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Quark-antiquark potential with retardation and radiative contributions
and the heavy quarkonium mass spectra

D. Ebert, R. N. Faustov,* and V. O. Galkin*
Institut für Physik, Humboldt–Universität zu Berlin, Invalidenstr. 110, D-10115 Berlin, Germany

~Received 10 November 1999; published 12 July 2000!

The charmonium and bottomonium mass spectra are calculated with the systematic account of all relativistic
corrections of orderv2/c2 and the one-loop radiative corrections. Special attention is paid to the contribution
of the retardation effects to the spin-independent part of the quark-antiquark potential, and a general approach
to accounting for retardation effects in the long-range~confining! part of the potential is presented. A good fit
to available experimental data on the mass spectra is obtained.

PACS number~s!: 12.39.Ki, 12.39.Pn, 12.40.Yx, 14.40.Gx
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I. INTRODUCTION

The investigation of the meson properties in the fram
work of constituent quark models is an important problem
elementary particle physics. At present a large amoun
experimental data on the masses of ground and excited s
of heavy and light mesons has been accumulated@1#. By
comparing theoretical predictions with experimental da
one can obtain valuable information on the form of t
quark-antiquark interaction potential. Such information is
great practical interest since at present it is not possibl

obtain theqq̄ potential in the whole range of distances fro
the basic principles of QCD. As is well known, the growin
of the strong coupling constant with distance makes per
bation theory inapplicable at large distances~in the infrared
region!. In this region it is necessary to account for nonp
turbative effects connected with the complicated structure
the QCD vacuum. All this leads to a theoretical uncertai
in the qq̄ potential at large and intermediate distances. I
just in this region of large and intermediate distances t
most of the basic meson characteristics are formed. T
makes it possible to investigate the low-energy region
strong interaction by studying the mass spectra and deca
mesons.

Some recent investigations@2–4# have shown that there
could be also a linear~in radius! correction to the perturba
tive Coulomb potential at small distances@in contradiction
with operator product expansion~OPE! predictions#. The es-
timates of the slope yield that it could be of the same orde
magnitude as the slope of the long-range confining lin
potential. It means then that the widely used Cornell pot
tial ~the sum of the Coulomb and linear confining terms! is
really a correct one in the static limit both at large and
small distances.

The relativistic properties of the quark-antiquark intera
tion potential play an important role in analyzing differe
static and dynamical characteristics of heavy mesons.
Lorentz structure of the confining quark-antiquark intera
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tion is of particular interest. In the literature there is no co
sent on this item. For a long time the scalar confining ker
has been considered to be the most appropriate one@5#. The
main argument in favor of this choice is based on the nat
of the heavy quark spin-orbit potential. The scalar poten
gives a vanishing long-range magnetic contribution, which
in agreement with the flux tube picture of quark confinem
of Ref. @6#, and allows us to get the fine structure for hea
quarkonia in accord with experimental data. However,
calculations of electroweak decay rates of heavy mes
with a scalar confining potential alone yield results which a
in worse agreement with data than for a vector poten
@7,8#. The radiativeM1 transitions in quarkonia such as, e.g
J/c→hcg are the most sensitive to the Lorentz structure
the confining potential. The relativistic corrections for the
decays arising from vector and scalar potentials have dif
ent signs@7,8#. In particular, as it has been shown in Ref.@8#,
agreement with experiments for these decays can
achieved only for a mixture of vector and scalar potentia
In this context, it is worth remarking, that the recent study
the qq̄ interaction in the Wilson loop approach@9# indicates
that it cannot be considered as simply a scalar. Moreover,
found structure of spin-independent relativistic corrections
not compatible with a scalar potential. A similar conclusi
has been obtained in Ref.@10# on the basis of a Foldy-
Wouthuysen reduction of the full Coulomb gauge Ham
tonian of QCD. There, the Lorentz structure of the confin
ment has been found to be of vector nature. The sc
character of spin splittings in heavy quarkonia in this a
proach is dynamically generated through the interaction w
collective gluonic degrees of freedom. Thus we see t
while the spin-dependent structure of (qq̄) interaction is well
established now, the spin-independent part is still controv
sial in the literature. The uncertainty in the Lorentz structu
of the confining interaction complicates the account for
tardation corrections since the relativistic reconstruction
the static confining potential is not unique. In our previo
paper@11# we gave some possible prescription of such
construction which, in particular, provides the satisfaction
the Barchielli-Brambilla-Prosperi~BBP! relations @12# fol-
lowing from the Lorentz invariance of the Wilson loop. He
we generalize this prescription and discuss its connec
with the known quark potentials and the implications for t

n-
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heavy quarkonium mass spectra.
The other important point is the inclusion of radiativ

corrections in the perturbative part of the quark potent
There have been considerable progress in recent years
now the perturbative QCD corrections to the static poten
are known up to two loops@13,14# though for the velocity
dependent and spin-dependent potentials only one-loop
rections are calculated@15–17#.

The paper is organized as follows. In Sec. II we descr
our relativistic quark model. The approach to accounting
retardation effects in theqq̄ potential in the general case
presented in Sec. III. The resulting heavy quark poten
containing both spin-independent and spin-dependent p
with the account of one-loop radiative corrections is given
Sec. IV. We use this potential for the calculations of t
heavy quarkonium mass spectra in Sec. V. Section VI c
tains our conclusions and discussion of the results.

II. RELATIVISTIC QUARK MODEL

In the quasipotential approach a meson is described by
wave function of the bound quark-antiquark state, which s
isfies the quasipotential equation@18# of the Schro¨dinger
type @19#

S b2~M !

2mR
2

p2

2mR
DCM~p!5E d3q

~2p!3
V~p,q;M !CM~q!,

~1!

where the relativistic reduced mass is

mR5
EaEb

Ea1Eb
5

M42~ma
22mb

2!2

4M3
, ~2!

andEa ,Eb are given by

Ea5
M22mb

21ma
2

2M
, Eb5

M22ma
21mb

2

2M
. ~3!

HereM5Ea1Eb is the meson mass,ma,b are the masses o
light and heavy quarks, andp is their relative momentum. In
the center of mass system the relative momentum square
mass shell reads

b2~M !5
@M22~ma1mb!2#@M22~ma2mb!2#

4M2
. ~4!

The kernelV(p,q;M ) in Eq. ~1! is the quasipotential op
erator of the quark-antiquark interaction. It is construc
with the help of the off-mass-shell scattering amplitude, p
jected onto the positive energy states. Constructing the q
sipotential of the quark-antiquark interaction we have
sumed that the effective interaction is the sum of the us
one-gluon exchange term with the mixture of long-ran
vector and scalar linear confining potentials, where the v
tor confining potential contains the Pauli interaction. T
quasipotential is then defined by@20#
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V~p,q;M !5ūa~p!ūb~2p!H 4

3
asDmn~k!ga

mgb
n

1VV~k!Ga
mGb;m1VS~k!J ua~q!ub~2q!,

~5!

whereaS is the QCD coupling constant,Dmn is the gluon
propagator in the Coulomb gauge

D00~k!52
4p

k2
, Di j ~k!52

4p

k2 S d i j 2
kikj

k2 D ,

D0i5Di050, ~6!

and k5p2q, gm , and u(p) are the Dirac matrices an
spinors

ul~p!5Ae~p!1m

2e~p! S 1

sp

e~p!1m
D xl, ~7!

with e(p)5Ap21m2. The effective long-range vector verte
is given by

Gm~k!5gm1
ik

2m
smnkn, ~8!

wherek is the Pauli interaction constant characterizing t
anomalous chromomagnetic moment of quarks. Vector
scalar confining potentials in the nonrelativistic limit redu
to

VV~r !5~12«!Ar1B,

VS~r !5«Ar, ~9!

reproducing

Vconf~r !5VS~r !1VV~r !5Ar1B, ~10!

where« is the mixing coefficient.
The expression for the quasipotential for the hea

quarkonia, expanded inv2/c2 without retardation corrections
to the confining potential, can be found in Ref.@20#. The
structure of the spin-dependent interaction is in agreem
with the parameterization of Eichten and Feinberg@21#. All
the parameters of our model, such as quark masses, pa
eters of the linear confining potentialA andB, mixing coef-
ficient «, and anomalous chromomagnetic quark momenk
are fixed from the analysis of heavy quarkonium masses~see
below Sec. V! and radiative decays. The quark massesmb
54.88 GeV, mc51.55 GeV and the parameters of the li
ear potential A50.18 GeV2 and B520.16 GeV have
usual values of quark models. The value of the mixing co
ficient of vector and scalar confining potentials«521 has
been determined from the consideration of the heavy qu
expansion for the semileptonicB→D decays@22# and char-
monium radiative decays@8#. Finally, the universal Pauli in-
4-2
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teraction constantk521 has been fixed from the analysis
the fine splitting of heavy quarkonia3PJ states@20#. Note
that the long-range magnetic contribution to the potentia
our model is proportional to (11k) and thus vanishes fo
the chosen value ofk521. In the present paper we wi
include into consideration the retardation corrections as w
as one-loop radiative corrections.

III. GENERAL APPROACH TO ACCOUNTING
FOR RETARDATION EFFECTS IN THE qq̄ POTENTIAL

For the one-gluon exchange part of theqq̄ potential it is
quite easy to isolate the retardation contribution. Indeed
to the vector current conservation~gauge invariance! we
have the well-known relation on the mass shell

1

k2
ūa~p!ūb~2p!ga

mgbmua~q!ub~2q!

52ūa~p!ūb~2p!H ga
0gb

0

k2
1

1

k2 Fga•gb

2
~ga•k!~gb•k!

k2 G J ua~q!ub~2q!, ~11!

k25k0
22k2; k05ea~p!2ea~q!5eb~q!2eb~p!;

k5p2q.

The left-hand side and the right-hand side of this relation
easily recognized to be in the Feynman gauge and the C
lomb gauge, respectively. Now, if the nonrelativistic expa
sion in p2/m2 is applicable, we can immediately extract th
retardation contribution. Namely, we expand the left-ha
side of Eq.~11! in k0

2/k2:

1

k0
22k2

>2
1

k2
2

k0
2

k4

and get with needed accuracy@23#

2ūa~p!ūb~2p!Fga
0gb

0

k2 S 11
k0

2

k2D 2
ga•gb

k2 Gua~q!ub~2q!.

~12!

In the right-hand side of Eq.~11! one should use the identit
following from the Dirac equation

ūa~p!ūb~2p!~ga•k!~gb•k!ua~q!ub~2q!

5ūa~p!ūb~2p!ga
0gb

0ua~q!ub~2q!

3@ea~p!2ea~q!#@eb~q!2eb~p!#.

After definingk0
2 as a symmetrized product@23,24#

k0
25@ea~p!2ea~q!#@eb~q!2eb~p!# ~13!
03401
n
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e

e
u-
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d

and droppingk0
2 in the denominator we obtain the expressi

which is identical to Eq.~12!. In this way we obtain the
well-known Breit Hamiltonian~the same as in QED@23#! if
we further expand Eq.~13! in p2/m2

k0
2>2

~p22q2!2

4mamb
. ~14!

This treatment allows also for the correct Dirac limit
which the retardation contribution vanishes when one of
particles becomes infinitely heavy@25#.

For the confining part of theqq̄ potential the retardation
contribution is much more indefinite. This is a consequen
of our poor knowledge of the confining potential especia
concerning its relativistic properties: the Lorentz structu
~scalar, vector, etc.! and the dependence on the covaria
variables such ask25k0

22k2. Nevertheless we can perform
some general considerations and then apply them to a
ticular case of the linearly rising potential. To this end w
note that for any nonrelativistic potentialV(2k2) the sim-
plest relativistic generalization is to replace it byV(k0

2

2k2).
In the case of the Lorentz-vector confining potential w

can use the same approach as before even with more ge
vertices containing the Pauli terms, since the mass-shell
tor currents are conserved here as well. It is possible to
troduce alongside with the ‘‘diagonal gauge’’ the so-call
‘‘instantaneous gauge’’@26# which is the generalization o
the Coulomb gauge. The relation analogous to Eq.~11! now
looks as follows~up to the terms of order ofp2/m2):

VV~k0
22k2!ūa~p!ūb~2p!Ga

mGbmua~q!ub~2q!

5ūa~p!ūb~2p!$VV~2k2!Ga
0Gb

02@VV~2k2!Ga•Gb

1VV8 ~2k2!~Ga•k!~Gb•k!#%ua~q!ub~2q!, ~15!

where

VV~k0
22k2!>VV~2k2!1k0

2VV8 ~2k2!

and as in the case of the one-gluon exchange above we

k0
25@ea~p!2ea~q!#@eb~q!2eb~p!#>2

~p22q2!2

4mamb
~16!

again with the correct Dirac limit.
For the case of the Lorentz-scalar potential we can m

the same expansion ink0
2, which yields

VS~k0
22k2!>VS~2k2!1k0

2VS8~2k2!. ~17!

But in this case we have no reasons to fixk0
2 in the only way

~13!. The other possibility is to take a half sum instead o
symmetrized product, namely, to set~see, e.g., Refs.@24,25#!
4-3



t
pr
o

-

d

d

ix
e

he

ad

bu-

D. EBERT, R. N. FAUSTOV, AND V. O. GALKIN PHYSICAL REVIEW D62 034014
k0
25

1

2
$@ea~p!2ea~q!#21@eb~q!2eb~p!#2%

>
1

8
~p22q!2S 1

ma
2

1
1

mb
2D . ~18!

The Dirac limit is not fulfilled by this choice, but this canno
serve as a decisive argument. Thus the most general ex
sion for the energy transfer squared, which incorporates b
possibilities~16! and ~18! has the form

k0
25l@ea~p!2ea~q!#@eb~q!2eb~p!#1~12l!

1

2

3$@ea~p!2ea~q!#21@eb~q!2eb~p!#2%, ~19!

wherel is the mixing parameter.
After making expansion inp2/m2 we obtain

k0
2>2l

~p22q2!2

4mamb
1~12l!

1

8
~p22q!2S 1

ma
2

1
1

mb
2D

5
1

8 F ~12l!S 1

ma
2

1
1

mb
2D 2

2l

mamb
G

3@~k"p!212~k"p!~k"q!1~k"q!2#. ~20!

Thus as expectedk0
2;O(p2/m2)!1. Then the Fourier trans

form of the potential

V~k0
22k2!>V~2k2!1k0

2V8~2k!2

with k0
2 given by Eq.~20! can be represented as follows@25#:

E d3k

~2p!3
V~k0

22k2!eik"r

5V~r !1
1

4 F ~12l!S 1

ma
2

1
1

mb
2D 2

2l

mamb
G

3H V~r !p21V8~r !
1

r
~p"r !2J

W

, ~21!

where$ . . . %W denotes the Weyl ordering of operators an

V~r !5E d3k

~2p!3
V~2k2!eik"r. ~22!

In the case of the one-gluon exchange potential we hal
51,

VC~2k2!52
4

3

4pas

k2
, VC~r !52

4

3

as

r
. ~23!

As for the confining potential we assume it to be a m
ture of scalar and vector parts. In the nonrelativistic limit w
adopt the linearly rising potential
03401
es-
th

-

V0~r !5Ar, V0~2k2!52
8pA

~k2!2
, ~24!

which we split into scalar and vector parts by introducing t
mixing parameter«. The possible constant term inV0 has
been discussed in Ref.@11#:

V05VS1VV , VS5«V0 , VV5~12«!V0 . ~25!

Hence the retardation contribution~21! from scalar and vec-
tor potentials has the form

1

4 F ~12lS,V!S 1

ma
2

1
1

mb
2D 2

2lS,V

mamb
G

3H VS,V~r !p21VS,V8 ~r !
1

r
~p"r !2J

W

, ~26!

where we use the general ansatz~19!, ~20! for both the scalar
and vector potentials for the sake of completeness.

The other spin-independent corrections in our model h
been calculated earlier@20,11#:

1

8
~112k!S 1

ma
2

1
1

mb
2D DVV~r !1

1

mamb
$VV~r !p2%W

2
1

2 S 1

ma
2

1
1

mb
2D $VS~r !p2%W . ~27!

Adding to the above expression the retardation contri
tions ~26! and the nonrelativistic parts~23! and ~25! we ob-
tain the complete spin-independentqq̄ potential

VSI~r !5VC~r !1V0~r !1VVD~r !1
1

8 S 1

ma
2

1
1

mb
2D

3D@VC~r !1~112k!VV#, ~28!

where the velocity-dependent part

VVD~r !5VVD
C ~r !1VVD

V ~r !1VVD
S ~r !, ~29!

VVD
C ~r !5

1

2mamb
H VC~r !Fp21

~p"r !2

r 2 G J
W

5
1

2mamb
H 2

4

3

as

r Fp21
~p"r !2

r 2 G J
W

,

4-4
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VVD
V ~r !5

1

mamb
$VV~r !p2%W1

1

4 F ~12lV!S 1

ma
2

1
1

mb
2D

2
2lV

mamb
G H VV~r !p21VV8 ~r !

~p"r !2

r J
W

5~12«!
~12lV!

4 S 1

ma
2

1
1

mb
2D

3H ArFp21
~p"r !2

r 2 G J
W

1
~12«!

mamb
H ArF S 12

lV

2 Dp22
lV

2

~p"r !2

r 2 G J
W

,

VVD
S ~r !5

1

2 S 1

ma
2

1
1

mb
2D $VV~r !p2%W1

1

4

3F ~12lS!S 1

ma
2

1
1

mb
2D 2

2lS

mamb
G

3H VV~r !p21VV8 ~r !
~p"r !2

r J
W

52
«

4 S 1

ma
2

1
1

mb
2D H ArF ~11lS!p21~lS21!

3
~p"r !2

r 2 G J
W

2
«lS

2mamb
H ArFp21

~p"r !2

r 2 G J
W

.

Making the natural decomposition

VVD~r !5
1

mamb
H p2Vbc~r !1

~p"r !2

r 2
Vc~r !J

W

1S 1

ma
2

1
1

mb
2D

3H p2Vde~r !2
~p"r !2

r 2
Ve~r !J

W

~30!

we obtain, from Eqs.~29!,

Vbc~r !52
2as

3r
1F ~12«!S 12

lV

2 D2«
lS

2 GAr,

Vc~r !52
2as

3r
2F ~12«!

lV

2
1«

lS

2 GAr,

Vde~r !5
1

4
@~12«!~12lV!2«~11lS!#Ar,

Ve~r !52
1

4
@~12«!~12lV!1«~12lS!#Ar. ~31!

The following simple relations hold:
03401
Vbc2Vc5~12«!Ar, Vde1Ve52
«

2
Ar. ~32!

The exact BBP relations@12# ~see also Ref.@27#! in our
notations look as follows:

Vde2
1

2
Vbc1

1

4
~VC1V0!50,

Ve1
1

2
Vc1

r

4

d~VC1V0!

dr
50 ~33!

~in the original version Vbc[2Vb2 1
3 Vc and Vde[Vd

1 1
3 Ve). The functions~31! identically satisfy the BBP rela-

tions ~33! independently of values of the paramete
«, lV , lS but only with the account of retardation corre
tions.

In our model@20,11# we have«521 andlV51, if we
assume further thatlS51 @11# then we get

Vbc~r !52
2as

3r
1

3

2
Ar, Vc~r !52

2as

3r
2

1

2
Ar,

Vde~r !5
1

2
Ar, Ve~r !50. ~34!

Our expressions~28! and ~29! for purely vector («50) and
purely scalar («51) interactions and fork50, lS5lV51
coincide with those of Ref.@25#.

In the minimal area low~MAL ! and flux tube models@28#

Vbc~r !52
2as

3r
1

1

6
Ar, Vc~r !52

2as

3r
2

1

6
Ar,

Vde~r !52
1

6
Ar, Ve52

1

6
Ar. ~35!

To obtain these expressions one should set in relations~31!,
~32!

«5
2

3
, lV12lS51. ~36!

Thus one gets a family of values forlV andlS . The most
natural choice reads

lV51, lS50, ~37!

which resembles the Gromes proposal@24#: the symmetrized
product for the vector potential and the half sum for t
scalar potential. But still the Dirac limit is not satisfied in th
case.

Expression~28! for VSI contains also the term with th
Laplacian:

1

8 S 1

ma
2

1
1

mb
2D D@VC~r !1~112k!VV~r !#. ~38!
4-5
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In the MAL and some other models these terms take
form @28#

1

8 S 1

ma
2

1
1

mb
2D D@VC~r !1V0~r !1Va~r !# ~39!

and usually it is adopted that

DVa~r !50. ~40!

Lattice simulations@29# suggest that

DVa
L~r !5c2

b

r
, b>0.8 GeV2. ~41!

In our model expression~38! can be recast as follows:

1

8 S 1

ma
2

1
1

mb
2D D@VC~r !1V0~r !1Ṽa~r !#,

Ṽa~r !5~112k!~12«!V0~r !2V0~r ! ~42!

and for the adopted values«521, k521
03401
e
DṼa~r !523D~Ar !526

A

r
, 6A>1.1 GeV2, ~43!

which is close to the lattice result~41! but differs from the
suggestion~40!.

IV. HEAVY QUARK-ANTIQUARK POTENTIAL
WITH THE ACCOUNT OF RETARDATION EFFECTS

AND ONE LOOP RADIATIVE CORRECTIONS

At present the static quark-antiquark potential in QCD
known to two loops @13,14#. However the velocity-
dependent and spin-dependent parts are known only to
one-loop order@15,16#. Thus we limit our analysis to one
loop radiative corrections. The resulting heavy qua
antiquark potential can be presented in the form of a sum
spin-independent and spin-dependent parts. For the s
independent part using the relations~28!, ~29! with lV51
and including one-loop radiative corrections in modifi
minimal subtraction (MS) renormalization scheme@15,16#
we get
VSI~r !52
4

3

āV~m2!

r
1Ar1B2

4

3

b0as
2~m2!

2p

ln~mr !

r
1

1

8 S 1

ma
2

1
1

mb
2D DF2

4

3

āV~m2!

r

2
4

3

b0as
2~m2!

2p

ln~mr !

r
1~12«!~112k!ArG1

1

2mamb
S H 2

4

3

āV

r Fp21
~p"r !2

r 2 G J
W

2
4

3

b0as
2~m2!

2p H p2
ln~mr !

r
1

~p"r !2

r 2 S ln~mr !

r
2

1

r D J
W
D 1F 12«

2mamb
2

«

4 S 1

ma
2

1
1

mb
2D G

3H ArFp22
~p"r !2

r 2 G J
W

2
«lS

2 F1

2 S 1

ma
2

1
1

mb
2D 1

1

mamb
G H ArFp21

~p"r !2

r 2 G J
W

1F1

4 S 1

ma
2

1
1

mb
2D 1

1

mamb
GBp2,

~44!
r

where

āV~m2!5as~m2!F11S a1

4
1

gEb0

2 D as~m2!

p G , ~45!

a15
31

3
2

10

9
nf ,

b05112
2

3
nf .

Here nf is a number of flavors andm is a renormalization
scale.
For the dependence of the QCD coupling constantas(m
2)

on the renormalization pointm2 we use the leading orde
result

as~m2!5
4p

b0ln~m2/L2!
. ~46!

Comparing this expression forVSI with the decomposition
~30! we find

Vbc~r !52
2

3

āV~m2!

r
2

2

3

b0as
2~m2!

2p

ln~mr !

r

1S 12«

2
2

«lS

2 DAr1B,
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Vc~r !52
2

3

āV~m2!

r
2

2

3

b0as
2~m2!

2p F ln~mr !

r
2

1

r G
2S 12«

2
1

«lS

2 DAr,

Vde~r !52
«

4
~11lS!Ar1B,

Ve~r !52
«

4
~12lS!Ar. ~47!

It is easy to check that the BBP relations are exactly sa
fied.

The spin-dependent part of the quark-antiquark poten
for equal quark masses (ma5mb5m) with the inclusion of
radiative corrections@15,17# can be presented in our mod
@20# as follows:

VSD5aL•S1bF 3

r 2
~Sa•r !~Sb•r !2~Sa•Sb!G1cSa•Sb , ~48!

a5
1

2m2 H 4as~m2!

r 3 S 11
as~m2!

p F 1

18
nf2

1

36

1gES b0

2
22D1

b0

2
ln

m

m
1S b0

2
22D ln~mr!G D

2
A

r
14~11k!~12«!

A

r J , ~49!

b5
1

3m2 H 4as~m2!

r 3 S 11
as~m2!

p F1

6
nf1

25

12
1gES b0

2
23D

1
b0

2
ln

m

m
1S b0

2
23D ln~mr!G D1~11k!2~12«!

A

r J ,

~50!

c5
4

3m2 H 8pas~m2!

3 S F11
as~m2!

p S 23

12
2

5

18
nf2

3

4
ln2D G

3d3~r !1
as~m2!

p F2
b0

8p
¹2S ln~m/m!

r D
1

1

p S 1

12
nf2

1

16D¹2S ln~mr!1gE

r D G D
1~11k!2~12«!

A

r J , ~51!

whereL is the orbital momentum andSa,b , S5Sa1Sb are
the spin momenta.

The correct description of the fine structure of the hea
quarkonium mass spectrum requires the vanishing of
vector confinement contribution. This can be achieved
setting 11k50, i.e., the total long-range quark chromoma
03401
s-

al

y
e
y
-

netic moment equals zero, which is in accord with the fl
tube@6# and minimal area@30,28# models. One can see from
Eq. ~48! that for the spin-dependent part of the potential t
conjecture is equivalent to the assumption about the sc
structure of confinement interaction@5#.

V. HEAVY QUARKONIUM MASS SPECTRA

Now we can calculate the mass spectra of heavy qua
nia with the account of all relativistic corrections~including
retardation effects! of order v2/c2 and one-loop radiative
corrections. For this purpose we substitute the quasipote
which is a sum of the spin-independent~44! and spin-
dependent~48! parts into the quasipotential equation~1!.
Then we multiply the resulting expression from the left
the quasipotential wave function of a bound state and in
grate with respect to the relative momentum. Taking in
account the accuracy of the calculations, we can use for
resulting matrix elements the wave functions of Eq.~1! with
the static potential1

VNR~r !52
4

3

āV~m2!

r
1Ar1B. ~52!

As a result we obtain the mass formula (ma5mb5m)

b2~M !

2mR
5W1^a&^L•S&1^b&

3K F 3

r 2
~Sa•r !~Sb•r !2~Sa•Sb!G L 1^c&^Sa•Sb&,

~53!

where

W5^VSI&1
^p2&
2mR

,

^L•S&5
1

2
@J~J11!2L~L11!2S~S11!#,

K F 3

r 2
~Sa•r !~Sb•r !2~Sa•Sb!G L

52
6~^L•S&!213^L•S&22S~S11!L~L11!

2~2L21!~2L13!
,

^Sa•Sb&5
1

2 S S~S11!2
3

2D , S5Sa1Sb ,

and ^a&, ^b&, ^c& are the appropriate averages over rad
wave functions of Eqs.~49!–~51!. We use the usual notation

1This static potential includes also some radiative corrections@16#.
The remaining radiative correction term with logarithm in Eq.~44!,
also not vanishing in the static limit, is treated perturbatively.
4-7
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for heavy quarkonia classification:n2S11LJ , wheren is a
radial quantum number,L is the angular momentum,S
50,1 is the total spin, andJ5L2S,L,L1S is the total an-
gular momentum (J5L1S). The first term on the right-hand
side of the mass formula~53! contains all spin-independen
contributions, the second term describes the spin-orbit in
action, the third term is responsible for the tensor interact
while the last term gives the spin-spin interaction.

To proceed further we need to discuss the parameter
our model. There is the following set of parameters:
quark masses (mb andmc), the QCD constantL and renor-
malization pointm @see Eqs.~46!, ~44!, ~48!# in the short-
range part of theQQ̄ potential, the slopeA and interceptB of
the linear confining potential~10!, the mixing coefficient«
~9!, the long-range anomalous chromomagnetic momentk of
the quark~8!, and the mixing parameterlS in the retardation
correction for the scalar confining potential~26!. As was
already discussed in Sec. II, we can fix the values of
parameters«521 and k521 from the consideration o
radiative decays@8# and comparison of the heavy quark e
pansion in our model@22,33# with the predictions of the
heavy quark effective theory. We fix the slope of the line
confining potentialA50.18 GeV2 which is a rather adopted
value. In order to reduce the number of independent par
eters we assume that the renormalization scalem in the
strong coupling constantas(m

2) is equal to the quark mass2

We also varied the quark masses in a reasonable rang
the constituent quark masses. The numerical analysis
comparison with experimental data lead to the following v
ues of our model parameters:

mc51.55 GeV, mb54.88 GeV, L50.178 GeV,

A50.18 GeV2, B520.16 GeV, m5mQ ~Q5c,b!,

«521, k521, lS50.

The quark massesmc,b have usual values for constitue
quark models and coincide with those chosen in our previ
analysis@20# ~see Sec. II!. The above value of the retardatio
parameterlS for the scalar confining potential coincides wi
the minimal area low and flux tube models@28#, with lattice
results@29# and Gromes suggestion@24#. The found value for
the QCD parameterL gives the following values for the
strong coupling constantsas(mc

2)'0.32 andas(mb
2)'0.22.

The results of our numerical calculations of the ma
spectra of charmonium and bottomonium are presente
Tables I and II. We see that the calculated masses agree
experimental values within few MeV and this difference
compatible with the estimates of the higher order correcti
in v2/c2 and as . The model reproduces correctly both th
positions of the centers of gravity of the levels and their fi
and hyperfine splitting. Note that the good agreement of

2Our numerical analysis showed that this is a good approximat
since the variation ofm does not increase considerably the qual
of the mass spectrum fit.
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calculated mass spectra with experimental data is achie
by systematic accounting for all relativistic corrections~in-
cluding retardation corrections! of order v2/c2, both spin-
dependent and spin-independent ones, while in most of
potential models only the spin-dependent corrections are
cluded.

The calculated mass spectra of charmonium and botto
nium are close to the results of our previous calculation@20#
where retardation effects in the confining potential and rad
tive corrections to the one-gluon exchange potential were
taken into account. Both calculations give close values
the experimentally measured states as well as for the
unobserved ones. The inclusion of radiative corrections
lowed us to get better results for the fine splittings of quar
nium states. Thus we can conclude from this comparison
the inclusion of retardation effects and spin-independent o
loop radiative corrections resulted only in the slight sh
('10%) in the value of the QCD parameterL and an ap-
proximately twofold decrease of the constantB.3 Such
changes of parameters almost do not influence the w

n,

3Note that in Ref.@20# we included this constant both in vecto
and scalar parts, while the present analysis indicates that the b
fit can be obtained if the constantB is included only in the vector
part ~9!.

TABLE I. Charmonium mass spectrum.

State
(n(2S11)LJ) Particle Theory Experiment@1# Experiment@31#

11S0 hc 2.979 2.9798 2.9758
13S1 J/C 3.096 3.09688

13P0 xc0 3.424 3.4173 3.4141
13P1 xc1 3.510 3.51053
13P2 xc2 3.556 3.55617

21S0 hc8 3.583 3.594
23S1 C8 3.686 3.686

13D1 3.798 3.7699a

13D2 3.813
13D3 3.815

23P0 xc08 3.854
23P1 xc18 3.929
23P2 xc28 3.972

31S0 hc9 3.991
33S1 C9 4.088 4.040a

23D1 4.194 4.159a

23D2 4.215
23D3 4.223

aMixture of S andD states.
4-8
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functions. As a result the decay matrix elements involv
heavy quarkonium states remain mostly unchanged.4 We plot
the reduced radial wave functionsu(r )5rR(r ) for charmo-
nium and bottomonium in Figs. 1 and 2.

VI. CONCLUSIONS

In this paper we have considered the heavy quarkon
spectroscopy in the framework of the relativistic qua
model. Both relativistic corrections of orderv2/c2 and one-
loop radiative corrections to the short-range potential h
been included into the calculation. Special attention has b
devoted to the role and the structure of retardation cor
tions to the confining interaction. Our general analysis of

4The changes in decay matrix elements are of the same ord
magnitude as the contributions of the higher order relativistic
radiative corrections.

TABLE II. Bottomonium mass spectrum.

State
(n(2S11)LJ) Particle Theory Experiment@1# Experiment@32#

11S0 hb 9.400
13S1 Y 9.460 9.46037

13P0 xb0 9.864 9.8598 9.8630
13P1 xb1 9.892 9.8919 9.8945
13P2 xb2 9.912 9.9132 9.9125

21S0 hb8 9.990
23S1 Y8 10.020 10.023

13D1 10.151
13D2 10.157
13D3 10.160

23P0 xb08 10.232 10.232
23P1 xb18 10.253 10.2552
23P2 xb28 10.267 10.2685

31S0 hb9 10.328
33S1 Y9 10.355 10.3553

23D1 10.441
23D2 10.446
23D3 10.450

33P0 xb09 10.498
33P1 xb19 10.516
33P2 xb29 10.529

41S0 hb- 10.578
43S1 Y- 10.604 10.580
03401
g

m

e
en
c-
e

retardation effects has shown that we have a good theore
motivation to fix the form of retardation contributions to th
vector potential in the form~15! which corresponds to the
parameterlV51 in the generalized expression~26!. On the
contrary, the structure of the retardation contribution to
scalar potential is less restricted from general analysis. T
means that it is not possible to fix the value oflS in Eq. ~26!
on general grounds. Our numerical analysis has shown
the value oflS50 is preferable. Thus for the energy transf
squared we have the symmetrized product~16! for the vector
potential and a half sum~18! for the scalar potential, in
agreement with lattice calculations@29# and minimal area
law and flux tube models@28#. The found structure of the
spin-independent interaction~44! with the account of retar-
dation contributions satisfies the BBP@12# relations ~33!,
which follow from the Lorentz invariance of the Wilso
loop.

In our calculations we have used the heavy qua
antiquark interaction potential with the complete account
all relativistic corrections of orderv2/c2 and one-loop radia-
tive corrections both for the spin-independent and sp
dependent parts. The inclusion of these corrections allow
us to fit correctly the position of the centers of gravity of t
heavy quarkonium levels as well as their fine and hyperfi
splittings. Moreover, the account for radiative corrections

of
d

FIG. 1. The reduced radial wave functions for charmonium. T
solid line is for 1S, bold line for 2S, long-dashed line for 1P,
dashed-dotted line for 2P, and dotted line for 1D states.

FIG. 2. The same as in Fig. 1 for bottomonium and long-sho
dashed line for 3S state.
4-9
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sults in a better description of level splittings. The values
the main parameters of our quark model such as the slop
the confining linear potentialA50.18 GeV2, the mixing co-
efficient«521 of scalar and vector confining potentials a
the long-range anomalous chromomagnetic quark mom
k521 used in the present analysis are kept the same as
were fixed from the previous consideration of radiative d
cays@8# and the heavy quark expansion@22,33#. The value of
«521 implies that the confining quark-antiquark potent
in heavy mesons has predominantly a Lorentz-vector st
ture, while the scalar potential is anticonfining and helps
reproduce the initial nonrelativistic potential. On the oth
hand, the value ofk521 supports the conjecture that th
long-range confining forces are dominated by chromoelec
interaction and that the chromomagnetic interaction v
ishes, which is in accord with the dual superconductiv
picture @35# and flux tube model@6#.

The presented results for the charmonium and botto
nium mass spectra agree well with the available experim
tal data. It is of great interest to consider the predictions
the masses of the1S0 andD levels of bottomonium, which
have not yet been observed experimentally. The difficulty
their experimental observation is that these states~except
3D1) cannot be produced ine1e2 collisions, since their
quantum numbers are not the same as the quantum num
of the photon. Therefore, in search for these states one m
investigate decay processes of vector (3S1) levels. We dis-
l.

.

,

i-
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cussed the possibility of observation of these states in ra
tive decays in Ref.@8#. Note that the small value predicte
for the hyperfine splittingM (Y)2M (hb)>60 MeV leads
to difficulties in observation of thehb state.

Recently it was argued@34# that the account of relativistic
kinematics substantially modifies the description of the ch
monium fine structure and, in particular, leads to consid
ably larger values of the 23PJ splittings than in the nonrela
tivistic limit. Both our previous calculation@20# and the
present one confirm this observation. Our prediction for
charmonium 23P0 mass lies close to the prediction of Re
@34# and slightly lower than theDD̄* threshold. However,
the fact that this state is aboveDD̄ and close toDD̄* thresh-
olds makes threshold effects very important and can con
erably influence the quark model prediction.
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