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Quark-antiquark potential with retardation and radiative contributions
and the heavy quarkonium mass spectra
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The charmonium and bottomonium mass spectra are calculated with the systematic account of all relativistic
corrections of ordev?/c? and the one-loop radiative corrections. Special attention is paid to the contribution
of the retardation effects to the spin-independent part of the quark-antiquark potential, and a general approach
to accounting for retardation effects in the long-rafgenfining part of the potential is presented. A good fit
to available experimental data on the mass spectra is obtained.

PACS numbgs): 12.39.Ki, 12.39.Pn, 12.40.Yx, 14.40.Gx

[. INTRODUCTION tion is of particular interest. In the literature there is no con-
sent on this item. For a long time the scalar confining kernel
The investigation of the meson properties in the frame-has been considered to be the most appropriatd ®n&he

work of constituent quark models is an important problem ofmain argument in favor of this choice is based on the nature
elementary particle physics. At present a large amount obf the heavy quark spin-orbit potential. The scalar potential
experimental data on the masses of ground and excited statgives a vanishing long-range magnetic contribution, which is
of heavy and light mesons has been accumulafigdBy  in agreement with the flux tube picture of quark confinement
comparing theoretical predictions with experimental datapf Ref.[6], and allows us to get the fine structure for heavy
one can obtain valuable information on the form of thequarkonia in accord with experimental data. However, the
quark-antiquark interaction potential. Such information is ofcalculations of electroweak decay rates of heavy mesons
great practical interest since at present it is not possible twith a scalar confining potential alone yield results which are

obtain theqq potential in the whole range of distances from in worse agreement with data than for a vector potential
the basic princip|es of QCD As is well known, the growing [7,8] The radiativeM 1 transitions in quarkonia such as, e.g.,
of the strong coupling constant with distance makes perturd/ /— 7.y are the most sensitive to the Lorentz structure of
bation theory inapplicable at large distan¢esthe infrared the confining potential. The relativistic corrections for these
region. In this region it is necessary to account for nonper-decays arising from vector and scalar potentials have differ-
turbative effects connected with the complicated structure ofnt signg7,8]. In particular, as it has been shown in Ref,

the QCD vacuum. All this leads to a theoretical uncertaintyagreement with experiments for these decays can be

in the qq potential at large and intermediate distances. It icachieved only for a mixture of vector and scalar potentials.

just in this region of large and intermediate distances that” thiS context, itis worth remarking, that the recent study of

most of the basic meson characteristics are formed. Thiheqq interaction in the Wilson loop approa¢f] indicates
makes it possible to investigate the low-energy region ofhat it cannot be considered as simply a scalar. Moreover, the
strong interaction by studying the mass spectra and decays ffund structure of spin-independent relativistic corrections is
mesons. not compatible with a scalar potential. A similar conclusion
Some recent investigatioj2—4] have shown that there has been obtained in Ref10] on the basis of a Foldy-
could be also a lineain radiug correction to the perturba- Wouthuysen reduction of the full Coulomb gauge Hamil-
tive Coulomb potential at small distancEis contradiction tonian of QCD. There, the Lorentz structure of the confine-
with operator product expansid®PB predictiond. The es- ment has been found to be of vector nature. The scalar
timates of the slope yield that it could be of the same order ofharacter of spin splittings in heavy quarkonia in this ap-
magnitude as the slope of the long-range confining lineaProach is dynamically generated through the interaction with
potential. It means then that the widely used Cornell potencollective gluonic degrees of freedom. Thus we see that
tial (the sum of the Coulomb and linear confining teyriss  while the spin-dependent structure of) interaction is well
really a correct one in the static limit both at large and atestablished now, the spin-independent part is still controver-
small distances. sial in the literature. The uncertainty in the Lorentz structure
The relativistic properties of the quark-antiquark interac-of the confining interaction complicates the account for re-
tion potential play an important role in analyzing different tardation corrections since the relativistic reconstruction of
static and dynamical characteristics of heavy mesons. Thihe static confining potential is not unique. In our previous
Lorentz structure of the confining quark-antiquark interac-paper[11] we gave some possible prescription of such re-
construction which, in particular, provides the satisfaction of
the Barchielli-Brambilla-ProsperiBBP) relations[12] fol-
*On leave of absence from Russian Academy of Sciences, Scietewing from the Lorentz invariance of the Wilson loop. Here
tific Council for Cybernetics, Vavilov Street 40, Moscow 117333, we generalize this prescription and discuss its connection
Russia. with the known quark potentials and the implications for the
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heavy quarkonium mass spectra. _ 4

The other important point is the inclusion of radiative V(P,q;M):Ua(p)Ub(—p)[gasD,w(k)Yéf?’E
corrections in the perturbative part of the quark potential.
There have been considerable progress in recent years and
now the perturbative QCD corrections to the static potential +Vv(k)F§Fb;u+Vs(k)] Ua(Q)Up(—a),
are known up to two loop§l13,14] though for the velocity
dependent and spin-dependent potentials only one-loop cor- 5
rections are calculated5-17. . . .

The paper is organized as follows. In Sec. Il we describeWhere s |s_the QCD coupling constanD,,,, is the gluon
our relativistic quark model. The approach to accounting forpropagator in the Coulomb gauge

retardation effects in thgq potential in the general case is . ) anl KK
presented in Sec. lll. The resulting heavy quark potential D°°(k)=——2, D'J(k):——2< ——2),
containing both spin-independent and spin-dependent parts k k k

with the account of one-loop radiative corrections is given in o 0

Sec. IV. We use this potential for the calculations of the D"=D"=0, (6)

heavy quarkonium mass spectra in Sec. V. Section VI con- dKk=p— d the Di i d
tains our conclusions and discussion of the results. zginorgp 9. vu. andu(p) are the Dirac matrices an

Il. RELATIVISTIC QUARK MODEL

_ _ _ _ N e(p)+m \
In the quasipotential approach a meson is described by the ut(p)= Tp) op X (7)

wave function of the bound quark-antiquark state, which sat- e(p)+m
isfies the quasipotential equatigi8] of the Schrdinger
type [19] with e(p) = Vp?+m?. The effective long-range vector vertex
is given by
(bz(M) pz)w ®- | T oMy () i
A 7 = L ; 1 K
2ur  2upg) M P (2m)3 P uid Fﬂ(k)=yM+2—GM,,kV, (8)
m
()
h th lativistic reduced . where k is the Pauli interaction constant characterizing the
where the relativistic reduced mass 1S anomalous chromomagnetic moment of quarks. Vector and
4 2 2s scalar confining potentials in the nonrelativistic limit reduce
_ EaEp _ M™—(m;—my) @) to
FREFE, 4M3 '
Vy(r)=(1—e)Ar+B,
andE, ,E, are given by Vo(r)=sAr, 9)
£ _MZ-mp+m; £ _MZ-mi+m; @ reproducing
am 2M T '

Veond(F)=Vg(r)+Vy(r)=Ar+B, (10

HereM =E,+E, is the meson mass), , are the masses of
light and heavy quarks, amlis their relative momentum. In

the center of mass system the relative momentum squared
mass shell reads

wheree is the mixing coefficient.

The expression for the quasipotential for the heavy
%arkonia, expanded ?/c? without retardation corrections
to the confining potential, can be found in RE20]. The
structure of the spin-dependent interaction is in agreement
[M?— (Mg + my)*J(M*— (m,—my)°] . (4 with the parameterization of Eichten and Feinbg2d]. All

4M? the parameters of our model, such as quark masses, param-
eters of the linear confining potentiAland B, mixing coef-

The kernelV(p,g;M) in Eq. (1) is the quasipotential op- ficient ¢, and anomalous chromomagnetic quark moment
erator of the quark-antiquark interaction. It is constructedare fixed from the analysis of heavy quarkonium magses
with the help of the off-mass-shell scattering amplitude, pro-below Sec. Y and radiative decays. The quark masegs
jected onto the positive energy states. Constructing the qua=4.88 GeV, m;=1.55 GeV and the parameters of the lin-
sipotential of the quark-antiquark interaction we have asear potential A=0.18 GeV¥ and B=-0.16 GeV have
sumed that the effective interaction is the sum of the usualisual values of quark models. The value of the mixing coef-
one-gluon exchange term with the mixture of long-rangeficient of vector and scalar confining potentialss —1 has
vector and scalar linear confining potentials, where the vecbeen determined from the consideration of the heavy quark
tor confining potential contains the Pauli interaction. Theexpansion for the semileptoni&— D decayq22] and char-
quasipotential is then defined pg0] monium radiative decayf8]. Finally, the universal Pauli in-

b?(M)=
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teraction constant=— 1 has been fixed from the analysis of and dropping3 in the denominator we obtain the expression

the fine splitting of heavy quarkonidP; states[20]. Note

which is identical to Eq.(12). In this way we obtain the

that the long-range magnetic contribution to the potential inwell-known Breit Hamiltonianthe same as in QE[R3)) if
our model is proportional to () and thus vanishes for we further expand Eq13) in p%/m?

the chosen value ok=—1. In the present paper we will
include into consideration the retardation corrections as well

as one-loop radiative corrections.

Ill. GENERAL APPROACH TO ACCOUNTING
FOR RETARDATION EFFECTS IN THE qq POTENTIAL

For the one-gluon exchange part of g potential it is

(P~ q))°
2:——
K=~ (14)

This treatment allows also for the correct Dirac limit in
which the retardation contribution vanishes when one of the
particles becomes infinitely heay25].

quite easy to isolate the retardation contribution. Indeed due For the confining part of theq potential the retardation

to the vector current conservatidigauge invariangewe
have the well-known relation on the mass shell

1 _
Eua(p)ub(— P) Y4 ¥buUald)Up(—Q)

0.0
Ya7b

a
e

Ya Y

= —Ua<p>Ub<—p>[

- (ak(w-k)
k2

]ua(q)ub(—q), (11

k2=k§—k? ko= €a(P)— €a(0) = €n(0) — €x(P);

k=p—q.

contribution is much more indefinite. This is a consequence
of our poor knowledge of the confining potential especially
concerning its relativistic properties: the Lorentz structure
(scalar, vector, etg.and the dependence on the covariant
variables such ak?=kj—k?. Nevertheless we can perform
some general considerations and then apply them to a par-
ticular case of the linearly rising potential. To this end we
note that for any nonrelativistic potentisl(—k?) the sim-
plest relativistic generalization is to replace it M(k(z,
—k?).

In the case of the Lorentz-vector confining potential we
can use the same approach as before even with more general
vertices containing the Pauli terms, since the mass-shell vec-
tor currents are conserved here as well. It is possible to in-
troduce alongside with the “diagonal gauge” the so-called
“instantaneous gaugeT26] which is the generalization of
the Coulomb gauge. The relation analogous to (Ed) now

The left-hand side and the right-hand side of this relation ar&®°ks as follows(up to the terms of order qb*/m?):
easily recognized to be in the Feynman gauge and the Cou- L
lomb gauge, respectively. Now, if the nonrelativistic expan-Vy,(ka—k?)u,(p)uy(— PIT AT ua(a)up(—q)

sion in p?/m? is applicable, we can immediately extract the
retardation contribution. Namely, we expand the left-hand

side of Eq.(11) in k3/k?:

1 1 k3

K-k2 K2 K
and get with needed accuraf33]

. Ya Yo

k2

Ua(@)Up(—1).
(12

~Ua(PUs(—P)| .

0.0 2
k
Ya¥ol, *0
k

In the right-hand side of Ed11) one should use the identity

following from the Dirac equation

Ua(P)Up(—P)(7a- K) (7 K)Ua(Q)Up(— Q)
= Ua(P)Up(—P) Y2¥pUa( @) Up(—0)
X[ ea(p)— €a(a) [ en(q) — €n(P)]-

After definingk3 as a symmetrized produf23,24

ka=[e€a(p)— ea(D) [ €n(qQ) — €n(P)] (13)

=Ua(P)Up(— PV (— KT TS~ [Vy(— k)T, Ty
+V(—k2)(Ta- k) (Ty- k) THUa(q) Up(— ), (15)

where
Vy(K3—k?)=Vy(—k?) + K3V (—k?)
and as in the case of the one-gluon exchange above we put

2_ 2)2
k=[ea(P) — €a(d) 1L n() — en(P)]=— —(Zma?nb

(16)

again with the correct Dirac limit.
For the case of the Lorentz-scalar potential we can make
the same expansion kﬁ which yields

Vo(k5—k?)=Vg(—k?) + K3V —k?). 17

But in this case we have no reasons tokf%xin the only way
(13). The other possibility is to take a half sum instead of a
symmetrized product, namely, to gete, e.g., Ref$24,25)
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1 87A
k5= Al €a(P) — €a(@) 12+ [ep(a) — ev(P) 12} Vo(r)=Ar,  Vo(—k?)=- (;;2, @49
1 1 1
= g(p —q)? ;a + Eb 18 which we split into scalar and vector parts by introducing the

mixing parameter. The possible constant term W, has
The Dirac limit is not fulfilled by this choice, but this cannot been discussed in RefL1]:
serve as a decisive argument. Thus the most general expres-
sion for the energy transfer squared, which incorporates both _ _a
possibilities(16) and (18) has the form Vo=VstVy, Vs=eVo, Vy=(172)Vo. (25

Hence the retardation contributi@®1) from scalar and vec-

1
Ko=Mlea(p)~€a(@)]l€n(q) ~ eb(p)]+(1—)\)§ tor potentials has the form

X{[€a(p) — €a()*+[en(q) —€n(p) 1%, (19

. . 1 1 1 2\sv
where\ is the mixing parameter. 2 (I-AsVW)| 5+ —=|— :
After making expansion ip?/m? we obtain my  my/ MM
1
(p*—0?)? 1 1 1 X1 Vg (1) p2+ VL (r)—(p-r)z] (26)
N _ T in2_ N\ SAY SV ’
ko=—X\ Amam, +(1 )\)8(p q) m§+ 2 r W
1 1 2\ where we use the general ansitg), (20) for both the scalar
(1 M —=+—|— .
m2 mi/ MaMy and vector potentials for the sake of completeness.
The other spin-independent corrections in our model had
X[ (k-p)2+2(k-p)(k-q) +(k-q)?]. (200 been calculated earli¢R0,11]:

Thus as expectekf~ O(p?/m?)<1. Then the Fourier trans-

form of the potential 1
g(1+20)| —5+— | AV + e Vy(DPPh
V(k3—k?)=V(—k?) +k3V'(—k)? :om
with kS given by Eq.(20) can be represented as folloj&5: _ % FJF = V() p2hy. (27)
a b

d%k .
f o VK kDe
a

Adding to the above expression the retardation contribu-
tions (26) and the nonrelativistic pari23) and (25) we ob-

—V(r)+£ (1-\) i ) tain the complete spin-independe potential
mf1 mz/  MaMmy
XqV(r) 2+V’(r)£( ? (21) /1 1
p r p ’ VS|(I')=VC(I’)+V0(Y)+VVD(I’)+g _2+_2
w m;  m;
where{ . ..} denotes the Weyl ordering of operators and XA[V(r)+(1+2k)Vy], (28
d3k ik )
V(r)=f 2 )3V(—k )e' T, (220  where the velocity-dependent part
aw
In the case of the one-gluon exchange potential we had Vo(1) =VSo(r)+Vup(r) +Vip(r), (29)
:1,
4 Ara 4 o (pr)?
k2= — s —___S Cry=— 2
Ve(-k)=—z =55 VeD=—37. @3 Vol gy | Ve P T )|
As for the confining potential we assume it to be a mix- 1 4 ag ) (p-r)?
ture of scalar and vector parts. In the nonrelativistic limit we “omm.l 37 > )
; e . aMp r
adopt the linearly rising potential w
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v 1
Vyp(r)= W{Vv rp? }W+

1
ol
m

a

MaMy,

1-\ 1
(1o V>( 2+_2)

m;, my

}

(p-r)?

X{ Ar| pPt —
r

L 0Pzt

X

(1-rg 1 . 1 2\g
S g mﬁ myMmy,

2
x{vv<r>p2+vo<r>(pr” ]
w

2
[vv<r>p2+vo<r)(pr” ]
w

1
+ —

2
b

]W_

2
m,

(30

1
=——| S+ |{Ar| (L+ gp?+(As—1
(p-r)? e\s , . (pr)?
X 2 _Zmamb Ar| pc+
Making the natural decomposition
1 (per )2
Vip(r)=———1P P?Vpo(r)+ ——Ve(r) | +
a'llb
w
(p-)?
X pzvde(r) e( )
r w
we obtain, from Eqgs(29),
2&’ )\V )\S
Vbc(r)z— 3r (1 8) 1—? —87 Ar
s
(r)—— [(1 s)—-l—s?Ar
1
Vae(1)=7[(1=e)(1-A)—s(1+g)]AT,

1
Ve(r)=— Z[(l—s)(l—)\v)+8(1—)\S)]Ar.

The following simple relations hold:

(31)

PHYSICAL REVIEW D 62 034014

to
Vet Ve=—5Ar. (32

Vpe—Ve=(1—¢)Ar,
The exact BBP relation§l12] (see also Ref[27]) in our
notations look as follows:

1
—(Ve+Vy)=0,

1
Vde_ _Vbc+ 4 (

2

1 r d(\Ve+Vy)
EVC+ Zd—r—O (33)

Ve+

(in the original versionV,.=—V,—3V, and Vg4.=V4
+1V,). The functions(31) identically satisfy the BBP rela-
tions (33) independently of values of the parameters
e, Ny, Agbut only with the account of retardation correc-
tions.

In our model[20,11] we havee=—1 andAy=1, if we
assume further thats=1 [11] then we get

2a5 3 25 1
Vbc(r)=—?+§Ar, Vc(r)=—3——§Ar,
Vde(r)— Ar Ve(r)=0. (34

Our expression$28) and (29) for purely vector €=0) and
purely scalar £=1) interactions and fok=0, A\g=Ay=1
coincide with those of Ref.25].

In the minimal area loWMAL ) and flux tube modelg28]

2ag
Vpe(r)=— Vc(r)=—3—r——Ar,

as

3r 6
1 1

Vel == gAr, Ve=— A (35)

To obtain these expressions one should set in relati®hs
(32)

Av+2Ng=1. (36)

E= §,
Thus one gets a family of values fax, and\g. The most
natural choice reads

which resembles the Gromes propdsad]: the symmetrized
product for the vector potential and the half sum for the
scalar potential. But still the Dirac limit is not satisfied in this
case.

Expression(28) for Vg, contains also the term with the
Laplacian:

A[Vc(r)+(1+2k)Vy(r)]. (39

1
gl 2t
8\ m2

m,

034014-5
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In the MAL and some other models these terms take
form [28]

1
gl 2+ | AlVe(n) +Vo(r)+Va(r)] (39
m
a b
and usually it is adopted that
AV,(r)=0. (40
Lattice simulationg29] suggest that
L b
AV5(r)=c— = b=0.8 Ge\’. (41)

In our model expressiof88) can be recast as follows:

1

5 A[Ve(r)+Vo(r) +Vq(n)],

1
_+_
2 2
m, my

Va(r)=(1+2k)(1—&)Vo(r)—Vo(r) (42)

and for the adopted values=—1, xk=—-1

4 Boa2(1?) In(ur
Arip 2P s(u7) Inur)
2 r

4
Vg((r)=— 3

3

ay(p?)
r

_ 4 Boad(p?) In(ur) .
r

3 2
E

(pr)?

r2

+(1—¢)(1+2k)Ar

|

1
mg

In(per)
r

4 Boad(p?)
3 2

X{Ar p

In(ur) _ (prry?
r r2

Rt

1
2

1

— |+
m

8)\5
2

2

where

ai
4

YeBo
2

as(ﬂz)
T

1+( }, (45

|

ay(p?)=ay(u?)

31 10
u=z g

2
Bo=11-

UL

Heren; is a number of flavors ang is a renormalization
scale.

PHYSICAL REVIEW D62 034014

the

AV,(r) 6A=1.1 GeV,

A
—3A(Ar)=—6?, (43

which is close to the lattice resul#l) but differs from the
suggestion40).

IV. HEAVY QUARK-ANTIQUARK POTENTIAL
WITH THE ACCOUNT OF RETARDATION EFFECTS
AND ONE LOOP RADIATIVE CORRECTIONS

At present the static quark-antiquark potential in QCD is
known to two loops [13,14. However the velocity-
dependent and spin-dependent parts are known only to the
one-loop ordef15,16. Thus we limit our analysis to one-
loop radiative corrections. The resulting heavy quark-
antiquark potential can be presented in the form of a sum of
spin-independent and spin-dependent parts. For the spin-
independent part using the relatio(®8), (29) with A,=1
and including one-loop radiative corrections in modified
minimal subtraction §IS) renormalization schemfl5,16|
we get

1/1 1 A 4 ay(u?)
8lm m2 3
4 a r)?

2m;m ({_5? p2+(p2) H

a'llb r W
1) N l-¢ el 1 1
") 2mm,  4\mZ m?

1 or)? 11 1

{Ar 2, (P 2) ] Z(_2+_2>+ Bp?,
MaMmy, r W m; my/ MaMy
(44)

For the dependence of the QCD coupling constafj.?)
on the renormalization poink?> we use the leading order
result

4
Boln(?IA%)

Comparing this expression fdfg, with the decomposition
(30) we find

as(u?)= (46)

2 ay(p?) 2 BoaZ(p?) In(ur)
VolD="3 "3 2 r
1-¢ 8)\SA B
2~ |ATE

034014-6
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_ 2ay(p?) 2 oad(p?)
V) ="37 73 24

1—8+8)\SA
Sl A

In(,ur)_ 1

o 3

2

&
Vyelr)=— Z(1+)\S)Ar+ B,

Ve(r) == 7 (1= AgAT. (47

PHYSICAL REVIEW D 62 034014

netic moment equals zero, which is in accord with the flux
tube[6] and minimal are430,28 models. One can see from
Eq. (48) that for the spin-dependent part of the potential this
conjecture is equivalent to the assumption about the scalar
structure of confinement interactigf].

V. HEAVY QUARKONIUM MASS SPECTRA

Now we can calculate the mass spectra of heavy quarko-
nia with the account of all relativistic correctiofisicluding
retardation effectsof order v?/c?> and one-loop radiative
corrections. For this purpose we substitute the quasipotential

It is easy to check that the BBP relations are exactly satiswhich is a sum of the spin-independett4) and spin-

fied.

dependent(48) parts into the quasipotential equatigmh).

The spin-dependent part of the quark-antiquark potentiathen we multiply the resulting expression from the left by

for equal quark massesng=m,=m) with the inclusion of

the quasipotential wave function of a bound state and inte-

radiative correction$15,17 can be presented in our model grate with respect to the relative momentum. Taking into

[20] as follows:

Vgp=al -S+b +cS,'S,, (48

3
r—z(Sa-f)(So- N—(SS)

1

2m?

day(p?) 1+a3w2> 1.1
r3 18" 36

]

Bo
52

Bo, M
+ e 7Ina+ >

A A
— ?+4(1+ K)(l_s)r} ,

1 |4ayu?) as(u®)[1 25 Bo
b_3m2 r3 (1+ [gnf+1_2+YE(?_3)
Bo, ~ [ Bo A
+?Inm+ ?—B)In(mr) +(1+K)2(1—s)?],
(50)
4 [8may(u?) ag(u?) (23 5 3
a3 m |12 1M g
2
X 83(r)+ (i )[_ﬁvz(_ln(,u/m))
T 8 r
1(1 1) 2(In(mr)wE )
12" 16 r

+(1+K)2(1—s)ﬂ, (52

wherelL is the orbital momentum an§, ,, S=S,+S, are
the spin momenta.

account the accuracy of the calculations, we can use for the
resulting matrix elements the wave functions of EL).with
the static potential

- 2
vNR(r):—gaV(r”“ ) ArtB. (52)
As a result we obtain the mass formula (= m,=m)
bZ(M)_W+ ay(L-S)+(b
2~ W@+ (D)
3
><< r—z(Sa-r)(So-r)—(Sa-So) >+<C><Sa-50>-
(53
where
~ (P
W_<VS|>+2_MR’

(L-S}z%[J(J+1)—L(L+1)—S(S+1)],

3
<[r—2(5a-r)(50~ r)—(Sa-So)D

6((L-S))?+3(L-S)—2S(S+1)L(L+1)
T 2(2L—1)(2L+3) :

1

3
(S S=5 S<S+1>—§), S=5,+S,

and(a), (b), (c) are the appropriate averages over radial
wave functions of Eqg49)—(51). We use the usual notations

The correct description of the fine structure of the heavy
quarkonium mass spectrum requires the vanishing of theThjs static potential includes also some radiative correcfibfl
vector confinement contribution. This can be achieved byrhe remaining radiative correction term with logarithm in &),
setting 1+ =0, i.e., the total long-range quark chromomag-also not vanishing in the static limit, is treated perturbatively.
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for heavy quarkonia classificatiom?S™1L;, wheren is a TABLE I. Charmonium mass spectrum.
radial quantum numberl. is the angular momentum$
=0,1 is the total spin, and=L—S,L,L+S is the total an-
gular momentumJ=L +S). The first term on the right-hand

State
(n®STUL;)  Particle Theory Experimeniil] Experiment31]

side of the mass formuléb3) contains all spin-independent 11s, Ne 2.979 2.9798 2.9758

contributions, the second term describes the spin-orbit inter- 135, J¥  3.096 3.09688

action, the third term is responsible for the tensor interaction,

while the last term gives the spin-spin interaction. 13pP, Yeo 3.424 3.4173 3.4141
To proceed further we need to discuss the parameters of 13p, Xa 3510 351053

our model. There is the following set of parameters: the 13p,

Yoo  3.556 3.55617
quark massesnf, andm,), the QCD constanA and renor-

malization point,u_[see Eqs(46), (44), (48)] in the short- 215, . 3.583 3.594
range part of th& Q potential, the slopé and intercepB of 2%s, N 3.686 3.686
the linear confining potentidll0), the mixing coefficient
(9), the long-range anomalous chromomagnetic morreuft 13D, 3.798 3.7699
the quark(8), and the mixing parametavs in the retardation 1°D, 3.813
correction for the scalar confining potentig?6). As was 3
. . - 1°Dj 3.815
already discussed in Sec. Il, we can fix the values of the
parameterss=—1 and k=—1 from the consideration of 23p ,
o . 0 Xl ~ 3.854
radiative decay$8] and comparison of the heavy quark ex- 3 ;
e ; g 2°p, X 3.929
pansion in our mode[22,33 with the predictions of the 23p c 3972
heavy quark effective theory. We fix the slope of the linear 2 Xe2 :
confining potentiaA=0.18 Ge\f which is a rather adopted . ,
value. In order to reduce the number of independent param- 3330 770” 3.991
eters we assume that the renormalization sqalén the 35 v 4.088 4.040
strong coupling constanig( ) is equal to the quark ma$s.
We also varied the quark masses in a reasonable range for 2°D1 4.194 4.159
the constituent quark masses. The numerical analysis and 2°D2 4.215
comparison with experimental data lead to the following val-  2°Ds 4.223

ues of our model parameters:

m,=155 GeV, m,—4.88 GeV, A—0178 Gev, Mureof SandD states.

calculated mass spectra with experimental data is achieved
A=0.18 GeV¥, B=-0.16 GeV, u=mg (Q=c,b), by systematic accounting for all relativistic correctiofis-

cluding retardation correction®f order v?/c?, both spin-

e=—1 «k=-1, As=0. dependent and spin-independent ones, while in most of the

potential models only the spin-dependent corrections are in-
The quark massem, have usual values for constituent cluded.
quark models and coincide with those chosen in our previous The calculated mass spectra of charmonium and bottomo-
analysig20] (see Sec. )l The above value of the retardation njum are close to the results of our previous calculaf
parameteh s for the scalar confining potential coincides with where retardation effects in the confining potential and radia-
the minimal area low and flux tube mod¢®8], with lattice  tive corrections to the one-gluon exchange potential were not
results[29] and Gromes suggesti¢4]. The found value for  taken into account. Both calculations give close values for
the QCD parameteA gives the following values for the the experimentally measured states as well as for the yet
strong coupling constantsss(mc) ~0.32 andas(mb) ~0.22. unobserved ones. The inclusion of radiative corrections al-

The results of our numerical calculations of the masdowed us to get better results for the fine splittings of quarko-

spectra of charmonium and bottomonium are presented inium states. Thus we can conclude from this comparison that
Tables | and Il. We see that the calculated masses agree withe inclusion of retardation effects and spin-independent one-
experimental values within few MeV and this difference isloop radiative corrections resulted only in the slight shift
compatible with the estimates of the higher order correctiong~10%) in the value of the QCD paramet&rand an ap-
in v?/c? and as. The model reproduces correctly both the proximately twofold decrease of the constaBf Such
positions of the centers of gravity of the levels and their finechanges of parameters almost do not influence the wave
and hyperfine splitting. Note that the good agreement of the

SNote that in Ref[20] we included this constant both in vector
20ur numerical analysis showed that this is a good approximationand scalar parts, while the present analysis indicates that the better
since the variation o does not increase considerably the quality fit can be obtained if the constaBtis included only in the vector
of the mass spectrum fit. part(9).
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TABLE Il. Bottomonium mass spectrum.

g
=N

State
(n®STUL;)  Particle Theory Experimeritl] Experiment32]

2
=

S 02
11s, T 9.400 s
133, Y 9460  9.46037 g 0
%02
13P, Xbo  9.864 9.8598 9.8630
13p, Xo1  9.892 9.8919 9.8945 -04
1%p, X2~ 9.912 9.9132 9.9125 ~0.6
12

21s, m 9.990 r-GevV
2°S Y’ 10.020 10.023 FIG. 1. The reduced radial wave functions for charmonium. The

solid line is for 1S, bold line for 2S, long-dashed line for B,
1°D, 10.151 dashed-dotted line forR, and dotted line for D states.
1°D, 10.157
1°D, 10.160

retardation effects has shown that we have a good theoretical
2°P, Xpo  10.232 10.232 motivation to fix the form of retardation contributions to the
2°P, Xp1  10.253 10.2552 vector potential in the forn{15) which corresponds to the
2°P, Xp2  10.267 10.2685 parametein =1 in the generalized expressi¢26). On the

contrary, the structure of the retardation contribution to the
3ls, 7 10.328 scalar potential is less restricted from general analysis. This
3%s, Y”  10.355 10.3553 means that it is not possible to fix the valuexgfin Eq. (26)

on general grounds. Our numerical analysis has shown that
2°D, 10.441 the value ofA =0 is preferable. Thus for the energy transfer
2°D, 10.446 squared we have the symmetrized proddé) for the vector
23D, 10.450 potential and a half sunt18) for the scalar potential, in

agreement with lattice calculatioj29] and minimal area
3%p, X,  10.498 Iav_v a_md flux tube_model§28]. Thg found structure of the
3%p, X, 10516 spuj-mdeper?der.lt |ntera(;t|<_3(r44) with the account of retar-
3%p, XL, 10.529 dat_lon contributions satisfies thg BB;RZ] relations (33),

which follow from the Lorentz invariance of the Wilson

1 ” loop.

4380 o 10578 In our calculations we have used the heavy quark-
433, Y 10.604 10.580

antiquark interaction potential with the complete account of
all relativistic corrections of order?/c? and one-loop radia-
tive corrections both for the spin-independent and spin-
gdependent parts. The inclusion of these corrections allowed
us to fit correctly the position of the centers of gravity of the
heavy quarkonium levels as well as their fine and hyperfine
splittings. Moreover, the account for radiative corrections re-

functions. As a result the decay matrix elements involvin
heavy quarkonium states remain mostly uncharfga plot
the reduced radial wave functiongr)=rR(r) for charmo-
nium and bottomonium in Figs. 1 and 2.

VI. CONCLUSIONS

In this paper we have considered the heavy quarkonium
spectroscopy in the framework of the relativistic quark
model. Both relativistic corrections of ordef/c? and one-
loop radiative corrections to the short-range potential have
been included into the calculation. Special attention has been
devoted to the role and the structure of retardation correc-
tions to the confining interaction. Our general analysis of the

r-GeV

“The changes in decay matrix elements are of the same order of
magnitude as the contributions of the higher order relativistic and FIG. 2. The same as in Fig. 1 for bottomonium and long-short-
radiative corrections. dashed line for $ state.
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sults in a better description of level splittings. The values ofcussed the possibility of observation of these states in radia-
the main parameters of our quark model such as the slope tif’fe decays in Ref[8]. Note that the small value predicted
the confining linear potentigh=0.18 Ge\f, the mixing co-  for the hyperfine splittingV (Y)—M(7,)=60 MeV leads
efficiente = — 1 of scalar and vector confining potentials andto difficulties in observation of they, state.

the long-range anomalous chromomagnetic quark moment Recently it was argueB4] that the account of relativistic
x=—1 used in the present analysis are kept the same as th&nematics substantially modifies the description of the char-
were fixed from the previous consideration of radiative de-monium fine structure and, in particular, leads to consider-
cays[8] and the heavy quark expansii#2,33. The value of  ably larger values of the®P, splittings than in the nonrela-
e=—1 implies that the confining quark-antiquark potential tivistic limit. Both our previous calculatiorj20] and the

in heavy mesons has predominantly a Lorentz-vector struggresent one confirm this observation. Our prediction for the
ture, while the scalar potential is anticonfining and helps tacharmonium 3P, mass lies close to the prediction of Ref.

reproduce the initial nonrelativistic potential. On the other[34] and slightly lower than th®©D* threshold. However,

hand, the value ok=—1 supports the conjecture that the_the fact that this state is abo@D and close tdD* thresh-

!ong-range confining forces are dominatec_i b_y chron"!oelectn%lds makes threshold effects very important and can consid-
interaction and that the chromomagnetic interaction Van'erably influence the quark model prediction

ishes, which is in accord with the dual superconductivity
picture[35] and flux tube mod€]6].

The presented results for the charmonium and bottomo-
nium mass spectra agree well with the available experimen-
tal data. It is of great interest to consider the predictions for We thank A. M. Badalyan, G. Bali, N. Brambilla, M. I.
the masses of théS, andD levels of bottomonium, which  Polikarpov, and V. I. Savrin for useful discussions of the
have not yet been observed experimentally. The difficulty ofresults. Two of ug§R.N.F. and V.O.G. are grateful to the
their experimental observation is that these stdtesept particle theory group of Humboldt University for the kind
D,) cannot be produced ie*e” collisions, since their hospitality. The work of R.N.F. and V.O.G. was supported in
quantum numbers are not the same as the quantum numbgyart by the Deutsche Forschungsgemeinschaft under Con-
of the photon. Therefore, in search for these states one mustct No. Eb 139/1-3 and in part by Russian Foundation for
investigate decay processes of vectd®,| levels. We dis- Fundamental Research under Grant No. 00-02-17768.
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