(ME) L Ve » Which is due to S(®) gauge invari-
ance. Since we ignore flavor-mixing effects among squarks,

1 2 2 . .

6 and hence real—whereas thAg's are given by
M%LR:MU|AU_M* COtBl|, (28b) AU:dianuaACaAt)! AD:diagAdvASaAb)y
5 A=|A e, (2.10
2 — (M2 2" M2 i
MURR (Mg)rrt MU+3 MZ cos 28 sirr O, (2.89 Consequently, the squark mass-squared matrix(E§), in
the up-squark sector decomposes into a series>o? 2na-
eg=arg Ay— u* cotpl), (2.80 trices. As far as the scalar top quark is concerned, we have
|
, m%L+mt2+%M§COSZB(3—4 SirfOy) m|A— u* cotBle 4t
M:= o 5 T, _ , (2.11
my A;— u* cotg|e' ¢t m; +met g M3 cos 28 sirf 6y

where m;zL and m-?R are diagonal elements of\/(%),_L and (M%)RR respectively, whilep; can be readily inferred from Eq.

(2.8d). Diagonalization of the stop mass-squared matrix then leads to the physical mass eigénstatss, namely
1, cosf;  singre ¥\ [T, Iot TR\ (7, ,
= . - = , A
T, T\ -sinoecosor 1) T rt re/lg, 212
where the mixing angl#; is given by the expression-(w/2< ;< m/2)

2my|A;— u* cotp|

tan 26;= . (2.13
' (m;zL—m%R)Jr £ M2 cos 28(3— 8 sirf6yy)
3. Chargino mass matrix
The chargino mass matrix can be written as
M, J2MyysinB
M7+ = , (2.19

© \2Mycosp  |ule'ex

where we have adopted a phase convention in which the mass term of the W-ind/fielts real and positive. Note that
without loss of generality, we can always perform a global rotation to remove one of the three phases from the gaugino mass
parameterd; (i=1,2,3).
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The mass matrix can be cast in diagonal form by means of a biunitary transformation, namely
Mg‘i‘gz U*M;5=VT, (2.15

whereMg(iilg is diagonal with positive eigenvalues, abld V are unitary matrices. Solving the eigenvalue problem

diagi2 _ e n~-. il (T2 I M-yt
(MX;’) U*M5=M7.UT=VM_ . M5-VT, (2.16
we find
cosé sing, e 'eu
= y , (2.17
—singye'fv cosby
( cosfye 1 singye (evtoy) X
= . i ; , A
—singe'®v=?%2  cosh,e'¢2 (218
with the mixing angles
2\2My[ M2 codB+ | u|? sir?B+|u|M, sin 28 cose,, 1V2
tan 26, = 5 5 > , (2.19
M3—|u|*—2Mjycos 28
2\2M [ M2 sir?B+|u|? codB+|u|M, sin 28 cose,, 112
tan 26, = 5 > 5 : (2.20
M35—|u|“+2Mg, cos 28
|u|sing,, sing
t@ney=- M, cosp+|ulsinBcose,’ 2.23
|ulsing, cosp
@ney=- M, sinB+|u|cosB cose,’ (2.22
|u|sing ,M3,sin 28
tang, = 5 5 ——— : (2.23
Mz(m;(lt—|ﬂ| )+|u|Mysin 28 cose,,
. 2
lsin, (2 —M2)
tang,= — (2.29

M,M?, sin 2,8+|M|(m;2(¢—M§)COS<pM'
2
Here we have chosen 7/2< 0, <7/2, — < ¢;,¢;<m, wherei=U,V, and the chargino mass eigenvalues read

1
mfi = §[M§+ |2+ 2MEF{MS— | 1]?) 2+ 4My, co$28+ AMG[ M5+ | |2+ 2| u| My sin 28 cose, ]} (2.25
1,2

B. SUSY particles and FCNC interactions

We present here the SUSY Lagrangian relevant to the FCNC processes of interest which will also serve as a means of fixing
our notation. The interactions of charged Higgs bosons, charginos, neutralinos, and gluinos in the presenceRophases
can be written a$11,26|

2
ESUSY:\/ELM[COW(UM uVermPLA) +tanB(UVeuMpPrA) TH + 2 X [UT (X PL+ X FPR)d+ 1 (X[ -PL+ X FPR)I]
w i=1
4 o 8 o
+ 2 XUANZP L+ ZRPR)d+TH(ZL P+ Z RPR)I T— V20, >, 7T (GPLP, — GPRPR) TPd+Hi.c., (2.26
k=1 b=1
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where generation indices have been suppressed,Pand phases which are associated with gagandA, parameters.
=(1¥ ys5)/2. The mixing matrices in the super-CKM basis After all, we have at the GUT scale

are given by t@ang, My, Mo,

A0|' |1u'0|v (PAO! (’DM()’ (228)

My Veru with M, and my being real. The parameters at the elec-
V2Myysing ' troweak scale are then obtained by solving the renormaliza-
(2.274  tion group equation$RGE’s).
A few remarks are in order here. First, the phases of the
Mp gaugino mass ternmidl; are not affected by the renormaliza-
—_ (2.27hH  tion group evolution, and therefore the low energy gaugino
V2Myy cosp mass parameters are real. Second, the phase that appears to-
gether with thew parameter does not run at one-loop level so
Mg that Cu=Puy Moreover, to satisfy the constraints on the

EDM'’s of electron and neutronp, has to be ofO(107?)
unless strong cancellations between different contributions
occur. Third, solving the RGE’s for the evolution of the
CP-violating phase of thé\;-term yields a small value for
@a, and thus is not constrained by the EDM'$3,28|.

Lastly, off-diagonal entries occur in the squark mass matri-

ces due to renormalization group evolution of the parameters
even in the absence of flavor mixing at the GUT scale. How-

ever, these effects are found to be small and therefore the
squark mass matrix is essentially flavor diagonal at the elec-
troweak scalésee also Refd.11,29).

X.UL=g

U U
] =V e+ VETER

u
X[ *=gUjol Ve

L L

Xt=—gVAR,, XR=gU,R——

9 9t V2My cosB
(2.279

1
2 [(— ot §tan0WN[§1)FDL

: (2.279

Mp
M,y cosp
(2.27¢

_tamWNleDR+ NkSFDL

2. Effective supersymmetry
As an example of SUSY models with largeP phases,

Me
My cosB
(2.279

zi- 9

<2

[(N§2+tan¢9WN§1)FLL— rltR

Mg
M,y cospB
(2.279

g

ZR=— —

© 2

2 tardy Ny T FR+ Nyt

we consider the effective supersymmetry pict[26] with-

out assuming universality of sfermion masses at a high scale.
Within such a framework, the first and second generation
sfermions are almost degenerate and have masses above the
TeV scale, while third generation sfermions can be light
enough to be accessible at future hadron colliders. Conse-
quently, FCNC reactions as well as one-loop contributions to
the EDM'’s of electron and neutron are well below the cur-

rent experimental bounds.

However, it should be noted that the EDM'’s also receive
contributions at two-loop level involving scalar bottom and
@3 being the phase of the gluino mass tey. (For scalar  top guarks that may become important for phases of order
lepton as well as neutralino mass and mixing matrices, wélnity in the large taB regime[30]. In our numerical work,
refer the reader to Refi26].) In the remainder of this section, tang is assumed to be in the intervai2an=<30.
we briefly discuss two SUSY models with quite distinct sce-
narios for theC P-violating phases.

GDL:e_i<P3/2FDL, GDR:ei<p3/2FDR’ (227h

Ill. RARE B DECAYS AND NEW PHYSICS

A. Short-distance matrix element

C. Different scenarios for the SUSY parameters Let us start with the QCD-corrected matrix element de-

scribing the short-distance interactions m—s(d)I 1~
within the SM. It is given by

1. Constrained MSSM

In order to solve the FCNC problem in the MSSM and to
further reduce the number of unknown parameters, the Gea
MSSM is generally embedded in a grand unified theoryMSD:LthV;}
(GUT). This leads to the minimal supergravity|SUGRA) N
inspired model, commonly referred to as the constrained
MSSM [7]. In this model one assumes universality of the
soft terms at some high scale, which we take to be the scale
of gauge coupling unificationM g7, implying that (i) all
gaugino mass parameters are equal to a common khass
(i) all the scalar mass parameters share a common vajue
and (iii) all the soft trilinear couplings are equal £g. As a
result, the MSUGRA model has only two new independent

(& c10(H(K)[fy,PLb|B(p))
eff

2C7 —
_?<H(k)|f|0-,uqu(mbPR

+ mfPL)b|§(p)> Ty*Pl+ (19— — 10| y*PRl 1,

(3.9
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where q is the four-momentum of the lepton pair, aiktl  the short-distance coefficients can be conveniently written as
=K,K* (,p) in the case off=s (f=d). In the SM, the

Wilson coefficientscS" and ¢, are real with values of Ci(Mw)=C?M(Mw)+Crt(Mw)+C?:(Mw)
—0.314 and—4.582 respectively, and the leading term in ~0 ~ )
¢ has the forn{31,32 +cf (M) +ci(My)  (i=7,...,10.
(3.5
c§'=cy+(3c1+Cr){g(m,0?)
FA[g(Me,qD)—g(my, g} +---, (3.2  The explicit expressions for the various Wilson coefficients

are given in Appendix B. Since we limit our attention to
wherecy=4.216. The Wilson coefficients will be discussed flavor-conserving effects in the squark sector, the neutralino

in detail in Appendix B. In the above expression and gluino exchange contributions in E§.5) will be omit-
ted in our numerical calculations.
—\%(p—in) for f=s, For future reference, we parametrize the new physics con-
VinVis ) . tributions as follows:
A= <~ Pl-p)—7 i
thth 2 2 - 2 2 fOI’ f:d,
(1-p)+n° (1-p)°t+7y ci(My) A Rg—
(3.3 = =|R|e'%, x= = (3.6)
7

c™MMy) -1

with p and » being the Wolfenstein parametdi3], where
the latter reflects the presence@P violation in the SM. For  wherey is real to a good approximation within the models
definiteness, we will assume=0.19 andn=0.35[34]. under study.
Finally, the one-loop functiomy(m; ,q%) at the scaleug
—My IS given bf C. Resonant intermediate states
8 8 4 2 We have considered so far only the short-distance inter-
A A 4y — — 11— v
9(m;,q9)=—gIn(mi/my)+ 5=+ g¥i— g (2+yDVIL=Vil  actions. A more complete analysis, however, has also to take

into account resonance contributions duaitg dd, andcc

<l @(1-y|In 1+V1-y; i intermediate states, i.p,w,J/,y', and so forth. A detailed
i 1-1—y; 7 discussion of the various theoretical suggestions of how to

describe these effects is given in RES6].
We employ here the approach proposed in Réf]
] ) (3.4  which makes use of the renormalized photon vacuum polar-
ization, I1},{s), related to cross-section data

1
+0(y;—1)2arctan——

=

where yj=4mi2/q2. Observe thatc and uu loops provide o€t e —hadrons
absorptive parts that are mandatory, as we show below, for a Rpad S)= O —— (3.7
non-zero partial width asymmetry besides the presence of a oe’e —uu’)

CP-violating phase.
with s=g2. In fact, the absorptive part of the vacuum polar-

B. Wilson coefficients and new physics ization is given by

Throughout this paper, we will assume that in the pres- o
ence of new physics there are no new operators beyond those IMII{S)= = RnadS), (3.9
that correspond to the Wilson coefficients appearing in Eq. 3
(3.2). (For a discussion of the implications of new operators
for rare B decays, see, e.g., RdB5].) Thus, the effect of whereas the dispersive part may be obtained via a once-
new physics is simply to modify the matching conditions of subtracted dispersion relati¢88]
the Wilson coefficients, i.e. their absolute values and phases

at the electroweak scale. as = RpadS')

As a result, we are left with additional SUSY contribu- Rell? (s)==—P —had® C §s 3.9
. . .. ff hat‘ 37 2 ol (! !
tions at one-loop level to the Wilson coefficiert§', cg", am7 s'(s'—s)

andcypin Eq. (3.1). In fact, they arise from penguin and box

diagrams with(i) charged Higgs boson up-type quark loops;with P denoting the principal value. For example, in the case
(i) chargino up-type squark loop@ii ) neutralino down-type of theJ/« family (i.e. 3/, ', . . .) theimaginary part of the
squark loops; an@v) gluino down-type squark loops. Thus, one-loop functiong(m,,s), Eq. (3.4), can be expressed as

2In order to avoid confusion with thg parameter of the super-  This method assumes quark-hadron duality and rests on the fac-
potential, we use the notatiquag for the renormalization scale. torization assumption.
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- — IV. THE DECAYS B—K®)|*|~ AND B—m(p)I*1~
Img(mg,S)= 3 Riad(S),  Ruad()=RE(9)+ Red(s), o _ _
The hadronic matrix elements in exclusiBedecays can

(3.10  be written in terms ofj>-dependent form factors, whegg is

the invariant mass of the lepton pair. In the work described

here, we employ heavy-to-ligit— K *) andB— 7(p) form

fhctors determined by Melikhov and Nikiti3] within a

relativistic quark model. To get an estimate of the theoretical
8 4 uncertainty that is inherent to any model for the form factors,

Reg(m;,s)=— §In(mC/mb)— ) we also utilize the parametrization of Colangeipal. [46],

which makes use of QCD sum rule predictions.
S f” Rhad(S') For simplicity of presentation, we do not display correc-

where the subscripts “cont” and “res” stand for continuum
and resonance contributions respectively, while the real pal
is given by

— " ds’. (3.11) tions due to a non-zero lepton mass, which can be found in
am? s'(s'—s) Refs.[22,47]. (The same remark applies to the light quark

o . . massesn 4.) Henceforth we shall denote pseudoscalar and
The contributions from the continuum can be determined by,ector mesons bP=K,m andV=K*,p respectively.

means of experimental data given in Rg¥9], whereas the

3

narrow resonances are well described by a relativistic Breit- A. B—P transitions
Wigner distribution.
However, in order to reproduce correctly the branching 1. Form factors
ratio for direct J/¢ production via the relation \cc The hadronic matrix elements for the dec&ys P can be
=y, parametrized in terms of three Lorentz-invariant form factors
BB HV e HI* 1) = BB HV ) BV 1 71, (see Appendix D for detailsnamely
(3.12

— — 1
(P(K)[fy,PLb[B(p))= 5[(2p—Q)ﬂf+(q2)+quf_(q2)],
whereH stands for pseudoscalar and scalar mesons, one has
to multiply ngg” in Egs.(3.10 and (3.11) by a phenomeno- (4.13
logical factork, regardless of which method one uses for the _ _ 1
description of the resonancg40,41.* Using the form fac- (P(k)|fio,,q"PLgb[B(p))=— 5[(ZP—Q)M2—(Mé
tors of Ref.[43] (see next sectigrtogether with experimen-
tal data on B(B—>K.(*)J/¢), B(B—>K(*)¢’), and B(B~ —M2)q,ls(g?),  (4.1b
—a~ JI ) [44], we find a magnitude fok of 1.7 to 3.3. At
this point two remarks are in order. First, the branching ratiovith g=p—k. Here we assume that the form factors are real,
for directd/y andy’ production is enhanced by a factef, in the absence of final-state interactions. Note that the terms
while it is essentially independent efoutside the resonance Proportional tog,, may be dropped in the case of massless
region. Second, the numerical results for aver@geasym-  leptons.
metries in the non-resonant continuum 1.2 GeVs
<2.9 GeV are not affected by the uncertaintyxn

Similar considerations also hold foru and dd systems
except that they resonance is described through Ma,b,c)=a%+b2+c?—2(ab+bc+ac), 4.2

2. Differential decay spectrum and forward-backward asymmetry

Introducing the shorthand notation

2\ 3/2 1
1- ) IFL(s)]?, (3.13 xi:EAUZ(MzB,Mf,s), (4.3

) 1
Rres( s)= Z S

where the pion form factor is given by a modified Gounaris-and recallings=q?, the differential decay rate can be written
Sakurai formuld45]. as (neglectingm; andmy)

dl'(B—PI*17)  G2a? _
dsdcoss, o ay3| VoV XRLICS T (5) + 2¢5mys(s)| +[cael () *Jsir?6, . 4.4
B

Here ¢, is the angle betwedn and the outgoing hadron in the dilepton center-of-mass system, and the Wilson coefficients are
collected in Appendix B. Defining the forward-backwdfeB) asymmetry as

4Strictly speaking, it is the term 3 +c,) RYY_in the approximation of Eq.3.2—which has to be corrected t(3c,+c,) RV taking

res res
into account non-factorizable contributions in two-bdglylecays(see, e.g., Ref42]).

034020-7



F. KRUGER AND J. C. ROM/O PHYSICAL REVIEW D 62 034020

fld ) dI’ J’O q p dr’
0 4“9 qsdcose, )19 °%"dsdcoss,
AFB(S): 1 dr 0 dl—‘ ’ (45)

jo d COSé"dsdcos@, * J',ld COS6'dsdcose|

which is equivalent to the energy asymmetry discussed in [R&f, it follows directly from the distribution in Eq4.4) that
Agg vVanishes in the case &— P11~ transitions. We note in passmg that, given an extended operator(basisn models
with neutral nggs boson exchang@&ew Dirac structure$l and| - vs| may occur in Eq(3.1), giving rise to a non-zero FB
asymmetry inB— P11~

B. B—V transitions
1. Form factors

The hadronic matrix elements describing the ded&ysV are characterized by seven independent form factors, which we
present in Appendix D, defined throughy(,:= +1)

(V(K)[Ty,PLb|B(P)) =i€,,ape™ P qﬁg<q2>——{ef 2)+(e5-q)l(2p—q),a.(gd)+q,a (g)]), (4.6

— — . 21
(V(K)[fi0,,0"PrbIB(P)) =i€,0pe™ PaP0. (47) 75 €119 (AP (ME—MP) +0°g - (97)]

1
9.(a*)+59°h(a?)

(€ ‘q)[(Zp—q)M

I+
N =

1
+0,/9-(g) - E(Mé—Mé)h(qz)H,

(4.6b

e* being the polarization vector of the final-state meson, @rg — k.

2. Differential decay spectrum and forward-backward asymmetry

The differential decay rate fd—VI*1~ in the case of massless leptons and light quarks takes the forra ¢r d)

dl'(B—VITIT)  G2a?
dsdcosé, 29775'\/'%

Vi Vi | 2X [ A(S) + B(s)cosd, + C(s)cog 6], 4.7

with Xy as in Eq.(4.3). The quantitiesA, B, andC are

2x3| 1 g )
A(s)=— stal(s)JrZ 1+ ——| ax(s) + XGas(s) +(k-q)as(s) |, (4.8
IVIV XV
B(s)=8Xy Re{ctJ cS"sAA, — cSmy(AB, +A,BO 1}, (4.9
2X3 1
C(s)=—+ VE sMGay(s)— —az(S) XGas(s)— (k- q)au(s)|, (4.10
\Y
wherek-q=(M3—M?2—s)/2, and
4/cM?m? 4 Re(cSMce™ )m,
ay(8)=(|c§"?+ e AL+ 2 BY - S ABy., (4.113
ay(S)=ay(S)y_y, az(s)=ai(S)y_.,, (4.11b
eff|2,.~2 effx
4/cS"°mg 2Re(c7 cg ™ )my
ax(8)=(|c2+|c1d?)A/A,+ Z B,B,— s (A,B,+A,B,), (4.119
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in which theA;’s andB;’s are defined as

A=0g(s), Ay=f(s), A;=a.(s), (4.123

By=0.(s), By,=0.(s)(M3—M)+sg_(s),

1
B,=—|g.(s)+ Esh(s) . (4.12b
The complex Wilson coefficients?“, CS“, andc,, are given in Appendix B.
Finally, using Eqs(4.5 and(4.7), we derive the forward-backward asymmetry
Re{ciJ c§"sAA,—cSmy(ABy+AB) T}
Agg(s) = 12Xy, [3A(5)+C(5)] . (4.13
|
C. CP-violating observables Fsum=F(§—>H| | —)+F(B_)g| 17), (4170

To discussCP-violating asymmetries, let us first recall

me necessary ingredients. Suppose the decay amplitude f\(/)vrith H=K®), 7. p. It should be noted that the asymmetry
B—F has the general form

A(D:p represents & P-violating effect in the angular distribu-
A(§_>F):ei¢>lAlei 514 gl b2p,ei%2, (4.14 tion of I_* in I_BandB decays whileﬁgP is the asymmetry in
the partial widths of these decays. As can be seen from Egs.
where 8, and ¢; denote strong phase€ P-conserving and  (4.4), (4.7), and(4.13, the latter involves the phases cf"

weak phasesP-violating) respectively A; andA, being  and cgﬁ while the former is also sensitive to the phase of the
rea). Together with the decay amplitude for the conjugatewilson coefficientc,.

process

AB—F)=e 1A%+ 1%2p,e1%  (4.15 V. NUMERICAL ANALYSIS
which can be obtained from E@4.14) by means ofCPT Given the SUSY contributions presented in the preceding
invariance, we may define tH@P asymmetry as sections, we now proceed to study the implications of super-

symmetry for exclusiveB decays.
_JAPP=]A? —2rsingsins (416

P |A2+| A2 1+2rcospcosstrd’ A. Experimental constraints

With r=A, /A, ¢= bi— b, andd= 5, — 5,. As can be eas- In our numerical analysis, we scan the SUSY parameter

space as given in Ref15] and take as input the parameters

ily seen from Eq.(4.16, a non-zero partial rate asymmetry > : i o :
y a.4.16 P y y displayed in Appendix A. In addition, we take into account

requires the simultaneous presence @ R-violating phase . . S
¢ as well as a&CP-conserving dynamical phasg the latter the_followmg experimental constraints: . .
being provided by the one-loop functiorg(m,,s) and ﬂ) From the measurementﬁof the mcluswg branching ratio
g(m,,s) present in the Wilson coefficienS” [Eq. (3.2].  B(B—Xs), which probesic7’|, one can derive upper and
Notice that in the limit in which the charm quark mass equaldower limits [48]:

the up quark mass there is @P violation in the SM.

— 4 . — 4
Given the differential decay distribution in the variabtes 2.0X10 "<B(B—Xsy)<4.5x10 % (95% C.L).

and co9),, we can construct the followin@ P-violating ob- 6D
servables:
This is specially useful to constrain extensions of the SM.
d dI g Indeed, following the model-independent analysis performed
C050| TS . . . o ff .
os D.S dsdcosé) 1o in Ref.[49], and taking the Wilson coefficient" in leading-
Acp(s)= ST JD < fo + J717 log approximatiorfsee Eq(B2) of the Appendi}, we obtain
f d cosf ———— ’
s dsdcosé,
(4.173 B(B— Xgy)~[0.801+ 0.444R,|?>+ 0.002Rg|?
where we have introduced +1.192 ReR;+ 0.083 ReRg
Fdiﬁ=F(§HHI+I‘)—F(Baﬁlﬂ‘), (4.17H +0.061RQR7R§)]><10_4, (5.2
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] 5
(@) x=-2 B x=2
51 N
4,
3,
|R:| 31 | Rr|
2_
2..
1_
1,
0 1 2 3 4 5 6 0 1 2 3 4 5 6
o ¢7

FIG. 1. Allowed region for|R,| and the corresponding P-violating phases, as determined from the inclusive measuremenb of
—Svy rate, using the leading-log expression ﬁ?}F. Diagrams(a) and(b) correspond to different values @f[Eq. (3.6)].

whereR; andRg are as in Eq(3.6). From Fig. 1 we infer  slightly within MSUGRA and effective SUSY with no addi-
that the preserth— sy measurement already excludes manytional flavor structure beyond the usual CKM mechanism
solutions forR;. [5,12,19. Moreover,CP asymmetries above th# ¢ reso-

(i) A CDF search for the exclusive decays of interestnance are dominated bgc resonant intermediate states,
yields the upper limits$3(B°—K*%u* 1. 7)<4.0x10°% and  whereas below 1 GeV theresonance has a strong influence
B(B*"—K*'utu)<5.2x10 % atthe 90% C.L[50]. Note on the asymmetry. This can be seen from Fig. 2, where we
that theK*°u* w~ upper limit is close to the SM prediction show theCP asymmetryAZ, [Eq. (4.178] betweenB~
[19,51]. As for the mode8— =l "1~ andB—pl "I ~,weare —7 "I~ andB"—=# 171~ as a function of the dilepton
not aware of any such limits. invariant mass within the SM and in the presence of SUSY

(i) Non-observation of any SUSY signals at CERN contributions with newC P-violating phases. It is evident
e*e” collider LEP 2 and the Fermilab Tevatron imposes thethat the predictions foCP asymmetries suffer from large

following lower boundg44];: theoretical uncertainties in the neighborhood of theeso-
nance and above th¥# ¢, as discussed in Sec. lll.
m;=>86 GeV, m;>43 GeV, m; >86 GeV, Using Eqgs.(4.4) and(4.7) together with the definition for
CP-violating asymmetries, Eqs4.17), we can summarize
m;>260 GeV, my=>90 GeV. (5.3 our main findings as follows.

. 1. CP violation in B»PIT1~
B. CP asymmetries

As mentioned earlier, we investiga@P asymmetries in The CP-violating asymmetry in thé~ spectra oB andB

D . . ays
the low dilepton invariant mass region, i.e. 1.2 Geys decays,Acp, vanishes in the case d—P transitions.
<(My,—200 MeV), which is of particular interest because Within the framework of the constrained MSSM with phases

the low-s region is sensitive to the Wilson coefficiec (in of 50(1,0 ’) numenca] values for the average asymmgtry
the case oB—VI*17). In fact, it can receive large SUSY (Ace) in the lows region are comparable to the SM predic-
contributions and be complex, as well as change sign, whildons with asymmetries of 0.1% and5% for b—s andb
being consistent with the experimental measuremenb of —d transitions respectively. _

—.sy. On the other hand, the new-physics effects are known Our results forAZ, between the decay8—PI*1~ and

to alter the remaining Wilson c:oefficien(§ff andcyoonly  B—PI*I~ in the context of effective SUSY with a light stop

034020-10



FLAVOR-CONSERVINGCP PHASES IN . .. PHYSICAL REVIEW D 62 034020
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FIG. 2. CP-violating partial width asymmetrj3,, in the decay8 ™ — = 1 *1~ andB*— *171~ vs \/s, s=s/M3, includingp, », and
JIy, ', etc. resonances, and employing the form factors of R&l. (a) Within the SM and(b) in the presence of ne@P phases and a
real CKM matrix. For the sake of illustration, we have chof@f =1.6, |Rg1d=1, x=1.5, ¢7= /2, andeg 5= 0.01.

T in Fi 3ci+c

t, and phases o@(_l) are s_hown in Figs. 3 and 4 for low Acper sing sin 5~( 11 C2) sing sind~10"2sine sin,
and large tag solutions which correspond to Re>0 and ol

ReR,<0 respectively. Observe that tkP-violating asym- (5.4

metry Agp in B—P depends only weakly on the sign and
phase ofcS™. This is due to the fact thatS", which is
constrained by thb— sy measurement and not enhanced by Numerical estimates for averageP asymmetries are

a factor of 1 in the lows region, is nearly one order of iy affected by the parametrization of form factaisee
magnitude smaller than the leading term d§" [cf. Eq.  giso Refs[22,52).

where the weak and strong phasgsnd § can be of order
unity.

(3.2].
The CP asymmetry in the partial widths d—KI "I~ 2. CP violation in B—VI*1~
andB—KI"1™~ changes sign for large values gb, while The contribution of the Wilson coefficien™ (or equiva-

|AZpl<1% (see Fig. 3 However, non-standard contribu- lently R,) to the decay rate iB— V modes is enhanced by a
tions to ¢g are found to be small and hencAéP factor of 15 in the low-s region. As seen from Fig. 5, in the
~0O(10°%). On the other hand, average asymmetries oftase ofB— p, the CP-violating asymmetnAZ, can change
—(5-6)% are predicted fotAZ;) in the case ofB—m,  sign for tan3=2 (i.e. ReR,>0), while for large targ it is
even for values ofpy as small as 107 (see Fig. 4 Given a  always negative. For small values @f; an averageCP
typical branching ratio of 10° and a nominal asymmetry of asymmetry of about 5% is predicted for both taf=2 and
6%, a measurement aw3level requires X 10 bb pairs.  tans=30 solutions. Since the distributions &y for B
[This rather challenging task might be feasible at the CERN—K* are very similar to the ones obtained Br-K, we
Large Hadron CollidefLHC) and the Tevatron. refrain from showing the corresponding plots.

The small magnitude of th€ P asymmetry is also due to ~ As we have already mentioned, tkiEP-violating asym-
a suppression factor multiplying the indispensable absorptivenetry in the angular distribution df” in B and B decays
part incg", which is only slightly affected by new-physics can, in principle, probe the phase of the Wilson coefficient
contributions. Indeed, it follows from Eq$3.2) and (4.16 C1p- This is shown in Fig. 6, where we have plotted ©F
that asymmetry as a function apg and ¢, for large targ (i.e.
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FIG. 4. CP-violating partial width asymmetnAZ, between
B~ -7 1"I~ andB"— 7 "1l as a function ofpy and|R;| for
FIG. 3. CP-violating partial width asymmetrAZ; in the de-  s=4 Ge\? within effective SUSY.(a) tan=2 with ¢,=0.4,
caysB—KI*1~ andB—KI*I~ as a function ofpg and|R;| fora  |Rg|=0.96, |R;o=0.8. (b) tanB=30 with ¢;=2.5, |Rg|=0.99,
dilepton invariant mass =4 Ge\? within effective SUSY.(@)  |R;g=0.9.
tanB=2 with ¢,;=0.4, |Rg|=0.96, |R,o=0.8. (b) tanB=30 with
$,=2.5,|Ro|=0.99, |R;¢| =0.9. VI. DISCUSSION AND CONCLUSIONS

In this paper, we have studied the consequences of new
ReR;<0). Unfortunately, the MSUGRA and effective CP-violating phases for exclusive8 decays within the
SUSY predictions for the average asymmeihg) turn out  framework of supersymmetric extensions of the SM, ignor-
to be unobservably small. ing intergenerational mixing in the squark sector. We have
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—0.01
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FIG. 5. CP asymmetryAS, in the decaysB™—p "1~ and
B"—p"I*I~ as a function ofpq and|R;| for a dilepton invariant
mass ofs=4 Ge\? within effective SUSY.(a) tanB=2 with ¢-
=0.99, |R;g=0.9. Note that(a) and (b) correspond to RB;>0 FIG. 6. CP-violating asymmetry A2, between (a) B
and ReR,<0, respectively. —K*1*1~ and B—K*I"I7, and (b) B —p I*l~ and B*

—p 171~ for large tang as in Fig. 3.

examinedC P-violating asymmetries in the partial widths as

well as angular distribution of ™ between the exclusive additional CP phases ofO(1) in order to obtain large
channelsb—s(d)I 1~ and b—s(d)I "1~ in the invariant CP-violating effects.

mass region 1.2 Ge¥M,+-<2.9 GeV. The essential Within the constrained MSSM and effective SUSY with a
conclusion of our analysis is that it is not sufficient to havecomplex CKM matrix and additionaC P phases, we obtain
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values for the average asymmet@\&» of about —6% APPENDIX B: WILSON COEFFICIENTS AND SUSY

(=5%) in the decaysB—m(p)l*I~ and B—m(p)l 1", For the sake of convenience, we provide in this appendix
taking into account experimental constraints on EDM’s offyrmulas for the Wilson coefficientss™, c&", andc,qin the
electron and neutron, as well as raBedecays such ab  hresence of SUSY, using the results derived in Refs.
—Sy. As for the asymmetry in the angular distribution, [g 17 31 54 Since we study the case of massless leptons, we
(Acp), it probes the phase of the Wilson coefficieqg, but  retain only those contributions that do not vanish in the limit
will be unobservable at future colliders. Numerical estimatesn, 0. As for 7 leptons in the final state, there are further
of the CP asymmetries in the deca@—K®)|"I~ andB  charged and neutral Higgs-boson contributifsee also Egs.

—K®)*1~ turn out to be smallless than 1% and are (2.27].

comparable to the SM resullt. Introducing the shorthand notation

Our analysis shows that the smallnes€iR asymmetries ) ) ’
is mainly due to the coefficient €3+ c,)/|co| which multi- _as(My) coomio M A Ma
plies the requisite absorptive part a§" [Eq. (3.2], and Sagmy) Womzr T m2.’ B m2’
which is only slightly affected by the new-physics contribu- (B1)
tions discussed in Sec. Illl. Therefore, any sizable

CP-violating effect in the lows region requires large non- the Wilson coefficientS" evaluated ajtg=m, has the form
standard contributions to the short-distance coefficigfit  (in leading-log approximation

and/orcg, as well as additionaC P phases of)(1). By the g 8

same token, any larg€ P-violating effect would provide a e 1612 14123 16/2 a
clue to physics beyond the SM. A detailed discussion of this? ~ /s Tr(Mw) + 5(775 ~ s %CS(MW)JF; hing',
point will be given elsewhere. (B2)

One could argue, however, that the inclusion of flavor
off-diagonal contributions(i.e. gluino and neutralino dia- Wwith the coefficientsa;, h; tabulated in Ref{31]. Recalling
grams to the Wilson coefficients might lead to higheP  Egs. (2.27) and (3.9), and using the one-loop functiorfs
asymmetries. In fact, it has been pointed out in Rg#8,53  listed in Appendix C, the various contributions ¢gg(M )
that even in the presence of large supersymme@ie  can be written as follows:
phases, a non-trivial flavor structure in the soft-breaking Standard model:
terms is necessary in order to obtain sizable contributions to
CP violation in the K system and tadCP asymmetries in
two-body neutralB decays(see also Ref[24]). Using the
mass insertion approximation, such effects have recently )
been studied in Ref[20] which predicts a partial width Charged Higgs boson:
asymmetry forb—sl|"1~ of a few percent in the lovg-do- 1
main. H* = 1. . .

Finally, we would like to recall that, nevertheless, large ¢ (Mw) 12[rH7fl(rH7)C012ﬁ+2f2(rH7)]' (B4
CP asymmetries may occur in ra decays like the ob-
servedb— sy modes, wheréA-p can be substantidup to
+45%) in some part of the parameter spaté,54.

1
(M) = Zrwfa(rw). (83)

Chargino®
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APPENDIX A: NUMERICAL INPUTS

Unless otherwise specified, we use the experimental vaIWhere we have defined

ues as compiled by the Particle Data Grddid] and the [1 for f=d

parameters displayed in EGAL). (B6)

2 for f=s.
m,=175 GeV, my=4.8 GeV, m.=1.4 GeV,

SNotice that the one-loop function appearing in the last term of
Eq. (B5) is actuallyf,+5/2. However, using the explicit form for
the squark mixing matrice§Egs. (2.27)], the constant term
m,=5 MeV, «a=1/129, Agcp=225 MeV. (A1)  vanishes—reflecting the unitarity of the mixing matrices.

ms=170 MeV, my=10 MeV,
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For completeness, we also give the expressions for the neutralino and gluino contributions which vanish in the limit of
flavor-diagonal squark mass matrices.

Neutralino:
5 6 4 2 m“O
e’ (My)=— 5 thvﬁ 22 EW (27 a2 DL>a3f3<r~o>+2<z ”>na<zDR>a3 4<r~ >} (B7)
Xk
Gluino:
~ 4g? 6 rrr a
I My)=— 9gzvtbvf§l w2 (GDLUna(GDL)agfg(r )= 2P )G ) g5 <r;>] (B8)

The corresponding expressiocg"'(MW), . ,c§°(|v|w) are obtained changiny—g; in Egs.(B3)—(B7), with g; collected in
Appendix C, while the gluino contribution reads

6 2

- 492 W d, m; G
c§(Mw) =~ m 2 | (BP0 G™)eaGs(1") ~ 2B e GPF)as (") | (89)

The Wilson coefﬁciencgff at ug=m, in next-to-leading approximation is given by

m
cf=cql 1+ ts( M) w(s/m2) |+g(m,s)(3c;+Cy+3c3+Cy+3C5+Cg) + A [g(M,5) —g(Mmy,S)] (3¢, +Cy)
1 1 2
— Eg(mf ,S)(C3+3Cy) — Eg(mb ,S)(4cg+4c,+3c5+ ce)+§(303+ C4+3C5+Cq), (B10)

where\ , andg(m; ,s) are defined in Eqg3.3) and(3.4) respectively, withts=q?. As far as the Wilson coefficients —cg are
concerned, we have numerically

c,=—0.249, c,=1.108, c3=0.011, c,= —0.026, c5=0.007, cg= — 0.031, (B11)

using the values given in Appendix A. Further,
4
=co(Mw) — g +Po+ PEZ E', (B12)

with i =SM,H=, ¥*,X°,9, and
i

Sin 6y,

c9<MW>=2i (

A
-4z |+ 3, (B13)

where the analytic expressions fBg, Pg, and ESM are given in Ref[31]. Since Pe<P,, we shall keep only the SM
contribution in the last term of EqB12). Moreover, as discussed in R¢#1], the orderag correction in Eq(B10) due to
one-gluon exchange may be regarded as a contribution to the form factors, and henceowdsetEq. (B10)

Turning to the Wilson coefficient,q, it has the simple form

Yi
Cr(My)=—2

. B14
T sif6y (B14

Note that the corresponding operator does not renormalize anctif08y) = C1o( 4R) -
The expressions for the various contributionsytand Z read as follows:
Standard model:

Regarding the expressions for the chargino and neutralino box-diagram contributions, and the sign discrepancy bef@¢andr@ef.
[11], we confirm the results of the latter.
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1 1
YSM:§f9(rW), ZSM:7_2f10(rW)- (B1Y)
Charged Higgs boson:
YHI=YRT zR =zt ez (B163)
peo 1 P
z! =—7—2f6(rH¢)cot2,8, Yy =24 =—§rwf5(rHi)cot2B. (B16b
Chargino:
(A TR I A (B172
6 2 2
X w t u
Zy = — [ XLfr~ B17b
) wvth§§m< Jna(Xj asf(r3 )], (B17b)
a
B 6 2
et e VRV IR [(x “nalX] Joa| Ca(me mE mE (MU o
Zg VipVis ab=11ij=1
— (M2 mE. M2 8V — (M2 m2. m2.)8,,Ui, Uk (B17¢
2 U X abVilVijl 27X Xy 0 U X[ abYi1Yj1| [
2 6
- 2 .
gox 2—2 E [(X - )na(XUL)anZ(wiv amfzj vm;z, )Viklvjl]v (B17d
9°Vi Vi a=1 il a2

with m;, (nm;,) in the case ok e (" u") in the final state.

Neutralino:
X’ =71’ 7x° 1 7x°
Y _YZ +Yb°X’ LN =25 + 27 + Lpoxs (B183
1 6 4 M2
X° JE w D T D k
7X = 7 L) (Z L) f (I"—-) (Blgb)
Y 2162 ththaElk21rn§ [(Z" nalZyP)astelry )1,
a
6 4
~0_ ~0 D, D 5 ) 5 5 -
YX 7X = 7oL 7oL c,(M2o,m2 ,m2 )(T'PRIPR s
z Zgzvtbvtf azl k,|§=:1r( - InalZ)ba) Ca o', db)( )abSki

1
Cz(m* m”o m‘0)5ab(N*3N|3 NiaNi4) — m~0m~oco(m m”oym"0)5ab(Nk3N Nk4NI*4Hv (B18g)

2

4
° : 0 T D
Y%lu(ox:2 SIn2‘QWZ)Ilfox'}_ 2: { oL )na(z| I')a&‘,

do(mo,mZo,ms ,mé ) (NS +tangyNip) (N
292ththa 1kl 2( Xp' P, '1,2)( k2 wNi1) (N2

1
+tanfyN, 1) + Em;(gm;(lod (m~o m~o ma m )(Nk2+tan6WNkl)(N 5+ tandyNJy } , (B18d
Mz, &4
° t D
ZK ZL ZLseéo[m~m~n‘rm~NN
box™ ngthf‘f a; kIEJ( JnalZ; ") a3S€C by do(Mo0, Mo )N Ny
L rromrodg(mo m2e mE m? NN B18
2 Mmemmodo(Mo, Mo, mg ,my JNiaNpy |1, (B188
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TABLE I. The B—K®) andB— 7(p) form factors of Melikhov and Nikitir{43].

Form factor B—K B —w~
f+(q2) 03%1_ q2 )2.32 02%1_ qz )2.35
' 6.88 ' 6.7
f_(q?) o\ —227 2 \ —2.30
q q
-0301-— -0.2 1- —
(( 6.712) 6( 6.552)
2 -2.28 231
s(q°) . 9 ) 9
0.06 GeV | 1— 0.05 GeV | 1—
6.8% 6.68
Form factor B—K* B —p~

9(g®)

f(a?)

a. (g%

a_(g%

h(a®)

9.(9%)

g-(a%)

2 \ —261
0.048 Ge\fl(l d )

6.67
q q* |

1.61 Ge\ 1— +
\{ 5.86 7.664)

2\ —285
)
7.3%

2\ —272
1— )
6.9

2

—0.036 GeV!

0.041 GeV?

2 \ —328
0.0037 Gevz( 1-
6.57

qz —-2.62
-0.24 1-
B( 6.672>

q2 -2.58
0.24 1-
L{ 6.592)

2 \ —275
0.036 Ge\fl(l d )

6.5%
2 4 \ 1
q q
1.10 Ge\{ 1-— +
\{ 559 7.10“)
q2 —-3.04
—0.026 GeV'l|1—
7.29%
q2 -2.85
0.03 GeV'l|1-—
6.88
q2 —-3.42
0.003 GeV?| 1—
6.43

q2 —-2.76
-0.20 1-
% 6.572)

q2 -273
0.18 1-
% 6.50?)

with my_ (my_ ) for e"e (u'u7) in the final state.

Gluino:

Y9=v9, Zz9=79+29,

29=

Y9=23=

The functionsf;, c;, andd; are given in Eqs(C1)—(C4) below.
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APPENDIX C: AUXILIARY FUNCTIONS

Here we list the function$;, g;, ¢;, andd; introduced in
the previous section:

—7+5x+8x?  x(2—3x) |

f1(x)= 6107 (10t ™ (C1a
f(x) = X375  x2=39 (C1b
2 om1-x?2 a-x®
. )2+5x—x2+ X I 19
X)= nx
TR TR °
O P AL S (C1d
X)= nx
4 2(1-x2 (1-x)°3
_ X
f5(x)—m+(l_x)zlnx, (Cle
X(38— 79+ 47x?) x(4—6x+3x3)
fe(x)= + Inx,
6(1—x)3 (1—x)*
(C1f)
. )_52—101x+43x2+6—9x+2x3|
7(x)= 6(1—x)7 (10 nx,
(Cl9
. )_2—7x+11x2+ 6x° n
o) (1-x)°  (1-x)* *
(C1h
_ X(4—x) 3x2 .
fo(x)= T« +(1_X)2Inx, (C1i)
F400 x(108— 25% + 163> — 18x°)
X)=
10l 2(1—x)3
8—50x+ 63x>+ 6x3— 24x* .
- Inx, (C1))
(1-x)*
91(x)=—3f3(x), g2(x)=3[f4(x)—1/2],
03(X)=—3f3(X), g4(x)=—3f4(x),
(C2a
_3'11—40x—19x2+3x(1—9x)I
S T—E (1-x* )
(C2b
(X)_§'5—13x X(1-9%)
BT 1% 1w ) (€29
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2 2, 2
2 2 2\ mlln(mlllu“R)
Co(mi,m3,m3) =

+(mye—=my)

2_ 2.2 2
(m7—m3)(mi—ms3)

+(mye—=mg) |, (C3a
3 1| miln(m3/u3)
Cz(mz,mz,mz)z___
PURTET8 Al (m2-md)(mE-mj)
+(mym,)+(my<—m3) |, (C3b

m? In(m?/ ug)

2 2 2 o
do(mi,m3z,m3,my)=—

2_ 22 2 2 2
(mg—m3)(m{—mz)(mi—mj)

+ (Mg my) + (Mg mg)

+(Mye=my) |, (C4a

1 m? In(m/ ug)

2.2 2 2
da(mi,mz,m3,my) = —

4] (m2—m3)(m2—m2)(m2 —m?)
+(mge—my) +(my—ms)
+(myemy) |. (C4b)

TABLE 1. The B—K ™) form factors of Colangelet al. [46],
with M=5 GeV. As for theB— m(p) transition, we use the form
factors listed below witivi=5.3 GeV inF; andF+.

Form factor B—K

Fi(a?) -;( qz)l
025 1- —
M2
Fo(d?) 5( qz)1
0.2 1—4—9
F1(a?)

-1 2\ -1
9 q

B—K*

Form factor

V(a?) 047(1 q2)1
Nt 25
A1(9?) 0.3711—0.023%)
Ayx(g?) 0.40(1+0.034?)
Ao(a?) ({ qz>-1
0.3 1—E
T1(q?) g( qz>-1
0.1 1—§
T(9?) 0.19(1-0.09?)
T4(9?) 0.30(1+0.019?)
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In Tables | and Il we summarize the two different sets of

form factors discussed in Sec. IV, which are related via

Fi(g®)=f.(g?, (D1a)
2

Fo(@®)=f,(a*)+ mf_(qz), (D1b)

F1(g%)=—(Mg+Mp)s(g?), (D1

V(%) =(Mg+M\)g(g?), (D1d)

Al(9?) = Mf:+?,lv, (D1e)

Ax(g?)=—(Mg+My)a. (g, (D1f)
9’a_(g*) +f(g®) +(Mz—M{)a. (g?)
Ao()= TV VE——
(D1g
1
T1(4?) == 59.(9?), (D1h)
1 9°g- () :
T2 =—5|9+(d)+ ———|, D1
209 == 5/ 9+(a)+ Mg—ME,] (D1i)
1 (M3—M2)h(g?)
T3<q2>:§[g_<q2>—%”}. (D1j)
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