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Structure of large N cancellations in baryon chiral perturbation theory
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We show how to compute loop graphs in heavy baryon chiral perturbation theory including the full func-
tional dependence on the ratio of thenucleon mass difference to the pion mass, while at the same time
automatically incorporating the M cancellations that follow from the largé; spin-flavor symmetry of
baryons in QCD. The one-loop renormalization of the baryon axial vector current is studied to demonstrate the
procedure. A new cancellation is identified in the one-loop contribution to the baryon axial vector current. We
show that loop corrections to the axial vector currents are exceptionally sensitive to deviations of the ratios of
baryon-pion axial vector couplings fro®U(6) values.

PACS numbds): 12.39.Fe, 11.15.Pg, 12.38.Bx

I. INTRODUCTION states. There is an expansion about the chiral limit in powers

. . of my/A, or, equivalently, in powers af?/A2, whereA
m- q X T X
Baryon chiral perturbation theory can be used to system-_ 1 GeV is the scale of chiral symmetry breéking angd is

atical_ly compute the properties of ba_\ryons as _afunction Othe pion mas&.In the largeN. limit, the nucleon andA
the light quark massesn;. A physical quantity's non-  pecome degeneratey=M ,—My=1/N,—0, and form a
analytic dependence omy is calculable from pion-loop single irreducible representation of the contracted spin-flavor
graphs; its analytic dependence has contributions both frorsymmetry of baryons in larg; QCD [3,4]. There is an
pion-loop graphs and from low-energy constants that arexpansion in powers of M, about the largeN. limit. We
present in the chiral Lagrangian. will consider a combined expansion img/A, and 1N

It is convenient to formulate baryon chiral perturbation about the double limimy—0 andNg— .
theory in terms of velocity-dependent baryon fields, so that Loop graphs in heavy baryon chiral perturbation theory
the expansion of the baryon chiral Lagrangian in powers ohave a calculable dependence on the ratjdA. In general,
mg and 1Mmg (where mg is the baryon magsis manifest this dependence is described by a functigim,.,A). In the
[1,2]. This formulation is called heavy baryon chiral pertur- chiral limit my—0 with A held fixed, the function can be
bation theory. The earliest application of heavy baryon chirakxpanded in powers ah_, /A,
perturbation theory was to baryon axial vector currdis
Two important results were obtained from this analysis. F(m.,A)=Fq+ Mz =
First, the baryon axial vector coupling ratios were found to K 0 Al
be close to theilSU(6) values with anF/D ratio close to . o ,
2/3, the value predicted by the non-relativistic quark modelyyhereas in the N.—0 .I|m|t with m,, hgld fixed, the func-
Second, there were large cancellations in the one-loop cof™ €an be expanded in powers &fm,:
rections to the baryon axial vector currents between loop _
graphs with intermediate spin-1/2 octet and spin-3/2 decuplet F(m,,A)=Fy+
baryon states. It was later proved using thN 1éxpansion
that the baryon axial couplings ratios should h&/6(6) The difference between the two expansions in Edsand
values withF/D=2/3, up to corrections of order NZ for  (2) is commonly referred to as the non-commutativity of the
pions[3,4].> In addition, it was shown that axial vector cur- chiral and largeN, limits [7].
rent loop graphs with octet and decuplet intermediate states It is important to remember, however, that the conditions
cancel to various orders iN.. For nucleon and\ interme-  for heavy baryon chiral perturbation theofincluding A
diate states, there is a cancellation of the one-loop graphs tiate$ to be valid are thatn,<A, andA<A . The ratio
two orders inN.; each individual one-loop diagram is of m_/A is not constrained and can take any value. The entire
orderN., but the sum of all one-loop diagrams is of order dependence of a physical quantity ory/A is calculablein
1/N. [3]. Similar largeN, cancellations also occur for other heavy baryon chiral perturbation theof{], so the ratio
baryonic quantitie$1,6]. m_./A need not be small or large for calculations. In the real

We would like to find a calculational scheme that simul-world, m_/A~0.5, so it is useful to have a calculational
taneously exhibits both then, and 1N, expansions. In the scheme that retains the full functional dependence of
chiral limit my— 0, pions become massless Goldstone bosoifr(m,_,A) on the ratiom, /A. A straightforward approach is

m_\?2
T) Fot-o, (D)

2

Fot-. (2

A)_ A
—|F+|—
m,, m

w

The ratioF/D is equal to 2/3 in the quark representation and to 2For SU(3), X SU(3)g chiral symmetry, there are loop correc-
5/8 in the Skyrme representation. The quark and Skyrme represeiions involving the pions, kaons ang which depend on the pion,
tations are equivalent in larg¥. [5] up to corrections of relative kaon andn masses, respectively. Chiral perturbation theory de-
order 1NZ for pions[3]. We will use the quark representation in pends on the expansion parametery A2, m/A2, andm?/A2.
this paper. LargeN, chiral perturbation theory also depends on #iemass.
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FIG. 1. One-loop corrections to the baryon axial vector current.

to simply calculate the full dependencen./A of the loop  orders in the baryon hyperfine mass splitting and it is
graphs and evaluate the loop correction at the physical valugetermined that the dominant largk- cancellations are
m,./A~0.5[1,8]. Another common procedure advocated inpresent only in terms that are of low and finite ordeAinA
the literature is to not include intermediate particles ex-  procedure for subtracting and isolating these laxgecan-
plicitly in loops, but to incorporate their effects into the low- cellations is given. Other contributions to axial vector current
energy constants of the effective Lagrangi@h The disad- renormalization are briefly presented in Sec. VI. Our conclu-
vantage of this second approach is that one finds largsions are summarized in Sec. VII.
numerical cancellations between loop diagrams with inter-
mediate nucleon states and low-energy constants containing Il. OVERVIEW
the effects ofA states. These cancellations are guaranteed to
occur as a consequence of the contracted spin-flavor symme- A brief review of heavy baryon chiral perturbation theory
try which is present in th&l.— limit. The largeN, spin- and the 1. baryon chiral Lagrangian can be found in Ref.
flavor symmetry responsible for the cancellations is hidderi10], so only a few salient facts will be repeated here. The
in this approach because including only the spin-1/2 baryonBion-baryon vertex is proportional t9,/f, wheref is the
in the chiral Lagrangian breaks the larlye-spin-flavor sym- ~ decay constant of ther meson. In the largé. limit, g
metry explicitly, since the spin-1/2 and spin-3/2 baryons to-*N and f= /N, so that the pion-baryon vertex is of order
gether form an irreducible representation of spin-flavor sym-\/N—C and grows withN.. The baryon propagator ig(k-v)
metry. Because the sum of the loop contributions withand is N. independent, as is the pion propagator. In the
intermediate octet and decuplet states respects spin-flavaiodified minimal subtraction schem#1S), all loop inte-
symmetry and is much smallgby powers of IN.) than grals are given by the pole structure of the propagators, so
each individual loop contribution separately, it is importantloop integrals do not depend o, .
to keep the largN, spin-flavor symmetry of the baryon chi- The tree-level matrix element of the baryon axial vector
ral Lagrangian and the lardé; cancellations manifest. current is of ordeN,, sincegy is of orderN.. The one-loop

In this paper, we will show how one can combine heavydiagrams that renormalize the baryon axial vector current are
baryon chiral perturbation theory with theNl/expansion so  shown in Fig. 1. Each of the one-loop corrections in Figs.
that the full dependence am_/A is retained and the W, 1(a)—1(c) involves two pion-baryon vertices, and is ordir
cancellations are explicit. This method has the advantage théimes the tree-level graph.
the loop correction to the baryon axial isovector current, The matrix elements of the space components of the
which is of the order of M., is automatically obtained to be baryon axial vector current between initial and final baryon
of this order, instead of as the sum of two contributidosp  statesB andB’ will be denoted by
correction and countertepnof orderN. which cancel to two o
powers in 1N.. Note that at higher orders the cancellations (B'¢y' ysT2IB)=[A?]g /g, (3)
become more severe, and it is even more important to keep
the 1N, cancellations manifest. For example, at two loops,whereB andB’ are baryons in the lowest-lying irreducible
each loop diagram is naively of ordBl2, whereas the sum representation of contractedk(6) spin-flavor symmetry,
of all two-loop diagrams is order |1|,§, Not including the i.e. the spin-1/2 octet and spin-3/2 decuplet baryons. The
1/N, cancellations in a systematic way gives a misleadingeynman diagram amplitude forB—B'+m(k) is
picture of the baryon chiral expansion—one finds higher or{ A]g/gk'/f, wherek is the three-momentum of the emitted
der corrections that grow witlN., which is incorrect. In-  pion. The time component of the axial current has zero ma-
cluding the 1N, cancellations restores the N/ power trix element between static baryons, and is represented in the
counting so that the loop corrections are suppressed by tHeeavy baryon formulation by a higher dimension operator in
factor INS, whereL is the number of loops. the effective Lagrangian. The matrix elemef#s®]g g of

The organization of this paper is as follows. In Sec. I, wethe spatial components of the axial vector current can be
begin with a brief overview of the IV, cancellations occur- Written in terms of the octet and decuplet pion coupling con-
ring in the one-loop correction to the baryon axial vectorstantsF, D, C, and [2], each of which is of ordeN..
currents. In Sec. lll, we derive the formula for the one-loop  The one-loop correction to the baryon axial vector cur-
correction to the baryon axial vector currents for arbitraryrent, in the limit that theA-nucleon mass difference is ne-
A/m_, in a form that is convenient for later use. The struc-glected, is proportional to the double commutator
tures of largeN. cancellations forA/m_,=0 andA/m_#0
are discussgd in Secs. IV and V, re'spec.tively.' The general 5Aiaoc£2[Ajb’[Ajb,Aia]], )
power counting for larg&d, cancellations is derived to all f
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FIG. 2. One-loop pion correction to the baryon axial vector ~FIG. 3. One-loop kaon correction to the baryon axial current
current (p|uy*ysd|n). The curves argd—\a for (from top to  (Pluy“ysd|n). The curves arg8—\a for (from top to bottom

—

bottom along the left hand edge of the graph—N=, E—AK,  along the left hand edge of the grapE—Em, S—3m, E
S Sa E—Ex, EHEK, S oA, 2—>NK, A—=NK. —AK, A=NK, E—=3K, N=Nm, S —Am, 2—NK.

where the sum over intermediate baryon states is given bglected for simplicity so there is only a chiral-logarithmic
matrix multiplication of the A’ matrices. Naively, the contribution.(The full one-loop correction will be discussed
double commutator is of ordet?, andf N, so thatéA'® in the next section.For the case ofp|uy*ysd|n), the co-
is of orderN2. One of the results of the NI analysis for efficients are
baryons is that the double commutator is of orNer, rather
than Ng’ [3]. Each individual term in the sum E¢4) is of
orderN?, but there is a cancellation in the sum over inter- a=D+F
mediate baryons, which is guaranteed by the spin-flavor '
symmetry of largeN, QCD [3,4]. The cancellation only oc-
curs when the ratios of, D, C, and H are close to their o
SU(6) values® The largeN, cancellation implies that the N,=
one-loop correction to the axial current isNL/times the
tree-level value, instead dfl; times the tree-level value.
Similarly, the two-loop correction is ILV@ times the tree-
level value, instead dfiZ times the tree-level valugsee Ref.
[11] for an explicit calculation in the degeneracy limiThe
one-loop largeN; cancellations will be discussed more fully 1
in Secs. IV and V. The formalism for making larf&-can- N, =-(3F-D)2
cellations manifest is provided in Sec. V. 74

The largeN. cancellation in the one-loop correction to
the baryon axial vector current can be seen numerically from .
explicit computation in heavy baryon chiral perturbation )\,],=2D2, (6)
theory. The baryon axial vector current matrix element at
one-loop has the form

(F+D)%+2C?,

Al ©

1
k=5 (9F?—=BFD+5D%+C?),

2 2
_ m
A=« (ﬂ Aa)mmzz (5)
o ‘ . . . . F/D
wherea is the tree-level contributiors is the vertex correc- 8

tion, \ is the wave function renormalizatiomis the, K or
7 mass, and thé\-nucleon mass difference has been ne-

=-1F

_2_

3An important point to note is that largé; QCD predicts only the
ratios of F/D, C/D, and H/D; the overall normalization of the ) )
coupling constants is not fixed by the symmetry. The Ia¥gesan- FIG. 4. One-loop eta correction to the baryon axial current
cellations depend on the coupling ratios being close to ®&i6)  (Pluy*ysd|n). The curves arg8—\a for (from top to bottom
values, and do not depend on the overall normalization of theilong the left hand edge of the grapE—Zm, S—37, E
couplings. —AK, A—=NK, N=Nm, 3—A7m, E—3K, S—NK.
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50 ) The largeN. analysis indicates that there should be some
g1/tc"—F-D, cancellation in the loop correction whéiD is close to the
SU(6) value of 2/3. This suppression is evident separately
_ 1 2 for the 7, K and » loops for all eight processes. This is the
Bk= §(—3F3+ 3F?D-FD?+D3%)+ §(F+3D)C2 cancellation pointed out phenomenologically in Réfs2]
and later proved in Ref$3,4]. We will study this cancella-

— 1 16
Br=7(F+D)*+ 3(|:+D)c2—

10 .1 tion quantitatively in terms of the Bl expansion in this
BT _§(F+D)’ work.
_ 1 ) IIl. ONE-LOOP CORRECTION TO THE AXIAL
By=—13(F+D)(BF-D)7 VECTOR CURRENT

The one-loop diagrams that contribute to the baryon axial
E = i(F+D)(3F—D)2. vector current are shown in Fig. 1. Figure®%1(c) are of
K 12 orderN, times the tree-level vertex, and Figdlis of order
1/N, times the tree-level vertex. The largg-cancellations
The coefficients for the other matrix elements can be foundccur between Figs.(&—1(c), so we will concentrate on
in the literature[2]. The subscriptsT, K and » denote the these three diagrams in this section. The contribution from
contributions fromsr, K, and % loops. To illustrate the can- Fig. 1(d) is considered briefly in Sec. VI. Both contributions
cellation, we have plotted the one-loop coefficienig ( can be found in Ref2].* o
—fa) for the axial currentgor equivalently, the couplings All the loop graphs we need can be written in terms of the

o — — basic loop integral
N—Nm, 2—Aw, 2—-37, E—Em, A—>NK, Z—NK,

=E—AK, andE—3K in Figs. 2, 3, and 4. For simplicity, B i d%k (K (—k)

the coefficients are plotted as a functionfefD only—the STF(MA,u)= = vy —, —
other coupling ratios have been fixed at theld(6) values ) @m7 (K-mI(k-v-Atie) @
CID=-2 andH/D=—3. The best fit to the baryon axial

currents has the axial vector coupling ratios close to theiwhereu is the scale parameter of dimensional regularization.
SU(6) values[1,2], so this is a reasonable approximation. Evaluating the integral gives

T A
2(m?—A?)%7? ——tan‘l(—2 2) . |Al=m,
3 m? 8 7 2 m—A
24772f2F(m,A,,u)=A<A2—Emz)ln—z—gA?’— EAszr (8)
# 2_m2\3/2 A—VAZ—m?
—(A*—m?)¥In| ————=5|, |A|>m.
A+ JAZ—m?
|
A. Wave function renormalization mesort, The wave function renormalization correction is
The wave function renormalization graph for bary®is Zg's= '8t 2B,
shown in Fig. 5, where one sums over all possible interme-
diate baryond,. The loop graph is equal to
ZB/B: il
2 APVl
iGB’B:_ 2 _Z[Akb]B’B [Ajb]B B
jkpB f ! '
d*k (kk)(—kj) “4Figure 1d) is linear in the pion-baryon coupling constants,

X — whereas Figs. (B)—1(c) are cubic, so it is easy to identify the two
(2m)* (K®=mp)[(k+p)-v—(M;—M)+ie] pieces in egisting calculations. g i
9 5The 7' is a ninth Goldstone boson in the lartye limit [12,13.
Our formulas apply to they’ corrections, with flavor matrix®
=/2/3. The formalism for including the’ is described in detail in
where b=1,...,9 or w,K,n, ' labels the intermediate Refs.[10,14].
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FIG. 5. One-loop wave function renormalization graph.

FIG. 6. One-loop vertex correction graph.
which can be written in terms of the functida(m,A, u)
defined in Eq(7) as
( A ) ABlBZE M Bl_ M BZI (13)
. . JF mbv BlBV/“L
Zgig= —jbEB [AP]g g [AP]g g————
/0,8y

' (12 B. Vertex correction
The one-loop correction to the matrix elem¢Bt |A'3|B)
where from the vertex graph Fig. 6 can be written as
. [ . :
[5A'a]§r.§ex=_ 2 - f—z[Akb]B'BZ[A'a]stl[AJb]Bla
j.k,b,B1,By
d*k (K<) (=Kl

X (2m)* (KP—mp)[k-v—(M;—M)+iel[(k—q)-v—(M,—M)+ie]’ (14

whereq is the outgoing momentum transfer at the axial vector vertex. For octet-octet matrix elements), whereas for

decuplet-octet transition matrix elements,u=M—M', the average decuplet-octet mass difference. One can rewrite the
denominator of Eq(14) using the identity

1 1 1 1
(K—A,+ie)(K—A,+ie) (A—A,) | (K—A,fie) (K—A,+ie) (15

so that

[AR = o bE [AP]gp,[A?]g,8,[A]e 5 [F(my,Ag g, u)—F(mp,Agpr,u)] (16)
) 2

By, A~ App

whereAg g, is defined in Eq(13).

C. Total correction
The total correction to the baryon axial vector current matrix element from Figs-Ic) is

. ) 1 . )
[5A'a]B/B:[5A'a]\éerréex—§ é ZB’Bl[Ala]BlB+é [A®]gr8,28,8 (17)

2 [Ajb] [Aia] [Alb] F(mbiABlBuu)_F(mbiABzB’ ,,LL)
== B'B B,B B,B
j.b,B1.By 2 2 ! ABlB_ABZB'

aF(mb 1A82811M)

1 ) : .
t5 2 [APlee A lee A%

j:b,B1.By

IF(My,Ap g, u)

1 : : .
— a b b
T35 2 (A [AP]e e [AP]ee Bos

j,b,Bq,By
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[In addition to SA'® of Eq. (17), there are also the contribu- higher dimension terms in the chiral Lagrangian. The con-
tions of Fig. 1d) and the low-energy constants, which are stant term is scheme dependent, but the chiral logarithm is

considered in Sec. V].Equation(17) includes the full de-

pendence om\/m of the one-loop correction. We want to
rewrite this expression so that the lafyg-cancellations are

manifest.

universal.

We discuss the structure of the larijg-cancellations for
the baryon axial vector currents in the next two sections.
First, in Sec. IV, the cancellations are studied in the degen-

In the limit that the octet and decuplet baryons are degeneracy limit. The generalization to non-degenerate baryons is

erate, all the mass differencAsg—0, and

[F(my,Apg.p) —F(My,Ap g )]

Agp—App
—>F(1)(mb,0,,u), (18)
whereF (™ is defined by
(?nF(mb ,A,,LL)
F(n)(mb,A,M)ET (19

In this limit, the correction to the axial current E(L.7) re-
duces to

[6A]ge= > FO(m,0pu)

j.b,B1,B>
X\ = [Ajb]B/Bz[Aia]stl[Ajb]Bls

Lo ib ia
+5[APlers,[A ]88 A" ]88

1 . . .
+E[Ala]B’BZ[AJb]BZBl[A]b]BlB . (20

given in Sec. V.

IV. LARGE- N, CANCELLATIONS: A/m_,=0

The largeN, cancellations in the degeneracy limit for the
one-loop correction to the baryon axial vector current follow
from the double-commutator form of ER1). The pion de-
cay constanfo /N, so the functiorF)(m,,0,.) is of or-
der 1N.. Each axial vector current matrix element is of
order N, (recall thatg, is of orderN,), so the correction
SA2 is naively of absolute orddy?, i.e. of order, relative
to the tree-level valuéd'@. The largeN, consistency condi-
tions derived in Ref[3] imply that the double commutator
[AI® [AP Al2]] is of order N, rather the naive ordeN?,
provided one sums over all baryon states in a complete mul-
tiplet of the large-N SU(6) spin-flavor symmetry, i.e. over
both the octet and decuplet, and uses axial coupling ratios
given by the large-N spin-flavor symmetry.

Before discussing the cancellation in the double commu-
tator, we first review some necessary laheformalism.
The baryon matrix element of the axial vector current in
QCD can be expanded in aNJ/ expansion in terms of
SU(6) spin-flavor operatorg3,4,16—18,°

iya a i

a=q'?a, T=q'sa J=d'Tq, @3
22" 2 2%

Let us adopt the more compact notation tA&t represents a  whereq andq' are SU(6) operators that create and annihi-
matrix with matrix element$A'@]g.g, and summation over |ate states in the fundamental representatio o{6), and
intermediate baryon states is denoted by matrix multiplicaw' and\? are the Pauli spin and Gell-Mann flavor matrices.

tion. Then Eq.(20) can be written as
SAR=2 F(l)(mb,o,ﬂ)[ —APARAD - SAPAIP AR
b

+ %AiaAijib

=

== % FM(my,0,u)[AP,[ AP, AlR]], (21)

N

which is the double-commutator form originally derived in

Ref. [3].
The loop integral in the degeneracy linit— 0 reduces to

11
3

FO(mp,0,u) L | mg) (22
My, 0)=— 7=—=->M +In—].
by Y\ 16722 b Mz

The Inm,/u term is non-analytic in the quark mass, and is

called a “chiral logarithm.” The constantl1/3 piece is

The lowest mass baryon multiplet transforms un8éi(6)

as a completely symmetric tensor wily, indices. ForN,

=3, this representation decomposes under spin and flavor
into a spin-1/2 octet and a spin-3/2 decuplet. The baryon
axial vector currentA'? in the largeN, limit has the form

[18]

N, 1 N, 1
At=a,G%+ > b,——D?2+ > ¢, —O2,
! n=22,3 nNn_1 n n=23,5 rTN”_1 n

C C

(24)

where the coefficients are of order 1. The opera|3 are
diagonal operators with nonzero matrix elements only be-
tween states with the same spin, and the operaffsare
purely off-diagonal operators with nonzero matrix elements
only between states of different spin. The explicit forms for

SFor recent reviews of the largé; spin-flavor symmetry, see Ref.

analytic in the quark masses, and has the same form 4s5].

034001-6



STRUCTURE OF LARGEN, CANCELLATIONS IN ... PHYSICAL REVIEW D 62 034001

these operators can be found in REf8]. At the physical =[a,Ga,G"] is naively of ordefNZ, since eaclG'? is of
valueN.= 3, Eq.(24) reduces to orderN.. However, the commutation relation
A= a,Gi b, T4 by oD + 0y 02, (25 [G2,GI"]= D gigaverey Longik gy L ganeige
—d1 2Nc 3N2 3 3N2 ) ’ 4 6 2
C C
(29)
where

shows that matrix elements of the commut4ie?,G/°] are
DR={J {J,GIa}}, at most of ordeiN., since the ri_ght-hand side of E(29)_is
(26) at most of ordeN. . Thus there is a factor ¢f, cancellation
_ o1 between the various terms in the commutaf@'?,G/°]
(’)'3a={J2,G'a}—E{J',{JJ,G'a}}. from the summation over intermediate baryon states. Simi-
larly, one finds that there is a factor Nf. cancellation in the

The four conventionaSU(3) baryon axial couplings sum over intermediate states for the commutators

D, C andH for the baryon octet and decuplet can be written [T2,GIP]=ifabegie (30)
as linear combinations of the coefficierts, b,, b; andc; '
of the 1N expansion: and
a Thy_;fabcyc
D:%aﬁ%bs, [T2,TP]=ifabeTe, (31)
where the naive counting rule, E(8), has been used to
1 1 1 estimate the order iN, of both sides of these equations. The
F=ga1t+ byt ghs, basic reason for the cancellation is that the maximum order
27) in N an r-body operator matrix element can beN§ (an
1 r-body operator is one withg’'s and qu’s; i.e., it can be
C=—a;— 5Ca written as a polynomial of ordarin J', G'* andT?), but the

commutator of arr-body ands-body operator is at most an
(r+s—1)-body operator. Thus, every commutator poten-

H=— Ear §b2— §b3. tially leads to a cancellation by one factor f. However,
2" 277 2 not every commutator gives a factor Nf cancellation. The
. . . . commutators
The leading order prediction of largés QCD is obtained by
dropping the IN. suppressed terms in Eq24), i.e. the [J1,3]=i€lkg¥ (32)

3-body operator? and O?. The G'# operator gives
=2D/3,C=—2D and’H=—3D, so that the coupling ratios, and
but not necessarily their absolute normalization, are those

predicted bySU(6) symmetry. The 2-body operatdfT? [J,Gla]=ielkGka (33
corrects these relations. The correction is of relative order . . .
1/NZ for pions. have no cancellations, since both sides are of order 1 and

The baryon matrix elements df for the low-lying bary- orderN., respectively. The reason that there is no cancella-
ons in theSU(6) representation are of order unity. TNe  tion in Egs.(32) and(33) is thatJ' is a one-body operator
dependence of matrix elements®® and T is more subtle, whose matrix elements are of order unity, rather than of or-
and depends on the particular componarmhosen, as well derNc. . )
as on the initial and final state baryfts]. For the purposes ~ Eduations30)—(33) lead to the conclusion that each com-
of this paper, we will use the naive estimate that matrixmutator produces &l cancellation, unless a factor df is
elements 0fG'® and T2 are both of ordeN,, which is the eliminated. The double commutator in Eg1) has a cancel-

L . 2 . . .
largest they can be. We focus upon baryons with spins oftion of N¢, becausg GI*,[GI,G*]]~J+G+T, so that

order unity. TheN, counting rules are summarized as the double commutator is ordBk; , rather tharN? . This was
. ‘ the cancellation observed numerically in REZ] and later
G'%~N;, T®~N., J-~1 (28)  proved in the IN. expansion in Refd.3,4].

The 1N. expansion of a baryonic matrix element can be

. . . : V. LARGE- N, CANCELLATIONS: A/m_#0
written as an expansion in powers &f?/N., T%N, and ¢

J'/N.. The counting rules, Eq28), show that each factar In this section, we analyze the lar$g- cancellations in

leads to a M. suppression factor. the renormalization of the baryon axial vector current for
We can now understand the origin of the lafdgeancel-  finite A/m,.

lations in Eq.(21). At leading order inN., the axial vector Equation(17) can be expanded in a power seriesAn

current operatoA'@ can be replaced bg;G'#, and has ma- Expanding the functiorF(m,A,u) in a power series and
trix elements of orderN,. The commutator[A'?,Al®]  collecting terms gives
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i 1 ) ib [ Ajb aia Each factor ofM has at least tw@d’s, since themgN. term
oA _Eb EF (M, 0,)[AP,[A®,AF]] in Eq. (35) drops out of the expression E@4). Each factor
b of A'® can have=0 J's, as is clear from Eqg$24)—(26). The
1 @) ib [ aia ib number ofJ’s in the original expression is listed in ro(#),
—5F (My, 0, AP LA LM AP]]} where p=0 is the number of extra’s from M or A%,
beyond the minimum values of 2 and 0, respectively. Finally,
note that each commutator can be used to eliminate one
power ofJ. Thus the net power af left is given by subtract-
ing the number of commutators from the numbed@f. The
minimum number of)’s is non-negative, and is listed in row
(G). Thus, the finaN,; power[row (H)] is given by the net
power in row(E) minus the minimum number aFs in row
where M is the baryon mass matrix. In deriving this result (G) since there is an additionalN{ factor for eachl. One
we have converted explicit sums over intermediate baryonsan compare this with the “usualN, counting rule listed in
to implicit sums in the matrix multiplications. One can userow (l). The usual counting rule is obtained by including a
either the baryon mass matrix{ or the baryon mass- factor of N, for eachA' (i.e. for each factor of, D, C or
splitting matrixA M in Eq. (34), since M differs from A M H), a factor of 1N, for the 1f?, and a factor of M, for
by the average baryon mass times the unit matrix, whickeach power ofA, with p=0 representing N, suppressed
commutes and drops out of E@4). To evaluate Eq(34) to terms.
all orders inA/m_. would be extremely difficult, since one One interesting point can be noted from Table I. The
would have to sum an infinite series, with each term havinglominant 1N, corrections from the baryon mass splittings
a coefficient which is a complicated commutator and anti-are due to multiple insertions of th¥# term in the baryon
commutator ofM’s and A'®'s. mass matrix. Two insertions of thié term(thep=0 term in
We would like to evaluate graphs in heavy baryon chiralthe M 2 column areN, more important than one insertion of
perturbation theory so that theN/ cancellations are mani- the J* term (the p=2 term in theM ! column.
fest and do not occur as numerical cancellations at the end of There is an extra cancellation in the term lineaniithat
the calculation. We will now show that the larffg cancel- is not apparent in Table I. We will discuss this new laige-
lations only occur in the first few terms of E(B4), so that cancellation momentarily. Including this effect, one sees
the remaining terms can be summed using conventiondtom Table | that all terms in the expansion of Efj7) with
heavy baryon chiral perturbation theory in the usual mannertwo or more powers af have the sambl. behavior as one
The expansion, Eq34), has a different structure depend- finds with the usuaN, counting; i.e., these terms have no
ing on whether one has an even or odd number of insertionsxtra cancellations. One can therefore treat all terms with
of the baryon mass operatér(. Terms with 2 insertions of  two or more powers of\M by conventional heavy baryon
M have 2 +2 commutators, whereas terms with-21 in-  chiral perturbation theory—compute all the graphs, with ver-
sertions ofM have 2 +2 commutators and one anticommu- tices written in terms of, D, C and’H. The only terms that

+ éF“)(mb,O#)( [AP®[[M,[M,AP]],A]]

1 . . )
_E[[MvAJb]i[[MiAJb]iAla]])+'" (34)

tator. have to be treated specially are those with zero or one power
The general form of the baryon mass operator in tid. 1/ of M. To compute graphs in the conventional way omitting

expansion in thesU(3) limit is [3,4,16-18 the first two terms in Eq(34) is trivial, one simply rewrites

the loop integral Eq(7) by explicitly extracting the first
J2 (J?)2 three terms in an expansion i,
M=N, mo+m2m+m4v+-~- . (35
¢ ¢ F(mb,A,,u)zF(mb,O,,u)-l—F(l)(mb,O,,u)A
The importance of a given term in theNl/expansion can be 1 _
obtained by counting powers df Each factor of)/N, leads +§F(2)(mb,0,M)A2+ F(my,A,u), (36

to a 1N, suppression, sinc&is of order unity according to

the counting rules Eq28). . .
We now have all the necessary ingredients to count th@nd takes the standard expressions for the loop corrections

power in 1N, of a general term in Eq(34). The operators Written in terms ofF, D, C and’H, with F—F. This proce-

A'? and M are one-body operators, with naive ord&r, so dure sums the entire series ii/m,,)" starting withr=3. To

the M " term in the expansion in E¢34) is naively of order this result is added the first two terms in E84). One needs

N3*r=1 including the factor of M. from the 1f% in the  to extract three terms frorfi to obtain the first two terms in

loop integralF, as shown in row(C) of Table I. Eq. (34), sinceF(m;,,0,u) cancels out of the correction.
The number of commutators in each term is listed in the One can now analyze the first two terms in the expansion

next line in this table. Every commutattmaively) leads to a  of Eq. (17), which are given in Eq(34). The first term is the

decrease in the naiV¥, order by unity, since the commuta- double commutator term discussed in the previous section.

tor of anr-body and ars-body operator is at most ant+s We see from Table | that this term is naively of Ol‘déi’,

—1 body operator. This leads to the& power given in row  but actually is at most of ordeX?. This is consistent with

(E). Finally, we need to count the powers bfn each term. the loop expansion being an expansionzifN., since the
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TABLE |. Table of the order irN, of the terms in the expansion of the one-loop correction to the axial
vector currents. See the text for an explanation of the entries.

(A)  Number of M’s 0 1 2 3 4 5 6

(B) m, dependence myInm, m?  Inmy mg*? mgt mg¥?  m,?

(C) NaiveN. power 2 3 4 5 6 7 8

(D) Commutators 2 2 4 4 6 6 8

(E)  Net power 0 1 0 1 0 1 0

(F)  Number ofJ's p p+2 p+4 p+6 p+8 p+10 p+12

(G) J'sleft 0 p=0,1 p p p+2 p+2 p+4 p+4
p—2 p=2

(H)  Final N, power p=0,1 1-p* —p -1-p —-2-p -3-p —4-p
2-p p=2

() UsualN, power 2-p 1-p -p -1-p —-2-p —-3-p —4-p

8Actually is 0 forp=0. See text.

one-loop correction is of order N relative to the tree-level the baryon mass splitting, which is a quantum effect. The
contribution of ordeN.. It is also apparent from Table | that order N. contribution to Eq.(37) comes from usingA'?

all terms of orderM © with p=0,1,2 are equally important. =a,;G'® andA M=m,J?/N:

Since there are no powers of the baryon mass operatop, the

factors ofJ must all arise from M, corrections in the axial aimz @) ib Fia 12 b
verticesA'?. The expression for the axial vector current rel- N, F(mp,0u){GP[G*,[3%GP]]}. (39
evant forN.= 3 is given in Eq.(25), from which it follows

that terms withp=0,1,2 in the producAAA are of the form  The operator factofG!°,[ G'2,[J2,GIP]]} is naively of order
GGG, GGJT, GJTJT, GGD;, and GGO;. All these N3 which implies that the correction E(B8) is an ordeiN,
terms contributeat the same ordeto the double commuta- correction to the axial currents, siné?)(m,,0,.) is of or-
tor, whereas according to the usual counting one would havge, 1N, . However, an explicit computation of the operator

expected thep=0 productGGG to be one power ofN, product using the identities in RefL8] gives
more important that the=1 productGGJT, which in turn

would be more important by one power bf. than thep ) ) , , 1 )

—2 products. This result has an important consequence: the {G°,[G'3,[J%,GIP]]}=—{J%,G'a} + 5 (Ni+Ne)J'T?
one-loop correction is very sensitive to the deviations of the

axial vector coupling ratios from theBU(6) values. While 1 .

the deviations are small corrections to the couplings them- - §(Nf—2)G'a, (39
selves, their importance gets enhanced in the one-loop coef-

ficient, because the leading tefproportional toa}) is 1_/'\'5 which is only of ordeiNZ, using theN-counting rules in Eq.
suppressed. Thus, for example, tgterm is the.domm%nt (28). The ordem? part of Eq.(39) vanishes, which is a new
contribution toF, D3 ¢ an;j M, and thecs term is @ INc  cancellation in the one-loop correction to the axial vector
correction, but th@; andajcs terms are just as important in - rrent. Consequently, E¢37) is of orderNS rather than

the one-loop correction. Explicit forms for the one-loop cor-ogerN_, and is consistent with being a quantum correction.
rection in terms ofa;, b,, bs andc; will be given else-

where.
The second term in Ed34) is

VI. OTHER CONTRIBUTIONS

1 We have computed the chiral logarithmic correction to the
— ZF@(m, 0.){Alb [A2 [ A, Alb 3 axial vector current from Figs.(4), 1(b), and 1c). There is
2 (M, 0 (AT AT 11} S also the contribution from Fig.(dl), which is

and is at most of ordeN. [using the value (¥ p) for p , 1 ,

=0], the same order as the tree-level contribution to the OA%=—75 > [T°[ T2, AT (my), (40
axial vector current. This result is surprising, because the b

1/N. expansion is a semiclassical expansiomiN.. One
should be able to obtain the leading inN1/contributions
from classical field theory. For example, it was shown that e,

where

the Ncmg’2 one-loop correction to the baryon mass could be
obtained from the energy of the pion cloud coupled to a L \
classical baryon sourdd9]. The term in Eq(37) involves FIG. 7. One-loop correction to the baryon mass.
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k1w e e
|(mb):f_2 (277)4 kz_mg: 16W2f2(|n mb/,u -1). = v

(41)

FIG. 8. Two-loop correction to the baryon mass.

This contribution is of order N, relative to the tree-level _ o
contribution, and does not involve any cancellations betweeNMector currents are as important as these two contributions.
A and nucleon states. We also have found a new cancellation in the one-loop cor-

In addition to the loop corrections, one has the contribut€ction to the baryon axial vector current in the term linear in
tion from low-energy constants multiplying higher dimen- the baryon mass splittings.
sion operators in the heavy baryon chiral Lagrangian. These The largeN. cancellations play an important role in the
terms are analytic in the quark masg. The analytic con- One-lo_op Correction§ to the axial vector current, an_d become
tributions from the chiral Lagrangian can be of ordigr, i.e. ~ more important at higher loops. They also play an important

the same order i, as the tree-level contribution. role in the one-loop corrections to other baryon properties,
such as the baryon masg@s4,14,20. At one loop, themy
VII. CONCLUSIONS correction to the baryon mass from Fig. 7 is of orblgr, the

same order as the tree-level baryon mass term, and there is

We have shown how to rewrite loop corrections in heavyno cancellation between nucleon afdstates. However, at
baryon chiral perturbation theory so as to include the fullyo |0ops, the graphs in Fig. 8 produmﬁ’z corrections to
dependence on th&-nucleon mass difference, while at the ¢ baryon mass that are formally of ord&ﬁ, but have
same time including the cancellations that follow from theancellations which make the net correction of order one.
largeN, spin-flavor symmetry of baryons. The treatment in
this paper has included the decuplet-octet mass difference,
but neglected th&U(3) splittings of the octet and decuplet
baryons. Itis possible to generalize our analysis by including This work was supported in part by the Department of
the SU(3) mass splittings in the baryon mass operatdr ~ Energy under Grant No. DOE-FG03-97ER40546. R.F.M.

The one-loop correction to the baryon axial vector cur-was supported by CONACYT(Mexico) under the UC-
rents is very sensitive to deviations of the axial couplingsCONACYT agreement of cooperation and by CINVESTAV
from their SU(6) symmetry ratios, since the correction that (Mexico). C.P.H. acknowledges support from the Schweiz-
depends only on th8U(6) coupling ratiogthe GGG term) erischer Nationalfonds and Holderbank-Stiftung. E.J. was
is suppressed by N, and the first subleading correction supported in part by the Alfred P. Sloan Foundation and by
(the GGJTterm) is suppressed by NI/.. Thus, the normally the National Young Investigator program through Grant No.
second subleading terms with two powersJoh the axial PHY-9457911 from the National Science Foundation.
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