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According to our present understanding may production processes proceed through a coloestate
followed by the emission of soft particles in the quarkonium rest frame. The kinematic effect of soft particle
emission is usually a higher-order effect in the non-relativistic expansion, but becomes important near the
kinematic end point of quarkonium energyomentum distributions. In an intermediate region a systematic
resummation of the non-relativistic expansion leads to the introduction of so-called “shape functions.” In this
paper we provide an implementation of the kinematic effect of soft gluon emission which is consistent with the
non-relativistic shape function formalism in the region where it is applicable and which models the extreme
end point region. We then apply the model to photoproductiodV gfandJ/ s production inB meson decay.

A satisfactory description d8 decay data is obtained. For inelastic charmonium photoproduction we conclude
that a sensible comparison of theory with data requires a transverse momentum cut larger than the currently
used 1 GeV.

PACS numbd(s): 13.85.Ni, 14.40.Gx

. INTRODUCTION lows: the fragmentation of the colorext state intod/y oc-
curs via the emission of gluons with small momentum frac-
Inclusive charmonium production processes can be exXjons of orderv2. Because the momentum of these gluons is
pressed in a factorized form, combining a short-distance exsmall compared to the momenta involved in the hard subpro-
pansion with the use of a non-relativistic QUNRQCD) cess that creates the state, it is neglected in leading order
Lagrangian 1]. The short-distance expansion works best forIn the short-distance expansidm v2): the fragmentation

total production cross sections, provided the expansion Paio Iy is described by a single numbéhe “NRQCD

2 . .
ramekter_v H(]Of S rderdoftt?g typ'cﬁll velomrt]y I&;C}Uﬁred ?{L t?e matrix element’). This is adequate for total production cross
quarks in the bound statés small enough. ollows that, sections, but it is not for distributions in the kinematic re-

contrary to prior belief, many_charmonium productigq pro- ion, where the charmonium carries nearly maximal energy.
cesses such as production in had_ron-hadron CO”'S'.OnS this region, thel/s energy distribution is evidently sensi-
large transverse momentui2] and at flx_ed targefi3], and N tive to the energy distribution of the soft emitted gluons. In
B meson decay4-7], are actually dominated by production . ticyjar, we expect that thi ¢ energy distribution should

of a coloredcc state, followed by a long-distance transition fall to zero, rather than grow, near the point of maximal
to charmonium and light hadroi8]. energy, if thed/¢ is produced via a color octet state, since
The theoretical prediction of charmonium energy distribu-the emission of gluons with momentum much smaller than
tions is more delicate. A long-standing problem for thetheir typical one is rather unlikely.
NRQCD factorization approach concerns #distribution in The inadequacy of a leading-order treatment of the short-
inelastic J/y photoproduction, where=E,,/E, is the distance expansion, and the necessity to account for the ki-
quarkonium energy fraction in the proton rest frame. Thenematics of soft gluon emission, is even more evident for
color octet contributions to this quantity grow rapidly nearJ/# production inB meson decay. The leading order par-
z=1 [9,6], in conflict with observation[10], unless the tonic short-distance proceds—(cc)q results incc pairs
NRQCD matrix elements that normalize the color octet con-with fixed (maxima) energy, in stark contrast to the broad
tribution are made rather small. energy distribution observeld 6]. The broad energy distri-
One of the physical origins of this discrepancy is as fol-bution of multi-body final states has to be attributed to soft
gluon emission and to the Fermi motion of theuark in the
B meson.
Technically speaking, the velocity expansion of the short-
proach, which we do not discuss in this paper. For a long tImedlstance process breaks down near the kinematic endpoint of

transverse polarization df ¢ produced in hadron-hadron collisions maximal charmonium energy1 7,18, because higher-order
at large transverse momentuibl—13 has been regarded as the t€rms in the small parameter are compensated by inverse
crucial test of the theoretical framework. If recent indications fromPowers of small kinematic invariants. Such a breakdown of
the Collider Detector at Fermilal€DF) of no polarizatior{14] are  the short-distance expansion is not specific to quarkonium
confirmed by higher statistics data, this may indicate a problenproduction in the NRQCD approach, but occurs quite gener-
with factorization, as suggested[ih5], or it may imply large spin-  ally for inclusive processes, for example in deep-inelastic
symmetry violating corrections. scattering as Bjorker— 1 or in semi-leptonic or radiativB

There may be other difficulties for the NRQCD factorization ap-
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decays[19]. When the quarkonium carries a fraction (1 model to thel/» momentum distribution i8—J/+ X and

—¢€) of its maximal energy, where is small, the inclusive- tune the parameters of the model to the observed momentum
ness of the process is restricted by the small phase space Iélistribution. In Sec. IV the more complicatédnd more in-

for the emission of further particles. The process is then alsteresting case of inelastic photoproduction is considered.
sensitive to the fact that the physical phase space is limited

by hadron kinematics, while the calculation of short-distance

coefficients is carried out in terms of partons. The short- Il. SHAPE FUNCTION MODEL

distance expansion reacts to this non-inclusiveness by exhib-
iting terms of order ¢%/€)¥. In some cases one can sum the
leading terms irv?/€ to all orders and express the quarko-

In this section we derive the general expression for the
smeared quarkonium energy distributions on which the ap-
plications toB decay and photoproduction will be based. To

nium pro_duc‘tl|on Cross S(_actl,cl)n as a convolution of @ NONy, i ate our approach and to make more explicit contact
perturbative sha}pe function” with a partonic cross section., i the formalism of[1,18], we begin by considering the
The shape function leads to a smearing of the energy spe&

The sh f on f lsm i | leadi roduction amplitude for quarkonium in the Coulomb limit,
tru_m. € Shape | unction ormaiism Is ana ogouzs toa €adiNAng with emission of a single soft gluon, before generalizing
twist approximation, and is appropriate fer-v<. In this

. di . he f K of th cD f . the expressions to the case of interest. In the last subsection
intermediate region the framework of the NRQCD factoriza- o retym to the Coulomb limit and compute the shape func-

tion approach is still valid, reorganized by a partial resum-iqp i this [imit. This provides us with an idea of the form of

matlon of thg velocnyz expansion. Howeve_r, in the extremey,q shape function in a controlled, although unrealistic limit.
endpoint region,e<v*, the twist expansion also breaks

down.

The leading twist expressions for several energy distribu- A. Factorization and the shape function in the Coulomb limit
tions have been derived [18]. But since the shape function
is non-perturbative and essentially unknown, no quantitativ 1]: first a pair of nearly on-shell and co-moving charm
analysis has been performed. It is the aim of this paper t

. ) . rks is cr in a hard pr in which typical momen
explore the kinematic effect of soft gluons in the fragmenta- uarks is created in a hard process ch typical momenta

i ‘ | — ativel el " are of order 2. (or larger, if there is another hard sceie

Egn iﬁ t;g;g(;e?ﬁc tﬁg'r qﬁ;;:gﬁt'\ﬁhﬁt:%fig;gﬁlar’ t\r,1vee \;Vr']ort:[he charmonium rest frame. The nearly on-shelktate then
. 1€ qus : gt fragments into charmonium via emission of soft particles

distance cross section with a shape function can indeed ac-

PR . with energy and momentum of orden.v? in the charmo-
count fo_r the observezidlstrlbu_tlon inJ/ photoproggctlon. nium rest framé&. Schematically, the differential cross sec-
The emission of soft gluons with energy of oraeyv “ in the

. . tion is expr in the f rized form
guarkonium rest frame cannot be computed perturbatlveht/O s expressed in the factorized fo

and we have to model it. Our ansatz for the soft gluon radia-
tion function will be guided by simplicity. The important (277)32pg
feature of the model is that it incorporates the kinematics of d°p
soft gluon radiation together with reasonable assumptions on
the typical energy scales involved. The ansatz bears some XS
similarities with Fermi motion smearind20] and, in
particular, the Altarelli-Cabibbo-Corbo-Maiani-Martinelli
(ACCMM) model[21] for semileptonicB decays. Since the XH(Pin P.11,12,00)S(pr, P12 k),
precise form of the energy distribution near the end point (2.1
depends on the ansatz for the shape function, our results do
not constitute theoretical predictions. However, as we shall
see, a satisfactory description Bfdecay data can indeed be wheredP p; .k;] denotes the phase space measure for the
obtained with a reasonable ansatz for the shape function. Aets of hard ;) and soft k;) particle momenta anH ands
further cross check is provided by applying the same shap{ae‘cer to_ the hard arjd soit parts of t.he amplitude squared,
function to theJ/¢ energy distribution in photoproduction. respectively. Se_e Fig. 1 fo_r a graphical representation and
This, however, turns out to be more problematic. further ex_planatlon of notatio. .

The paper is divided as follows: Section Il is “theoreti- To define the hard and soft parts in H@.1) accurately,
cal.” We define the model and derive the equation that de¥V€ Use the amplitude for the procesg—J/ygg, relevant

scribes the convolution of the short-distance process with the

shape function for a general production process. We also

show that the model is equivalent to a specific form of the 2The energy scale for these particles is set by the small velocity

NRQCD shape function in the region where a leading twistthat characterizes the non-relativistic charmonium bound state and

approximation is valid. To illustrate the formalism, we con- the typical virtuality (n.v)? of the nearly on-shelt andc quark.

sider the Iimitmcu2>AQCD, in which charmonium is a Cou- See also the discussion below.

lomb bound state. We rederive NRQCD factorization for this 3in an abuse of notation, in the figureandSrefer to the hard and

specific case and compute the shape function in this limit. soft part of the amplitude, rather than the amplitude squared. The
The ansatz for the non-perturbative shape function derearly on-shell heavy quark propagators that connect the hard and

pends on a few model parameters. In Sec. Ill we apply th&oft part in the figure should be considered as pag& &ee below.

Inclusive charmonium production proceeds in two stages

do

=fluxX f dpgpl ,k]](27T)4
R

pR“"; k1+2i Pi—Pin
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FIG. 2. A contribution to th J/ amplitude discussed
FIG. 1. Diagrammatic representation of the amplitude that leads,, 1o text €v9— /499 amp

to Eq.(2.1).

] ) ) ] ) coupling constant, because the total contribution from each
to inelastic photoproduction, as an example. It is also |nstrucg|u0n is of orderag(mw)/v~1. However, if one of the
. . . 2 . ) - 1
tive to take the limitmcu “> A ocp, Wherev is now of order  heavy quark propagators is far off shell, Coulomb exchange
as(mev) and Aocp is the strong interaction scale. We call represents an ordinary higher-order correction to the ampli-
this the Coulomb limit, because the charmonium bound statg,qe. Hence we can neglect gluon exchange to the left of the
is perturbatively calculable in this limit and the dominantg|u0n with momentunpy . The gluon ladder “between” the
binding is through the Coulomb force. The Coulomb limit iS gmission of the gluons with momentupy andk, respec-
much stronger than the non-relativistic limit. While Charmo'tively cannot be neglected, but it is summed into the Cou-
nium and bot;omonigm are nop-relat?vistkzz(<1)_v they are  |omp Green functiorG(p,p’;E), the Green function for the
not Coulombic (Mcv“~Aqcp) in reality. In particular, the  gchrwinger equation with théleading order Coulomb po-
NRQCD matrix elements, which are usually taken as nontentjal. The Green function is related to the quark-antiquark
perturbative parameters, can bg perturbatively calculated i8cattering amplitude for a quark-antiquark pair wigmal)
the Coulomb I2|m|t, up to corrections suppressed by powersg|ative three momentumginto a quark-antiquark pair with
of Agco/(Mev?). _ ~ (smal) relative three momentum 2 with total non-

A particular contribution to theyg— J/¢gg amplitude is  yg|ativistic energyE. Likewise the gluon ladder to the right
shown in Fig. 2. The corresponding squared amplitude is thgs the gluon with momentunk is summed and contained in
sum of terms where both gluons are hard or both gluons arg,e phound state wave function. Fors, state, such a3/

soft or one of them is hard and the other is soft. The hard-soff,e pound state wave function in the bound state rest frame is
term is the most interesting one for inelastic photoproductlorgiven by

through the color octet mechanism and we focus on it first.

The other two terms will be briefly discussed later. S0 €(N)d
Suppose the gluon with momentupy in Fig. 2 is hard V(pr,\;p)=+V2Mg = —C'Bl//(p), (2.2
and the gluon with momentuiis soft. On-shell soft gluons \/—c V2

in NRQCD can have energy of orden,y and mg? [22]
(called “soft” and “ultrasoft,” respectively, in[22]). How-
ever, gluons with energy of orden.v cannot be radiated

over the time scale Ii.v?) and do not appear as final state #(p) 8\my™"? (2.3

where

particles in the scattering amplitud€onsequently, the scale B (p%+ v?)?

of kis mev?. This is important, because this will set the scale

for the energy of soft gluon emission in our model param-

etrization later. and y=m.Cra4/2. My is the quarkonium mass,, refers
In Fig. 2 we included(dashed lingsthe instantaneous to color [with N.=3 the number of colors an@g= (N2

exchange of(Coulomb gluons with energy of ordem.v? —1)/(2N.)], o' is a Pauli matrix an@'(\) the polarization

and momentum of ordem.v. If this exchange occurs be- vector of the quarkonium.
tween nearly on-shell heavy quark propagators with off- With these remarks one of the tWeymmetri¢ hard-soft
shellness of ordemcv?, it is not suppressed by the small contributions to the amplitude can be written as

A J/
“More technically, because the interaction with a gluon with en- (v9—J/4g9)
ergy of ordermev sends the heavy quark propagator off shell, a d3q d3
subgraph with energy and momentum of ordew in the ampli- :j

tude squared has noc+ng cut, as would be required for a non-

E (277)321(79%?9)

zero contribution to theyg— J/gg amplitude. Rather such a sub- Xi +Kk/2°E(Do+ KV(K: D)W .
graph can be expanded into a series of instantaneous interactions, Ge(@.p+KIZE(PrT )V (KW (Pr.A:P),
which contribute to the potential between the heavy quarks. (2.9
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whereV(k;p) refers to the vertex at which the soft gluon is hard sub-amplitude still depends grandl and its spin and
emitted and.A(yg—ccg) denotes the hard sub-amplitude color indices are entangled with those of the remaining part
with the on-shell spinors for its external heavy quark linesCf the amplitude. As described [a], we can perform a spin
with momentumP/2+1, and P/2+1, removed. We also in- and colo_r decomposition that disentangles the two parts of
troduced the vectdP, defined a® = (2m,,0) in the J/ i rest the amplitude. We then expand the hard sub-amplitude in the

. small momentung, which amounts to an expansion in de-
frame, the relative momentuigy=(I,—15,)/2 andE(pr+K) A ' S X
. I I -
= pOt KO~ 2m,= — my(Crag) 24+ K°. The binding energy rivative operators and a decomposition in orbital angular mo

) i , mentum. As a matter of principle, we could also expand the
at leading order has to be kept in the last expression, becaugg,q sub-amplitude ih However, since it i$ that occurs in

it is of the same order ak®. For later use we define the phase space constraint and that is related to the terms in
I=1,+1,, the vector that describes the motion of thepair  the short-distance expansion, which we intend to sum to all
in the J/¢ rest frame. Note the kinematic relatidA+| orders, we do not perform this expansion. The spin and color
=prtk. decomposition, and the expansion in relative momeng,m
The amplitude is not yet in a factorized form, because theesults in the following expansion of the amplitude squared:

|A<yg~J/¢gg>|2=§ Pr[A(yg—ccg)IPr[A(yg—ccg)*]

3q 3p
Xf 2m)? 2 (@GP KZE(PR VK (PR AP)]

xf IRV )G (@, p+ K2E(pr+ K)IV(K D)W (Pr.A:P)]* 29
(2m)° (277)3[ n(@iGc(a,p+k/2;E(pr (kP W (pr. NPT :

HereI',(q) is a matrix in spin and color indices and a poly-

nomial ing. The operator Rris also a matrix in spinor and  |A(Y9—3/499)|2= 2, Hn(Pin,P.1,px)Su(Pr,P.k),
color indices and extracts the appropriate Taylor coefficient " (2.6)
of expansion of4(yg—ccg) in g. The quantity P{A(yg
—ccg)] is g independent, but still depends arin conven-
tional NRQCD terms, the sum overcorresponds to inter- where the soft par§g, is given by the last two lines of Eq.
mediatecc pairs in different angular momentum and color (2.5). H, and S, are still coupled through the relatid?+ |
states, and also to higher dimension operators in each inter pr+Kk, so we introduce % [d*l §(pg+k—P—1). Adding
mediate channel. The previous equation can be written as tibe phase space integration oysy and k, we recover the
product of a hard and soft part, differential cross section in a form similar to EQ.1):

do dd . —
= | I
pee 2 f(zw)Ao(CC[n])( )Fa(l)

(27)%2p%

-y d4

m ) (2m)*

x fluxx f AP py](2m)*5(P+1+ py—Pin)

XHa(Piy PoLps) | dPEKI(2m) 5(prct k= P=1)S(Pr P, 27

where(}(c?[ n]) (1) refers to the short-distance part afg(l) to the soft part. The expansion in local operators appropriate to
integrated cross sectiof] is recovered after expansion Bi,(P;, ,P,l,px) in I. In leading order, we then identify

| dpgkis,(pe.p 0 29
with the NRQCD matrix elements defined [if].
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Before continuing let us discuss as an example the angdrom two hard gluons is part of the next-to-leading order
lar momentum and color projection for the case of an intercorrection to the short-distance part of the color-singlet in-
mediatecc pair in a3S;, color-singlet state, at lowest order termediate state. The contribution from two soft gluons
in the expans|on mq In this case Pr S|mp|y Set$t0 zero in smears out the contribution from the dlagram with no gluon
the hard sub-amplitude arid(q) carries nog dependence. €mission, which is concentratedzt 1 and zero transverse

The correctly normalized spin and color projection is momentum. It also contributes to the end point of the energy
spectrum, but can be eliminated with a transverse momentum
1 1 1 cut sufficiently large compared to several hundred MeV. Ex-
Prl---]1— —= 5 tHE(P)(P+2me)[ - - - ]}, erimental measurements of inelasfiby photoproduction

2.9 usually imply such a cut.

B. General case

1 . 1 .
Fr(@@la(@)— o'® o, (210 We now extend the ious di ion in the followi
J2X2 J2x2 _ previous discussion in the following
Me fMe way. We consider a general, inclusive charmonium produc-

where the trace includes a color trace and the projection dfon process(cf. Fig. 1)
the hard amplitude is written in a covariant form. Let us

check that Eq(2.8) together with the projectiof2.10 does initial state (P;,)—cc[n]+X(p;)
indeed reproduce the color singlet NRQCD matrix element. 3/ XD Y(k). (2.1
In leading order the transitioAS{"—3S{") does not require —IpR) + X(py) Y (k). (212

gluon emission. Hence — .
where thecc pair is in a certain color and angular momen-

tum staten, X denotes a collection of hard particles, and
f dPS k]S, (pr,P.k) collection of soft particles emitted in the fragmentation of the
CcC pair.
d®p t o'W (pgr,\; p)]’ Sincemcv2~AQCD, the coupling to soft gluons is large
J’ and the emission of multiple gluons is not suppressed. Hence
(2m)3 J2x2m, |

the emission of soft gluons is better described as the emis-
R ) 5 sion of a soft color multipole field, which carries away a total
:2—mC6Nc|‘I’(0)| ~(01(°Sy)), (2.1 momentumk=3k; and which has the correct quantum
numbers to effect the transition frooc[n] to J/¢. Hence
where we used that in the leading order approximatbg  we define
~2m;.
Note thatF (1) in Eq. (2.7) defines a more general object )
than the shape function i8], which is a function of only (D"(k'pR’P):f dPgk;](2m)*
one variabld , =13+, or Iy. The definitions of 18] would
be reproduced, if we could neglect the other componenis of
in the short-distance part. We shall discuss later, after gen-
eralizing Eq.(2.7) to the emission of more than one gluon,
under what conditions this is justified. where S,(pgr.P,k;) is the generalization of the soft sub-
Up to now we considered the contribution of the diagramamplitude that appears in E(R.7) to the emission of more
in Fig. 2 toJ/ ¢ photoproduction, when one of the two emit- than one soft gluon. With this definition the generalization of
ted gluons is hard and the other is soft. The contributiorEq. (2.7) is given by

5 k—Zj kj>sn(pR,P,kj), (2.13

4
(277)32pR :2 f a(cc[n])(I)Fn(I) 2 f xfluxxfdpspi](zw)% P+1+> p—P
| dic o 4 K N (k;
XHp(Pin,P,1,pi) JEW(ZTF) S(prtk—P—-1®(k;pr,P)]|. (2.149

As above the differential cross section is factored into avhere the lowest order, tree approximation to the short-
short-distance and a soft part. In higher orders in the strondistance part is assumed. Then the factorization is trivial, as
coupling, this would require careful subtractions to definein the example of the previous subsection.

both parts properly. We will be working only with cases, There is an additional assumption implicit in writing Eq.
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(2.14), which concerns the validity of NRQCD factorization do dK2 dé

in general[1], not only its generalization to spectra. The (2w)32p%3—=2 fz—dl+dI02—5(A)><flux
. . e — a o

assumption is that the transition from tbe[ n] state toJ/ ¢ d®pr

occurs via emission of gluons rather than by absorption from 1

the surrounding “partonic medium.” Of course, if is a XHn(Pin,P,I,px)4—(I>n(k;pR,P),
color octet state the emitted gluons must interact with the .

remnant process to form color neutral hadrons; the NRQCD (2.17

approach assumes that the process of color neutralization is
suppressed by powers dfocp/m, and can be formally ig- with
nored, if we consides andA ocp/m as independent param-

eters such thah ocp/me<v<1. On the other hand, absorp- A=(2me=Pin-)(2Mc=Pin +1.)

tion would violate factorization explicitly, since it_s_ details +(2lg—1)(2m—Piys)

depend on the environment created by the specific produc-

tion process. Despite the fact that this issue affects most —(Mg—2mg)(Mg—2m,—2lg)+k*>  (2.18
guarkonium production processes, it has rarely been ad-

dressed in the literature, with the exception[d5]. We will ~ @ndpx="Pi,—(P+1), k=P+I—pg. Furthermore, we have

not dwell on this issue further and take factorization forthe constraintko>0, px 0>0, k?>0 andI?>0. _
granted.(The empirical fact that the NRQCD matrix ele-  Any ansatz for the functiod,(k;pg,P) that we will be
ments are approximately universal, including hadronic colli-using will be independent of the azimuthal compongnof

sions, may support this assumptipHlowever, an investiga- |. Hence we need only the azimuthally averaged short-
tion of this point would certainly be useful. distance part:
o — d¢
1. Derivation of the smeared spectrum H,(Pin,P,l,px)= EHn(Pin P.Lpy). (2.19

We now bring Eq.(2.14) into a more useful form. We
make one additional simplification, which is adequate to theThe remainings function can be used to integrate over.
two applications which we consider in this paper. The sim-Then we useko=2m,— Mg+, as integration variable in-
plification is that there is only a single, massless hard particlgtead ofl, and define
in the final state. Then the set of momeptaconsists of only
px, andpi=0. a=Piy,~Mg, B=Pi;_—Mg. (2.20
It is often convenient to refer explicitly to the quarkonium ]
rest frame defined bpg=P=0 rather then the center-of- This leads to the final result
mass frame defined by;,=0. In the following non-
invariant quantities will refer to the quarkonium rest frame. (27)32p2 do
For example, in pg—P) - I=(Mgr—2m)l,, |, refers to the Rd3pR
zero component dfin the quarkonium rest frame. We define

the z direction as the direction d?— P, in the quarkonium aB dK® [ (p2+13)1(2p)
X : . = — dkgX flux
rest frame and in the center-of-mass frame. With this uncon- v Jo 27 ) (w220
ventional definition of thez direction in the center-of-mass
frame the boost from the center-of-mass to the quarkonium — 1
rest frame is in the direction and the transverse components XHn(Pin Pl 'pX)4W(,3_ @) ®n(kipr,P).

defined with respect to this axis are invariant.
We use the twas functions in Eq(2.14) to integrate over (2.2

Px andk. Then defind . =lo*1, and write Recall thate, B andkq are defined in the quarkonium rest

frame.
The integration limits are obtained as follows: inserting
(2.15 the constraint2.18 A=0 onl . provided by the lasé func-
tion into If>0 with If given by Eq.(2.16, we find the
condition

dl _dl+dlodlfd¢
(2m)* 320t

The § function left over from the second function in Eq. [K?2— a(2kg— a)][k2— B(2ko— B)]<0,  (2.22

(2.14) fixes
in addition tokg>0 andky<(a+ B)/2, which follows from

pxo>0. Now note thateB=(P;,—pr)?>>0 and thatk,
|J2_:(MR_ch)Z_Z(MR_2m0)|O+I+(2|O_I+)_k2' >0 implies a+ B>0. Hencea and B are both positive.
(2.19 Now a— B=2Pj, ,. In the quarkonium rest frame tlzeaxis
is defined by the direction of P;,. This implies

The result of these manipulations is B>a>0. (2.23
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Equation (2.22 admits two solutions. The physical one We introducepyx==2;p; in Eqg. (2.14 and use the first
yields the limits on theky integration in Eq.(2.21). The  function to integrate ovepy . This leaves a-function with
upper limit on thek? integral then follows. Note that,>0 argument
andky<(a+ B)/2 are then respected automatically.

Equation(2.21) is the main result of this section and we [(P=Pin)_+I_(P=Piy);+1.1-12—p2. (2.29
will use it later to obtain thel/ s energy spectra iB decay

and photoproduction. Recall that fleoH,(Pin,P.1.px) IS Using the definitions of, it is easy to see that in the end
just the ordinary, projectedc production cross section that point regionpy and P—P;, become nearly lightlike. With
enters familiar applications of NRQCD factorization with the our definition of thez axis (P—P;,); becomes small, of
only difference that thec pair is produced with momentum order me? (but not much smallgr while (P—P;,)_ re-
P+1 rather thanP, and that an average over the azimuthalmains of ordet m.. py has to be of ordemZv? or smaller.
angle ofl in the quarkonium rest frame is performed. This All components ofl scale asm.v?, sinceMg—2m, and all
means that the invariant mass of the pair is given by ~components ok are of this order. It follows that the depen-

2 2_ 2_pg2 2 2 dence of Eq(2.25 on|_ andl, can be dropped. Further-
M=—=(P+1)=(prt+Kk)*=Mg+2Mgky+ k=M rather L
e~ ( )"=(Prtlk) R R™0 R more, the formalism of18] assumed that the dependence of

the hard cross sectid,,(P;, ,P,l,px) onl can be neglected,
since it is not related to enhanced higher order terms in the
. X .. velocity expansion. As a consequence, we can pulllthe
(2.13. Roughly speaking, it represents th_e prObab'“tyandli integrations through to the second line of E2.14).
squared that a .SOft _9'“0” cIus'Fer W'Fh eneigyin thﬁ‘]/‘_p The result then takes the form of a partonic differential pro-
rest frame and invariant mak$ is emitted from thecc pair  quction cross section convoluted with a shape function in
in the transitioncc[n]—J/¢. We consider it as a non- | ., provided we identify the shape function defined 18]
perturbative function. We will make an ansatz and try towith

determine some of its parameters from existing data. In the

Coulomb limit, the functionb ,(k;pg,P) could be computed

as indicated previously. However, we shall not assume this Fa(l:)=2 (O[¢T x| 31+ Y) (Il g+ Y|

limit for charmonium. v

than 4m? as in the conventional partonic calculation. This
kinematic difference can make a large numerical effect.
The radiation function®,(k;pgr,P) is defined by Eq.

- X (1. =iD ) (x'T)[0)
2. Shape function limit

2 2 3
As mentioned above, the function :f di_d7, fﬁ d’k (2m)*
22m)* | ) 27 (27)32K°
. dik  d%k "
0= ) 27 a0 ™ X o(prtk—P-by(kipr P)|. (226

X 8(prt+k—P—-1® (k;pr,P) (2.29

This shows that Eq(2.14) is consistent with the operator
defined in Eq.(2.14 is different from the shape function formalism of[18] in the region ofz where the operator for-
introduced in[18]. The shape functions introduced there cor-malism applies. Equation®.14) and(2.21) extrapolate this
respond to a systematic resummation of enhanced higher oiermalism into the extreme end point regi@pa,—z<v?.
der corrections in the NRQCD velocity expansion. EquationSince there is no correspondence with a systematic resum-
(2.21) goes beyond such a systematic resummation. We nowpation of the velocity expansion in the extreme endpoint
show that Eqs(2.14 and(2.21) are equivalent to the results region, this extrapolation should be considered as a model.
of [18] in the region of applicability of the latter, up to non- This is again analogous to energy spectra in semileptdnic
enhanced higher order terms in the velocity expansion.  decays{19].

We are concerned with energy spectra in a variabfeor It is instructive to recover the consistency with the shape
quarkonium production in the decay of a heavier particlefunction formalism directly from Eq(2.21). In the region
with massm, we definez=2P,,-pr/P2 . The maximal Zmax—Z~v’, We may approximate E¢2.18 by
value ofz is z =1+ Mé/mz, assuming that all other par-
ticles in the final state are massleés. reality these will be A~(2m;—Pi,)(2mc— P +1 )
pions; we neglect the small pion madsor quarkonium pro-
duction in two-to-two collisions, a(p,)+b(p,)—JI/ ¢ =(atMg=2me=l)(B+Mg=2m,).  (2.27)
+---, we definez=2p2-pR/Pi2n. For example, inyp col- o ) o
lisions p, is the momentum of the struck parton in the pro- 1his implies that the upper integration limits in E@.21)
ton. The maximal value af is z,,,,=1.

Consider thez spectrum in the regiomz,,,,—z of order
v?<1, butzy,,—z not much smaller tham?. This is the SAll other large scales that the process may involve are treated as
region in which the shape function formalism[dB] applies.  orderm,.
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are replaced by infinit). We can then re-introduce 1 rametersa,, b, and A, can differ for different states. The
=[dl, &l ,—a—[Mgr—2m.]) and factorize Eq(2.2]) into a three parameters of the ansatz could be determined from the
convolution over the hard cross section times the shape fundirst three moments of the shape function. In practice this is
tion (2.26). not possible, not only because of the problem mentioned
above, but also because the NRQCD matrix elements with
3. Form of ®@,(k;pg,P) derivatives to which the higher moments are related are not

Equation (2.26) implies that the moments of the shape known phenomenologically.

function are related to the usual NRQCD matrix elements, In later applications, we will need the radiation functions
For example, integration ovér. results in for the three color octet states="S{”,°P¢” ,°S{"). We as-

sume that
f d* Fo()= ! fmder dko b[!S®1=2, b[*PE1=b[3s¥]=0 (2.30
em* " (2m?3lo i@ ’ 0 ! ’
X \Vkg—k?*®(K; pr.P) ALSPI=APEI=A, A[PS®]=cA. (2.3)
=(03"), (228 The choice ob['S{®)]=2 is motivated by the fact that the

gluon coupling for aM1 magnetic dipole transition from a
where (0}/%) is the conventional NRQCD matrix element 1s® to J/y is proportional to the momentum of the gluon.
for an intermediatecc pair in an angular momentum and Furthermore, the transition frors{®) to J/¢ occurs through
color staten. This could in principle be used to determine thetwo E1 electric dipole transitions, which suggests that the
overall normalization of®,(k;pg,P) from the known average radiated energy and invariant mass is larger than for
NRQCD matrix elements. the singleM1 andE1 transition in the other two cases. We

In practice this is problematic. The phenomenological val-fix c=1.5; the effect of this somewnhat arbitrary choice will
ues of the NRQCD matrix elements are determined fronpe discussed in the context of specific applications. Of
integrated quantities in leading order in the velocity expancourse, since soft gluon emission is non-perturbative for
sion in a given channei. On the other hand, if we compute charmonium, the arguments that lead to these choices are at
the same integrated quantities from the spectra obtained withest indicative in any case.

Eq. (2.21), they contain higher order terms in the velocity
expansion, for example related to the fact that the invariant

mass of thecc pair is always larger than the quarkonium . o o
massMg. Sincev? is not small, the integrated quantities can _ !N the following we 2ompute the radiation function in the
be quite different, if the normalization conditiai2.29 is Cciul(g)mf (8)I|m|t M *>Aqcp,  as(Mev)~v  for n
imposed. Another way of saying this is that the phenomeno= S Py, to obtain an idea of the form of this function
|Ogica| Va'ues Of the NRQCD matrix e|ements W0u|d bein a controlled limit. Since this limit is unrealistic fQ}/lﬂ,
quite different from the commonly accepted ones, if the thethe reader interested only in the application of the formalism
oretical prediction used to obtain them contained higher orPresented above may jump directly to the next section.

der terms in the velocity expansion. As a consequence we are We begin with the chromo-magnetic dipole transition
forced to tune anew the overall normalization to the meacc[lsgg)]HJ/¢+ g. With emission of one gluon Ed2.13
sured integrated spectra. We will return to this point below insimplifies to

the context of specific applications.

C. Computation of the shape function in the Coulomb limit

The radiation function® ,(k;pg,P) is non-perturbative. D[S (k;pr,P)=2m8(k?) S 1S (k; pr, P).
Similar in spirit to the ACCMM mode]21] for semileptonic (2.32
B decays, we assume a simple functional ansatz for phenom-
enological studies: FurthermoreS[ *S{®](k; pg,P) is normalized to the conven-

tional NRQCD matrix element according to EQ.9), i.e.
@, (k; pr,P)=an|k|Prexp( —k3/A2)k?exp( —k?/A2).

(2.29 J d3k

oo kPR P)=(0x('S). (233

The exponential cutoff reflects our expectation that the typi-
cal energy and invariant mass of the radiated system is of
orderA ,~mgv?~several hundred MeV. Since the pattern of
soft gluon radiation may depend on the staten, the pa- "The calculation is similar to a calculation reported 28]. How-

ever, in this work the:?pair in staten is described by a Coulomb

wave function just ad/ . This substitution does not correspond to

5This is consistent witlv~m.v? and8~m, in the shape function the NRQCD definition of a color octet operator or the correspond-

limit, such thate S~ mZv? and 8+k?/ B~m,; i.e., both upper lim-  ing shape function, in which thec pair is local and all intermediate
its are parametrically larger than the typical values of the integrastates with the quantum numbersare allowed, and described by
tion variablesk’~m2v*, andky~m.?, respectively. the full Coulomb Green function.
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« 66-6@'6'6‘ 1777 27

«

FIG. 3. Left: one of four NRQCD diagrams which contribute to Ma (E1) transition from antS{®) (3P(®)) state, specified by’
to J/¢. Right: an example for a doublel transition from a*S{*® state.

The non-relativistic quark-gluon vertices are classified acteraction vertex—gs/(2m.)(oxk) with k the outgoing
cording to their velocity suppression. The leading spin-gluon momentum as in Fig. 3. The diagram on the left hand
flipping interaction is provided by the chromo-magnetic in- side of Fig. 3 givegcf. Eq. (2.4)]

gchJ d3k ( k-k-)f dp d%p d%q diq
sm?J) (2mB2k°\ " k2 ) (

1
2m)% (2m)% (2m)% (27)3 2 2 trle(N) - o(oXK);]

Xtr{€*(N)- ol oX(—=K) ];}(p) (p)iG(p+ki2,g+kIZ;E(prt k)G (q +ki2p' +kI2,E(prtk)),  (2.39

with ¢(p) as given by Eq.(2.3 and E(pr+K)=pg+k®  usef(x)=+73me " (y=m.CraJ2), gained by Fourier
—2m,=—mM(Cras) 4+ k°=—k?/m,. Equation (2.34  transformation of Eq(2.3), and the following representation
can be simplified, because the gluon is ultrasoft with energyor the coordinate space Coulomb Green functid]:

and momentum of ordemv? mcas, while p, p’, gandq’

are of ordem.v ~m.ag. Dropping small terms in the argu-

ments of the Coulomb Green functipas we have already ~ * _

done when definindgE(pg+k)], performing the traces and Gc(x,y;—K2/mC)=Z (21+1)G(x,y; — k?*/my)
accounting for an identical contribution from the other three =0

diagrams not shown in Fig. 3, we obtain X P [x-YI(xy)], (2.38

1S (k;pr.P) = 29:C Fk2||[ s®1(k)|?, (2.35  wherex, y denote the modulus of, y, P((z) the Legendre

polynomials and

where §
~ K
GI(Xuy;_KZ/mC):#(ZKX)I(ZKy)le*K(Xer)
3
p .
I[*s (2m ) (2m (2m)° G(q,p; — k2/me) (p). y = L2200 L2 D 2ky)s!
(236 S0 (s+HI+1-Nylk)(s+21+D)!°

(2.39

To compute this integral, we switch to coordinate space,

1(8) _ 3, L2 ~ There is a misprint in the first reference [@4], which is cor-
It 1(k) J d*XGo(x,0; — k% me) (x),  (2.37) rected in Eq.(18) of the second reference.
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Here ng'“)(z) refers to the Laguerre polynomials and the with ,Fi(a,b,c;z) the hypergeometric function. Let us
parameten is defined such that the Green function corre-check the power counting: wity~mgv andkg,kj~mev?,
sponds to the Green function in the potential we obtain I[*S®)](k)~(m./v)*? and, from Egs.(2.33,
(2.35, (Og(*Sy))~asmiv’. This agrees with the velocity
power counting of1]. The additionaly, arises, because we
consider the weak coupling limit.

The chromo-electric dipole transitionc]*P{]— J/y

g is computed along similar lines. We have

Cra
V(n=-1—"—".

(2.40

Hence\ =1, if the intermediatec pair propagates in a color
singlet state, and = —1/(2N.Cg) = —1/8, if it propagates

in a color-octet state, which is what we need here. Only the
=0 component of the Green function contributes to the in- 8g2C
tegral(2.37). The remaining radial integration over Laguerre S[3p88)](k; Pr,P)= ;AF

30. The re _ 12PEV1Ck) 12,
polynomials is easily executed as an integral over the gener- 3m;

(2.49

ating function

oo

1

—zu/(1-u) —
(1_u)p+l =

e

(2.41

usLP(z
A s(2)

with subsequent expansion in Then, summing oves, and
introducing the dimensionless variable

Jye| 14 2K " (2.42
z=«ly= , :
’ m.CZa?
the result is
4m 22 “ s(s—1/z) [1—2Z\*
I sP(k) = — —— s o1 )
(my)Y2 (2—1)% =1 s—\Nz \1+z
_ome 1 L+(n—1 4z
() 2-1 ( 741 ?-1

X[1—,F1(—=Nz,1,1-Nz;(1-2)/(1+2))]

|

(2.43

3/2 23
IPEY (k) =~

s+1)(s+2)(s+3)

where

1 - ~
3P0 =5 J o aiy-Gc(X’y;‘“z’ ma| 22900,

0 04n

and the normalization is given by

_ (Og(®Py))
—.

C

d3
f WS[?’P(OB)](k;pR,P)
(2.4

The derivatives in Eq(2.45 come from the factop in the
electric dipole vertex-igs(p+p’)/(2m)~(—i)gsp/m. In
this case only thd=1 component of the Green function
survives they— 0 limit and the angular integration. The re-
sult is

S

1-z

4mey i (
372 (z+1)*$=0

3/2
mey

s+2—\/z

1+z

=——— ;[ 2(1+2)(2+2)+(N—1)(5+32) +2(A—1)?

372 (z+1)°

. 4z(1+2)(Z2—\?)
(1-2)?

Velocity power counting gives(Og(°Pg))/mZ~asmv’,
which is again consistent with the standard counting.
The dependence oky/(472)S,(k;pgr,P) for n=1S®
andn="2P{¥ on the energ¥, of the emitted gluon is shown
in Fig. 4. The input parameters are chosen &g
=1.5 GeV, as=0.4; A=—1/8 for a color octet matrix ele-

[ZFI(—)\/z,l,l— Nz (1-2)/(1+2)—1+

AN1-2)

(1+z)(z—)\)H' (2.47

ment. Both dependences are smooth and mainly reflect the
asymptotic behaviors at small and large gluon energy. In
particular the suppression of tHé, curve at smalk, is a
consequence of the structure of the magnetic dipole vertex.
According to the normalization condition&.33 and
(2.46 the integration of the two curves gives the value of the

034004-10



QUARKONIUM MOMENTUM DISTRIBUTIONS IN . . . PHYSICAL REVIEW D 62 034004

A cally divergent ternt® This corresponds to an infrared finite,
0.0006 | GeV"2 but quadratically infrared sensitive contribution to the coef-
0.0005 10+3P0 ficient function of (O”(3S;)), consistent with the overall
0.0004 v* suppression of ©07%(1Sy)) relative to(OF(3Sy)). In
0.0003 dimensional regularization, the quadratically infrared sensi-
0.0002 tive term is attributed entirely to the short-distance coeffi-
0.0001 180 cient and the quadratic divergence(i@3 ’(1S,)) is set to
o MeV zZero.
0 200 400 600 800 In case ofS[3P§)8)](k;pR,P) we find a linear divergence

for (03"(°Py)). The interpretation of this divergence re-
quires a more careful discussion of tkg integral and the
integrals ovemp andp’; it will not be presented here.

In the ansat£2.29 we have added a cutoff dg, by hand
in the form of an exponential falloff foko>A,,. We inter-
pret this ansatz as a “primordial distribution” for the radia-
o tion of non-perturbative gluons, which eventually is modified

FIG. 4. Dependence d,/(472)S,(k;pr,P) for n='S®) and
n=3P{® on the emitted gluon enerds. The parameters are cho-
sen aan.=1.5 GeV,a;=0.4,\=—1/8.

conventional NRQCD matrix elements. The result depend
strongly (see the discussion belgwn the cutoff on the in-
tegration range folk,. Choosing the cutoff between 30

MeV and 600 MeV. we find by perturbative evolution. This is similar to the assumption
' that intrinsic transverse momenta of the proton’s constituents
(Oé"”(lso)):(0.0?—O.G])X 1074 Ge\B are bounded. Perturbative radiation violates this assumption

and leads to the evolution of parton distributions. A similar

(0JY(3Py))/m2=(0.07-0.22 X 10™* Ge\A. ansatz is also implied by the ACCMM model or in shape

(2.489 functions for semileptoni® decays in general.
Finally, we comment on the transition from a color octet
Although these numbers may be insignificant, because ther a color singlet®S; state toJ/. This presents a more
assumptionmcv2>AQCD necessary to obtain them is not complicated case, since—besides the contribution with no
valid for charmonium, it is interesting to note that the matrix gluon emission for the color singlet state—the leading term
elements come out one to two orders of magnitude smalletrequires the emission of two gluons; see the right hand side
than the phenomenological values, determined from fittingpf Fig. 3. In coordinate space this requires the evaluation of
color-octet subprocesses to experimental d@faThis sug- integrals of the form
gests either a large non-perturbative enhancement of the ma-
trix elements—such as the presence of a gluon condensate th
which the soft gluons can couple—or the possibility that the '
phenomenological values of the matrix elements effectively p p
parametrize other corrections to the prod_uctlon processes not X | —Go(x,y;E(pr+ky+ kz))) (—?,Zf(x) ’
related to soft gluon emissiofsuch as higher order short- Iy IX;
distance corrections (2.49
The behavior of the soft functio8,(k; pr,P) at largek,
deserves further discussion. First, we observe that the calcyhich we shall not pursue. If we were only interested in the
lation by itself does not provide an intrinsic cutoff for large |imit of small loop momentak=k;+k,, we could expand

ko. This should not be expected, since at the level of perturthe Green functions fok?<y?/m, first and integrate after-
bative radiation the ultraviolet behavior of the soft functionyards overx andy. We would then find the same smé}-

joins smoothly to the infrared behavior of the short-distance,ehavior as in the case of*P,](K).
part. A well known example of this occurs Prwave pro-
duction[1]: the logarithmic infrared behavior of the coeffi-
cient function of(O%(3P,)) matches the logarithmic ultra-
violet divergence of 0¥(3S,)). In this section we apply the formalism developed in the
Inspection ofs[lsgg)](k;pR,P) shows that we obtain a previous section to th& ¢y momentum spectrum in the semi-
quadratically  ultraviolet ~divergent matrix element inclusive decayB— J/¢X. The leading partonic decay pro-
(0J"(*sy)), which seems to contradict the conventional Cess is very simple, resulting iy with fixed momentum,
wisdom that this matrix element is scale independent at lead?ut the hadronic decay spectrum is modified by fragmenta-
ing order. However, the conventional wisdom is derivedtion of thecc pair, which is the main concern of this paper,
from the use of dimensional regularization. If a hard cutoffand by bound state effects on thequark in theB meson.
on the gluon energy is used, the color oct&, operator Both will be taken into account in the following.
mixes into the color singletS,; operator through a quadrati- We start by recapitulating the partonic result for

S0~ [ @Pxay By, 0B ()

. MOMENTUM SPECTRUM IN  B—=J/ X

%These numbers, in particular the one fét,, depend sensitively %The dimensions work out correctly, because the two chromo-
on as. (O§’¢(3Po))/m§ increases rapidly ag increases. magnetic dipole vertices provide two powers ofd/
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—>c7(n]+q. We then implement the fragmentation of the singlet rate and therefore negligible. Hard perturbative cor-
pair according to our shape function ansatz and obtain théections to the color singl€7,29] and color octe{7] pro-

J/ momentum distribution iib quark decay. We regard this duction processes are also known. They enhance the color
distribution as an input distribution for the ACCMM model, Octet channels moderately. Within the present limitations of
which accounts in a simple but satisfactory way for the effecthe shape function ansatz we must neglect these perturbative
of Fermi motion of theb quark inside theB meson. The corrections for consistency. The partonic production spectra
resultingJ/ ¢ distribution inB meson decay is then boosted for the cc[n] states of interest read

to the CLEO frame and compared to CLEO data. The aim of

this comparison is twofold: first we show that smearing of dliedn] 1 1-9

the spectrum due to fragmentation of the pair is essential dz  2m, 8w
to describe the CLEO data. Second we use these data to

determine the shape function model paraméteAssuming  where

universality of the shape function over the whole kinematic

domain, we will then turn td/ ¢ photoproduction in Sec. IV. 2GE|Vepl®my

Results for thel/y momentum distributions already exist in Hn(mMy, 2mc) = Wc[m]f[n]( 7 (33
the literature, including color octet productif2b,2€. How- ¢

ever, only Fermi motion effects are taken into account thereand the process-specific functiorifn](#z) are given by
We will briefly compare our results with those [@#5,2¢ at  [5-7]

the end of this section.

H,(mp,2m.) 8(1+ n—2), (3.2

fesPl(m) =(1-n)(1+27), (3.4
A. Energy distribution in b quark decay 3

The underlying partonic process oBameson decay into f[SS(lS)]( n)= 5(1— 7)(1+27), (3.5
J/ 4 and light hadrons is—cc[n]+q (q={d,s}). Since the
cc pair is treated as a single particle kinematically, a leading 9
order calculation of this process results in a fixed value for (S 1(n) = 5 (1=n), (3.9
its energy (momentum rather than in a real spectrum.

.. 12_ A — . — .
Defining'! z=2E;/m, as the energy fraction of thec pair f3PE () =9(1— 7)(1+27). 3.7)

in the b quark rest frame, the “spectrum” is
B Note that the color octet matrix elements are not part of the
dFCC:F —S(1+ 77_2) (3.1) hard amplitudes, but included in the normalization of the
dz ¢ ’ radiation function®,(k); see Eq.(2.28. In case of theP
wave contribution, the normalization refers(t68(3P0))/m§
where 7»=4m?/m2 for massless light hadrons in the final an(;l t(r;)e corresponding fact_orrrﬁ is also extracted from
state. In a purely partonic calculation one may identifg.2  H["P5”]1(my,2mc). As mentioned above we neglect QCD
with the J/4y mass andn, with the B meson mass. corrections and also small corrections due to penguin opera-
At leading order in the non-relativistic expansion the jtors. The Wilson coefﬁqent@_[lvgl of the efiective aperators
pair has to be produced in a color singt&; state. This term in the weakAB=1 Hamiltonian are related to the usu@L
coincides with the color singlet model and was computeaby

I 4% 1 -
Iong_e_lg(_)[27,2&. At relative orderv®~1/15 in the non. Cpay()=2C. ()~ C_(n),
relativistic expansion)/« can also be produced througlc
(0 1a(8) 3p(8) 3a(8)
in ,"Py,°S;™ color octet states. These formally sub- Cg)(#)=C.(1)+C_(n). (3.9

leading contributions are enhanced by a factor of about 15,
by which the short-distance structure of tAd=1 weak At leading order, as appropriate to the present analysis,
effective Hamiltonian favors the production of color oatet
pairs in theb— ccq transition. These additional terms can be
comparable or even larger than the color singlet tESr7].
They are the ones of interest in this paper, since the radiation
of soft gluons in color octetc fragmentation has a large With ¥¥==2(3%1) and8,=11-2n,/3. In Eq. (3.3 the
kinematic effect on the observeldyy momentum spectrum. notationCy, g implies Cyy;, if nis a color-singlet state, and
In comparison, fragmentation effects in the color singletCg), if N is a color octet state. Note théty,/Cf;~15 at
channel are ordev* suppressed relative to the total color u~my.
We now implementc fragmentation for the color octet
production channels. Notice that the partonic amplitude

Mn this section quantities with a caret refer to thejuark rest  squared has no azimuthal dependence, he_hqmb,ch)
frame. =H,(m,,2m,) in the notation of Eq(2.19. Furthermore,

Co(u)= (3.9

ag(M W)} YD1(20)
as(pm)
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we need the light cone components of the incoming momenthe upper limits of thé? andk, integrations to infinity up to

tum P;,, = (m,,0) in the J/ ¢ rest frame to getr and 3 of Eq.
(2.20. We find

m, . . m, - R
a’:M_R(ER_|pR|)_MR: B:M_R(ER+|F)R|)_

(3.10

The indexR now refers tod/«. To complete the implemen-
tation we have to fix the ambiguity in treating the kinematic

effects in the hard production amplitudds . Strictly speak-

exponentially small corrections i, given the ansat@.29).
Then exchange thi? andk, integration with ther integra-
tion to obtain

N _ Mg PN

PN~ i oo Me) [ "k [ dko
Ko+ VK3 —k2 A‘ (3.13
ko~ \IC—K2 kz—kz '

ing the shape function formalism allows us to ignore the

dependence of the hard production process on the véctor

Now introduce the average

since it does not lead to singular contributions near the end

point, if the hard matrix element is not smgular at the end ()=
n—

point. On the other hand, the invariant mass of¢bepair is
kinematically given by

M2&+2Mgko+k?,
(3.11
wherek is the four-momentum of soft radiation in tiéy

rest frame. We adopt the convention that2in the partonic
matrix element is replaced bW (k) everywhere, i.e. even

MZ(K)=(p+1)?=(pg+k)?=

when it does not arise kinematically, but through internal

f f dko\/k0 k2D, (k) f(k),
(3.19

defined such tha(1)),=1 according to the normalization
condition (2.28. Equation(3.13 is then rewritten in the
form

@m? (07"

charm quark propagators. This convention is consistent with
the shape function formalism in the shape function limit, butVhere» is now defined as/ R/Mp and

is arbitrary otherwise. It has the advantage of incorporating
the physically expected effect of reducing the short-distance

amplitude, because of the need to create a heaﬁ@air as

compared to a purely partonic picture. The only exception to

the convention is the factor 1/(2;) in Eq. (3.3, which
comes from the normalization of thec state. It should be
replaced by Wg. Equation(2.21), specialized to thel/
energy distribution irb quark decay, is then

di ||5R| f apdk® f (62+k2)/(2[3)
dEr 42 (a +k2)/(2a)
X ! Hn( M‘(k)) Mr (k)
JEE— m , R —
2mb n b cc me|pR| n
(3.12

with «, B from Eq.(3.10.

B. Normalization difficulty
We assumed up to now that the radiation functipg(k)
is normalized according to E¢R.28. This implies that ag\
of Eq. (2.29 tends to zero the integral oveli'/dEg of Eq.
(3.12 equals the integrated partonic rate with= M /2.

Consider now the integrdl,,(A) of the spectrum(3.12
with fragmentation(for a specific production channal) at
small A and expand inA. To make things simpler put

=0 in the hard matrix elememi,,. Then integrate oveIfER

or, equivalentIyZEZIAER/mb, and perform a change of vari-

ables fromz to a. Then note that for smalh, one can set

1_
Fo(A)= gr g Hol Mo MRI(OY)ra(A),
(3.15
Mg k+\/k—k2
r”(A)_Z(l—n)<<¢ko k2f0 ksz “lda >>n
(3.16

Hence we obtain the partonic decay rate witk=M/2 up
to the factorr ,(A). To evaluate ,(A) in an expansion i\
we observe that

dz_ 1
da| Mg
1
—1—p+ > (n+1)
R n=1

1
(1+alMg? 7’)

(3.19

o n
Mg

can be expanded under the integral. The result is

1 ko 4k3—k?
rn(A)=1+1T77 —2<<M—R>>n+ M% n

A3

M

+0 (3.18

The averages can be done using Ef29 with a, fixed by
Eqg. (2.28; they scale with definite powers df as follows
from the form of Eq.(3.14). With »=0.416, the result is

N 4.76) A 12.9 (A)Z
—1_— — 4+ —_— + ...
(AM)=170g el e 1 10.59 | Mn ’

(3.19
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where the upper number refershig=0 in Eq.(2.29 and the 4

lower one tob,=2. For A=300 MeV this implies large Dpcm(p)= —sexp(—pzlpﬁ), (3.22
corrections to the integrated rate. Sinke-m.v?, this must \/;pF

be interpreted as large higher order corrections in the veloc- " B , ) )
ity expansion, which are not taken into account in the usuaVhere fO_dpF_’ZCDACM(p)_ 1. Implementing the kinematics
leading order NRQCD analysis. This means that enforcingf decay in flight, thel/ energy distribution in th& meson
the normalization conditiori2.28 underestimates the data, 'est frame(quantities without a cargts then obtained from
because the matrix elements on the right hand side of E¢he spectrum irb quark decay(3.12 by the convolution

(2.28 have been obtained without these large higher order

corrections dr’ P+ m5(p)
S I T dpP*®acm(P) 5oz
The effect is in fact even larger than indicated by Eq. dEg max0,p_} 2pEy(p)
(3.19, because we keep thedependence of the hard matrix R .
element andM ;(k) is always larger tha . As an indi- % ER™(p) ﬁd_l" (3.23
cation of this effect we can compute the average Emngy  En dEg '

’ A The integration over thé/ energyEg in the b quark rest
11330 Mg 320 frame is limited by

AmE*=((M(K)2)) =~ M2

2 2
which implies an effective charm quark mass of about 1.8 Emax:min[ EREs(P) +[p=lp My(p) + Mg (3.24
GeV rather thanmm,=1.5 GeV which is usually adopted in R mp(p) ©o2my(p) )’
partonic NRQCD calculations.

When the implicitk dependence of the partonic matrix ~ min_ ERrEb(P) —|prlp 3.2
elementH , is taken into account, the numbers given in Eq. R m,(p) (329
(3.19 change. However, the observation thatcorrections
are large is generic. The requiremenEX"<EM®* |eads to the following bounds

on p:
C. Fermi motion effec.ts - [pRi(MB—ER)]Z—mip
We now convert the spectru(8.12) in b quark decay into = ) (3.26

P-= —
a spectrum irB meson decay by accounting for Fermi mo- 2lpr* (Mg~ Eg)]

tion of theb quark. We make the reasonable assumption that The dependence of the energy spect(@23 on the two
B meson bound state effects can be factorized from the hargarameters of the ACCMM modein and Pe, is quite
sp '

subprocess as well as frone fragmentation. The Fermi mo- different. Changing the value of the spectator mass does not
tion effect can be described rigorously in heavy quark effecaffect the spectrum noticeably. Therefone,, usually is
tive theory[19], but we contend ourselves with the earlier fixed to 150 MeV in all ACCMM analyses. On the other
ACCMM model[21]. The ACCMM model is in fact consis- nand, the widthpg of the momentum distribution must be
tent with the heavy quark eXpanSion, if a particular relationchosen Carefu”y, because the Shape of the spectrum is
between thé quark mass and the ACCMM model parameterstrongly sensitive to this parameter. Successful fits to the
pr is adopted30]. (The ACCMM model then assumes a |epton energy spectrum in semi-leptonic decay typically find
particular value for the kinetic energy matrix element opr~(300_450) MeV[31].
heavy quark effective theopyThe ACCMM model provides
a phenomenologically viable description of energy spectra in
otherB decays, e.gB— Xl or B— Xyy. . .
The basic idea of this model is quite intuitive: one imag- _Eauation(3.23 yields theJ/ s energy spectrum fd me-
ines theb quark moving inside th® meson at rest with a SONS decaying at rest. To compare with CLEO dag, we
momentump according to some distribution with a width of have to translate the energy spectr(Bre3 into a momen-

a few hundred MeV. The cloud of gluons and light quarks intUMm SPectrum

D. Final result and comparison with CLEO data

the B meson of the masM g is treated as spectator quark dIT E. dT

with massmg,. To keep the kinematics of this “decay in doo= —Rd— 3.27
flight” exact one introduces a so-called floating quark Pr PrdEr

mass

and account for the fact th& mesons have momentupy
ME(p)=Mg+mé,—2MgymZ+p°. (321  =(Mj(g/4—Mp)!>~482 MeV in the CLEO rest frame in
which the data if16] is presented?® The final boost from

The b quark is on shell with energ)Eb(p):[mﬁ(p) the B meson to theéY (4S) rest frame is effected by

+p?]¥2. The b quark momentum distribution must be cho-
senad hoc Usually one takes a properly normalized Gauss-
ian form 2Quantities with tildes refer to the CLEO af(4S) rest frame.
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dl'  pr MBJpgaXdpR dr N k

— T = = it 3.2 M e (8),3P(8) = (’)le 1 + — @J/w 3P

o En Zpe)om Pr dbe (3.28 ko ( 0)=(05"("S0)) mg< 5 (*Po))
(3.33

where the bounds on th¥# ¢ momentum,

with k=3.1 arises from the integratell s branching inB

pEin: max{ OEBBR_BBER] (3.29 decay itself7]. A reasonable range is
1 MB 1 .

MYLASP) 3p®))=(1.0-2.0x 1072 Ge\P. (3.34

PRY=min

As default we take the valuMy?=1.5x10"2 Ge\® for
(3.30 m.=1.5 GeV and assume that it originates from both parts

equally. We then investigate the modification of the spec-
stem from kinematical restrictions set by the masses in theum whenM3'/(*s(®) ,3P®)) is saturated by only one of the
Kallen function \(X,y,z)=x?+y?+2z?—2xy—2Xz—2yZ  two matrix elements and when the relative contribution of
and from the integration over the angle between Bhand <Og/¢(351)> and Mg/f(lséﬁﬁ)ﬁp(()&) is varied as allowed by
the J/4y momentum. o ) the ranges of values given. At the end we discard the abso-

Owing to the difficulties of normalizing the partial pro- |yte normalization that would be implied by these values and

duction rates discussed above we forsake the idea of predigie-fit it to data as already mentioned.
ing the absolute/ branching fraction irB decay and con- A final comment concerns the treatment of the two-body
centrate on the shape of the spectrum. We fix the absolutgodesB—J/yK and B—J/¢K*, which appear as sharp

?nat?rixThl'Sn:Sn?Ct?alg teqwf\{alreinnt Ito difﬁ-fl}tl;lg tﬂ? A\ITQ%D rACCMM model nor the shape function farc fragmentation
atrix elements fo data after including targe higher o eapplies to these resonance contributions. Fortunately, the in-

cprrectlons in the velocny expansion. However,_ we _dq nOtformation provided in16] allows us to subtract these con-
give the result of the re-fitting, because we believe it is Oftributions from the momentum spectrum. We then assume
little interest for comparison with othelf 4 production pro- :

cesses that the two resonant contributions are dual to the color sin-
) . o . let contribution, while the rest of the spectrum corresponds
The shape function ansaf2.29 is slightly different for 9 P P

the different production channels because of the differen}0 the color octet contrlbutEn. This appears plausible, be-

choice of parameter€.30, (2.31). Therefore the shape of C2use we expect color octet pairs to fragment into multi-

the momentum spectrum depends somewhat on the relati@PdY final states, with only a small probability that the emit-
contribution of the various channels even after adjusting thd€d SOft gluons reassemble with the spectator quark to form a

overall normalization to data. We determine the relative norSingle hadron. Hence, the experimental spectrum shown in

malization of the various channels by comparing the existing€ following ElOtS refers to the CLEO data wiB—J/ K
information on the NRQCD matrix elements obtained by@nd B—J/¢K* subtracted and it is compared with color
standard leading order NRQCD analyses. The color single‘{’Ctet contributions only. The integrated branching fraction
matrix element can be computed from the wave function afrom the resonance subtracted spectrum is 0.53%. Of course,

the origin. The Buchriiler-Tye potential is often adopted ndirect contributions fromB— ¢'X andB— x.X with sub-

2Mg " Mg

NAME MG ’mgp) EBBR+BBER]

with the resulf32] sequent decay intd/ ¢ are also subtracted.
We have implemented the fivefold integration that leads
, 9|R(0)|? to the final J/¢¥ momentum spectrum into a Monte Carlo
(077(3s))= —H. —116 GeVl.  (3.3)  program that uses theeGAs routine described ifi35]. Pa-

rameters are chosen as followd:=1.166<10"° GeV 2,

Because of our particular treatment of the color singlet conlVer|=0.039, My=10.580 GeV, Mg=5.279 GeV and
tribution as described below, we do not need this matrixMy=3.097 GeV. The Wilson coefficier€(u) is taken
element inB decay. The color octet matrix elements are de-2t the scalgu=4.8 GeV, which yield<C(g;=2.19. The re-
termined by fits ta)/ production in a variety of production sult compared to data is shown in Fig. 5 for various values of
processes,O g/i//(asl» is best determined from/ ¢ produc- the shape functpn paramet&r[see Eqs(2.29 and(2.3D)].
tion in hadron-hadron collisions at large transverse momenti€ré we have fixed the ACCMM model parameterspio
tum [2,33,17 or, perhaps, from charmonium production in — 300 MeV, motivated by the CLEO analysis of semi-
Z° decays[34]. Given uncertainties from unknown higher !PtonicB decay[31], andmg,=150 MeV. Itis clearly seen
order perturbative corrections a reasonable range is that the effect otc fragmentation is necessary to reproduce
the data for this choice of ACCMM parameters. Increasing
(0F"(3S)))=(05-1.0x10"2 Ge\®.  (3.32 A shifts the maximum of the spectrum to lower values of
pr. We get the best fit forA=300 MeV, where y?
The determination of the other two matrix elements from=30.2/20 per degree of freedom.
hadron-hadron collisions is much more uncertain. Assuming In order to estimate the uncertainty of this fit we investi-
the above range fo(rO%’ ’(®s,)) a significant constraint on  gated the sensitivity of the best-fit to the variation of the
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[ AI= IO l\/lleV:Iw I

o P I sy vacvas ]
S A =200 MeV: - ’ s Pr =200 MeV: -
= osk A =300 MeV: — ] > o8k Pp =300 MeV: — I ]
e} <} Pp =500 MeV: -- 41
& o6} . % 06} .
5 £
® 04f v 8 04f .
5 o2f "M, + B oo2f N 1
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FIG. 5. Sum of color octet modedBRg;/dpg[n] with n FIG. 7. Sum of color octet modedBRg;/dpg[n] with n
={15{® 3p® 35N to the differential branching ratidBR/dpgy ~ ={'S{®,2P® 3s®} to the differential branching ratidBR/dpg

of the decayB—J/#X for various values of the shape function of the decayB— J/#X for various values of the ACCMM param-
parameterA. The ACCMM model parameters are fixed p¢ eterpe . The shape function parametér=300 MeV and the spec-
=300 GeV andng,=150 GeV. tator masan,,= 150 of the ACCMM model are kept fixed.

relative normalization of the variousc production channels Thjs result agrees perfectly with the velocity scaling rules,
as described above and to the ACCMM parameter Fig-  which lead to the estimaté~m.v?~ Agcp. Itis also worth

ure 6 shows the best-fit result of Fig. 5 broken down into thenoting that the partonic spectrum behind Fig. 5 is a pure
separate contributions of the three color octet channels. Eacéblta function so that the smearing duecEfragmentation
c_ha_nnel peaks approximately at the same \{epiﬁand has  and Fermi motion extends almost over the entire accessible
similar shapes, although th&s, contribution is somewhat momentum range. Only for rather smally momentum,

broader due to the choice of=1.5in Eq.(2.3D. (Varyingc  hare would be a visible tail due to perturbative hard gluon
between 1 and 2 does not change our fit significanilfaus radiation[7].

the result of fittingA is rather stable under changing the Finally let us comment on th& ¢ momentum spectra in
weightings of the different modes. Both increasing the rela[25,zq based on the effect of Fermi motion onkEarlier
tive contribution ofM3{' and saturating it by only one of its results[36] were based on the color singlet model and will
matrix elements leads to variations 4f of about 50 MeV. ot pe discussedThese works also report acceptable fits of

There is an obvious anti-correlation between the siz& of {he 3/ momentum spectrum, however with a larger value of
and of pg, although the effect is not as large as one may,

: . ~ MeV herw f i
expect. Figure 7 shows the spectra for different valuegscof Pe~550 MeV, as one may expect whee fragmentation

X . X . _effects are neglected. However, even this large valys-a$
wh|le A |s.f|xed to 3.00 MeV. We obtain that the spectrum is obtained only, because tieandK* resonances, which sit at
slightly wider for higher values ofpg. But even forpg

~ . i large values opg have been included, even though the AC-
_5\/?/0 MeVl tZe ?est-?rt]/} WOU|Id r.eTﬁ'rt]t?]f okr_der 20tO Mer. fCMM model cannot be applied to them. If these contribu-

| € conclu ehromt l')S ana yS|st daf ? Z]ema}blcstﬁ sg) ions are subtracted, as done in the present analysis, a satis-
gluon emission has 1o be accounted for 1o describe the aa ctory fit is not obtained with the ACCMM model alone.
onJ/¢ momentum spectra and that our shape function mode

provides a satisfactory description of the spectrum shape, if
the parameten is chosen in the range IV. INELASTIC J/4 PHOTOPRODUCTION

A=300f§80 MeV. (3.35 In this section we diSCL_Jss_ the energy spectrum _in inela_stic
J/¢ photoproduction. This is perhaps the most interesting

AR AR AR AR AR application of the shape function model developed in this
P r sum: — ] paper. The color octet contributions to the energy spectrum
> osf 'S, - - ] have been predicted to increase rapidly in the end point re-
<] 2P0: - gion, where thel/ s approaches its maximal kinematically
§ 0.6F S . allowed energy9,37]. If the color octet matrix elements take
) the values required to fit the normalization of production
g 04r ] cross sections in hadron-hadron collisions andBidecay,
g 02l ] this prediction contradicts the data collected at the HERA
e + collider [10], which show a rather flat energy distribution.
0 TP I o Tl The measured distribution can in principle be described by
0 02040608 1 12141618 2

color singlet contributions alone, both at leading order and at
next-to-leading ordef38] in «as.

FIG. 6. Contributions of the different color octet modas Several solutions have been proposed to solve this prob-
={1s{® 3p® 35B) to the sumdBR/dpg of the differential lem for the NRQCD approach to charmonium production:
branching ratio. The shape function and the ACCMM parameters (@) The relevant color octet matrix elements are smaller
are fixed toA=300 MeV, p=300 MeV andm,,=150 MeV. than believed 39]. The color octet contributions are always

J/¥ momentum (GeV/c)
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small and the shape of the energy spectrum is determined kgnd p refer to the physical/ particle. In the present con-
the color singlet term. text they cannot be identified with the corresponding quanti-
(b) The partonic cross section is modified by intrinsic ties of the progenitocc pair, which we denote by, and
transverse momentum effects. Within a particular model fof, - — ysingpZ=M32, we express thd/ energyEx and its
these effect$40] obtains a reduction of the color octet cross |
section, while the energy dependence is essentially unmodi

ongitudinal momentunpg in terms of its transverse mo-
h'wentumpT andz

fied.

(c) _The NRQCD calculation is unreliable for Iargljtt,//_ 225+ p$+M§ 225— p%—Mé
energies because of a breakdown of the non-relativistic ex- ER=——=—, pr=—————=. (4.9
pansion[18]. Resummation of the expansion as discussed 2zys 2z\s

earlier leads to folding the partonic cross section with a ) ) .
shape function. It is expected that this leads to a depression | N€ convolution with the shape function, EQ.21), re-

of the spectrum at largd/ ¢ energies, because some enerquu'reslc: ands, .defined by EQ(Z'ZQ in the ql'Ja.rkoniL.Jm rest
is lost for radiation in the fragmentation of the color oatet ~ f@me:" According to our convention, theaxis is defined in

pair. the direction of— Py, with P;,=p,+py. Writing

In this section we pursue suggesti@), which has not . R .
been implemented in practice yet. Let us note that, irrespec- p,=(E,,p.,0p3), (4.6)
tive of the issue of normalization, this is the only solution
that addresses the fact that the shape of the color octet spec- py=(Eg,— P, ,0p)), 4.7
trum obtained from a partonic calculation is unphysical for
large J/ ¢ energies. Pin=(Ei,,0,0P%), 4.9

The section is organized as follows. In parallel with the
discussion of thé8 decay we begin with kinematics and by and performing the Lorentz transformation explicitly, we ob-
listing the relevant partonic subproce§§e$+g—>c€[n] tain
+0. We then incorporate the fragmentation of ﬁ?epair via

2 2
our shape function ansatz and discuss the modification of the E = Mi+ pT, (4.9
energy spectrum. For the sake of demonstration, we compare 7 2Mgz
the result to DESYep collider HERA data, although we
shall see that this comparison is problematic from a theoret- A PrzXgs 4.10
ical point of view. PL NMZ,— p2 xgSZ) '

A. Kinematics of photoproduction
memafics of photoproduct ., ZXgS(pT-Mp)+(p7+Mp)?

. . . = : (4.11
The quantity of interest isdo/dz, where Py ZZMR)\J‘/Z(MZ — p%,xgszz)

z= —ER: Ep, 4.7 £ ZXyS 412
Y p g 2MR1 .
andpg, p, andp, denote thel/¢, proton and photon mo-
mentum, respectively. In the proton rest framis the frac- ~, zxgs(zzxgs+ p%— MZR)
tion of the photon energy transferred to thiéy. In the Pg=— OMAYAM2, — p2 x,52) (4.13
photon-proton center-of-mass systéoim.s) we define R Ry FT70
N with N (X,y,2) =x2+y?+ z%— 2xy— 2xz—2yz, and
py:?(l,0,0,—l), (42) 2 :M%-Fp%-i-xgszz . :_)\llz(Mz,_p-zr,ngzz)
e n 2Mpz ¢ in 2Mgz
s (4.14
pg:Xgpp:Xg7(laO,0,+ 1), (4.3

The previous line givesr and B, defined as
pR:(ER’pT’O’pé)’ (4.4 azéin+ﬁ)izn_MRv ﬁzéin_lsizn_MR (4.19

wheres:(pp+p1{)2 is the c.m.s. energy and; the gluon  for givenz andp; of the /¢ in the c.m.s. frame.
momentum fraction of the proton momentum. Note that

YcContrary to the previous section we now use carets to denote
photon-quark scattering is a small correction on the scale ofjuantities defined in thd/y rest frame. Non-invariant quantities
effects we are going to discuss, and relative to photon-gluon fusionwithout caret refer to the photon-proton c.m.s. frame witixis in
We omit these subprocesses for simplicity. the direction of the proton momentum.
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The Mandelstam variables that appear in the hard produaieglected in the strict shape function limit. In our ansatz,
tion amplitude fory+g—cc[n]+g are defined as which models the entire spectrum, we also have to keep the
exact kinematic relations and therefore a non-trivial azi-
Al A Ay muthal average of the hard production amplitude appears in
S=(PgtPy)"=X%gS, this case. With the help of on-shell conditions for the hard

emitted gluon we can express the componentécgfoy

A:(E)CE_ py)zi
A oa Ece=Mg+ko,
=(Pec— Pg)*. (4.16
We have to express them in terms nfpr, x4 and the . [K2— a(2ke— @)Y B(2k,— B) —K2]H2
energyk, and invariant mask? of the radiated soft partons L=k, = ,

- o A B—a
in the J/¢ rest frame. Recall thgp,;=P+|=pr+k with
P=(2m,,0). Hence

. o A A k2+a,8 ko(a+,8)

U=M(k)?—s—t, (4.17) l,=k,= —a (4.19

where M (k)2=M3+2Mgk,+k? as usual. Next param-

etrize the momentum of the?pair by This result, together with the result fpr, and«, 8, allows

us to express in terms ofz, pr, ko, k? andx,.
Poc=(Ege,l,cosg,i sing,1,). (4.18 Let us now turn to the hard amplitudes squared of the
partonic subprocesses. We restrict ourselves to photon-gluon
This introduces azimuthal angular dependence into the pafysion, v+ g_>cg[n]+g’ where n represents either the
tonic matrix element. This dependence is formally small. A”dominant color sing|et Statésl or one of the color octet
& dependent terms are proportionalito, and, as discussed statesSy, 3P;, 3S,. In terms of Mandelstam variables, the
in Sec. Il B 2, such transverse momentum dependence can Ispin averaged expressions §837,41:

. 16e2e2g2(2m,)[s2(T1+U)2+t2(U+5)2+ U%(s+1)?]
H[3s) === — , 4.2
si)s.tu.2m) 27(s+1)?(t+u)?(u+s)? 429

HES®15.1 02 3e2e?g2sU[(s+t+0)*+s+14+0%] 4
st am) == G DA a2 5 @20

e2e2g2
€:€°0s

@)% _
HEPPY7I(s,tu.2me) = (2mc)t(s+t)3(t+u)3(u+s)3L

t6(253+ 13s2u+ 13sU%+20°)

+15(4s*+ 47530+ 705202+ 47sUB+ 4U%)

+14(25°+ 635*U+ 1365302 + 1365°U° + 63sU* + 2U°)
+st30(475%+ 13530+ 1905202+ 132503+ 470%)
+5t20(258°+ 885U+ 1565°U% + 1568°U° + 885U + 250°)

+5stu(7s%+ 38s°u+ 785*U?+ 985°U°+ 785%U*+ 38su°+ 7u°)

+75%03(s+U) (s +su+u?)?], (4.22
3c(8)/at 1 15 3c(L(a T 1,
HESN(s.t0.2mo) = S HIPS{V](s.t0.2mo). (4.23

034004-18



QUARKONIUM MOMENTUM DISTRIBUTIONS IN . . . PHYSICAL REVIEW D 62 034004

Here e is the electromagnetic couplings the strong cou-
pling and e.=2/3 the electric charge of the charm quark.
Note that the NRQCD matrix elements are not part of the
hard cross sections, but included in the normalization of the
radiation function®,(k); see Eq.(2.28. In case of theP
wave contribution, the normalization refers(tg(>Py))/m2
and the corresponding factornﬁ is also extracted from 1020 total partonic: - -
35(8)1/a 3~ A =300 MeV: —
H[°P™1(s,t,u,2mc). A =500 MeV: -
The hard amplitudes squared are then expressed as func- colour singlet: -~

tions ofz, pr, Xq, ko, k? and ¢ and the average over the

azimuthal anglep according to Eq(2.19 is performed. The
double differential cross section far+g—J/¢+ X is then

pr>35GeV

do(yp — IM¥ X)/dz [nb]

10 _3 1 1 1 1 ]
02 03 04 05 06 07 08 09 1

2[ total partonic: - -
108 A =300 Mev: —
A=500MeV: -
3[ colour singlet: -
02 03 04 05 06 07 08 09 1
z

=)
=

given by s L pr>5GeV ]
2 $2 ;;2
d°oyy 1 J'aﬁdk (B2+K3)1(2B) di 1 =
dp2dz 1672z 7 Jo 27 J(a®+i®)i(24) 2s T
=
3

XHn(z,p3 %g,ko,k?)

% 4’7TMRZ
NYAME, - pF xgs?)

@, (k). (4.24 10

The sum runs over the fourc states listed above. Note, FIG. 8. Thed/y energy spectrum fof/s=100 GeV and with a
hOWeVer, that no Shape funCtiOI’] iS required fOI‘ the Colortransverse momentum Cpﬁ',minzs GeV. Upper pane|: Spectrum
singlet contribution, since the dominant contribution to thefor three values of the shape function parametér
color singlet matrix element does not require emission of soft=0 (“total partonic’), 300, 500 MeV. Dotted curve: color singlet
gluons. For the color singlet contribution we therefore usecontribution alone. Lower panel: as upper panel but with the
the ordinary differential cross section on the parton level:‘modified matrix element” discussed in the text.

The final result is obtained by folding in the gluon distribu- B

tion in the protong(x4, 1), and integrating over transverse =Mg, where Mg is the J/¢ mass. We also use\gfg;

momentum: =0.2 GeV(consistent with GRYandag¢(Mg)=0.275. The
c.m.s. energy is fixed to an average photon-proton c.m.s en-
m_ fp%maXd zfl q d?o g ergy at HERA, s=100 GeV. We also choosam,
dz — Jp2 Pr g i ng(xg”uF)dp%z' =1.5 GeV for the color-singlet process.
’ ' (4.25 In Fig. 8 we display thé/ s energy spectrurdo/dz with

the J/ ¢ transverse momentum larger than 5 GeV. This cut is
The lower integration limit forp? usually is set by an ex- larger than the one currently used by the HERA experiments.
perimental cut. In the present framework such a cut is neededowever, it allows us to discuss the effectad pair frag-
to eliminate the contribution from the-21 processy+g mentation in a situation that is theoretically under better con-
—>c€[n], smeared out over a finite rangepn andz by soft  trol. The curves in the upper plot of Fig. 8 show, as expected,
gluon emission in the fragmentation of tbgpair, and also  that the Specirum urns over and approaqhes zerz)—ais_, .
from the initial state. The other bounds are given by once some fraction of the p_hoton energy is lost to radiation
in the fragmentation of thec pair. This turnover occurs at

p%max=(1—z)(sz—M§), (4.2  smaller z for larger values of the parameteéx, which is
related to the typical energy lost to radiation in the/ rest
MZ(1—2)+ p3 frame. ForJ/¢4 production inB decay, we found that\
Xg,minzw- (4.27) ~300 MeV fitted the spectrum well. Assuming universality
of the shape function, this is our preferred choice for photo-
The minimumpy cut implies thaz<1—p2 . /s+--- . For production. For comparison, we also display the result with

large c.m.s energy, as at the HERA collider, this is not =500 MeV. Note that these numbers refer to #i¢ rest
severe restriction on thespectrum. frame. In another frame, such as the laboratory frame, the

energy lost to “soft” radiation may be large, of order
ErRA/Mg, whereEg is the J/ ¢ energy in that frame.
The overall normalization in Fig. 8 and the subsequent
The following results for the energy spectrum are ob-figure requires comment. The NRQCD matrix elements are
tained with the Glok-Reya-Vogt 1994GRV94) leading or-  chosen as in Sec. Ill D oB decay. As in that case the nor-
der (LO) gluon density[42] and factorization scalgug malization has then to be re-adjusted to account for the fact

B. Discussion of the energy spectrum
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that the effective charm quark mass in the hard scattering

. . . ¥ H1prel. 94/35
amplitude is much larger than,=1.5 GeV, conventionally A HIprel. 96/97
assumed in fits of NRQCD matrix elements. We proceed as o Cowe g:}- 2

follows: The curves labeled “partonic(total and color sin-
glet along usem.=1.5 GeV to allow comparison with ear-
lier results. For giverA, and for each color octet channel
separately, we determimagJff defined in Eq(3.20. We then
recalculate the partonic curve with,=mS™ and determine a
normalization ratio by dividing the result for 1.5 GeV by the pr>1GeV ]
second one in the region af~0.1-0.4. Finally, we compute 00 03 04 05 06 07 08 09 "1
the curve including the shape function with the given value
of A, multiply it by this ratio and compare it to the partonic
curve for the conventional choice,=1.5 GeV. The lowz
region is chosen to compute the normalization ratio, since
the shape function should have little effect on the spectrum
far away from the end point. As a consequence of this pro-
cedure the partonic result and the results for non-z&ro
nearly coincide for smalt. The normalization adjustment is
quite large, which reflects the stromg, dependence of the '
partonic cross sections. 10 |
Closer inspection of the upper panel of Fig. 8 shows that F o P ihEY
the spectrum for non-zera increases faster for moderate 0.2 03 04 05 0.6 07 08 09 |
than the partonic spectrum. To understand this effect, we z

reconsider the hard amplitudes squared for the production of ,
FIG. 9. TheJ/y energy spectrum ays=100 GeV and with

a color octefcc pair in a 130 or a °P, state as functlgns of pr>1 GeV compared to HERA dafd0]. Upper and lower panel
z.c. and pT,c;. For any fixed pr ;. the hard amplitudes as in Fig. 8. Solid(dash-dotted, dashed curydimes refer toA
?quaVAEd Increase as 1"6]3(:?)2 aszg—1, as follows from  —300(500,0 MeV. Dotted curves: color singlet spectrum alone.
s=—1/(1—2z.) andu~ —s asz.;—1. This causes the trou-
bling increase of color-octet contributions in the partonic cal-suppression due to the radiation functidn,(k) wins and
culation. Now, for any giverz, turns the spectrum over to zero.

To illustrate these remarks we defineahhocmodifica-
tion of the hard cross sectiom$,(z:¢,Pr.co)-

H ?Od( Zec,Pr,co)
Ho(0.9prcd)  if 2ec>0.9, prec>1 GeV,

do(y p — J/¥ X)/dz [nb]
=

H1 prel. 94/95
H1 prel. 96/97
Zeus prel. 94
Zeus prel. 97

10° >N

mHe»r «

do(yp — J/¥ X)/dz [nb]

Pccr pp
p'y' pp

CcC

=z (4.28

as can be seen by going to the proton rest frame. Hence, for
fixed z, the hard amplitude squared is evaluated at lazger

when A is non-zero compared to the partonic result for Hn(zeol GeV) if z.<0.9, pr o<1 GeV,

which z;,;=z. As a result of the above-mentioned behavior "V H.(091 GeV if z=>009 —1 GeV

of the amplitude, sampling the hard cross section at larger nl - v cem Pr.ce '

z;c increases the spectrum. Likewise, the transverse momen- Hn(zZec,Prec)  otherwise.

tum of thecc pair with respect to the beam axis, (4.30
p?C?: (1—260) (XgSZig— MiE)v (4.29  The energy spectra analogous to the upper panel of Fig. 8 but

with hard cross sections modified in this way are shown in

differs from p%. This happens for two reasons: first, the lossthe lower panel of this figure. The partonic cross section is

of energy to radiation also implies a loss of transverse momedified only forz>0.9 by construction. The spectra for

mentum with respect to the beam axis, if théy is not non-zero_/_\ are reduced already at smallgrwhich shows
parallel to the beam axis. Second, the) can gain trans- (N€ Sensitivity toze.>0.9 at such smait.

verse momentum by recoil against the soft gluons radiated W& emphasize that no physical significance should be at-
during the fragmentation process. For fixgg, this is pre- tached to the lower panel of Fig. 8. The growth of the color

ferred to losing transverse momentum, because the produfStet Cross sections at largeis physical and reflects the

. . — . . _ growth of 2—2 cross sections at large rapidity difference
tion amplitude for thecc pair increases with smalleyr . , -
The dominant effect is the one relatedzg=z. The corre- du€ tot-channel gluon exchange. In the end point region
sponding increase of the spectrifor A non-zero and mod-  ~ — P% min ands~— U~p$ mif (1-2) s0 thats>|t|. Higher
eratez) relative to the partonic spectrum is strongepasni, ordgr co[rec'uons to the spectrum would involve logarithms
is chosen smaller, since the hard cross section rises faster fof s/(—t). Summation of these logarithms with the
smaller pr mip (and would approach the collinear and soft Balitskii-Fadin-Kuraev-Lipatov(BFKL) equation increases
divergence ar=1, if pr n,=0). Finally, at very large, the  the parton cross section in the end point region.

034004-20



QUARKONIUM MOMENTUM DISTRIBUTIONS IN . . . PHYSICAL REVIEW D62 034004

After this discussion for large transverse momentum of V. CONCLUSION
mg ‘Z(;’[zj’itﬁi;'?g?jgﬂi;&iﬂtfogg\s ev?,ﬁirgg stre)egg;rga\:\gth In this paper we provided a first investigation of the kine-
' . . matic effect of soft emission in the fragmentation process
to data from the H1 and ZEUS Collaboratidi®]. Figure 9 — o
shows again the conventional partonic calculation compare§CLn1—J/¢#+X. In the NRQCD factorization approach to
to the calculation with two values ok. The lower panel inclusive quarkonium production these effects appear as ki-

refers to thead hocmodification of the hard cross sections "ématically enhanced higher order corrections in the
according to Eq(4.30. NRQCD expansiorf17,18, which become important near

The qualitative features evident in the upper panel followfNe UPPer end point of quarkonium energy-momentum spec-

from the previous discussion. At largethe spectrum turns tra. The shape funption formalism discussed 17,18 re-

over, but at intermediate including the entire region where sums these corrections and allows us to extend to validity of
data exist, there is a large enhancement, which follows froni’® NRQCD approach closer to the end point, although the
the fact that the partonic matrix element is sampled venfnNtiré spectrum is not covered even after this resummation.
close toz_;=1. Taken at face value, the disagreement with!n the present paper, we implemented the kinematics of soft

data is worse after accounting foc fraamentation effect gluon radiation exactly and used an ansatz for the probability
IS Wors r accounting rag : S: of radiation of soft gluons. This allows us to cover the entire

However, the theoretpal prediction \{wth small transverseenergy spectrum, although in a model-dependent way. The
momentum cut is unreliable at largeWith no py cut at all,

. . o model is consistent with the NRQCD shape function formal-
we expect that the spectrum is drastically modified at large

ft tina for the 21 the virtual ism in the energy region where the latter applies. This situ-
z after accounting for the process, the virtual Correc- - 440 s similar to the relation of the ACCMM model to the

tIOI’I'S to it, and soft. gluon radlatLon from the !nmal qupn. heavy quark expansion in inclusive semi-leptonic decays of
meg to the sen§!t|V|ty o largeg, ?he theorencal predic- B mesons. The main result is provided by E2.21), which
tion is more sensitive to these modifications when gluon raépplies to a general inclusive quarkonium production pro-
diation incc fragmentation is included. An indication of this cess, when the partonic final state before fragmentation con-
is provided by plotting the spectrum with the modified par-gjsis of acc pair and one additional massless, energetic par-
tonic cross section. This modification of the partonic crossgn.
section, althougfad hog may give a qualitative representa- e then proceeded to two applications of the formalism.
tion of the effects to be expected from soft gluon resummaThese applications are not necessarily the simplest ones con-
tion. The lower panel of Fig. 9 shows that the unphysicalceivable, but they seem to be most interesting. We first con-
enhancement is largely reduced in this case, although it doesderedJ/ production inB decay, which proceeds through
not disappear completely. If reality turned out to resemblecolor octet states by a large fraction. In this case the effect of
the lower panel, it would be difficult to disentangle color emjssion in fragmentation of color octet pairs has to be
octet contributions, given the additional normalization uncerdisentangled from Fermi motion of the quark in theB
tainties of both, the color singlet and the color octet contri-meson. We found that the description of the spectrum im-
butions. In this case & ¢ polarization measurement would proves significantly, when soft radiation is included, and if
provide useful additional informatiof87]. the parametel that controls the energy scale for soft radia-
The results of this analysis can be summarized as followsion is chosen around 300 MeV. The shape function defined
with the small transverse momentum cut on thgs cur-  in [18] is production process independent. Assuming univer-
rently used by both HERA Collaborations, the regian sality of our ansatz over the entire energy range, the same
>0.7 is beyond theoretical control. This remains true everdnsatz is used for inelastd 4+ photoproduction. We found
after resummation of large higher order NRQCD correctionghat the energy spectrum turns over z¢0.8-0.9, to be
via the shape function, since the hard partonic cross sectigfPmpared with the partonic spectrum that rises towards
is sensitive to other modifications that are also difficult to=1. However, az<0.8, the color octet contributions to the
control theoretically at such small transverse momentum. AgPectrum still grow faster than the color singlet contribution.
present, the experimental data cannot be interpreted as prBecause of the increase of the partonic cross section, the
viding evidence for or against the presence of color octeincrease is in fact faster in this intermediateegion aftercc
contributions in photoproduction. It is not necessary to refragmentation effects are included. We also concluded that
duce the color octet matrix elements as suggest¢89hto  the transverse momentum cp{>1 GeV, presently used
arrive at this conclusion. This is welcome as matrix elementdy the HERA experiments, is too small to arrive at a reliable
of the order quoted in Sec. Ill seem to be needed to accouttheoretical prediction. Hence, no conclusion regarding color
for the observed branching fraction Bf— J/¢X. octet contributions and the validity of the NRQCD formal-
The situation in photoproduction remains unsatisfactoryism can presently be drawn from HERA data.
In our opinion, nothing is learnt on quarkonium production  The formalism developed in this paper could be applied to
mechanisms, if a small transverse momentum cut is useather production processes, in which the/ energy is mea-
We therefore recommend that future increases in integratesired. Another interesting extension is quarkonium decays,
luminosity should not be used to reduce the experimentalvhen the energy of one of the decay particles is measured,
errors on the present analysis, but to increase the transversach as the photon energy p.— y+X and J/ y— v+ X.
momentum cut at the expense of statistics. Since decay processes are less affected by theoretical uncer-
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