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Structure of large Nc cancellations in baryon chiral perturbation theory

Ruben Flores-Mendieta, Christoph P. Hofmann, Elizabeth Jenkins, and Aneesh V. Manohar
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~Received 21 January 2000; published 14 June 2000!

We show how to compute loop graphs in heavy baryon chiral perturbation theory including the full func-
tional dependence on the ratio of theD-nucleon mass difference to the pion mass, while at the same time
automatically incorporating the 1/Nc cancellations that follow from the large-Nc spin-flavor symmetry of
baryons in QCD. The one-loop renormalization of the baryon axial vector current is studied to demonstrate the
procedure. A new cancellation is identified in the one-loop contribution to the baryon axial vector current. We
show that loop corrections to the axial vector currents are exceptionally sensitive to deviations of the ratios of
baryon-pion axial vector couplings fromSU(6) values.

PACS number~s!: 12.39.Fe, 11.15.Pg, 12.38.Bx
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I. INTRODUCTION

Baryon chiral perturbation theory can be used to syste
atically compute the properties of baryons as a function
the light quark massesmq . A physical quantity’s non-
analytic dependence onmq is calculable from pion-loop
graphs; its analytic dependence has contributions both f
pion-loop graphs and from low-energy constants that
present in the chiral Lagrangian.

It is convenient to formulate baryon chiral perturbati
theory in terms of velocity-dependent baryon fields, so t
the expansion of the baryon chiral Lagrangian in powers
mq and 1/mB ~where mB is the baryon mass! is manifest
@1,2#. This formulation is called heavy baryon chiral pertu
bation theory. The earliest application of heavy baryon ch
perturbation theory was to baryon axial vector currents@2#.
Two important results were obtained from this analys
First, the baryon axial vector coupling ratios were found
be close to theirSU(6) values with anF/D ratio close to
2/3, the value predicted by the non-relativistic quark mod
Second, there were large cancellations in the one-loop
rections to the baryon axial vector currents between lo
graphs with intermediate spin-1/2 octet and spin-3/2 decu
baryon states. It was later proved using the 1/Nc expansion
that the baryon axial couplings ratios should haveSU(6)
values withF/D52/3, up to corrections of order 1/Nc

2 for
pions @3,4#.1 In addition, it was shown that axial vector cu
rent loop graphs with octet and decuplet intermediate st
cancel to various orders inNc . For nucleon andD interme-
diate states, there is a cancellation of the one-loop graph
two orders inNc ; each individual one-loop diagram is o
order Nc , but the sum of all one-loop diagrams is of ord
1/Nc @3#. Similar large-Nc cancellations also occur for othe
baryonic quantities@1,6#.

We would like to find a calculational scheme that sim
taneously exhibits both themq and 1/Nc expansions. In the
chiral limit mq→0, pions become massless Goldstone bo

1The ratioF/D is equal to 2/3 in the quark representation and
5/8 in the Skyrme representation. The quark and Skyrme repre
tations are equivalent in largeNc @5# up to corrections of relative
order 1/Nc

2 for pions @3#. We will use the quark representation
this paper.
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states. There is an expansion about the chiral limit in pow
of mq /Lx or, equivalently, in powers ofmp

2 /Lx
2 , whereLx

;1 GeV is the scale of chiral symmetry breaking andmp is
the pion mass.2 In the large-Nc limit, the nucleon andD
become degenerate,D[MD2MN}1/Nc→0, and form a
single irreducible representation of the contracted spin-fla
symmetry of baryons in large-Nc QCD @3,4#. There is an
expansion in powers of 1/Nc about the large-Nc limit. We
will consider a combined expansion inmq /Lx and 1/Nc
about the double limitmq→0 andNc→`.

Loop graphs in heavy baryon chiral perturbation theo
have a calculable dependence on the ratiomp /D. In general,
this dependence is described by a functionF(mp ,D). In the
chiral limit mq→0 with D held fixed, the function can be
expanded in powers ofmp /D,

F~mp ,D!5F01S mp

D DF11S mp

D D 2

F21•••, ~1!

whereas in the 1/Nc→0 limit with mp held fixed, the func-
tion can be expanded in powers ofD/mp :

F~mp ,D!5F̄01S D

mp
D F̄11S D

mp
D 2

F̄21•••. ~2!

The difference between the two expansions in Eqs.~1! and
~2! is commonly referred to as the non-commutativity of t
chiral and large-Nc limits @7#.

It is important to remember, however, that the conditio
for heavy baryon chiral perturbation theory~including D
states! to be valid are thatmp!Lx and D!Lx . The ratio
mp /D is not constrained and can take any value. The en
dependence of a physical quantity onmp /D is calculablein
heavy baryon chiral perturbation theory@1#, so the ratio
mp /D need not be small or large for calculations. In the re
world, mp /D;0.5, so it is useful to have a calculation
scheme that retains the full functional dependence
F(mp ,D) on the ratiomp /D. A straightforward approach is

n-

2For SU(3)L3SU(3)R chiral symmetry, there are loop correc
tions involving the pions, kaons andh which depend on the pion
kaon andh masses, respectively. Chiral perturbation theory
pends on the expansion parametersmp

2 /Lx
2 , mK

2 /Lx
2, andmh

2/Lx
2 .

Large-Nc chiral perturbation theory also depends on theh8 mass.
©2000 The American Physical Society01-1
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FIG. 1. One-loop corrections to the baryon axial vector current.
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to simply calculate the full dependence onmp /D of the loop
graphs and evaluate the loop correction at the physical v
mp /D;0.5 @1,8#. Another common procedure advocated
the literature is to not include intermediateD particles ex-
plicitly in loops, but to incorporate their effects into the low
energy constants of the effective Lagrangian@9#. The disad-
vantage of this second approach is that one finds la
numerical cancellations between loop diagrams with in
mediate nucleon states and low-energy constants conta
the effects ofD states. These cancellations are guarantee
occur as a consequence of the contracted spin-flavor sym
try which is present in theNc→` limit. The large-Nc spin-
flavor symmetry responsible for the cancellations is hidd
in this approach because including only the spin-1/2 bary
in the chiral Lagrangian breaks the large-Nc spin-flavor sym-
metry explicitly, since the spin-1/2 and spin-3/2 baryons
gether form an irreducible representation of spin-flavor sy
metry. Because the sum of the loop contributions w
intermediate octet and decuplet states respects spin-fl
symmetry and is much smaller~by powers of 1/Nc) than
each individual loop contribution separately, it is importa
to keep the large-Nc spin-flavor symmetry of the baryon ch
ral Lagrangian and the large-Nc cancellations manifest.

In this paper, we will show how one can combine hea
baryon chiral perturbation theory with the 1/Nc expansion so
that the full dependence onmp /D is retained and the 1/Nc
cancellations are explicit. This method has the advantage
the loop correction to the baryon axial isovector curre
which is of the order of 1/Nc , is automatically obtained to b
of this order, instead of as the sum of two contributions~loop
correction and counterterm! of orderNc which cancel to two
powers in 1/Nc . Note that at higher orders the cancellatio
become more severe, and it is even more important to k
the 1/Nc cancellations manifest. For example, at two loo
each loop diagram is naively of orderNc

2 , whereas the sum
of all two-loop diagrams is order 1/Nc

2 . Not including the
1/Nc cancellations in a systematic way gives a mislead
picture of the baryon chiral expansion—one finds higher
der corrections that grow withNc , which is incorrect. In-
cluding the 1/Nc cancellations restores the 1/Nc power
counting so that the loop corrections are suppressed by
factor 1/Nc

L , whereL is the number of loops.
The organization of this paper is as follows. In Sec. II, w

begin with a brief overview of the 1/Nc cancellations occur-
ring in the one-loop correction to the baryon axial vec
currents. In Sec. III, we derive the formula for the one-lo
correction to the baryon axial vector currents for arbitra
D/mp , in a form that is convenient for later use. The stru
tures of large-Nc cancellations forD/mp50 andD/mp5” 0
are discussed in Secs. IV and V, respectively. The gen
power counting for large-Nc cancellations is derived to a
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orders in the baryon hyperfine mass splittingD, and it is
determined that the dominant large-Nc cancellations are
present only in terms that are of low and finite order inD. A
procedure for subtracting and isolating these large-Nc can-
cellations is given. Other contributions to axial vector curre
renormalization are briefly presented in Sec. VI. Our conc
sions are summarized in Sec. VII.

II. OVERVIEW

A brief review of heavy baryon chiral perturbation theo
and the 1/Nc baryon chiral Lagrangian can be found in Re
@10#, so only a few salient facts will be repeated here. T
pion-baryon vertex is proportional togA / f , where f is the
decay constant of thep meson. In the large-Nc limit, gA

}Nc and f }ANc, so that the pion-baryon vertex is of orde
ANc and grows withNc . The baryon propagator isi /(k•v)
and is Nc independent, as is the pion propagator. In t
modified minimal subtraction scheme~MS!, all loop inte-
grals are given by the pole structure of the propagators
loop integrals do not depend onNc .

The tree-level matrix element of the baryon axial vec
current is of orderNc , sincegA is of orderNc . The one-loop
diagrams that renormalize the baryon axial vector current
shown in Fig. 1. Each of the one-loop corrections in Fig
1~a!–1~c! involves two pion-baryon vertices, and is orderNc
times the tree-level graph.

The matrix elements of the space components of
baryon axial vector current between initial and final bary
statesB andB8 will be denoted by

^B8uc̄g ig5TacuB&5@Aia#B8B , ~3!

whereB and B8 are baryons in the lowest-lying irreducibl
representation of contracted-SU(6) spin-flavor symmetry,
i.e. the spin-1/2 octet and spin-3/2 decuplet baryons. T
Feynman diagram amplitude forB→B81p(k) is
@Aia#B8Bk i / f , wherek is the three-momentum of the emitte
pion. The time component of the axial current has zero m
trix element between static baryons, and is represented in
heavy baryon formulation by a higher dimension operator
the effective Lagrangian. The matrix elements@Aia#B8B of
the spatial components of the axial vector current can
written in terms of the octet and decuplet pion coupling co
stantsF, D, C, andH @2#, each of which is of orderNc .

The one-loop correction to the baryon axial vector c
rent, in the limit that theD-nucleon mass difference is ne
glected, is proportional to the double commutator

dAia}
1

f 2 @Ajb,@Ajb,Aia##, ~4!
1-2
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STRUCTURE OF LARGENc CANCELLATIONS IN . . . PHYSICAL REVIEW D 62 034001
where the sum over intermediate baryon states is given
matrix multiplication of the Aia matrices. Naively, the
double commutator is of orderNc

3 , and f }ANc so thatdAia

is of orderNc
2 . One of the results of the 1/Nc analysis for

baryons is that the double commutator is of orderNc , rather
than Nc

3 @3#. Each individual term in the sum Eq.~4! is of
order Nc

3 , but there is a cancellation in the sum over inte
mediate baryons, which is guaranteed by the spin-fla
symmetry of large-Nc QCD @3,4#. The cancellation only oc-
curs when the ratios ofF, D, C, and H are close to their
SU(6) values.3 The large-Nc cancellation implies that the
one-loop correction to the axial current is 1/Nc times the
tree-level value, instead ofNc times the tree-level value
Similarly, the two-loop correction is 1/Nc

2 times the tree-
level value, instead ofNc

2 times the tree-level value~see Ref.
@11# for an explicit calculation in the degeneracy limit!. The
one-loop large-Nc cancellations will be discussed more ful
in Secs. IV and V. The formalism for making large-Nc can-
cellations manifest is provided in Sec. V.

The large-Nc cancellation in the one-loop correction
the baryon axial vector current can be seen numerically fr
explicit computation in heavy baryon chiral perturbati
theory. The baryon axial vector current matrix element
one-loop has the form

A5a1~ b̄2l̄a!
m2

16p2f 2 ln
m2

m2 1••• ~5!

wherea is the tree-level contribution,b̄ is the vertex correc-
tion, l̄ is the wave function renormalization,m is thep, K or
h mass, and theD-nucleon mass difference has been n

3An important point to note is that large-Nc QCD predicts only the
ratios of F/D, C/D, and H/D; the overall normalization of the
coupling constants is not fixed by the symmetry. The large-Nc can-
cellations depend on the coupling ratios being close to theirSU(6)
values, and do not depend on the overall normalization of
couplings.

FIG. 2. One-loop pion correction to the baryon axial vec

current ^puūgmg5dun&. The curves areb̄2l̄a for ~from top to

bottom along the left hand edge of the graph! N→Np, J→LK̄,

S→Sp, J→Jp, J→SK̄, S→Lp, S→NK̄, L→NK̄.
03400
y

-
r

m

t

-

glected for simplicity so there is only a chiral-logarithm
contribution.~The full one-loop correction will be discusse
in the next section.! For the case of̂puūgmg5dun&, the co-
efficients are

a5D1F,

l̄p5
9

4
~F1D !212C 2,

l̄K5
1

2
~9F226FD15D21C 2!,

l̄h5
1

4
~3F2D !2,

l̄h852D2, ~6!

e

r FIG. 3. One-loop kaon correction to the baryon axial curre

^puūgmg5dun&. The curves areb̄2l̄a for ~from top to bottom
along the left hand edge of the graph! J→Jp, S→Sp, J

→LK̄, L→NK̄, J→SK̄, N→Np, S→Lp, S→NK̄.

FIG. 4. One-loop eta correction to the baryon axial curre

^puūgmg5dun&. The curves areb̄2l̄a for ~from top to bottom
along the left hand edge of the graph! J→Jp, S→Sp, J

→LK̄, L→NK̄, N→Np, S→Lp, J→SK̄, S→NK̄.
1-3
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b̄p5
1

4
~F1D !31

16

9
~F1D !C 22

50

81
HC 22F2D,

b̄K5
1

3
~23F313F2D2FD21D3!1

2

9
~F13D !C 2

2
10

81
HC 22

1

2
~F1D !,

b̄h52
1

12
~F1D !~3F2D !2,

b̄h852
1

12
~F1D !~3F2D !2.

The coefficients for the other matrix elements can be fou
in the literature@2#. The subscriptsp, K and h denote the
contributions fromp, K, andh loops. To illustrate the can
cellation, we have plotted the one-loop coefficientsb̄
2l̄a) for the axial currents~or equivalently, the couplings!

N→Np, S→Lp, S→Sp, J→Jp, L→NK̄, S→NK̄,
J→LK̄, andJ→SK̄ in Figs. 2, 3, and 4. For simplicity
the coefficients are plotted as a function ofF/D only—the
other coupling ratios have been fixed at theirSU(6) values
C/D522 andH/D523. The best fit to the baryon axia
currents has the axial vector coupling ratios close to th
SU(6) values@1,2#, so this is a reasonable approximatio
e

03400
d

ir
.

The large-Nc analysis indicates that there should be so
cancellation in the loop correction whenF/D is close to the
SU(6) value of 2/3. This suppression is evident separat
for the p, K andh loops for all eight processes. This is th
cancellation pointed out phenomenologically in Refs.@1,2#
and later proved in Refs.@3,4#. We will study this cancella-
tion quantitatively in terms of the 1/Nc expansion in this
work.

III. ONE-LOOP CORRECTION TO THE AXIAL
VECTOR CURRENT

The one-loop diagrams that contribute to the baryon a
vector current are shown in Fig. 1. Figures 1~a!–1~c! are of
orderNc times the tree-level vertex, and Fig. 1~d! is of order
1/Nc times the tree-level vertex. The large-Nc cancellations
occur between Figs. 1~a!–1~c!, so we will concentrate on
these three diagrams in this section. The contribution fr
Fig. 1~d! is considered briefly in Sec. VI. Both contribution
can be found in Ref.@2#.4

All the loop graphs we need can be written in terms of t
basic loop integral

d i j F~m,D,m!5
i

f 2E d4k

~2p!4

~k i !~2k j !

~k22m2!~k•v2D1 i e!
,

~7!

wherem is the scale parameter of dimensional regularizati
Evaluating the integral gives
24p2f 2 F~m,D,m!5DS D22
3

2
m2D ln

m2

m2 2
8

3
D32

7

2
Dm215 2~m22D2!3/2Fp

2
2tan21S D

Am22D2D G , uDu<m,

2~D22m2!3/2lnS D2AD22m2

D1AD22m2D , uDu.m.

~8!
is

s,
o

A. Wave function renormalization

The wave function renormalization graph for baryonB is
shown in Fig. 5, where one sums over all possible interm
diate baryonsBI . The loop graph is equal to

iGB8B5 (
j ,k,b,BI

i 2

f 2 @Akb#B8BI
@Ajb#BIB

3E d4k

~2p!4

~kk!~2k j !

~k22mb
2!@~k1p!•v2~MI2M !1 i e#

,

~9!

where b51, . . . ,9 or p,K,h,h8 labels the intermediate
-

meson.5 The wave function renormalization correction
ZB8B5dB8B1zB8B ,

zB8B5
]GB8B

]~p•v !
U

p•v50

, ~10!

4Figure 1~d! is linear in the pion-baryon coupling constant
whereas Figs. 1~a!–1~c! are cubic, so it is easy to identify the tw
pieces in existing calculations.

5The h8 is a ninth Goldstone boson in the largeNc limit @12,13#.
Our formulas apply to theh8 corrections, with flavor matrixl9

5A2/3. The formalism for including theh8 is described in detail in
Refs.@10,14#.
1-4



STRUCTURE OF LARGENc CANCELLATIONS IN . . . PHYSICAL REVIEW D 62 034001
which can be written in terms of the functionF(m,D,m)
defined in Eq.~7! as

zB8B5 2 (
j ,b,BI

@Ajb#B8BI
@Ajb#BIB

]F~mb ,DBIB
,m!

]DBIB
,

~12!

where

FIG. 5. One-loop wave function renormalization graph.
03400
DB1B2
[MB1

2MB2
. ~13!

B. Vertex correction

The one-loop correction to the matrix element^B8uAiauB&
from the vertex graph Fig. 6 can be written as

FIG. 6. One-loop vertex correction graph.
the
@dAia#B8B
vertex

5 (
j ,k,b,B1 ,B2

2
i

f 2 @Akb#B8B2
@Aia#B2B1

@Ajb#B1B

3E d4k

~2p!4

~kk!~2k j !

~k22mb
2!@k•v2~M12M !1 i e#@~k2q!•v2~M22M !1 i e#

, ~14!

whereq is the outgoing momentum transfer at the axial vector vertex. For octet-octet matrix elements,q•v50, whereas for
decuplet-octet transition matrix elements,q•v5M2M 8, the average decuplet-octet mass difference. One can rewrite
denominator of Eq.~14! using the identity

1

~k02D11 i e!~k02D21 i e!
5

1

~D12D2! F 1

~k02D11 i e!
2

1

~k02D21 i e!G ~15!

so that

@dAia#B8B
vertex

52 (
j ,b,B1 ,B2

@Ajb#B8B2
@Aia#B2B1

@Ajb#B1B

1

DB1B2DB2B8

@F~mb ,DB1B ,m!2F~mb ,DB2B8 ,m!# ~16!

whereDB1B2
is defined in Eq.~13!.

C. Total correction

The total correction to the baryon axial vector current matrix element from Figs. 1~a!–1~c! is

~17!@dAia#B8B5@dAia#B8B
vertex

2
1

2H(
B1

zB8B1
@Aia#B1B1(

B2

@Aia#B8B2
zB2BJ

52 (
j ,b,B1 ,B2

@Ajb#B8B2
@Aia#B2B1

@Ajb#B1B

F~mb ,DB1B ,m!2F~mb ,DB2B8 ,m!

DB1B2DB2B8

1
1

2 (
j ,b,B1 ,B2

@Ajb#B8B2
@Ajb#B2B1

@Aia#B1B

]F~mb ,DB2B1
,m!

]DB2B1

1
1

2 (
j ,b,B1 ,B2

@Aia#B8B2
@Ajb#B2B1

@Ajb#B1B

]F~mb ,DB1B ,m!

]DB1B
.

1-5
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@In addition todAia of Eq. ~17!, there are also the contribu
tions of Fig. 1~d! and the low-energy constants, which a
considered in Sec. VI.# Equation~17! includes the full de-
pendence onD/m of the one-loop correction. We want t
rewrite this expression so that the large-Nc cancellations are
manifest.

In the limit that the octet and decuplet baryons are deg
erate, all the mass differencesDAB→0, and

1

DB1B2DB2B8

@F~mb ,DB1B ,m!2F~mb ,DB2B8 ,m!#

→F (1)~mb,0,m!, ~18!

whereF (n) is defined by

F (n)~mb ,D,m![
]nF~mb ,D,m!

]Dn . ~19!

In this limit, the correction to the axial current Eq.~17! re-
duces to

@dAia#B8B5 (
j ,b,B1 ,B2

F (1)~mb,0,m!

3H 2@Ajb#B8B2
@Aia#B2B1

@Ajb#B1B

1
1

2
@Ajb#B8B2

@Ajb#B2B1
@Aia#B1B

1
1

2
@Aia#B8B2

@Ajb#B2B1
@Ajb#B1BJ . ~20!

Let us adopt the more compact notation thatAia represents a
matrix with matrix elements@Aia#B8B , and summation ove
intermediate baryon states is denoted by matrix multipli
tion. Then Eq.~20! can be written as

dAia5(
j ,b

F (1)~mb,0,m!H 2AjbAiaAjb1
1

2
AjbAjbAia

1
1

2
AiaAjbAjbJ

5
1

2 (
j ,b

F (1)~mb,0,m!†Ajb,@Ajb,Aia#‡, ~21!

which is the double-commutator form originally derived
Ref. @3#.

The loop integral in the degeneracy limitD→0 reduces to

F (1)~mb,0,m!52
1

16p2f 2 mb
2S 11

3
1 ln

mb
2

m2D . ~22!

The lnmb /m term is non-analytic in the quark mass, and
called a ‘‘chiral logarithm.’’ The constant~11/3! piece is
analytic in the quark masses, and has the same form
03400
n-

-

as

higher dimension terms in the chiral Lagrangian. The co
stant term is scheme dependent, but the chiral logarithm
universal.

We discuss the structure of the large-Nc cancellations for
the baryon axial vector currents in the next two sectio
First, in Sec. IV, the cancellations are studied in the deg
eracy limit. The generalization to non-degenerate baryon
given in Sec. V.

IV. LARGE- Nc CANCELLATIONS: DÕmpÄ0

The large-Nc cancellations in the degeneracy limit for th
one-loop correction to the baryon axial vector current follo
from the double-commutator form of Eq.~21!. The pion de-
cay constantf }ANc, so the functionF (1)(mb,0,m) is of or-
der 1/Nc . Each axial vector current matrix element is
order Nc ~recall thatgA is of order Nc), so the correction
dAia is naively of absolute orderNc

2 , i.e. of orderNc relative
to the tree-level valueAia. The large-Nc consistency condi-
tions derived in Ref.@3# imply that the double commutato
@Ajb,@Ajb,Aia## is of order Nc rather the naive orderNc

3 ,
provided one sums over all baryon states in a complete m
tiplet of the large-Nc SU(6) spin-flavor symmetry, i.e. ove
both the octet and decuplet, and uses axial coupling rat
given by the large-Nc spin-flavor symmetry.

Before discussing the cancellation in the double comm
tator, we first review some necessary large-Nc formalism.
The baryon matrix element of the axial vector current
QCD can be expanded in a 1/Nc expansion in terms of
SU(6) spin-flavor operators@3,4,16–18#,6

Gia5q†
s i

2

la

2
q, Ta5q†

la

2
q, Ji5q†

s i

2
q, ~23!

whereq andq† areSU(6) operators that create and annih
late states in the fundamental representation ofSU(6), and
s i andla are the Pauli spin and Gell-Mann flavor matrice
The lowest mass baryon multiplet transforms underSU(6)
as a completely symmetric tensor withNc indices. ForNc
53, this representation decomposes under spin and fla
into a spin-1/2 octet and a spin-3/2 decuplet. The bary
axial vector currentAia in the large-Nc limit has the form
@18#

Aia5a1Gia1 (
n52,3

Nc

bn

1

Nc
n21

D n
ia1 (

n53,5

Nc

cn

1

Nc
n21

O n
ia ,

~24!

where the coefficients are of order 1. The operatorsD n
ia are

diagonal operators with nonzero matrix elements only
tween states with the same spin, and the operatorsO n

ia are
purely off-diagonal operators with nonzero matrix eleme
only between states of different spin. The explicit forms f

6For recent reviews of the large-Nc spin-flavor symmetry, see Ref
@15#.
1-6
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these operators can be found in Ref.@18#. At the physical
valueNc53, Eq. ~24! reduces to

Aia5a1Gia1b2

1

Nc
JiTa1b3

1

Nc
2
D 3

ia1c3

1

Nc
2
O 3

ia , ~25!

where

D 3
ia5$Ji ,$Jj ,Gja%%,

~26!

O 3
ia5$J2,Gia%2

1

2
$Ji ,$Jj ,Gja%%.

The four conventionalSU(3) baryon axial couplingsF,
D, C andH for the baryon octet and decuplet can be writt
as linear combinations of the coefficientsa1 , b2 , b3 andc3
of the 1/Nc expansion:

D5
1

2
a11

1

6
b3 ,

F5
1

3
a11

1

6
b21

1

9
b3 ,

~27!

C52a12
1

2
c3 ,

H52
3

2
a12

3

2
b22

5

2
b3 .

The leading order prediction of large-Nc QCD is obtained by
dropping the 1/Nc suppressed terms in Eq.~24!, i.e. the
3-body operatorsD 3

ia and O 3
ia . The Gia operator givesF

52D/3, C522D andH523D, so that the coupling ratios
but not necessarily their absolute normalization, are th
predicted bySU(6) symmetry. The 2-body operatorJiTa

corrects these relations. The correction is of relative or
1/Nc

2 for pions.
The baryon matrix elements ofJi for the low-lying bary-

ons in theSU(6) representation are of order unity. TheNc
dependence of matrix elements ofGia andTa is more subtle,
and depends on the particular componenta chosen, as well
as on the initial and final state baryon@18#. For the purposes
of this paper, we will use the naive estimate that mat
elements ofGia and Ta are both of orderNc , which is the
largest they can be. We focus upon baryons with spins
order unity. TheNc counting rules are summarized as

Gia;Nc , Ta;Nc , Ji;1. ~28!

The 1/Nc expansion of a baryonic matrix element can
written as an expansion in powers ofGia/Nc , Ta/Nc and
Ji /Nc . The counting rules, Eq.~28!, show that each factorJ
leads to a 1/Nc suppression factor.

We can now understand the origin of the large-Nc cancel-
lations in Eq.~21!. At leading order inNc , the axial vector
current operatorAia can be replaced bya1Gia, and has ma-
trix elements of orderNc . The commutator@Aia,Ajb#
03400
e

r

x

of

5@a1G
ia,a1G

jb# is naively of orderNc
2 , since eachGia is of

orderNc . However, the commutation relation

@Gia,Gjb#5
i

4
d i j f abcTc1

i

6
dabe i jkJk1

i

2
dabce i jkGkc

~29!

shows that matrix elements of the commutator@Gia,Gjb# are
at most of orderNc , since the right-hand side of Eq.~29! is
at most of orderNc . Thus there is a factor ofNc cancellation
between the various terms in the commutator@Gia,Gjb#
from the summation over intermediate baryon states. Si
larly, one finds that there is a factor ofNc cancellation in the
sum over intermediate states for the commutators

@Ta,Gib#5 i f abcGic ~30!

and

@Ta,Tb#5 i f abcTc, ~31!

where the naive counting rule, Eq.~28!, has been used to
estimate the order inNc of both sides of these equations. Th
basic reason for the cancellation is that the maximum or
in Nc an r-body operator matrix element can be isNc

r ~an
r-body operator is one withrq ’s and rq†’s; i.e., it can be
written as a polynomial of orderr in Ji , Gia andTa), but the
commutator of anr-body ands-body operator is at most a
(r 1s21)-body operator. Thus, every commutator pote
tially leads to a cancellation by one factor ofNc . However,
not every commutator gives a factor ofNc cancellation. The
commutators

@Ji ,Jj #5 i e i jkJk ~32!

and

@Ji ,Gja#5 i e i jkGka ~33!

have no cancellations, since both sides are of order 1
orderNc , respectively. The reason that there is no cance
tion in Eqs.~32! and ~33! is that Ji is a one-body operato
whose matrix elements are of order unity, rather than of
der Nc .

Equations~30!–~33! lead to the conclusion that each com
mutator produces aNc cancellation, unless a factor ofJi is
eliminated. The double commutator in Eq.~21! has a cancel-
lation of Nc

2 , because@Gjb,@Gjb,Gia##;J1G1T, so that
the double commutator is orderNc , rather thanNc

3 . This was
the cancellation observed numerically in Ref.@2# and later
proved in the 1/Nc expansion in Refs.@3,4#.

V. LARGE- Nc CANCELLATIONS: DÕmpÅ0

In this section, we analyze the large-Nc cancellations in
the renormalization of the baryon axial vector current
finite D/mp .

Equation~17! can be expanded in a power series inD.
Expanding the functionF(m,D,m) in a power series and
collecting terms gives
1-7
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dAia5(
j ,b

H 1

2
F (1)~mb,0,m!@Ajb,@Ajb,Aia##

2
1

2
F (2)~mb,0,m!$Ajb,@Aia,@M,Ajb##%

1
1

6
F (3)~mb,0,m!S @Ajb,@@M,@M,Ajb##,Aia##

2
1

2
@@M,Ajb#,@@M,Ajb#,Aia## D1•••J ~34!

whereM is the baryon mass matrix. In deriving this resu
we have converted explicit sums over intermediate bary
to implicit sums in the matrix multiplications. One can u
either the baryon mass matrixM or the baryon mass
splitting matrixDM in Eq. ~34!, sinceM differs fromDM
by the average baryon mass times the unit matrix, wh
commutes and drops out of Eq.~34!. To evaluate Eq.~34! to
all orders inD/mp would be extremely difficult, since on
would have to sum an infinite series, with each term hav
a coefficient which is a complicated commutator and a
commutator ofM’s andAia’s.

We would like to evaluate graphs in heavy baryon chi
perturbation theory so that the 1/Nc cancellations are mani
fest and do not occur as numerical cancellations at the en
the calculation. We will now show that the largeNc cancel-
lations only occur in the first few terms of Eq.~34!, so that
the remaining terms can be summed using conventio
heavy baryon chiral perturbation theory in the usual mann

The expansion, Eq.~34!, has a different structure depen
ing on whether one has an even or odd number of insert
of the baryon mass operatorM. Terms with 2r insertions of
M have 2r 12 commutators, whereas terms with 2r 11 in-
sertions ofM have 2r 12 commutators and one anticomm
tator.

The general form of the baryon mass operator in the 1Nc
expansion in theSU(3) limit is @3,4,16–18#

M5NcFm01m2

J2

Nc
2 1m4

~J2!2

Nc
4

1•••G . ~35!

The importance of a given term in the 1/Nc expansion can be
obtained by counting powers ofJ. Each factor ofJ/Nc leads
to a 1/Nc suppression, sinceJ is of order unity according to
the counting rules Eq.~28!.

We now have all the necessary ingredients to count
power in 1/Nc of a general term in Eq.~34!. The operators
Aia andM are one-body operators, with naive orderNc , so
theM r term in the expansion in Eq.~34! is naively of order
N31r 21, including the factor of 1/Nc from the 1/f 2 in the
loop integralF, as shown in row~C! of Table I.

The number of commutators in each term is listed in
next line in this table. Every commutator~naively! leads to a
decrease in the naiveNc order by unity, since the commuta
tor of an r-body and ans-body operator is at most anr 1s
21 body operator. This leads to theNc power given in row
~E!. Finally, we need to count the powers ofJ in each term.
03400
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Each factor ofM has at least twoJ’s, since them0Nc term
in Eq. ~35! drops out of the expression Eq.~34!. Each factor
of Aia can have>0 J’s, as is clear from Eqs.~24!–~26!. The
number ofJ’s in the original expression is listed in row~F!,
where p>0 is the number of extraJ’s from M or Aia,
beyond the minimum values of 2 and 0, respectively. Fina
note that each commutator can be used to eliminate
power ofJ. Thus the net power ofJ left is given by subtract-
ing the number of commutators from the number ofJ’s. The
minimum number ofJ’s is non-negative, and is listed in row
~G!. Thus, the finalNc power @row ~H!# is given by the net
power in row~E! minus the minimum number ofJ’s in row
~G! since there is an additional 1/Nc factor for eachJ. One
can compare this with the ‘‘usual’’Nc counting rule listed in
row ~I!. The usual counting rule is obtained by including
factor of Nc for eachAia ~i.e. for each factor ofF, D, C or
H), a factor of 1/Nc for the 1/f 2, and a factor of 1/Nc for
each power ofD, with p>0 representing 1/Nc suppressed
terms.

One interesting point can be noted from Table I. T
dominant 1/Nc corrections from the baryon mass splitting
are due to multiple insertions of theJ2 term in the baryon
mass matrix. Two insertions of theJ2 term ~thep50 term in
theM 2 column! areNc more important than one insertion o
the J4 term ~the p52 term in theM 1 column!.

There is an extra cancellation in the term linear inM that
is not apparent in Table I. We will discuss this new large-Nc
cancellation momentarily. Including this effect, one se
from Table I that all terms in the expansion of Eq.~17! with
two or more powers ofM have the sameNc behavior as one
finds with the usualNc counting; i.e., these terms have n
extra cancellations. One can therefore treat all terms w
two or more powers ofM by conventional heavy baryon
chiral perturbation theory—compute all the graphs, with v
tices written in terms ofF, D, C andH. The only terms that
have to be treated specially are those with zero or one po
of M. To compute graphs in the conventional way omitti
the first two terms in Eq.~34! is trivial; one simply rewrites
the loop integral Eq.~7! by explicitly extracting the first
three terms in an expansion inD,

F~mb ,D,m!5F~mb,0,m!1F (1)~mb,0,m!D

1
1

2
F (2)~mb,0,m!D21F̃~mb ,D,m!, ~36!

and takes the standard expressions for the loop correct
written in terms ofF, D, C andH, with F→F̃. This proce-
dure sums the entire series in (D/mp) r starting withr 53. To
this result is added the first two terms in Eq.~34!. One needs
to extract three terms fromF to obtain the first two terms in
Eq. ~34!, sinceF(mb,0,m) cancels out of the correction.

One can now analyze the first two terms in the expans
of Eq. ~17!, which are given in Eq.~34!. The first term is the
double commutator term discussed in the previous sect
We see from Table I that this term is naively of orderNc

2 ,
but actually is at most of orderNc

0 . This is consistent with
the loop expansion being an expansion in\/Nc , since the
1-8
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TABLE I. Table of the order inNc of the terms in the expansion of the one-loop correction to the a
vector currents. See the text for an explanation of the entries.

~A! Number ofM’s 0 1 2 3 4 5 6
~B! mq dependence mq ln mq mq

1/2 ln mq mq
21/2 mq

21 mq
23/2 mq

22

~C! Naive Nc power 2 3 4 5 6 7 8
~D! Commutators 2 2 4 4 6 6 8
~E! Net power 0 1 0 1 0 1 0
~F! Number ofJ’s p p12 p14 p16 p18 p110 p112
~G! J’s left 0 p50,1

p22 p>2

p p p12 p12 p14 p14

~H! Final Nc power 0 p50,1

22p p>2

12pa 2p 212p 222p 232p 242p

~I! UsualNc power 22p 12p 2p 212p 222p 232p 242p

aActually is 0 for p50. See text.
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one-loop correction is of order 1/Nc relative to the tree-leve
contribution of orderNc . It is also apparent from Table I tha
all terms of orderM 0 with p50,1,2 are equally important
Since there are no powers of the baryon mass operator, tp
factors ofJ must all arise from 1/Nc corrections in the axia
verticesAia. The expression for the axial vector current re
evant forNc53 is given in Eq.~25!, from which it follows
that terms withp50,1,2 in the productAAA are of the form
GGG, GG JT, G JT JT, GGD3, and GGO3. All these
terms contributeat the same orderto the double commuta
tor, whereas according to the usual counting one would h
expected thep50 productGGG to be one power ofNc
more important that thep51 productGGJT, which in turn
would be more important by one power ofNc than thep
52 products. This result has an important consequence
one-loop correction is very sensitive to the deviations of
axial vector coupling ratios from theirSU(6) values. While
the deviations are small corrections to the couplings the
selves, their importance gets enhanced in the one-loop c
ficient, because the leading term~proportional toa1

3) is 1/Nc
2

suppressed. Thus, for example, thea1 term is the dominant
contribution toF, D, C and H, and thec3 term is a 1/Nc

2

correction, but thea1
3 anda1

2c3 terms are just as important i
the one-loop correction. Explicit forms for the one-loop co
rection in terms ofa1 , b2 , b3 and c3 will be given else-
where.

The second term in Eq.~34! is

2
1

2
F (2)~mb,0,m!$Ajb,@Aia,@M,Ajb##% ~37!

and is at most of orderNc @using the value (12p) for p
50#, the same order as the tree-level contribution to
axial vector current. This result is surprising, because
1/Nc expansion is a semiclassical expansion in\/Nc . One
should be able to obtain the leading in 1/Nc contributions
from classical field theory. For example, it was shown t
the Ncmq

3/2 one-loop correction to the baryon mass could
obtained from the energy of the pion cloud coupled to
classical baryon source@19#. The term in Eq.~37! involves
03400
e

ve

he
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ef-
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e
e

t
e
a

the baryon mass splitting, which is a quantum effect. T
order Nc contribution to Eq.~37! comes from usingAia

5a1Gia andDM5m2J2/Nc :

2
a1

3m2

2Nc
F (2)~mb,0,m!$Gjb,@Gia,@J2,Gjb##%. ~38!

The operator factor$Gjb,@Gia,@J2,Gjb##% is naively of order
Nc

3 , which implies that the correction Eq.~38! is an orderNc

correction to the axial currents, sinceF (2)(mb,0,m) is of or-
der 1/Nc . However, an explicit computation of the operat
product using the identities in Ref.@18# gives

$Gjb,@Gia,@J2,Gjb##%52$J2,Gia%1
1

2
~Nf1Nc!J

iTa

2
1

2
~Nf22!Gia, ~39!

which is only of orderNc
2 , using theNc-counting rules in Eq.

~28!. The orderNc
3 part of Eq.~39! vanishes, which is a new

cancellation in the one-loop correction to the axial vec
current. Consequently, Eq.~37! is of order Nc

0 rather than
orderNc , and is consistent with being a quantum correctio

VI. OTHER CONTRIBUTIONS

We have computed the chiral logarithmic correction to t
axial vector current from Figs. 1~a!, 1~b!, and 1~c!. There is
also the contribution from Fig. 1~d!, which is

dAia52
1

2 (
b

@Tb,@Tb,Aia##I ~mb!, ~40!

where

FIG. 7. One-loop correction to the baryon mass.
1-9
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I ~mb!5
i

f 2E d4k

~2p!4

1

k22mb
25

mb
2

16p2f 2 ~ ln mb
2/m221!.

~41!

This contribution is of order 1/Nc relative to the tree-leve
contribution, and does not involve any cancellations betw
D and nucleon states.

In addition to the loop corrections, one has the contrib
tion from low-energy constants multiplying higher dime
sion operators in the heavy baryon chiral Lagrangian. Th
terms are analytic in the quark massmq . The analytic con-
tributions from the chiral Lagrangian can be of orderNc , i.e.
the same order inNc as the tree-level contribution.

VII. CONCLUSIONS

We have shown how to rewrite loop corrections in hea
baryon chiral perturbation theory so as to include the
dependence on theD-nucleon mass difference, while at th
same time including the cancellations that follow from t
large-Nc spin-flavor symmetry of baryons. The treatment
this paper has included the decuplet-octet mass differe
but neglected theSU(3) splittings of the octet and decuple
baryons. It is possible to generalize our analysis by includ
the SU(3) mass splittings in the baryon mass operatorM.

The one-loop correction to the baryon axial vector c
rents is very sensitive to deviations of the axial couplin
from their SU(6) symmetry ratios, since the correction th
depends only on theSU(6) coupling ratios~theGGG term!
is suppressed by 1/Nc

2 , and the first subleading correctio
~theGGJT term! is suppressed by 1/Nc . Thus, the normally
second subleading terms with two powers ofJ in the axial
h

03400
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vector currents are as important as these two contributio
We also have found a new cancellation in the one-loop c
rection to the baryon axial vector current in the term linear
the baryon mass splittings.

The large-Nc cancellations play an important role in th
one-loop corrections to the axial vector current, and beco
more important at higher loops. They also play an importa
role in the one-loop corrections to other baryon properti
such as the baryon masses@3,4,14,20#. At one loop, themq

3/2

correction to the baryon mass from Fig. 7 is of orderNc , the
same order as the tree-level baryon mass term, and the
no cancellation between nucleon andD states. However, at
two loops, the graphs in Fig. 8 producemq

5/2 corrections to
the baryon mass that are formally of orderNc

2 , but have
cancellations which make the net correction of order one
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FIG. 8. Two-loop correction to the baryon mass.
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