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Dense QCD: Overhauser or BCS pairing?
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We discuss the Overhauser eff@garticle-hole pairingversus the BCS effec¢particle-particle or hole-hole
pairing in QCD at large quark density. In weak coupling and to leading logarithm accuracy, the pairing
energies can be estimated exactly. For a small number of colors, the BCS effect overtakes the Overhauser
effect, while for a large number of colors the opposite takes place, in agreement with a recent renormalization
group argument. In strong coupling with large pairing energies, the Overhauser effect may be dominant for any
number of colors, suggesting that QCD may crystallize into an insulator at a few times nuclear matter density,
a situation reminiscent of dense Skyrmions. The Overhauser effect is dominant in QCELidithensions,
although susceptible to quantum effects. It is sensitive to temperature in all dimensions.

PACS numbd(s): 12.38.Mh

I. INTRODUCTION apply to QCD in ®1 dimensiond8]. In 3+1 dimensions,
dense Skyrmion calculations with realistic chiral parameters

Quantum chromodynamicéQCD) at high density, rel- Yyield a 3-dimensional Wigner-type crystal with half-
evant to the physics of the early universe, compact stars andkyrmion symmetry at few times nuclear matter density
relativistic heavy ion collisions, is presently attracting re-[10,11. At these densities, Fermi motion is expected to be
newed attention from both nuclear and particle theorists. Folovertaken by the classical interactiph2]. A close inspec-
lowing an early suggestion by Bailin and Loy#], it was tion of these results shows the occurrence of scalar-isoscalar,
recently stressed that at large quark density, diquarks coul@seudoscalar-isovector and vector-isoscalar charge density
condense into a color superconducfal, with potentially ~Waves in an ensemble of dense Skyrmions.
interesting and novel phenomena such as color-flavor lock- N this paper we will show that in dense QCD, the equa-
ing, chiral symmetry breaking, panty violation, color-flavor tions that drive the partiCle-hOIe |nStab|l|ty at the ODDOSite
anomalies, and superqualitons. edge of a Fermi surface resemble those that drive the

At large density, quarks at the edge of the Fermi surfacdarticle-particle or hole-hole instability in the scalar-isoscalar
interact weakly thanks to asymptotic freedom. However, th&hannel, modulo phase-space factors. In Sec. Il we motivate
high degeneracy of the Fermi surface causes perturbatioind derive a Wilsonian action around the Fermi surface. In
theory to fail. As a result, particles can pair and condense ag€c. |ll we obtain expressions for the energy densities and
the edge of the Fermi surface |eading to energy gap§_)ertinent gaps in the-bChannel with SCfeening,thereby gen-
Particle-particle and hole-hole pairinBCS effect have eralizing the original results if4]. In Sec. IV, we analyze
been extensive|y studied recenEW,z:l_ Particle-hole pairing the deCOUpIed equations for Iarge chemical potential without
at the opposite edges of the Fermi surféGwerhauser ef- screening. The effects of screening for arbitrbiryas well as
fect) [3] has received little attention with the exception of antemperature are discussed in Sec. V, in overall agreement
early variational study by Deryagin, Grigoriev and RubakovWith a recent renormalization group argum¢at. In Sec.
for a large number of colof@], and a recent renormalization VI, we discuss the Overhauser effect in QCD in lower di-
group argument inf5]. The scattering amplitude between a mensions. Our conclusions and suggestions are given in Sec.
pair of particles at the opposite edges of the Fermi surfac!l. In the Appendix, we show that our simplified form of
peaks in the forward direction, a situation reminiscent of thehe perturbative screened gluon propagator and the exact
forward enhancement in Compton and Bhabha scattering. form give the same result for the leading particle gaps.

In retrospect, it is surprising that the Overhauser effect in
QCD has attracted so little attention. In fact, the Schwinger
model[6] shows that when a uniform external charge density
is applied, the electrons respond by screening the external To compare the Overhauser effect to the BCS effect, we
charge and inducing a charge density wave, a situatiowill construct a Wilsonian effective action by integrating out
analogous to a Wigner crystgf—9]. Similar considerations the quark modes around the Fermi surface, in the presence of

smooth bilocal fields. An alternative would be the quantum
action[13]. At large chemical potential, most of the Fermi

Il. EFFECTIVE ACTION AT THE FERMI SURFACE

*Email address: bypark@chaosphys.chungnam.ac.kr surface is Pauli blocked, so the quasiparticle content of the
TEmail address: rho@spht.saclay.cea.fr theory is well described by such an action. Incidentally, our
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SEmail address: zahed@zahed.physics.sunysb.edu lattice QCD analysis. Indeed, an effective formulation of lat-
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tice QCD along the lines of the heavy-quark formalism is

possible and will be discussed elsewhgtd]. JZ(X)DW(X—Y)J,&}(YFE]Z% Col WM oi(Y) 1D(Xx—Y)
The starting point in our analysis is the appropriate QCD
action in Euclidean space with massless quarks X[P(y)M oth(X)]
1 _ , _
5= [ 4t 3 (B B, vam =933 (@ +@?S ColdlXMovF(y)]
O/
and the colored current XDX—Y)[ Y (Y)Mp p(x)]  (5)
a
— ith Co=—1/9 andC-= + 1/36 for th t
Jizglﬂh?l/f- 2 WithCo andC¢ or the operators
_ . LPOOMoi(Y) 1= tha,a,i(X) Sapdandij¥p,b,i(Y)

In Euclidean space, our conventions are such that the (6)
y-matrices are Hermitian Wlﬂﬁ'yzu,'y,,}=25#,,. For suffi- [Z(X)Mcwc(y)]:Ja,a,i(x)(')’S)aﬁsgbsilj Ca‘ﬁr’b'j(y)’

ciently largeu, we will assumeg“N.<1. We have omitted

gauge-fixing terms and ghost-fields. In what follows, we will respectively, withN;=N.=3. These quantities involve ma-
analyze Eq(1) in the one-loop approximation with the gluon trices active in color4,b, . . .), flavor (i,j, . ..) andDirac
field in the Feynman gauge. The approximation, as we shaljpace 4,3, - ). M, is the vertex generator for particle-
show below, is equivalent to the resummation of the laddepg|e pairing in the 0 channel(i.e., Overhausgr while M ¢
graphs in the particle-particle or particle-hole graphs. Thes the vertex generator for particle-particle and hole-hole
effects of screening will be dealt with by minimally modify- pairing in the color-flavor lockedCFL) channel(.e., BCS.

ing the gluon propagator, ignoring for simplicity vertex cor- onjy these two operators will be retained below, unless

rections as iff2]. The issue of gauge fixing dependence will specified otherwise. The gluon-propagator in matter is
be briefly discussed at the end.

In the one-loop approximation with screened gluons, the 1 1
induced action is D(x=y)=5De(X=y) + 5Du(X=Y). (7)
2

g

5¢:§f d*x d4yJi(x)DM(x—y)Ji‘(y)+f d*xyd,y,y, ~ The weightings follow from minimal substitution in matter

with 2 electric and 2 magnetic modes. We note that the
() present Fierz rearranging is particular, since it selects solely
the 1. in the gg channel and the3; in the qq channel
[17]. For arbitraryN,=3 andN;=2, the coefficients— §
and 3 become, respectively—3(1—1/N.)-(1/N;) and

whereﬁﬂz(al,02,53,04—u). The screened gluon propaga-
tor {D,,,}=(Dg,Dy) will be approximated by

d*q 1 (1/2N.) 5 -[1/min(N;,N;)], where the single factors refer, in
De m(X—y)= f —— ————e 6. (4)  tumn, to the results of the color Fierz rearranging, the flavor
(2m)" Q"+ mg y Fierz rearranging and, of course only for the second expres-

. ) 5 s 2 5 sion, the Fierz rearranging related to color-flavor locking.
Perturbe;nve arguments - give me/(gu)“=mp/(gu) To compare to the more conventional decompositions
~N¢/2m a_nde/mD~7T|_q4|/|4q|, yvheremD is the Debye through 3, X 3,= 1.+ 8, for qq and 3,X 3,= 3.+ 6, for qq,
mass,my, is the magnetic screening genlerated by Landayith respective weights—%[1—(1/N§)]~(1/Nf) and [ (N,
damping and\; the number of flavor§$15]." Nonperturba- +1)/4N,]- - [1/min(Ng,N)], we introduce also the vertex
tive arguments suggestz ,m2,—m3/q? [16] where for sim- generatof2]
plicity, the difference between electric and magnetic chan-
nels is ignored. We expedtocp<m, <me in the CaseNe _ [y(x)Mgy(y)]= fa 0 () (¥s) N 2)ab 72)i C (Y)-
=3, as lattice simulations for the gluon propagator at finite " o (8
u are not yet available. We note that the perturbative screen-
ing vanishes at largd. In the Appendix, we show why the
approximation(4), which simplifies the vector-structure of 2t least partially, even iNg#N, , a locking can be achieved by
our analysis, yields exact results in the leading logarithm ' 7 Nes
approximyation?/ g10d Fierz rearranging the antisymmetric tensor in color times the corre-

To proceed further with Eq(3) we need to Fierz rear- SPONding one in flavor into the tensbty; ;= daidyj — da;dpi With
range thelJ term in Eq.(3). This is equivalent to summing the pertinent weight 1/mit;,N;) in the combined color-flavor

. 1
| r araphs with relevan ntum numbers. ifically SPace- The latter operator hé@(n—l) eigenvalues+1, 3n(n
adder graphs with relevant quantu umbers. Specifica y’Jrl)fl eigenvalues- 1, one eigenvalue—1, andN X N;—n?

eigenvalues 0, whera=min(N.,N;). Thus, in the BCS case, the
fermion determinan{16) acquires the color-flavor weightnZn
Throughout we will refer tom,, abusively as the magnetic —1), while the corresponding value in the Overhauser case is the
screening mass. standard\ N factor.
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We note that Eq(8) does not lock color and flavor as it from the conventional Fierz rearranging decomposition to
stands; a color-flavor locking as described in footnote 2 stilleading order.

has to be performed, such that finally the corresponding co- Introducing a Hermitian bilocal field (x,y) and a non-
efficient becomes Cg=(N.+1)/{8N.min(N; ,N)}> This  Hermitian bilocal fieldI'(x,y), we may linearize the Fierz
brings about the important issue of whether Fierz rearrangingearranged form of the]J term by using the Hubbard-
iS a unique operation on 4-Fermi interactions. The answer iStratonovich transformation, e.g.,

no [22,23. This nonuniqueness would of course not be im- )

portant if an all-order calculation were to be performed for g — —

any Fierz rearranging set, but is of course relevant for trun-eXF( EJ A% dy [0 YY) ID(X=y)[$(Y) '/I(X)])

cated calculations as is the case in general. Each Fierzing

corresponds to summing a specific class of ladder diagrams _ o _ 4y, b

in the energy density, see e[@2,23. _f dE(x,y)ex;{ Sy f d"xd yiﬂ(X)E(X,Y)lﬂ(Y))
Since the gap equations are inherently nonperturbative in 9)

content, it is hard to tell which Fierz rearranging to elect as a

starting point in the many-body analysis. The conventionalyith

Fierz arranging decomposition corresponds to summing the

nested gluon exchanges in the gap equation, while the un- 9 . |2 (x,y)|?

conventional decomposition does not have an immediate dia- SZ:;J d*xd Y Dx—y) (10

grammatic interpretation to our knowledge. Hence, the start- 9

ing point of the conventional Fierz rearranging maybe

improved upon by using systematically higher-order Feynyg jinear and the functional integration can be performed. The

man graphs and Ward_ |dent|t!es. In contrast, the startingegyt is the following effective action for the bilocal fields:
point of the unconventional Fierz rearranging maybe im-

proved upon by using the random-phase-approximation. In S=Ss+Sp— 3 TrinF, (12)
weak-coupling, the gap equation is uniquely defined in the
leading logarithm approximation. The result follows readily where

and similarly forI". As a result, the action in the quark fields

(170 mal Sy MoZ (k) IT"(6y)CMc
iICTT(x,y)Mc {y- 9+ uyspo(x—y) +Mo(xy)/

12

The factor of 1/2 in Eq(11) is due to the occurrence @f and ¢° through Fierz rearranging inth. and3. [17]. This renders
naturally the Gorkov formalism applicable to the present problem evem=ad. Note thatMo=1-X1 X1y and M=
s'cx s'F>< vs, With the subscript<,F,D short for color, flavor and Dirac. We should stress that the effective attibnis
general. The third term is the Hartree contribution of the quarks to the ground state energy at large chemical potential, while
the first two terms remove the double counting in the potefitial, Fock terms

To analyze the Overhauser and BCS effects in parallel, we make simplifyrisgzefor the bilocal auxiliary fields. Since
the unscreened gluon interaction in both cases peak in the forward direction, we may choose

dq
—ig-(x-V)E
[ L8 et

2(y)=2 CO% PM(XM;—yM) o(x—y)=2 003{ PM(X";y“)

d* :
| e et a3

X,U«_y/f-- N Xu " Yo
5 )_g(x y)—2cos{PM< 5 )

I'(x,y)=2 co% P.

whereP = (Pg,0) and|Pg|=2u. Pr points in the original direction of one of the quarkg.q) andG(q) are even functions,

F(q) is real, sinces (x,y)=3(y,x)*, andG(q) is complex, sincd '(x,y)=T'(y,x)*. The relative momentuny satisfies
|g|=<|P/2|=pu. The bilocal fieldI" characterizes a BCS pair of zero total moment®ncharacterizes a wave of total
momentum 2. This is the optimal choice for the momentum of the standing wave for which the holes contribute coherently

3In fact, expressior8) is the operator considered in Ref48,19 where color and flavor are uncoupled and only the two-flavor case is
consideredsee alsd5,20]). Thus the corresponding coefficient is judt.(-1)/4N., since the flavor-Fierzing factor can be ignored, as it
eventually cancels against a corresponding factor resulting from the fermion determinant. Note, furthermore, that our color-flavor coupling
scheme is different from the one recently introduced in IR&f] for arbitrary numbers of flavors.
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to the wave formation. As a result the gap opens up at the Fermi surfaceywwistthe divide between particles and holes. In
both cases, the pairing involves a particle and/or hole at the opposite sides of the Fermi surface. Indeed, in ter(d8)of Eq.
the linear terms in the bilocal fields are

dix I B d4qi P ) P ‘(P ( P
f X yw(X)E(X,Y)lﬁ(Y)—WJW Y| -5 +a F(a)y Staj+yl5+a F(a)y —57*q (14)
(see Ref[4]) and
%f&x&wﬁuﬁ%nxwww+ZOWwawwﬂw]
) d*q P P . [ P
=zv4f(277)4 wT(———q)CwsG(q) +q)+ﬂg+q iG (q)ysczf(—g—q)
T P i P P Hekd T P
+ i 5 d CiysG(q) ¢ —57*q +i —5+d iIG*(q)ysCy > 4] (15

whereV, is the 4-volume.

Following [4], we introduce fermion fieldg/(+ P/2+q) and 4°(+ P/2—q)* that are independent integration variables in
the relevant region of the momentu| <|P|/2. Hence, the quark contribution around the Fermi surface can be integrated.
The result ig25]

-iQ; 0,  F@  iG*(@Mc 0
F(a) —-iQ_ 0, 0 —iG*(q)Mc
detF=exp| V,Trin| o : (16)
—iG(qQ)M¢ 0 —iQ% o, F(—q)
0 iG(Q)Me  F(—q) -iQ* o,

whereQ.=+P/2+q andQ.=(Q. ,Qi—i,u). For each entry in momentum spagethe determinant in Eq16) is over an
(8-N¢-Nj) X (8- N.-N¢) matrix. The matricesarM:(ic;,l) andoﬂ=(—i5,1) are defined in terms of the usual Pauli matrices
o. The detailed analysis of the coupled problébs) with the full fermion determinant will be discussed elsewh&s).

Ill. GAP EQUATIONS

A qualitative understanding of the Overhauser effect versus the BCS effect can be achieved by studying the phases
separately, and then comparing their energy densities at large quark density. Gettihgields, for the Overhauser pairing,
Q1Q%? +2F*Q,Q_+F*

an energy density
f lo(x)* f da |
_:_ n =5 ~
WV, D(X) (2m)* Q202

which is in agreement with the result derived originally{#]. SettingF=0 yields, for the BCS pairing, an energy density

E"S’.pot,E'l'Skin,Z! (17)

Q3Q%?*+2/G|*Q. Q% +|G|*
Q2Q%?

which is similar to Eq(17). In writing the last equation we have assumed tk(ig = P)|~|G(= u)|~0. The gap equations
for both cases follow by variation. The result is

S 1, lgxP 2
3au‘gafdxzxm 3) @mp

Spot r + Skm I (18)

2F(9)[@Q.Q_+F(q)) ) 19

(p_')<Q+Q 2 1 2F2(9)0,0_+F4(q)

F(p)= 2gf2 P

“Note that we definas®(k)=Cy"(k) in terms of the Euclidean charge conjugation operaer y,y,, whereas in Ref[24] y°(k)
=Cy"(—k). As usual,T stands for “transposed.”
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for the Overhauser gap, and

2 d*q 26(9)(@Q- Q% +|G(9))
G(przggzj 4zxp—q>(~2~*2 — y (20
(27) Q3 Q1 +2|G(0)[“Q+ Q% +|G(q)|
|

for the BCS gap. If we were to use the antisymmetric vertex d*q F(q)

operator(8) then we would have §/3—4g?/3. For the lat- F(p)ngzf -D(p—q) —
ter, we have checked that the res(it8) and(20) agree with (27) 42+ F2(q) + ( Qut q_)
the Bethe-Salpeter derivation in the ladder approximation to l 2ip

order u°. In our notations, the leading order effects are of (24)
order u, the next to leading order effects are of org€rand
the next-to-next to leading order effects are of orger'.
For the screened gluon propagator we have the alternatives

and

2 ,( diq
G(p)mggf 2D(p—q)
- 11 1 1 (2)
0= = ,
2 2,2 ' 2 2, 2
g +mg q°+my G(a)
X . (25
Q5+IG(Q) >+ | )+ 5—
D=5 555 5 (21 o
g 2 g?+im2 2 qg?—im2’

For both pairings, the simplified energy densitgﬁr at

_ ) ) their respective extrema are
for the perturbative and nonperturbative assignments respec-

tively. gz d%q (1
The present construction is valid for an arbitrary number —~ — —FaF—1>
of colors with or without screening, thereby generalizing the 9V, (2m)*\2
original analysis iff4]. The outcome can be analyzed varia- 2
tionally, numerically or even analytically to leading loga- <Inl 1+ F*(a)
rithm accuracy. Using the following momentum decomposi- 2 g’ \? |’
tion around the fixed Fermi momentul at the Fermi aj+ q4+m
surface,
S 2 J d*q (1
P-q P 3 51Glojg—1
QHZW, qL:q_qHﬁ! (22 36Va 3J (2m*\2
XIn[ 1+ C@l*
and assuming that the relevant values of the amplitudes of 5 2\?2
the bilocal fields are small.e., F,|G|<u), we may further Garlatz,
simplify the kinetic part in the energy densities Egs.
(17),(18). Specifically, We now proceed to evaluafe G to leading logarithm accu-
racy.
2)2
2 2 .
s 2f d4 | afj+Fi Q)+ dst zm] IV. UNSCREENED CASE: LARGE N,
s n '
in (2m)* G2+ { gt Q_2 ? In this section we consider the gap equati¢®4),(25) in
I 402 the absence of screening. In the perturbative regime, we note
that mg ,~1/N., and this approximation may be somehow
. )2 justified in largeN, [4]. Hence,
2 d*q a5+ |G(a)|*+{ g+ 2 .
Skin, 1™~ —f In 272 . F(p)~20g°2 dq ! F(a)
’ 3 (277.)4 2+ L (p)N g (277_)4 (p_q)Z 5 q2 2
The simplified gap equations are and
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Gp~ g [ ot
739 2ot (p-q2
G(q)
X s raw Al (27

q
2 G

PHYSICAL REVIEW D62 034015

For the Overhauser pairing, if we assume the propagator giG. 1. (a) Fraction of the Fermi surface used in BCS pairing;
to be static, theq, integration can be performed by a (p) fraction of the Fermi surface used in the Overhauser pairing

contour-integration with the constraint that

|0, [°<2pmeq=2uqi+F*(q). (28)

Hence
=~ F 2
Fpp=h? [ dg, m W[ 1+ 2E9 | (5
[ = —
0 q (py—ap
with h?=g?/472. In general, we have
2
hZEg_NC<1_i)’
82 N¢
N 1
he=2e( 1 =, (30)
872 Ng

for Fierz rearranging withM- and Mg [4], respectively.

is essentially a one-dimensional “fish-
diagram” with logarithmically running couplings. This fea-
ture is preserved by screening as we will show below, in

Equation (29)

with one standing wavey) fractions of the Fermi surface used in
the Overhauser pairing with two orthogonal standing waves.

2
W

P
q+ 5 —m (33

This amounts to taking into account the effects of curvature
around the fixed Fermi momentuR12 defined by the stand-
ing wave. The trad€33) allows for a larger covering of the
Fermi surface, although foA , =2u the terms that are
dropped are only subleading fqﬁ<qf . We have checked
that this substitution does not not affect our analysis in the
leading logarithm approximation. Shifting momenta @
=g+ P/2 andK=p+ P/2 yields

2 d*
G(K—-P/2)~ §g2f (27347)(K—Q)

G(Q—P/2)
Q3+|G(Q—P/2)|2+(|Q|— )2

agreement with the recent renormalization group analysis in (39

[5]. Following [20], the resulting equations are readily

solved by defining the logarithmic scales=In(2u/p)), y
=In(2u/q)), Xo=In(2u/Fg), and rewriting

F<x>~h2(2x J:"dy F(y)- fxx°dy YRy) + f:dy yF(y)).
31

Since F”(x) = — 2h?F(x) with F(xo)=—F(0), then F(x)
= —F,cos(/2hx) [4,20]. The coefficientF, follows from
F'(xo)=0, with y2hxy=m. Hence Fo=F(x,) and xq
=In(2u/Fo)=/(\2h). Thus

F0~2/,L exp{ - E} ) (32)

which is exactly the result established [#] using theM ¢

Fierz rearranging and elaborate variational arguments. Note
that the pairing energ¥,<A, <u follows from an expo-
nentially small region in transverse momenty28) as re-

quired by momentum conservation, see Fith)1Typically
A, =+2uF, as originally suggested i#].

For a constant gap, th@-integration diverges logarithmi-

cally. As most of the physics follows fron@Q|= u, this di-

vergence can be regulatdd 8], with no effect on the

leading-logarithm estimate of the pairing energy. Hence,

G(qp), 2
In

€q

4

14—t
(py—ay)

with e,= \/q2||+ |G(qy) |2 following from the contour integra-

tion over Q,. The prefactor read$Z =g?/127?, and in
general

. (39

G(p;)~h? fo dqy

ho _ g2 [ 2 \min(N¢,No) —1
* 8n?\Ne 2
2 1\ min(N;,Ng)—1
hizg_(H_)(f—c),
872 N¢ 2

(36)

For the BCS pairing, the transverse momentum is not re- 5in [20] and footnote 1 of5] color and flavor are uncoupled.
stricted as shown in Fig.(d). This is best illustrated by Henceh?=(g?/8=?)(1+1/N,). In fact, this value can also be re-

noting that the BCS equation in E@Q7) can be further sim-

plified through the following substitution:

produced by the Fierz rearranging wiMg for the special case
Nf:3.
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corresponding to Fierz rearranging with: andMg respec-  using Egs(24),(25) and the pertinent transverse cutoffs, we
tively. Notice the similarity between Eq&29) and (35), es-  obtain for perturbative screening,
pecially in the one-dimensional reduction of the equations. In

terms of the logarithmic scales, the BCS equation r¢adk
2 Xo X
cs<x>~2m(xjx dy G<y>+fodyye<y>). (@7

Since G"(x)=-2h2G(x) with G(0)=0, then G(x)
=G,sin(y2h, x). The coefficientG, follows from G'(xo)
=0 with \2h, x,= 7/2. HenceGy=G(x,) and, because of
Xo=IN(2u/Gy),

o
Go~2u exp{ — zﬁh*] . (39)

Note thatG, is enhanced relative #©, if N.=3. They both
become comparable fdt.=4 in theM -Fierz case with the
Overhauser effect dominating at lanye,® as originally sug-
gested in4].

We note that the in Eq. (24) (Overhauserversus nad in

F(ay)

VQﬁ+F2(Q||)

h? (=
F(Du)“gfo dqy

A? 3
(p—aqp“+mg

A%
>< 1+ 7

| —_anl3 f 2 _
P —ayl +4mD|pH ayl

G(qy)

Vaf+[G(q))|?

hZ (=
G(Pu)“gfO dq

Eqg. (25 (BCS stems from the kinematical difference be-
tween the two pairings, hence a difference in the phase-space
integration due to momentum conservation as shown in Figs.
1(a) and Xb). In weak coupling, both gaps are exponentially

A2 3
(p;—ay)+mg

small. The energy budget can be assessed by noting that the A3 2
phase space volumes are of ordefG, (BCS) and uFj3 | 1+ - ,
(Overhauser Hence, the energy densities are 3 T
lpy—ayl*+ ZlepH_q|||
Sy s Sr 22

In weak coupling, the BCS phase is energetically favored ugnd for nonperturbative screening
to N~ 10 in the unscreened case and for one standing wave

for the M Fierz case. Undévlg Fierz rearranging, we have
an additional constraint on the number of flavors, eN.,
<2N, for large N.. Remember that further nestings of the
Fermi surface by particle-hole pairing are still possible as
shown in Fig. 1c), causing a further reduction i /V,. A G
total nesting of the Fermi surface will bring about G(py))~h? deq G
472l A2~ ulF patches, hencBs /V,~ — u?F2. The BCS 7= Jo A [ +1G(q))|?
phase becomes comparable to the Overhauser phadé, for I I
~4 (see, however, footnote)6Finally, we note that in A2
strong coupling, both gaps are a fractiongof XIn

F(q)) A?

———1n
\/qﬁJr F2(q))

1+

F<P|\)*h2f:dqu

(py—q)?+imZ

1+ : (42)

(py—ay)?+ims
V. SCREENED CASE: FINITE N,

] ) ) . where the transverse cutoffs ate =y2ue, (Overhauser
In the presence of electric and magnetic screening, which,q A, =2u (BCS respectively. The cutoffs are exactly

are important in matter, the situation changes significantlyfiyeq in weak coupling, and reflect on the fractions of the
While the original variational arguments [i4] were tailored  Formi surface used in the pairing.

for the unscreened case, our formulation which reproduces |, the BCS case, the transverse cutoff is large. Hence
exactly their unscreened results in the leading logarithm app | >mg,m,, and the logarithm in Eq(40) may not be ex-

p_roximation, generalizgs naturally to the_ §creened perturbaﬁanded' Dropping 1, we obtain to leading logarithm accu-
tive and nonperturbative cases in a minimal way. Indeedl,acy

4A°

= e V3mi2h, (42)

®In the Mg-Fierz case, the Overhauser effect only dominates in Gy~
the largeN, limit, if Ny<3N,.
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The result7fpr the BCS gap is the same as.the one reached in cog \/Eh(xm—x,_)}
[20,19,18," if we were to Fierz rearrange witll g instead of Fr=F_
Mc. Note that Eq(42) is smaller than Eq(38) as expected. cogh(xpm—xXg)/\/3}
For nonperturbative screening, the result is 2u
, . cos{ J2h In(—) - ’77)
Go~A, e~ (2h){In(1+AT/m} 43) _ gl mg 49
2u 2u '
with A, /m, =2u/m,>1. cos hiIn{ 7o) =In| £~ V3

In the Overhauser case, the transverse cutoff is reduced in
comparison to the BCS case due to momentum conservatidaquation(49) defines a transcendental equationFayf2u as
for fixed 3-momentum for the standing wave. The equatiora function ofN¢, N, andh (equivalentlyu), i.e.,
can be rearranged into the form

2ueqg

% h | ( N, )]
Cos —In
(pH_qH)z Ew_e—w/\/’zh \/E thz , (50)
2p n ( [ N, FR)
_n ————
’ “0 V3 N¢h22u

(44) where we have usethz/2u~h+/N¢ /N, with

where we have approximatedm3/4~mzZ and used static,
but perturbatively screened propagators. The effects of Lan- 1 87% 11 ( %

F(ap),
N

€q

h? (=
F(PH)*EL da

+5—h2 mdq F(q”)'n( 21eq
! (py—ay)?+mé

6 0 Gq

dau damping through the magnetic gluons result into an un- ﬁ” _N P 3'”
screened interaction but with a reduced strertuths h?/6. 9
Equation(44) can be solved to leading logarithm accuracyqy two loops. For fixedN, and in weak coupling {—0),

using the logarithmic scales as defined above. Specificallfnere is no solution to Eq50) as can be seen by inspection.
for x<xp=In(2u/mg), we get This corresponds to a screening mass with power suppres-
sion, e.g.mg/u~h. However, a solution can be found in

F(x)~h2( ZXJXLdy F(y)— IXLdy yRy)+ fxdy yF(y)) weak coupling but larg®l., when approximately
X X 0
(45)

17 (
+ 1—1Inln ) (52

Agcp Agep

Nc 1
N;h?
h? XR xR X i ~ [
F(X)%E(ZXJ' dy F(y)_f dny(y)+f0dny(y)> for which Fg~F . Through N;, this corresponds to a
X X

screening mass with exponential suppression, eng.)u
—xl\2h

e w/\2h

as in the unscreened case with=xg, and forx>x, (52)

~e

To assess the minimal value bF. for which there is a
solution to Eq.(50), it is useful to note that the solutidd8)
is invariant under the shift

+C. (46)

Herex, g=In(2u/F_g) and the constard is given by

5h? (e F(qH)In 2,(L€q
6 €q ' X—X+1In

Ay

2] 59
The solution to Eqs(45),(46) is with similar shifts in the scales,,, r, implying the exis-
tence of a family of solutions that depend parametrically on
XmL.r @andA; . The harmonic equation satisfied Byx) is
scale invariant, hence of the renormalization group f/pe.

F(x)=F cog\2h(x—x.)) for x<X.,
F(x)=Fgrcogh(x—xg)/\/3) for x>x,. (48

We note that fox<x, or p;>mg, screening can be ignored
to leading logarithm accuracy ang= =/+/2h as before. For
X>Xpy, OF pj<<mg, screening cannot be ignored to leading
logarithm accuracy. Continuity at,, fixes xg, so that

8Indeed, f(x)=—F'(x)/F(x) satisfiesf’(x)=7f2(x)+2h? for x
<X and f’(x)=12(x)+h?/3 for x>x,,, which are the renormal-
ization group equations derived (5], after the identificatiorh
Hh/\/f. A similar observation extends to the BCS case, where
g(x)=—G'(x)/G(x) satisfies g’ (x)=g?(x)+ Zhi (unscreened
andg’ (x)=g?(x)+h2/3 (screeney in agreement with the renor-
"Modulo the dimensionless constaf in [18]. malization group equations derived [ia0].
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The scalexy, is fixed in terms ok, ., by demanding that the Finally, we can qualitatively analyze the effects of tem-

logarithmic derivatives of Eq(48) (with pertinent shifts  perature on the Overhauser effect by considering the distri-

match atx,,. Thus bution of quasiparticles at the Fermi surface. At finite tem-
peratureT, the pairing energy becomes

1 h
%taV{ﬁ(Xm_XR)) ztar(\/zh(xm_XL))v (54 F(p)~h—2deq F(Q||)In 2ueq
6 I € _ 2
it 0 q (py—ap
5h? (e F(qH)
Xtanh —%|+— | d
xR=—?{arctarﬁJétarrﬁmxm—xommodw}+xm- anr(” 6 Jo e,

(55
XIn

2ueq ) "( eq)
tanh ==/, (60)
(p—ay)*+mg(T)? 2T

with the temperature dependent screening niaSk

The lower bound orN, or equivalently the upper bound on
the electric mass follows from

A2\ (2 A
e

=2pe ™ m, (56)

272

g°T
3

2 2 Ny
mg(T)=mg+| N+ > (61

. Even at largeN, the screening mass is finite. We conclude
whereA, and A are now exponentially small scales char- tnat at finite temperature, the Overhauser pairing is rapidly
(56) follows from the geometrical constraimuzAf/Z,u

discussed abovisee Eq(28) and also Fig. (b)]). Up to the
rescaling(53), the maximumA | for which there is a solution
(48) with positive semi-definite gap, correspondsRox,) The results we have derived depend on the number of
=0, i.e, X|=Xg+ \/§71'/2h. (The alternative solution;, dimensions. Indeed, the QCD analysis we have carried out
=x_+ J27/4h does not generate a maximum boynaiter ~ when applied to 1 dimensions yield the following energy
inserting the latter and E¢55) into c=y2h min(x+xy), 93P

we determine the minimum as~2.5051 and the lower

VI. PAIRING IN LOWER DIMENSIONS

bound forN, (upper bound for the electric mass:) as F(p)~h2f qu(q) ! ,
o € (p-q)P+mi
&the\f‘?&/h_ (57)
Ny » [, G(p) 1
G(p)~h2 [ "dg . ®
This result is in overall agreement with a recent renormaliza- 0 € (p—q)tmg
tion group estimaté5].° In particular, foru=3Aqgcp, we _ . 5
find N.=334N; . with the replacemeng?/8m2—g?/27 in h? and h; . Re-
The case of nonperturbative screening can be address&gEember thaf(q) andG(q) have been defined as even func-
similarly by noting that Eq(44) is now tions. In deriving Eq(62) we have followed the same logic

as in 3+1 dimensions, thereby ignoring self-energy insertion
on the quark line, and the gauge-fixing dependence on the
)- (58) gluon propagator. While these two effects cancel in color
singlet statesOverhauser[26], they usually do not in color-
non-singlet state$BCS) except for the case dfi;=2 [22].
In 1+1 dimensiong?/27 has mass dimension, and there is
iny electric screening witméwagzln(,u/g). Clearly,

2
F(q”)m( (2peq)

h2 (e
F(p)~—f dq
2] e (pyj—qy)*+my

For x<xp, or p;>m, the screening in E¢58) is inactive.
HenceF(x) = —F_cos(y2hx), while for x>x,, or Py <m,
the screening overwhelms the leading logarithm accurac

with F(x)=const. Continuity atx,, requires thatx,,=x, .
Hence( ) Y & 154 mo Fo~Ae MM Gy~ Ae~ e (63)

m, =2ue” ™" (590  The dominance of the Overhauser effect over the BCS effect
whateverN,., stems from the fact that the Fermi surface
which is the maximum tolerated nonperturbative screeningeduces to 2 points# «) in 1+1 dimensions, with no phase
mass for an Overhauser pairing to take place. space reduction for the former. Since both the Overhauser
and BCS phase break spontaneously chiral symmetry at fi-
nite density, the existence of the Overhauser phase may rely
9After the identificationh—h/+2 andu— 2 in the prefactor of ~ ultimatly on largeN.. The Overhauser effect is dominant in
me in [5]. the Schwinger model whei®,=0 because of the repulsive
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character of the Coulomb interactiGhconfirming the re-  transmute to a qualiton crystal at intermediate densities, with
sults in[7—9]. The case of QCD in 21 dimensions will be crystalline structure commensurate with the number of

discussed elsewhere. patches on the Fermi surface. We note that the crystalline
structure in 3+1 dimensions may only show up as rapid
VIl. CONCLUSIONS variations in the response functions at momentuym Zhis

is not the case in+1 and 2+1 dimensiong3].

We have constructed a Wilsonian effective action for A|th0ugh we have carried out the ana|ysis using Feynman
various scalar-isoscalar excitations around the Fermi surfacgauge with minimal changes for the electric and magnetic
Our analysis in the decoupled mode shows that in weak couscreening, we expect our estimates of the gap energies to be
pling the Overhauser effect can overtake the BCS effect onlygjiable since a close inspection of the equations we derived
at IargeNC in the scalar-isoscalar channel, in agreement WlthNhen reinterpreted in Minkowski space, shows that the
a recent renormalization group resi. The BCS pairing is  quoted results originate from the forward scattering ampli-
more robust to screening than the Overhauser pairing ifude of quarks around the Fermi surface. The latter is infra-
weak coupling. The BCS analysis was carried out for bothyed sensitive in the unscreened case and gauge independent,
the CFL and the antisymmetric arrangements for arbitrarghe exception being in-£1 dimension26,22. The similar-
N.=3, N¢=2, ignoring the superconducting penetrationity between forward particle-particle and particle-hole scat-
lengths since the electric and magnetic screening lengths atering resembles the similarity between forward Compton
smaller than the London and Pippard lengtfts type-I su-  and Bhabha scattering. This is what makes @1d opposite
perconductors In strong coupling, the Overhauser effect ap- sides to the Fermi surface so special between a particle and a
pears to be comparable to the BCS effect, especially if mulhgle.
tiple standing waves are used, allowing for further Finally, it is amusing to note that following either the
cooperative pairing between adjacent patches. This is paByverhauser or BCS pairing, the quark eigenvalues of the
ticularly relevant for pairings with large energy gaps whichQCD Dirac operator would suggest a novel rearrangement
are expected to take place at a few times nuclear mattenat is characterized by novel spectral sum rules. They will
density[19]. be reported elsewhere. Our use of the effective action at the

Our effective action is better suited to the use of Varia'Fermi surface is more than a convenience for the Study of
tional approximations as discussed 4}, and leads naturally QCD at large quark chemical potential. Indeed, given the
to exact integral equations by variations, especially in theshortcomings faced by important samplings in lattice Monte
presence of interactions with retardation and screening. Iitarlo simulations at finite quark chemical potential, and also
would be interesting to repeat our analysis at nonasymptotigiven the importance of Pauli blocking for the non-surface
densities using instanton-generated vertices to address thgodes, we believe that a convenient formulation of QCD on
Overhauser effect. Indeed, for instantons the cutoff is fixedhe attice should make use of fermionic fields projected onto
from the onset by their inverse size. As we have shown herQhe Fermi surface, much like the ones used in the present

the Overhauser pairing, much like the BCS pairing by magwork, and in the spirit of the heavy-quark formaliga].
netic forces[20], relies on scattering between pairs in the

forward dire(.:tion' thgt is kinematica_lly suppressed in the ACKNOWLEDGMENTS
transverse directionén fact exponentially suppressé¢d]).
Since the instanton interaction is nearly uniform over the A.W. and I.Z. would like to thank Gerry Brown and Ed-
Fermi sphere, we expect a geometrical enhancement in theard Shuryak for discussions. |.Z. is grateful to Larry
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flavor, and translational symmetry spontaneously, with the
occurrence of color and flavor density waves. In many ways, APPENDIX
this situation resembles the one encountered with dens
Skyrmions[10] (strong coupling, suggesting the possibility
of a smooth transition. In the process, color and flavor, re-
spectively, may get misaligne[®28], resulting into color- According to Eq.(6.5) of [15] and Eq.(10) of [19], the
flavor-locked charge density waves in a norrflatge gaps  in-medium(Minkowski-spac¢ gluon-propagator in a general
phase. The Skyrmion crystal at low density may smoothlycovariant gauge readsnodulo an overall phase facjor

q’he comparison of the exact and simplified in-medium gluon
propagator

T L GF

P
D, () =i = +i -2 e Al
() -G gF £ e (A1)

9 the Schwinger modehZ = g?/27 independently ofu.
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where F=mj=mZ=(N{/27?)g’u?> and G=mi=

(77/4)(q0/|q|)m2D. The propagator contains the gauge pa-

PHYSICAL REVIEW &2 034015

k-Q=-3(1-q-k)+0O(1/p),

O

q- (A11)

rameteré, which must not appear in physical results. ThewhereQ=k— q. The second formula can be derived with the

projectors appearing in EGA1) read

9.4,
P/-I;V:(l_gMO)(l_gVO)<_gy,v_ :2 )1 (Az)
9.9,
PL,=—0,.,+ ;2 ~P,. (A3)
GF__ quV
Pz (A4)

whereg®=q°?-¢? andg,,,=g**= diag(1-1,—1,~1) for
u,v=0,1,2,3. The transverse projector can be written as

Plo=P0,=0, (A5)

Py =Pji=8;—0a;. (A6)
whereq;=q;/|q|. Equation(A1) should be compared with
the simplified form

_.1 ~Ouv 1 ~Ouv
D,uv(q)_li q2—G +|§ qZ—F' (A7)

which is the analog in Minkowski space of the screened per-
turbative gluon propagator in Euclidean space used here i

help of Eqg.(A8) applied to|k|, |g| and|Q|=|k—q|, i.e.,
QI?=|k—q|*~2p*(1-q-k) and q-Qk-Q=(|k|q-k
—la) (k[ —lalq-k)~—u?*(1-q-k)*.

The Dirac structure of the gap equatit®) of [19] reads

A=3TH v 3(1=5rY"Y"A™) v"3 (1+ 5. y%y k"]

S ~
= 39"+ 2 (g0~ g 0g K"

S ~ SRS
+ ?R(gﬂmgvo_gﬂogvm)qm_;’_ R2 L (Zgﬂogvo5mn

_g,u.vémn_ g,u.mgun_g,ungvm)dmlzn, (A12)
wheres =sg=*1 for the gap ands = —sg=*1 for the
antigap. The prefactof in Eq. (A12) can be traced back to
the division by the Dirac trace on the left-hand side of the
gap equation, namely to the division by [$(1
+5,9°y"k") 1= 2; see Eq(9) of [19].

Using the projectors oD, ,(k—q) as given in Eq(Al),
we get

ARTPL = —A%= — 3 (1+sgs q-k) (A13)

for the longitudinal(electrig case. Assuming as iri9] that
q-k=cos@)~1 in the numeratorsof the gap equation, we
ﬂet the weight—1 for the longitudinal contribution to the
gap and 0 for the longitudinal contribution to the antigap. In

Egs. (3), (7) and (21). We now proceed to show that Egs.
(Al) and (A7) yield equivalent results in the leading loga-
rithm approximation, although the analysis is simpler using
Eq. (A7).

The three-momentum can be split into the Fermi-
momentumP and a momentuni measured relative to the
Fermi surface,

summary,

-1 (gap,

ALTPL ~ :
kY10 (antigap.

(A14)

Furthermore, we have using EGA11)

2

IJ_
= L 2
,u+|||+2 +0O(1/u”), (A8)

P . - SRS y N a
q/= ’§+| AP =5 P+ 0 (— 2P+ 01T oK™
wherel | andl, are the projections of the relative momentum
in the direction of and orthogonal to the Fermi-momenfm
respectively. Because of the decompositi@®), we have,
modulo 1> corrections,q?=g35—g?~—g? and we can

simplify the longitudinal projector as followsee[19)):

~ Lt s (k-q-k-3+K-06-0)

~—1—1sgs +1isgs k-q (A15)

for the transversémagneti¢ case. Under the approximation

k-q~1, we get for the gap case +ik-gq~—1 and for
1 1

Pl ~—0,09.0- (A9) the antigap case 3 —3k-q~—1, i.e,
Finally we will use that A“VP,TLﬁ —1. (A16)
SIPl=2, (A10) Finally,
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A#rpEF— %gWQ"Q” 1 R ( 2Q0Q0;1.&—2Q' kQ-4q —Q—ZR. q
wv 2 2 2 2 2

Q Q Q Q
SRSL: - . .Q% Q-kQ-q

:%_%k q+SRS|_ k _2_ Q2
SRSL, - Q-kQ-q

w%—%k-qusRs,_ gy )
SRS| ~ A A

”%_%k'Q"'SRSL(%k q-2)

=3(1—sps), (A17)

where Q?~ — Q? and Eq.(A11) was used. Note that the gauge-fixing dependence vanishes for the gap and gives a weight
factor +1 for the antigap:

0 (gap,

+1 (antigap. (A18)

nrpGF
A P#V

If A#¥ is contracted with—%gw, valid for both the magnetic and electric term of the simplified form of the gluon-
propagator(A7), we get

— SRS ~ ~A A A~ A A
AMTQMV:_]-"' %(_gooq k+2q k+%gm”qu”+%gm”qu”)
SRS ~ ~ aA A
—1+% —q-k+29-k—q-k)

(A19)

for both gap and antigap.

For the(particle gap, the projectiongA19) valid for the electric and magnetic terms of the simplified gluon propagator
(A7) agree exactly with the projectiorid14) and(A16), respectively valid for electric and magnetic terms of the exact form
(A1) of the screened perturbative gluon propagator. Furthermore, there is no contribution from the gauge-fixing term; see Eq.
(A18). For the antiparticle gaps, the simplified electric contributi®d9) deviates from the exact orn@14). However, as
shown by Eq.(A18), the exact result is gauge-fixing-term dependent anyhow| Ieand moreover subleading.

In summary, the use of the simplified for(A7) of the gluon propagator is justified in weak coupling and to leading
logarithm accuracy.
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