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Dense QCD: Overhauser or BCS pairing?
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We discuss the Overhauser effect~particle-hole pairing! versus the BCS effect~particle-particle or hole-hole
pairing! in QCD at large quark density. In weak coupling and to leading logarithm accuracy, the pairing
energies can be estimated exactly. For a small number of colors, the BCS effect overtakes the Overhauser
effect, while for a large number of colors the opposite takes place, in agreement with a recent renormalization
group argument. In strong coupling with large pairing energies, the Overhauser effect may be dominant for any
number of colors, suggesting that QCD may crystallize into an insulator at a few times nuclear matter density,
a situation reminiscent of dense Skyrmions. The Overhauser effect is dominant in QCD in 111 dimensions,
although susceptible to quantum effects. It is sensitive to temperature in all dimensions.

PACS number~s!: 12.38.Mh
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I. INTRODUCTION

Quantum chromodynamics~QCD! at high density, rel-
evant to the physics of the early universe, compact stars
relativistic heavy ion collisions, is presently attracting r
newed attention from both nuclear and particle theorists. F
lowing an early suggestion by Bailin and Love@1#, it was
recently stressed that at large quark density, diquarks c
condense into a color superconductor@2#, with potentially
interesting and novel phenomena such as color-flavor lo
ing, chiral symmetry breaking, parity violation, color-flavo
anomalies, and superqualitons.

At large density, quarks at the edge of the Fermi surf
interact weakly thanks to asymptotic freedom. However,
high degeneracy of the Fermi surface causes perturba
theory to fail. As a result, particles can pair and condens
the edge of the Fermi surface leading to energy ga
Particle-particle and hole-hole pairing~BCS effect! have
been extensively studied recently@1,2#. Particle-hole pairing
at the opposite edges of the Fermi surface~Overhauser ef-
fect! @3# has received little attention with the exception of
early variational study by Deryagin, Grigoriev and Rubak
for a large number of colors@4#, and a recent renormalizatio
group argument in@5#. The scattering amplitude between
pair of particles at the opposite edges of the Fermi surf
peaks in the forward direction, a situation reminiscent of
forward enhancement in Compton and Bhabha scatterin

In retrospect, it is surprising that the Overhauser effec
QCD has attracted so little attention. In fact, the Schwin
model@6# shows that when a uniform external charge dens
is applied, the electrons respond by screening the exte
charge and inducing a charge density wave, a situa
analogous to a Wigner crystal@7–9#. Similar considerations
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apply to QCD in 111 dimensions@8#. In 311 dimensions,
dense Skyrmion calculations with realistic chiral paramet
yield a 3-dimensional Wigner-type crystal with hal
Skyrmion symmetry at few times nuclear matter dens
@10,11#. At these densities, Fermi motion is expected to
overtaken by the classical interaction@12#. A close inspec-
tion of these results shows the occurrence of scalar-isosc
pseudoscalar-isovector and vector-isoscalar charge de
waves in an ensemble of dense Skyrmions.

In this paper we will show that in dense QCD, the equ
tions that drive the particle-hole instability at the oppos
edge of a Fermi surface resemble those that drive
particle-particle or hole-hole instability in the scalar-isosca
channel, modulo phase-space factors. In Sec. II we motiv
and derive a Wilsonian action around the Fermi surface
Sec. III we obtain expressions for the energy densities
pertinent gaps in the 01 channel with screening, thereby ge
eralizing the original results in@4#. In Sec. IV, we analyze
the decoupled equations for large chemical potential with
screening. The effects of screening for arbitraryNc as well as
temperature are discussed in Sec. V, in overall agreem
with a recent renormalization group argument@5#. In Sec.
VI, we discuss the Overhauser effect in QCD in lower d
mensions. Our conclusions and suggestions are given in
VII. In the Appendix, we show that our simplified form o
the perturbative screened gluon propagator and the e
form give the same result for the leading particle gaps.

II. EFFECTIVE ACTION AT THE FERMI SURFACE

To compare the Overhauser effect to the BCS effect,
will construct a Wilsonian effective action by integrating o
the quark modes around the Fermi surface, in the presenc
smooth bilocal fields. An alternative would be the quantu
action @13#. At large chemical potential, most of the Ferm
surface is Pauli blocked, so the quasiparticle content of
theory is well described by such an action. Incidentally, o
analysis should provide a useful alternative to a brute-fo
lattice QCD analysis. Indeed, an effective formulation of l
©2000 The American Physical Society15-1



is

D

th

il
n
ha
de
h
-
r-
il

th

a-

a

an

it
e

f
hm

-

lly

-

-

ole

ss

r
the
lely

n
vor
res-
g.
ns

x

c

y
rre-

e

the
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tice QCD along the lines of the heavy-quark formalism
possible and will be discussed elsewhere@14#.

The starting point in our analysis is the appropriate QC
action in Euclidean space with massless quarks

S5E d4xF1

4
~Fmn

a !21c̄~gm]m2g4m!c2 iJm
a Am

a G , ~1!

and the colored current

Jm
a 5gc̄gm

la

2
c. ~2!

In Euclidean space, our conventions are such that
g-matrices are Hermitian with$gm ,gn%52dmn . For suffi-
ciently largem, we will assumeg2Nc!1. We have omitted
gauge-fixing terms and ghost-fields. In what follows, we w
analyze Eq.~1! in the one-loop approximation with the gluo
field in the Feynman gauge. The approximation, as we s
show below, is equivalent to the resummation of the lad
graphs in the particle-particle or particle-hole graphs. T
effects of screening will be dealt with by minimally modify
ing the gluon propagator, ignoring for simplicity vertex co
rections as in@2#. The issue of gauge fixing dependence w
be briefly discussed at the end.

In the one-loop approximation with screened gluons,
induced action is

Sc5
g2

2 E d4x d4yJm
a ~x!Dmn~x2y!Jn

a~y!1E d4xc̄ ]̃mgmc,

~3!

where]̃m5(]1 ,]2 ,]3 ,]42m). The screened gluon propag
tor $Dmn%5(DE ,DM) will be approximated by

DE,M~x2y!5E d4q

~2p!4

1

q21mE,M
2

e2 iq•(x2y). ~4!

Perturbative arguments give mE
2/(gm)25mD

2 /(gm)2

'Nf /2p2 andmM
2 /mD

2 'puq4u/u4qu, wheremD is the Debye
mass,mM is the magnetic screening generated by Land
damping andNf the number of flavors@15#.1 Nonperturba-
tive arguments suggestmE

2 ,mM
2 →m

*
4 /q2 @16# where for sim-

plicity, the difference between electric and magnetic ch
nels is ignored. We expectLQCD!m* ,mE in the caseNc
53, as lattice simulations for the gluon propagator at fin
m are not yet available. We note that the perturbative scre
ing vanishes at largeNc . In the Appendix, we show why the
approximation~4!, which simplifies the vector-structure o
our analysis, yields exact results in the leading logarit
approximation.

To proceed further with Eq.~3! we need to Fierz rear
range theJJ term in Eq.~3!. This is equivalent to summing
ladder graphs with relevant quantum numbers. Specifica

1Throughout we will refer tomM abusively as the magneti
screening mass.
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Jm
a ~x!Dmn~x2y!Jn

a~y!5g2(O CO@c̄~x!MOc~y!#D~x2y!

3@c̄~y!MOc~x!#

1g2(
O8

CO8@c̄~x!MO8c
c~y!#

3D~x2y!@c̄c~y!MO8c~x!# ~5!

with CO521/9 andCC511/36 for the operators

@c̄~x!MOc~y!#5c̄a,a,i~x!dabdabd i j cb,b, j~y!,
~6!

@c̄~x!MCcc~y!#5c̄a,a,i~x!~g5!ab«ab
I « i j

I Cc̄b,b, j
T ~y!,

respectively, withNf5Nc53. These quantities involve ma
trices active in color (a,b, . . . ), flavor (i , j , . . . ) andDirac
space (a,b,•••). MO is the vertex generator for particle
hole pairing in the 01 channel~i.e., Overhauser!, while MC
is the vertex generator for particle-particle and hole-h
pairing in the color-flavor locked~CFL! channel~i.e., BCS!.
Only these two operators will be retained below, unle
specified otherwise. The gluon-propagator in matter is

D~x2y!5
1

2
DE~x2y!1

1

2
DM~x2y!. ~7!

The weightings follow from minimal substitution in matte
with 2 electric and 2 magnetic modes. We note that
present Fierz rearranging is particular, since it selects so
the 1c in the q̄q channel and the3̄c in the qq channel
@17#. For arbitraryNc>3 and Nf>2, the coefficients2 1

9

and 1
36 become, respectively,2 1

2 (121/Nc)•(1/Nf) and

(1/2Nc)
1
2 •@1/min(Nc ,Nf)#, where the single factors refer, i

turn, to the results of the color Fierz rearranging, the fla
Fierz rearranging and, of course only for the second exp
sion, the Fierz rearranging related to color-flavor lockin2

To compare to the more conventional decompositio
through3c33̄c51c18c for q̄q and 3c33c53̄c16c for qq,
with respective weights2 1

2 @12(1/Nc
2)#•(1/Nf) and @(Nc

11)/4Nc#•
1
2 •@1/min(Nc ,Nf)#, we introduce also the verte

generator@2#

@c̄~x!MBcc~y!#5c̄a,a,i~x!~g5!ab~l2!ab~t2! i j Cc̄b,b, j
T ~y!.

~8!

2At least partially, even ifNfÞNc , a locking can be achieved b
Fierz rearranging the antisymmetric tensor in color times the co
sponding one in flavor into the tensorMai,b j5daidb j2da jdbi with
the pertinent weight 1/min(Nc ,Nf) in the combined color-flavor
space. The latter operator has1

2 n(n21) eigenvalues11, 1
2 n(n

11)21 eigenvalues21, one eigenvaluen21, andNc3Nf2n2

eigenvalues 0, wheren[min(Nc ,Nf). Thus, in the BCS case, th
fermion determinant~16! acquires the color-flavor weight 2n(n
21), while the corresponding value in the Overhauser case is
standardNcNf factor.
5-2
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DENSE QCD: OVERHAUSER OR BCS PAIRING? PHYSICAL REVIEW D62 034015
We note that Eq.~8! does not lock color and flavor as
stands; a color-flavor locking as described in footnote 2 s
has to be performed, such that finally the corresponding
efficient becomes CB5(Nc11)/$8Ncmin(Nf ,Nc)%.

3 This
brings about the important issue of whether Fierz rearrang
is a unique operation on 4-Fermi interactions. The answe
no @22,23#. This nonuniqueness would of course not be i
portant if an all-order calculation were to be performed
any Fierz rearranging set, but is of course relevant for tr
cated calculations as is the case in general. Each Fier
corresponds to summing a specific class of ladder diagr
in the energy density, see e.g.@22,23#.

Since the gap equations are inherently nonperturbativ
content, it is hard to tell which Fierz rearranging to elect a
starting point in the many-body analysis. The conventio
Fierz arranging decomposition corresponds to summing
nested gluon exchanges in the gap equation, while the
conventional decomposition does not have an immediate
grammatic interpretation to our knowledge. Hence, the st
ing point of the conventional Fierz rearranging may
improved upon by using systematically higher-order Fe
man graphs and Ward identities. In contrast, the star
point of the unconventional Fierz rearranging maybe i
proved upon by using the random-phase-approximation
weak-coupling, the gap equation is uniquely defined in
leading logarithm approximation. The result follows read
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from the conventional Fierz rearranging decomposition
leading order.

Introducing a Hermitian bilocal fieldS(x,y) and a non-
Hermitian bilocal fieldG(x,y), we may linearize the Fierz
rearranged form of theJJ term by using the Hubbard
Stratonovich transformation, e.g.,

expS g2

18E d4x d4y@c̄~x!c~y!#D~x2y!@c̄~y!c~x!# D
5E dS~x,y!expS 2SS2E d4x d4yc̄~x!S~x,y!c~y! D

~9!

with

SS5
9

2g2E d4x d4y
uS~x,y!u2

D~x2y!
~10!

and similarly forG. As a result, the action in the quark field
is linear and the functional integration can be performed. T
result is the following effective action for the bilocal fields

S5SS1SG2 1
2 Tr lnF, ~11!

where
al, while

l
rently

e is
it

coupling
F5S $g•]2mg4%d~x2y!1MOS~x,y! iG†~x,y!CTMC

iCTG~x,y!MC $g•]1mg4%d~x2y!1MOS~x,y!
D . ~12!

The factor of 1/2 in Eq.~11! is due to the occurrence ofc andcc through Fierz rearranging into1c and3c @17#. This renders
naturally the Gorkov formalism applicable to the present problem even atm50. Note thatMO51C31F31D and MC5
«C

I 3«F
I 3g5, with the subscriptsC,F,D short for color, flavor and Dirac. We should stress that the effective action~11! is

general. The third term is the Hartree contribution of the quarks to the ground state energy at large chemical potenti
the first two terms remove the double counting in the potential~i.e., Fock terms!.

To analyze the Overhauser and BCS effects in parallel, we make simplifyingAnsätzefor the bilocal auxiliary fields. Since
the unscreened gluon interaction in both cases peak in the forward direction, we may choose

S~x,y!52 cosFPmS xm1ym

2 D Gs~x2y!52 cosFPmS xm1ym

2 D G E d4q

~2p!4
e2 iq•(x2y)F~q!,

G~x,y!52 cosFPmS xm2ym

2 D Gg~x2y!52 cosFPmS xm2ym

2 D G E d4q

~2p!4
e2 iq•(x2y)G~q!, ~13!

wherePm5(PF,0) anduPFu52m. PF points in the original direction of one of the quarks.F(q) andG(q) are even functions,
F(q) is real, sinceS(x,y)5S(y,x)* , and G(q) is complex, sinceG†(x,y)5G(y,x)* . The relative momentumq satisfies
uqu<uP/2u5m. The bilocal fieldG characterizes a BCS pair of zero total momentum.S characterizes a wave of tota
momentum 2m. This is the optimal choice for the momentum of the standing wave for which the holes contribute cohe

3In fact, expression~8! is the operator considered in Refs.@18,19# where color and flavor are uncoupled and only the two-flavor cas
considered~see also@5,20#!. Thus the corresponding coefficient is just (Nc11)/4Nc , since the flavor-Fierzing factor can be ignored, as
eventually cancels against a corresponding factor resulting from the fermion determinant. Note, furthermore, that our color-flavor
scheme is different from the one recently introduced in Ref.@21# for arbitrary numbers of flavors.
5-3
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to the wave formation. As a result the gap opens up at the Fermi surface, withm as the divide between particles and holes.
both cases, the pairing involves a particle and/or hole at the opposite sides of the Fermi surface. Indeed, in terms of~13!
the linear terms in the bilocal fields are

E d4x d4yc̄~x!S~x,y!c~y!5V4E d4q

~2p!4 F c̄S 2
P

2
1qDF~q!cS P

2
1qD1c̄S P

2
1qDF~q!cS 2

P

2
1qD G ~14!

~see Ref.@4#! and

1
2 E d4x d4y@c̄c~x!ig5G~x,y!c~y!1c̄~x!G†~x,y!ig5cc~y!#

5 1
2 V4E d4q

~2p!4 FcTS 2
P

2
2qDCig5G~q!cS P

2
1qD1c̄S P

2
1qD iG* ~q!g5Cc̄TS 2

P

2
2qD

1cTS P

2
2qDCig5G~q!cS 2

P

2
1qD1c̄S 2

P

2
1qD iG* ~q!g5Cc̄TS P

2
2qD G , ~15!

whereV4 is the 4-volume.
Following @4#, we introduce fermion fieldsc(6P/21q) andcc(6P/22q)4 that are independent integration variables

the relevant region of the momentumuqu!uPu/2. Hence, the quark contribution around the Fermi surface can be integr
The result is@25#

detF5expS V4Tr lnU 2 iQ̃1,msm F~q! iG* ~q!MC 0

F~q! 2 iQ̃2,ms̄m 0 2 iG* ~q!MC

2 iG~q!MC 0 2 iQ̃1,m* s̄m F~2q!

0 iG~q!MC F~2q! 2 iQ̃2,m* sm

U D , ~16!

whereQ6[6P/21q andQ̃6[(Q6 ,Q6
4 2 im). For each entry in momentum spaceq, the determinant in Eq.~16! is over an

(8•Nc•Nf)3(8•Nc•Nf) matrix. The matricessm5( isW ,1) ands̄m5(2 isW ,1) are defined in terms of the usual Pauli matric
sW . The detailed analysis of the coupled problem~16! with the full fermion determinant will be discussed elsewhere@25#.

III. GAP EQUATIONS

A qualitative understanding of the Overhauser effect versus the BCS effect can be achieved by studying the
separately, and then comparing their energy densities at large quark density. SettingG50 yields, for the Overhauser pairing
an energy density

SS

9V4
5

1

g2E d4x
us~x!u2

D~x!
22E d4q

~2p!4
lnF Q̃1

2 Q̃2
2 12F2Q̃1Q̃21F4

Q̃1
2 Q̃2

2 G[Spot,S1Skin,S , ~17!

which is in agreement with the result derived originally in@4#. SettingF50 yields, for the BCS pairing, an energy densit

SG

36V4
5

1

g2E d4x
ug~x!u2

D~x!
2

2

3E d4q

~2p!4
lnF Q̃1

2 Q̃1*
212uGu2Q̃1Q̃1* 1uGu4

Q̃1
2 Q̃1*

2 G[Spot,G1Skin,G , ~18!

which is similar to Eq.~17!. In writing the last equation we have assumed thatuG(q6P)u'uG(6m)u'0. The gap equations
for both cases follow by variation. The result is

F~p!52g2E d4q

~2p!4
D~p2q!S 2F~q!„Q̃1Q̃21F2~q!…

Q̃1
2 Q̃2

2 12F2~q!Q̃1Q̃21F4~q!
D ~19!

4Note that we definecc(k)[Cc̄T(k) in terms of the Euclidean charge conjugation operatorC5g4g2, whereas in Ref.@24# cc(k)

[Cc̄T(2k). As usual,T stands for ‘‘transposed.’’
034015-4
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for the Overhauser gap, and

G~p!5
2

3
g2E d4q

~2p!4
D~p2q!S 2G~q!„Q̃1Q̃1* 1uG~q!u2

…

Q̃1
2 Q̃1*

212uG~q!u2Q̃1Q̃1* 1uG~q!u4
D ~20!
te

t
o

ive

pe

e
h
a-
a-
si

s

s

note
w

for the BCS gap. If we were to use the antisymmetric ver
operator~8! then we would have 2g2/3→4g2/3. For the lat-
ter, we have checked that the results~19! and~20! agree with
the Bethe-Salpeter derivation in the ladder approximation
order m0. In our notations, the leading order effects are
orderm, the next to leading order effects are of orderm0 and
the next-to-next to leading order effects are of orderm21.
For the screened gluon propagator we have the alternat

D~q!5
1

2

1

q21mE
2

1
1

2

1

q21mM
2

,

D~q!5
1

2

1

q21 im
*
2

1
1

2

1

q22 im
*
2

, ~21!

for the perturbative and nonperturbative assignments res
tively.

The present construction is valid for an arbitrary numb
of colors with or without screening, thereby generalizing t
original analysis in@4#. The outcome can be analyzed vari
tionally, numerically or even analytically to leading log
rithm accuracy. Using the following momentum decompo
tion around the fixed Fermi momentumP at the Fermi
surface,

quu5
P•q

uPu
, q'5q2quu

P

uPu
, ~22!

and assuming that the relevant values of the amplitude
the bilocal fields are small~i.e., F,uGu!m), we may further
simplify the kinetic part in the energy densities Eq
~17!,~18!. Specifically,

Skin,S'22E d4q

~2p!4
lnF quu

21F2~q!1H q41
q2

2imJ 2

quu
21H q41

q2

2imJ 2 G ,

Skin,G'2
2

3E d4q

~2p!4
lnF q4

21uG~q!u21H quu1
q2

2mJ 2

q4
21H quu1

q2

2mJ 2 G .

~23!

The simplified gap equations are
03401
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F~p!'2g2E d4q

~2p!4
D~p2q!F F~q!

quu
21F2~q!1S q41

q2

2im D 2G
~24!

and

G~p!'
2

3
g2E d4q

~2p!4
D~p2q!

3F G~q!

q4
21uG~q!u21S quu1

q2

2m D 2G . ~25!

For both pairings, the simplified energy densitiesS̄S,G at
their respective extrema are

S̄S

9V4
'2E d4q

~2p!4 S 1

2
F]F21D

3 lnS 11
F2~q!

quu
21S q41

q2

2im D 2D ,

S̄G

36V4
'

2

3E d4q

~2p!4 S 1

2
uGu] uGu21D

3 lnS 11
uG~q!u2

q4
21S quu1

q2

2m D 2D .

We now proceed to evaluateF,G to leading logarithm accu-
racy.

IV. UNSCREENED CASE: LARGE Nc

In this section we consider the gap equations~24!,~25! in
the absence of screening. In the perturbative regime, we
that mE,M;1/Nc , and this approximation may be someho
justified in largeNc @4#. Hence,

F~p!'2g2E d4q

~2p!4

1

~p2q!2F F~q!

quu
21F2~q!1S q41

q2

2im D 2G
~26!

and
5-5
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G~p!'
2

3
g2E d4q

~2p!4

1

~p2q!2

3F G~q!

q4
21uG~q!u21S quu1

q2

2m D 2G . ~27!

For the Overhauser pairing, if we assume the propag
to be static, theq4 integration can be performed by
contour-integration with the constraint that

uq'u2<2meq[2mAquu
21F2~quu!. ~28!

Hence

F~puu!'h2E
0

`

dquu
F~quu!

eq
lnS 11

2meq

~puu2quu!
2D ~29!

with h25g2/4p2. In general, we have

h2[
g2Nc

8p2 S 12
1

Nc
D ,

h2[
g2Nc

8p2 S 12
1

Nc
2D , ~30!

for Fierz rearranging withMC and MB @4#, respectively.
Equation ~29! is essentially a one-dimensional ‘‘fish
diagram’’ with logarithmically running couplings. This fea
ture is preserved by screening as we will show below,
agreement with the recent renormalization group analysi
@5#. Following @20#, the resulting equations are readi
solved by defining the logarithmic scalesx[ ln(2m/puu), y
[ ln(2m/quu), x0[ ln(2m/F0), and rewriting

F~x!'h2S 2xE
x

x0
dy F~y!2E

x

x0
dy yF~y!1E

0

x

dy yF~y! D .

~31!

Since F9(x)522h2F(x) with F(x0)52F(0), then F(x)
52F0cos(A2hx) @4,20#. The coefficientF0 follows from
F8(x0)50, with A2hx05p. Hence F05F(x0) and x0

[ ln(2m/F0)5p/(A2h). Thus

F0;2m expH 2
p

A2h
J , ~32!

which is exactly the result established in@4# using theMC
Fierz rearranging and elaborate variational arguments. N
that the pairing energyF0!L'!m follows from an expo-
nentially small region in transverse momentum~28! as re-
quired by momentum conservation, see Fig. 1~b!. Typically
L'5A2mF0 as originally suggested in@4#.

For the BCS pairing, the transverse momentum is not
stricted as shown in Fig. 1~a!. This is best illustrated by
noting that the BCS equation in Eq.~27! can be further sim-
plified through the following substitution:
03401
or

n
in

te

-

quu1
q2

2m
→Uq1

P

2U2m. ~33!

This amounts to taking into account the effects of curvat
around the fixed Fermi momentumP/2 defined by the stand
ing wave. The trade~33! allows for a larger covering of the
Fermi surface, although forL'52m the terms that are
dropped are only subleading forquu

2!q'
2 . We have checked

that this substitution does not not affect our analysis in
leading logarithm approximation. Shifting momenta toQ
5q1P/2 andK5p1P/2 yields

G~K2P/2!'
2

3
g2E d4Q

~2p!4
D~K2Q!

3F G~Q2P/2!

Q4
21uG~Q2P/2!u21~ uQu2m!2G .

~34!

For a constant gap, theQ-integration diverges logarithmi
cally. As most of the physics follows fromuQu5m, this di-
vergence can be regulated@18#, with no effect on the
leading-logarithm estimate of the pairing energy. Hence,

G~puu!'h
*
2 E

0

`

dquu
G~quu!

eq
lnS 11

4m2

~puu2quu!
2D , ~35!

with eq5Aquu
21uG(quu)u2 following from the contour integra-

tion over Q4. The prefactor readsh
*
2 5g2/12p2, and in

general5

h
*
2 5

g2

8p2 S 2

Nc
Dmin~Nf ,Nc!21

2
,

h
*
2 5

g2

8p2 S 11
1

Nc
D min~Nf ,Nc!21

2
,

~36!

5In @20# and footnote 1 of@5# color and flavor are uncoupled
Henceh

*
2 5(g2/8p2)(111/Nc). In fact, this value can also be re

produced by the Fierz rearranging withMB for the special case
Nf53.

FIG. 1. ~a! Fraction of the Fermi surface used in BCS pairin
~b! fraction of the Fermi surface used in the Overhauser pair
with one standing wave;~c! fractions of the Fermi surface used i
the Overhauser pairing with two orthogonal standing waves.
5-6
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DENSE QCD: OVERHAUSER OR BCS PAIRING? PHYSICAL REVIEW D62 034015
corresponding to Fierz rearranging withMC andMB respec-
tively. Notice the similarity between Eqs.~29! and ~35!, es-
pecially in the one-dimensional reduction of the equations
terms of the logarithmic scales, the BCS equation reads@20#

G~x!'2h
*
2 S xE

x

x0
dy G~y!1E

0

x

dy yG~y! D . ~37!

Since G9(x)522h
*
2 G(x) with G(0)50, then G(x)

5G0sin(A2h* x). The coefficientG0 follows from G8(x0)
50 with A2h* x05p/2. HenceG05G(x0) and, because o
x0[ ln(2m/G0),

G0;2m expH 2
p

2A2h*
J . ~38!

Note thatG0 is enhanced relative toF0, if Nc53. They both
become comparable forNc>4 in theMC-Fierz case with the
Overhauser effect dominating at largeNc ,6 as originally sug-
gested in@4#.

We note that thei in Eq. ~24! ~Overhauser! versus noi in
Eq. ~25! ~BCS! stems from the kinematical difference b
tween the two pairings, hence a difference in the phase-s
integration due to momentum conservation as shown in F
1~a! and 1~b!. In weak coupling, both gaps are exponentia
small. The energy budget can be assessed by noting tha
phase space volumes are of order:m2G0 ~BCS! and mF0

2

~Overhauser!. Hence, the energy densities are

SS

V4
'2mF0

3 ,
SG

V4
'2m2G0

2 . ~39!

In weak coupling, the BCS phase is energetically favored
to Nc;10 in the unscreened case and for one standing w
for theMC Fierz case. UnderMB Fierz rearranging, we hav
an additional constraint on the number of flavors, e.g.,Nf
, 2

9 Nc for large Nc . Remember that further nestings of th
Fermi surface by particle-hole pairing are still possible
shown in Fig. 1~c!, causing a further reduction inSS /V4. A
total nesting of the Fermi surface will bring abo
4pm2/L'

2 'm/F0 patches, henceSS /V4'2m2F0
2. The BCS

phase becomes comparable to the Overhauser phase foNc
;4 ~see, however, footnote 6!. Finally, we note that in
strong coupling, both gaps are a fraction ofm.

V. SCREENED CASE: FINITE Nc

In the presence of electric and magnetic screening, wh
are important in matter, the situation changes significan
While the original variational arguments in@4# were tailored
for the unscreened case, our formulation which reprodu
exactly their unscreened results in the leading logarithm
proximation, generalizes naturally to the screened pertu
tive and nonperturbative cases in a minimal way. Inde

6In the MB-Fierz case, the Overhauser effect only dominates
the largeNc limit, if Nf,

1
2 Nc .
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using Eqs.~24!,~25! and the pertinent transverse cutoffs, w
obtain for perturbative screening,

F~puu!'
h2

6
E

0

`

dquu

F~quu!

Aquu
21F2~quu!

3 lnH S 11
L'

2

~puu2quu!
21mE

2 D 3

3S 11
L'

3

upuu2quuu31
p

4
mD

2 upuu2quuu
D 2J ,

G~puu!'
h
*
2

6
E

0

`

dquu

G~quu!

Aquu
21uG~quu!u2

3 lnH S 11
L'

2

~puu2quu!
21mE

2 D 3

3S 11
L'

3

upuu2quuu31
p

4
mD

2 upuu2quuu
D 2J ,

~40!

and for nonperturbative screening

F~puu!'h2E
0

`

dquu

F~quu!

Aquu
21F2~quu!

lnU11
L'

2

~puu2quu!
21 im

*
2U ,

G~puu!'h
*
2 E

0

`

dquu

G~quu!

Aquu
21uG~quu!u2

3 lnU11
L'

2

~puu2quu!
21 im

*
2U , ~41!

where the transverse cutoffs areL'5A2meq ~Overhauser!
and L'52m ~BCS! respectively. The cutoffs are exactl
fixed in weak coupling, and reflect on the fractions of t
Fermi surface used in the pairing.

In the BCS case, the transverse cutoff is large. He
L'.mE ,mM and the logarithm in Eq.~40! may not be ex-
panded. Dropping 1, we obtain to leading logarithm ac
racy,

G0'S 4L'
6

pmE
5 D e2A3p/2h

* . ~42!n
5-7
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The result for the BCS gap is the same as the one reach
@20,19,18#,7 if we were to Fierz rearrange withMB instead of
MC . Note that Eq.~42! is smaller than Eq.~38! as expected.
For nonperturbative screening, the result is

G0'L'e2(2/h
*
2 )$ ln(11L'

4 /m
*
4 )%21

, ~43!

with L' /m* 52m/m* @1.
In the Overhauser case, the transverse cutoff is reduce

comparison to the BCS case due to momentum conserva
for fixed 3-momentum for the standing wave. The equat
can be rearranged into the form

F~puu!'
h2

6 E
0

`

dquu
F~quu!

eq
lnS 2meq

~puu2quu!
2D

1
5h2

6 E
0

`

dquu
F~quu!

eq
lnS 2meq

~puu2quu!
21mE

2 D ,

~44!

where we have approximatedpmD
2 /4;mE

2 and used static
but perturbatively screened propagators. The effects of L
dau damping through the magnetic gluons result into an
screened interaction but with a reduced strengthh2→h2/6.
Equation~44! can be solved to leading logarithm accura
using the logarithmic scales as defined above. Specific
for x,xm[ ln(2m/mE), we get

F~x!'h2S 2xE
x

xL
dy F~y!2E

x

xL
dy yF~y!1E

0

x

dy yF~y! D
~45!

as in the unscreened case withxL5x0, and forx.xm

F~x!'
h2

6 S 2xE
x

xR
dy F~y!2E

x

xR
dy yF~y!1E

0

x

dy yF~y! D
1C. ~46!

HerexL,R[ ln(2m/FL,R) and the constantC is given by

C5
5h2

6 E
0

`

dquu
F~quu!

eq
lnS 2meq

max~quu
2,mE

2 !
D . ~47!

The solution to Eqs.~45!,~46! is

F~x!5FLcos„A2h~x2xL!… for x,xm ,

F~x!5FRcos„h~x2xR!/A3… for x.xm . ~48!

We note that forx,xm or puu.mE , screening can be ignore
to leading logarithm accuracy andxL5p/A2h as before. For
x.xm or puu,mE , screening cannot be ignored to leadi
logarithm accuracy. Continuity atxm fixes xR , so that

7Modulo the dimensionless constantb08 in @18#.
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FR5FL

cos$A2h~xm2xL!%

cos$h~xm2xR!/A3%

5e2p/A2h

cosHA2h lnS 2m

mE
D2pJ

cosH hF lnS 2m

mE
D2 lnS 2m

FR
D G Y A3J . ~49!

Equation~49! defines a transcendental equation forFR/2m as
a function ofNf , Nc andh ~equivalentlym), i.e.,

FR

2m
'2e2p/A2h

cosH h

A2
lnS Nc

Nfh
2D J

cosH h

A3
lnSA Nc

Nfh
2

FR

2m
D J , ~50!

where we have usedmE/2m'hANf /Nc, with

1

h2
'

8p2

Ncg
2
'

11

3
lnS m

LQCD
D1

17

11
lnlnS m

LQCD
D ~51!

to two loops. For fixedNc and in weak coupling (h→0),
there is no solution to Eq.~50! as can be seen by inspectio
This corresponds to a screening mass with power supp
sion, e.g.mE /m'h. However, a solution can be found i
weak coupling but largeNc , when approximately

e2p/A2hA Nc

Nfh
2
'1 ~52!

for which FR'FL . Through Nc , this corresponds to a
screening mass with exponential suppression, e.g.,mE /m
'e2p/A2h.

To assess the minimal value ofNc for which there is a
solution to Eq.~50!, it is useful to note that the solution~48!
is invariant under the shift

x→x1 lnS L'

2m D ~53!

with similar shifts in the scalesxm,L,R , implying the exis-
tence of a family of solutions that depend parametrically
xm,L,R andL' . The harmonic equation satisfied byF(x) is
scale invariant, hence of the renormalization group typ8

8Indeed, f (x)52F8(x)/F(x) satisfiesf 8(x)5 f 2(x)12h2 for x
,xm and f 8(x)5 f 2(x)1h2/3 for x.xm , which are the renormal-
ization group equations derived in@5#, after the identificationh
→h/A2. A similar observation extends to the BCS case, wh
g(x)52G8(x)/G(x) satisfies g8(x)5g2(x)12h

*
2 ~unscreened!

and g8(x)5g2(x)1h
*
2 /3 ~screened!, in agreement with the renor

malization group equations derived in@20#.
5-8
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DENSE QCD: OVERHAUSER OR BCS PAIRING? PHYSICAL REVIEW D62 034015
The scalexR is fixed in terms ofxL,m by demanding that the
logarithmic derivatives of Eq.~48! ~with pertinent shifts!
match atxm . Thus

1

A6
tanS h

A3
~xm2xR!D 5tan„A2h~xm2xL!…, ~54!

with

xR52
A3

h
$arctan@A6tan„A2h~xm2xL!…#1modp%1xm .

~55!

The lower bound onNc or equivalently the upper bound o
the electric mass follows from

mE[L'e2xm5S L'
2

2m D S 2m

L'
De2xm<2mS L uu

L'
De2xm

[2me2xuu2xm, ~56!

whereL' andL uu are now exponentially small scales cha
acterizing the spread inp' and puu . The inequality in Eq.
~56! follows from the geometrical constraintL uu>L'

2 /2m
discussed above@see Eq.~28! and also Fig. 1~b!#!. Up to the
rescaling~53!, the maximumL uu for which there is a solution
~48! with positive semi-definite gap, corresponds toF(xuu)
50, i.e., xuu5xR1A3p/2h. ~The alternative solutionxuu
5xL1A2p/4h does not generate a maximum bound.! After
inserting the latter and Eq.~55! into ĉ[A2h min(xuu1xm),
we determine the minimum asĉ'2.5051 and the lower
bound forNc ~upper bound for the electric massmE) as

Nc

Nf
>h2eA2ĉ/h. ~57!

This result is in overall agreement with a recent renormali
tion group estimate@5#.9 In particular, form53LQCD , we
find Nc>334Nf .

The case of nonperturbative screening can be addre
similarly by noting that Eq.~44! is now

F~puu!'
h2

2 E
0

`

dquu
F~quu!

eq
lnS ~2meq!2

~puu2quu!
41m

*
4 D . ~58!

For x,xm or puu.m* the screening in Eq.~58! is inactive.
HenceF(x)52FLcos(A2hx), while for x.xm or puu,m*
the screening overwhelms the leading logarithm accur
with F(x)5const. Continuity atxm requires thatxm5xL .
Hence

m* 52me2p/A2h, ~59!

which is the maximum tolerated nonperturbative screen
mass for an Overhauser pairing to take place.

9After the identificationh→h/A2 andm→2m in the prefactor of
mE in @5#.
03401
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Finally, we can qualitatively analyze the effects of tem
perature on the Overhauser effect by considering the di
bution of quasiparticles at the Fermi surface. At finite te
peratureT, the pairing energy becomes

F~puu!'
h2

6 E
0

`

dquu
F~quu!

eq
lnS 2meq

~puu2quu!
2D

3tanhS eq

2TD1
5h2

6 E
0

`

dquu
F~quu!

eq

3 lnS 2meq

~puu2quu!
21mE~T!2D tanhS eq

2TD , ~60!

with the temperature dependent screening mass@15#

mE
2~T!5mE

21S Nc1
Nf

2 Dg2T2

3
. ~61!

Even at largeNc the screening mass is finite. We conclu
that at finite temperature, the Overhauser pairing is rap
depleted by screening for any value ofNc .

VI. PAIRING IN LOWER DIMENSIONS

The results we have derived depend on the numbe
dimensions. Indeed, the QCD analysis we have carried
when applied to 111 dimensions yield the following energ
gaps:

F~p!'h2E
0

`

dq
F~q!

eq

1

~p2q!21mE
2

,

G~p!'h
*
2 E

0

`

dq
G~p!

eq

1

~p2q!21mE
2

, ~62!

with the replacementg2/8p2→g2/2p in h2 and h
*
2 . Re-

member thatF(q) andG(q) have been defined as even fun
tions. In deriving Eq.~62! we have followed the same logi
as in 311 dimensions, thereby ignoring self-energy inserti
on the quark line, and the gauge-fixing dependence on
gluon propagator. While these two effects cancel in co
singlet states~Overhauser! @26#, they usually do not in color-
non-singlet states~BCS! except for the case ofNc52 @22#.
In 111 dimensionsg2/2p has mass dimension, and there
only electric screening withmE

2'Nfg
2ln(m/g). Clearly,

F0'Le2mE
2 /h2

@G0'Le2mE
2 /h

*
2
. ~63!

The dominance of the Overhauser effect over the BCS ef
whateverNc , stems from the fact that the Fermi surfa
reduces to 2 points (6m) in 111 dimensions, with no phas
space reduction for the former. Since both the Overhau
and BCS phase break spontaneously chiral symmetry a
nite density, the existence of the Overhauser phase may
ultimatly on largeNc . The Overhauser effect is dominant
the Schwinger model whereG050 because of the repulsiv
5-9
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character of the Coulomb interaction,10 confirming the re-
sults in @7–9#. The case of QCD in 211 dimensions will be
discussed elsewhere.

VII. CONCLUSIONS

We have constructed a Wilsonian effective action
various scalar-isoscalar excitations around the Fermi surf
Our analysis in the decoupled mode shows that in weak c
pling the Overhauser effect can overtake the BCS effect o
at largeNc in the scalar-isoscalar channel, in agreement w
a recent renormalization group result@5#. The BCS pairing is
more robust to screening than the Overhauser pairing
weak coupling. The BCS analysis was carried out for b
the CFL and the antisymmetric arrangements for arbitr
Nc>3, Nf>2, ignoring the superconducting penetrati
lengths since the electric and magnetic screening lengths
smaller than the London and Pippard lengths~for type-I su-
perconductors!. In strong coupling, the Overhauser effect a
pears to be comparable to the BCS effect, especially if m
tiple standing waves are used, allowing for furth
cooperative pairing between adjacent patches. This is
ticularly relevant for pairings with large energy gaps whi
are expected to take place at a few times nuclear ma
density@19#.

Our effective action is better suited to the use of var
tional approximations as discussed in@4#, and leads naturally
to exact integral equations by variations, especially in
presence of interactions with retardation and screening
would be interesting to repeat our analysis at nonasympt
densities using instanton-generated vertices to address
Overhauser effect. Indeed, for instantons the cutoff is fix
from the onset by their inverse size. As we have shown h
the Overhauser pairing, much like the BCS pairing by m
netic forces@20#, relies on scattering between pairs in t
forward direction that is kinematically suppressed in t
transverse directions~in fact exponentially suppressed@4#!.
Since the instanton interaction is nearly uniform over
Fermi sphere, we expect a geometrical enhancement in
BCS pairing in comparison to the Overhauser pairing. W
recall that in the latter the interaction is enhanced by a fa
of order Nc . Which one dominates at a few times nucle
matter density andNc53 is not cleara priori. Instantons in
the vacuum crystallize forNc>20 @27# in the quenched ap
proximation, and 3,Nc,20 in the unquenched case. Th
crystallization is likely to be favored by finitem as the
quarks are forced to line up along the forwardx4 direction.

It is amusing to note that the crystal phase breaks co
flavor, and translational symmetry spontaneously, with
occurrence of color and flavor density waves. In many wa
this situation resembles the one encountered with de
Skyrmions@10# ~strong coupling!, suggesting the possibility
of a smooth transition. In the process, color and flavor,
spectively, may get misaligned@28#, resulting into color-
flavor-locked charge density waves in a normal~large gaps!
phase. The Skyrmion crystal at low density may smoot

10In the Schwinger modelmE
25g2/2p independently ofm.
03401
r
e.
u-
ly
h

in
h
y

re

-
l-
r
r-

er

-

e
It
ic
the
d
e,
-

e
he
e
r

r

r,
e
s,
se

-

y

transmute to a qualiton crystal at intermediate densities, w
crystalline structure commensurate with the number
patches on the Fermi surface. We note that the crystal
structure in 311 dimensions may only show up as rap
variations in the response functions at momentum 2m. This
is not the case in 111 and 211 dimensions@3#.

Although we have carried out the analysis using Feynm
gauge with minimal changes for the electric and magne
screening, we expect our estimates of the gap energies t
reliable since a close inspection of the equations we deri
when reinterpreted in Minkowski space, shows that
quoted results originate from the forward scattering am
tude of quarks around the Fermi surface. The latter is in
red sensitive in the unscreened case and gauge indepen
the exception being in 111 dimension@26,22#. The similar-
ity between forward particle-particle and particle-hole sc
tering resembles the similarity between forward Comp
and Bhabha scattering. This is what makes 2m and opposite
sides to the Fermi surface so special between a particle a
hole.

Finally, it is amusing to note that following either th
Overhauser or BCS pairing, the quark eigenvalues of
QCD Dirac operator would suggest a novel rearrangem
that is characterized by novel spectral sum rules. They
be reported elsewhere. Our use of the effective action at
Fermi surface is more than a convenience for the study
QCD at large quark chemical potential. Indeed, given
shortcomings faced by important samplings in lattice Mo
Carlo simulations at finite quark chemical potential, and a
given the importance of Pauli blocking for the non-surfa
modes, we believe that a convenient formulation of QCD
the lattice should make use of fermionic fields projected o
the Fermi surface, much like the ones used in the pres
work, and in the spirit of the heavy-quark formalism@14#.
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APPENDIX

The comparison of the exact and simplified in-medium gluon
propagator

According to Eq.~6.51! of @15# and Eq.~10! of @19#, the
in-medium~Minkowski-space! gluon-propagator in a genera
covariant gauge reads~modulo an overall phase factor!

Dmn~q!5 i
Pmn

T

q22G
1 i

Pmn
L

q22F
2 i j

Pmn
GF

q2
, ~A1!
5-10
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where F[mD
2 5mE

25(Nf /2p2)g2m2 and G[mM
2 5

(p/4)(q0 /uqu)mD
2 . The propagator contains the gauge p

rameterj, which must not appear in physical results. T
projectors appearing in Eq.~A1! read

Pmn
T 5~12gm0!~12gn0!S 2gmn2

qmqn

q2 D , ~A2!

Pmn
L 52gmn1

qmqn

q2
2Pmn

T , ~A3!

Pmn
GF5

qmqn

q2
, ~A4!

whereq25q022q2 andgmn5gmn5 diag(1,21,21,21) for
m,n50,1,2,3. The transverse projector can be written as

Pm0
T 5P0n

T 50, ~A5!

Pi j
T 5Pji

T 5d i j 2q̂i q̂j , ~A6!

where q̂i[qi /uqu. Equation~A1! should be compared with
the simplified form

Dmn~q!5 i
1

2

2gmn

q22G
1 i

1

2

2gmn

q22F
, ~A7!

which is the analog in Minkowski space of the screened p
turbative gluon propagator in Euclidean space used her
Eqs. ~3!, ~7! and ~21!. We now proceed to show that Eq
~A1! and ~A7! yield equivalent results in the leading log
rithm approximation, although the analysis is simpler us
Eq. ~A7!.

The three-momentum can be split into the Ferm
momentumP and a momentumlW measured relative to th
Fermi surface,

uqu5UP2 1 lWU5m1 l uu1
l'
2

2m
1O~1/m2!, ~A8!

wherel uu andl' are the projections of the relative momentu
in the direction of and orthogonal to the Fermi-momentumP,
respectively. Because of the decomposition~A8!, we have,
modulo 1/m2 corrections,q25q0

22q2'2q2 and we can
simplify the longitudinal projector as follows~see@19#!:

Pmn
L '2gm0gn0 . ~A9!

Finally we will use that

d i j Pi j
T 52, ~A10!
03401
-

r-
in

g

-

q̂•Q̂k̂•Q̂52 1
2 ~12q̂• k̂!1O~1/m!, ~A11!

whereQ[k2q. The second formula can be derived with th
help of Eq. ~A8! applied to uku, uqu and uQu5uk2qu, i.e.,
uQu25uk2qu2'2m2(12q̂• k̂) and q̂•Qk̂•Q5(ukuq̂• k̂
2uqu)(uku2uquq̂• k̂)'2m2(12q̂• k̂)2.

The Dirac structure of the gap equation~9! of @19# reads

Amn[ 1
2 Tr@gm 1

2 ~12sRg0gmq̂m!gn 1
2 ~11sLg0gnk̂n!#

5 1
2 gmn1

sL

2
~gmngn02gm0gnn!k̂n

1
sR

2
~gmmgn02gm0gnm!q̂m1

sRsL

2
~2gm0gn0dmn

2gmndmn2gmmgnn2gmngnm!q̂mk̂n, ~A12!

wheresL5sR561 for the gap andsL52sR561 for the
antigap. The prefactor12 in Eq. ~A12! can be traced back to
the division by the Dirac trace on the left-hand side of t

gap equation, namely to the division by Tr@ 1
2 (1

1sLg0gnk̂n)#52; see Eq.~9! of @19#.
Using the projectors ofDmn(k2q) as given in Eq.~A1!,

we get

AmnPmn
L 52A0052 1

2 ~11sRsLq̂•k! ~A13!

for the longitudinal~electric! case. Assuming as in@19# that
q̂• k̂[cos(u)'1 in the numeratorsof the gap equation, we
get the weight21 for the longitudinal contribution to the
gap and 0 for the longitudinal contribution to the antigap.
summary,

AmnPmn
L 'H 21 ~gap!,

0 ~antigap!.
~A14!

Furthermore, we have using Eq.~A11!

AmnPmn
T 5 1

2 gi j Pi j
T 1

sRsL

2
~22Pmn

T 1d i j Pi j
T dmn!k̂nq̂m

5211sRsL~ k̂•q̂2 k̂•q̂1 k̂•Q̂q̂•Q̂!

'212 1
2 sRsL1 1

2 sRsLk̂•q̂ ~A15!

for the transverse~magnetic! case. Under the approximatio
k̂•q̂'1, we get for the gap case2 3

2 1 1
2 k̂•q̂'21 and for

the antigap case2 1
2 2 1

2 k̂•q̂'21, i.e.,

AmnPmn
T '21. ~A16!

Finally,
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AmnPmn
GF5 1

2

gmnQmQn

Q2
1

sRsL

2 S 2
Q0Q0

Q2
k̂•q̂22

Q• k̂Q•q̂

Q2
2

Q2

Q2
k̂•q̂D

5 1
2 2

sRsL

2
k̂•q̂1sRsLS k̂•q̂

Q02

Q2
2

Q• k̂Q•q̂

Q2 D
' 1

2 2
sRsL

2
k̂•q̂1sRsLS 2

Q• k̂Q•q̂

2Q2 D
' 1

2 2
sRsL

2
k̂•q̂1sRsL~ 1

2 k̂•q̂2 1
2 !

5 1
2 ~12sRsL!, ~A17!

whereQ2'2Q2 and Eq.~A11! was used. Note that the gauge-fixing dependence vanishes for the gap and gives a
factor 11 for the antigap:

AmnPmn
GF'H 0 ~gap!,

11 ~antigap!.
~A18!

If Amn is contracted with2 1
2 gmn , valid for both the magnetic and electric term of the simplified form of the glu

propagator~A7!, we get

Amn
21

2
gmn5211

sRsL

2
~2g00q̂• k̂12q̂• k̂1 1

2 gmnq̂mk̂n1 1
2 gmnq̂mk̂n!

5211
sRsL

2
~2q̂• k̂12q̂• k̂2q̂• k̂!

521 ~A19!

for both gap and antigap.
For the~particle! gap, the projections~A19! valid for the electric and magnetic terms of the simplified gluon propag

~A7! agree exactly with the projections~A14! and~A16!, respectively valid for electric and magnetic terms of the exact fo
~A1! of the screened perturbative gluon propagator. Furthermore, there is no contribution from the gauge-fixing term;
~A18!. For the antiparticle gaps, the simplified electric contribution~A19! deviates from the exact one~A14!. However, as
shown by Eq.~A18!, the exact result is gauge-fixing-term dependent anyhow, see@19#, and moreover subleading.

In summary, the use of the simplified form~A7! of the gluon propagator is justified in weak coupling and to lead
logarithm accuracy.
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@21# T. Schäfer, hep-ph/9909574.
@22# V.N. Pervushin and D. Ebert, Teor. Mat. Fiz.36, 313 ~1978!;

D. Ebert and L. Kaschluhn, Nucl. Phys.B355, 123 ~1991!.
@23# K. Langfeld and M. Rho, Nucl. Phys.A660, 475 ~1999!.
@24# R.D. Pisarski and D.H. Rischke, nucl-th/9907094.
@25# B.-Y. Park, M. Rho, A. Wirzba, and I. Zahed~in preparation!.
@26# G. ’t Hooft, Nucl. Phys.B72, 461 ~1974!; B75, 461 ~1974!.
@27# D.I. Diakonov and V.Y. Petrov, Nucl. Phys.B245, 259~1984!.
@28# D.B. Kaplan, Phys. Lett. B235, 163~1990!; Nucl. Phys.B351,

137 ~1991!.
5-13


