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Parity-violating (PV) interactions among quarks in the nucleon induce a N coupling, or anapole
moment(AM). We compute electroweak gauge-independent contributions to the AM thr(O(lfgh\)z() in
chiral perturbation theory. We estimate short-distance PV effects using resonance saturation. The AM contri-
butions to PV electron-proton scattering slightly enhance the axial vector radiative correRfignsyer the
scale implied by the standard model when weak quark-quark interactions are neglected. We estimate the
theoretical uncertainty associated with the AM contributionR%do be large, and discuss the implications for
the interpretation PV oép scattering.

PACS numbd(s): 13.40.Ks, 11.30.Er, 13.88¢, 21.30.Fe

[. INTRODUCTION of the quarks in the proton. These radiative corrections, re-
The SAMPLE Collaboration at MIT-Bates has recently ferred to henceforth as “one-quark’ radiative corrections,
reported a value for the strange-quark magnetic form factoare calculable in the standard model. They contain little the-
measured using backward angle parity-violating@V) oretical uncertainty apart from the gentle variation with
electron-proton scatterind.]: Higgs boson mass and long-distance QCD effects involving
light-quark loops in theZ— y mixing tensor. The one-quark
G{(Q*=0.1 GeV¥/c?)=0.61+0.27-0.19, (1)  contributions can be large, due to the absence from loops of
the small (1-4sirf4,,) factor appearing at the tree leVeke
where the first error is experimental and the second is theggq. (2)] and the presence of large logarithms of the type
retical. The dominant contribution to the theoretical error iS|n(mq/|\/|Z)_
uncertainty associated with radiative corrections to the axial A second class of radiative Corrections, which we refer to
vector term in the backward angle left-right asymmeity,  as “many-quark” corrections, involve weak interactions
[2]: among quarks in the proton. In this paper, we focus on those
many-quark corrections which generate an axial vector cou-

Gh G{ i i is axi
P N oM @M pling of the photon to the protofsee Fig. 1 This axial
AR Qut QWG& +Qw Gh, (1-4sirf6,,) vector ppy interaction, also known as the anapole moment
) (AM), has the form
G
x\1+1/r o, 2)
M
e __

o N /JAMZ—ZN(aS-i-aUTg)yM'ySNo",,FV“. (4)

whereQy, andQ,y are the proton and neutron weak charges, Ay

respectively,Q{¥’ is the SU3)-singlet weak charg® 6y is

. . _ 2 2 .
the weak mixing angle, and=Q?/4My;. The axial form  (ere we have elected to normalize the interaction to the
factor is normalized at the photon point as scale of chiral symmetry breaking),=4xF,.) These
many-quark anapole contributionsR , which are indepen-
P(O)= — P
Ga(0)=—0al1+Ry] (3) dent of the electroweak gauge paramédy were first stud-
_ . , . ied in Refs.[4,5] and found in Ref[5] to carry significant
whereg,=1.267+0.004[3] is the nuclgon s axial charge as o etical uncertainty. The scale of this uncertainty was es-
measured in neutrorB-decay andRj, denotes process- imated in Ref.[5], and this value was used to obtain the

dependent electroweak radiative corrections to @)  theoretical error in Eq(1). [Note that the central value for
X A(p) scattering amplitude.

The radiative correctiofR? is the subject of the present N
study. It was first analyzed in Rdf5] and found to be large,
negative in sign, and plagued by considerable theoretical un-
certainty. GenerallyRR contains two classes of contribu-
tions. The first involve electroweak radiative corrections to

the elementary/(e) X A(q) amplitudes, wherg is any one i

FIG. 1. Axial vectoryNN coupling, generated by PV hadronic
Note that in Ref[2], the weak charges are denotﬁﬁ”'(o). interactions.
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¢ N N include decuplet as well as octet intermediate states, mag-
netic insertions, and SB8) chiral symmetry. As in Ref[5],
we estimate the chiral Counterterms@(tllAf() using vector
z meson saturation. However, we go beyond that previous
analysis and determine the sign of this vector meson contri-
e N

N bution phenomenologically. We find that decuplet intermedi-
ate states and magnetic insertions do not contribute up to the
FIG. 2. Feynman diagrams for polarized electron nucleon scatchiral order at which we truncate. Also, the effect of (SU
tering. (a) gives tree-levelZ%-exchange amplitude, whilo) gives ~ symmetry, in the guise of kaon loops, is generally smaller
the anapole moment contribution. The dark circle indicates an axiahan the pion loops considered previously. In the end, we
vector coupling. express our results in terms of effective PV hadronic cou-
plings. Some of these couplings may be determined from
G(,\j) given in Eq. (1) is obtained from the experimental nuclearand hadronic PV experiments or detailed calculations
asymmetry using the calculation of RES]]. (for reviews, see Refd.14,15), while others are presently
In order to better constrain the error & associated Unconstrained by measurement. Guided by phenomenology
with RE, the SAMPLE Collaboration performed a second@nd the dimensional analysis of RéL1], we estimate the
backward angle PV measurement using quasieldQi) range of po_sable values for the new couplings. We suspect
scattering from the deuteron. The asymmettys(QE) is that our estimates are overly generous. Nevertheless, we find
significantly less sensitive tG(MS) than isA_g(ep), but re- that — evTe:n1 under liberal assumptions — the AM contribu-
tains a strong dependence By ', theisovectorpart of R} . tions to Ra haplpealr unable t? engance éhg Onhe'qug\lﬂ(;fg
The calculation of Refl5] found the uncertainty iR} to be rections to the level apparently observed by the

. L 71 collaboration and, in our conclusions, we speculate on pos-
ciomlnated by this isovector componerfRT ~—0.34 sible additional sources of enhancement not considered here.
+0.20—and the goal of the deuterium measurement Was, The remainder of the paper is organized as follows. In
therefore, to constrain the size of this largest term. A prelimi-go. |1 we relate the anapole couplinas, to the radiative
nary deuterium result was reported at the recent Bateszéorrect,ionsRXZO'l and in Sec. 1Il. we outline our formalism

. =1 L] . L]
Symppsmm at MIT, and SuggeStS thai has th_e Same o computing these couplings in HBChPT. A reader already
negative sign as computed in REB] but has considerably
larger magnitude, possibly of order unf§]. Combining this

familiar with this formalism may wish to skip to Sec. IV,
result with the previou#, z(ep) measurement would yield a

where we compute the chiral loop contributions to the
nucleon anapole moment througi{1/A2). We also include

nearly vanishing value fo6{y, rather than the large and ’ GML/A)

positive value quoted in Eq1).

the leading Inh, terms in the heavy baryon expansion, which
The prospective SAMPLE result f&,~* is remarkable,

generate contributions qﬂ)(l/Af(n). Section V contains the
o i o vector meson estimate of the chiral counterterms and the
indicating that a higher-order electroweak radiative correCyatermination of the sign, while Sec. VI gives our numerical
tion is of the same magnitude as, and cancels against, tf]eestimate of the AM contributions tB1-%*. We briefly dis-
tree-level amplitude. The occurrence of such enhanced ele%’uss the phenomenology of hadrol;]ic aind nuclear PV and
troweak radiative corrections is rare. Nevertheless, ther

fhat that phenomenology may imply about the scale of the

g%i?rgngft Ifoacsésc;ges %t:r(]ar dlgfr:ﬁg;g 'tr;]gvr;')?iglh\'/gerggrog Inknown low-energy constants. Section VII summarizes our
p onclusions. The Appendixes give a detailed discussion of

ronic response, namely, the nuclear anapole moment. Th@_\) our formalism, (B) the full set of hadronic PV

anapole moment of a heavy nucleus growsA&s (see, e.g. :
Refs.[6,7,9 and references thergirBecause of the scaling Lagr_ang|ans allowed undezr &) symmetry, an_c{C)_graphs, i
nominally present aO(1/A}) but whose contributions van

with mass number, the nuclear AM contribution to/ée) ish
X A (nucleug amplitude can be considerably larger than the™
corresponding tree-lever%-exchange amplitude, and this
A?" enhancement is consistent with the size of the cesium Il. ANAPOLE CONTRIBUTIONS TO  Rx
AM recently determined by the Boulder group using atomic
parity-violation[10]. The reason behind the enhancement Ofated by the diagrams in Fig. 2. At tree level this amplitude
Ry~ for the few-nucleon system, however, et under-  ao4s
stood. The goal of the present paper is to investigate whether
there exist conventional, hadronic physics effects which can iMPY=iMRY+iMPY, (5)
explain the enhancement apparently implied by the
SAMPLE deuterium measurement. here

In order to address this question, we revisit the analysis o¥v
Ref. [5]. Following Ref.[11], we re-cast that analysis into
the framework of heavy baryon chiral perturbation theory iMK\\;zi &IX5<N|JA|N> (6)
(HBChPT) [12,13. We carry out a complete calculation of 22
R " andR,~° to order 1AZ, including loop diagrams not
considered in Refg5,11]. We also extend those analyses toand

a

The electron-nucleon parity violating amplitude is gener-
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with a5, . The remaining analytic terms are includecagy .

G
iMOX=i W’%IA<N|JX5|N> In what follows, we compute explicitly the various loop con-
tributions up throughO(1/A%), while in principle, ag;
1— 4siro should be determined from experiment. In Sec. V, however,
. w

=—i———="9,G,ey*eNrsy,ysN.  (7)  we discuss a model estimate fa .
242 Before proceeding with details of the calculation, it is

h level in th dard I useful to take note of the scales present in E§. The

at the tree level in the standard modElg. 2a)]. Here, J, constantsag, are generally proportional to a product of
(Jrs) andl, (1,5) denote the vectofaxial vectoj weak neu- strong and weak meson-baryon couplings. The former are
tral currents of the quarks and electron, respectij2ly The

i i o generally of order unity, while the size of weak, PV cou-
anapole moment interaction of E(l) generates additional

o pv . plings can be expressed in termsgef=3.8x 10" 8, the scale
contributions toMy, when a photon is exchanged between ot charged current contributioid6]. One then expects the

the nucleon and the electrdfig. 2(b)]. The corresponding  Am contributions to the axial radiative corrections to be of
amplitude is order

Ara)—

A2 ey*eN(as+a,73) 7, ¥sN. 8 RI=0L_ _ 8\2ma 1 97
X A G,A2 1—-4sirf6,, ga

ilvlmzi(

~—-001. (12

Note that unliké M §, iM kY, contains no (1 4w) suppres-

sion. Consequently, the relative importance of the anapolgh some cases, the PV hadronic couplings may be an order of
interaction is enhanced by _1_/(—14S|r129w)~19- This en-  magnitude larger thag,,. Alternatively, chiral singularities
hancement may be seen explicitly by converting E§sand  arising from loops may also enhance the AM effects over the

(8) into Ry~ %% scale in Eq(12). Thus, as we show below, the net effect of
the AM is anticipated to be a 10-20% contribution to
RT=0 B 8\2mwa 1 ag g RAOL.
A |anapo|e_ G#A)Z( 1—4Sil’120W Ia ( )
8\/5 1 I1I. NOTATIONS AND CONVENTIONS
_ ges a
Ra~anapole — = (10) Since much of the formalism for HBChPT is standard, we

2 _ . .
GuAy 1=4sift 6,y g relegate a detailed summary of our conventions to Appendix

A. However, some discussion of the effective Lagrangians
used in computing chiral loop contributionsag,, is neces-
sary here. Specifically, we require the parity-conserviP@)
and parity-violating (PV) Lagrangians involving pseudo-
ag,=as,+all. (12) spalar meson, spin-1/2 and spin-3/2 baryon, and photon
' fields. For the moment, we restrict ourselves to(@Ulavor
In HBChPT, only the parts of the loop amplitudes non-symmetry and generalize to $8) later. The relativistic PC
analytic in quark masses can be unambigously indentifiedlagrangian forar, N, A, andy interactions needed here is

The constants, , contain contributions from loops gen-
erated by the Lagrangians given in Sec. Il and from coun
terterms in the tree-level effective Lagrangian of E4:

F2 _ — e _—
£PC=TTrD“2D#2T+ NG D, y*—my)N+gaNA , y*ysN -+ A—XN(CS+ c,73) 0" F N

o , 1 o , o1 .. 02 L
TPy =My 88, =7 7,V (D 0y =madD) my"+ 5 80y Y5t 5 (VA HALY,) ¥s

9s

+ 2 ’y/.LAizi’ya’YS')/V TjV+gﬂ'NA[?iM(g,u,V—i_ZOV#YV)w;}N+Nw;}T(gMV+ZO')/V’V/J,)T{L]

- Caliy, ie_M S
—|eA—Ti Fo T+ T5(ds+d,73)y"ysF , ,N+H.c. (13
X

X

A

whereD,, is a chiral and electromagnet{&M) covariant derivative2=equ;~ @lF.) is the conventional non-linear repre-
sentation of the pseudoscalar fieNljs a nucleon isodoublet fieldj'M is the A field in the isospurion formalisni#” is the
photon field strength tensor, adq, is the axial field involving the pseudoscalars
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D, Again for simplicity, we restrict our attention first to the
+0(m) (14)  light quark SU2) sector.[A general SWU3) PV meson-
baryon Lagrangian is given in the Appendix and is consid-
with D,, being the EM covariant derivative. Explicit expres- €rably more complex\We quote the relativistic Lagrangians,
sions for the fields and the transformation properties can bBut employ the heavy baryon projections, as described
found in Appendix A. The constantss,c, determined in above, in computing loops. Itis stralgh_tforward to obtaln_the
terms of the nucleon isoscalar and isovector magnetic md=orresponding heavy baryon Lagrangians from those listed
ments,c, is theA magnetic momentls,d, are the nucleon below, so we do not list the PV heavy baryon terms below.
and delta transition magnetic moments, agds the off-shell ~ For themN sector we have
parameter which is not relevant in the present wdrK. Our

Au=——2

m

convention forys is that of Bjorken and Drel[18]. LT o=hINA,y*N (18)

In order to obtain proper chiral counting for the nucleon,
we employ the conventional heavy baryon expansion of hi

be ; . . _
L"™~, and in order to_COS|stentIy include tlziewg follow the EZ-'#:F ?VN »),MNTr(A‘MXi)
small scale expansion proposed [iti7]. In this approach
energy-momenta and the delta and nucleon mass difference h h
S are both treated a®(e) in chiral power counting. The ANVEveNT 3 T = N3

) ) N . . - — r(A,X2)———=F_NXZN
leading order vertices in this framework can be obtained via 2V s (AuXZ) 22 T
P.T'P, whereT is the original vertex in the relativistic
Lagrangian and (19)
pt:g (15 LY = hTONIXRA X+ XTA, XD y#N
ha
b a b a b

are projection operators for the large, small components of — 5 LNIXRAXR= XA, X7 vsN. (20)

the Dirac wave function respectively. Likewise, B¢1/my)
corrections are generally propotional ®,I'P_/my. In
previous work the parity conservingrNA+y interaction
Lagrangians have been obtained@¢1/m2) [17]. We col-
lect some of the relevant terms below:

The above Lagrangian was first given by Kaplan and Savage
(KS) [11]. However, the coefficients used in our work are
slightly different from those of Ref.11] since our definition

of A, differs by an overall phastsee Appendix A More-
over, the coefficient of the second term in the original PV
AT=2 NN Lagrangian in Eq(2.18 was misprinted in

the work of KS, and should behZ in their notation instead

of hZ as given in Eq(2.18 of [11].

LPC=N[iv-D+2g,S-AIN=iT/iv-Dl— 87 6+g,S-Al]

X TL—I— gWNA[?{‘wiMN-i-NwiJT{‘]

1 ) , The term proportional td, contains no derivatives and,
+ z—mNN{(U'D) —D+[S,,S,][D#,D"] at leading-order in H_, yields the PVNN# Yukawa cou-
pling traditionally used in meson-exchange models for the
—iga(S'Dv-A+v-AS D)}N+--- (16) PV NN interaction[16,19. The PV y-decay of *¥F can be

used to constrain the value df, in a nuclear model-
where S, is the Pauli-Lubanski spin operator adé=m,  independent way as discussed in Réf], resulting inh..
—My. =(0.7x2.2)g,. [15]. Future PV experiments are planned us-
The PV analog of Eq(13) can be constructed using the jng light nuclei to confirm the'®F result. The couplind,
chiral fieldsX{  defined in Appendix A and the spacetime has also received considerable theoretical attention
transformation properties of the various fields in E&3).  [16,29,20,2]1 and is particularly interesting since it receives
We find it convenient to follow the convention in RéfL1l]  no charged current contributions at leading order.
and separate the PV Lagrangian into its various isospin com- Unlike the PV Yukawa interaction, the vector and axial
ponents. The hadronic weak interaction has the form vector terms in Eqs(18)—(20) contain derivative interac-
tions. The terms containingy ,h4 start off with NNz in-
'y —&\] MiHC 17 teractions, while all the other terms start off [d&l7. Such
W_\/E A T derivative interactions have not been included in conven-
tional analyses of nuclear and hadronic PV experiments.
whereJ, denotes either a charged or neutral weak currenfonsequently, the experimental constraints on the low-
built out of quarks. In the standard model, the strangenesgnergy constanth,, h, are unknown. The authors of Ref.
conserving charged currents are pure isovector, whereas thél] used simple dimensional arguments and factorization
neutral currents contain both isovector and isoscalar compdimits to estimate their values, and we present additional phe-
nents. Consequentlyl,, containsAT=0,1,2 pieces and nomenological considerations in Sec. VI below. We empha-
these channels must all be accounted for in any realistic hasgize, however, that the present lack of knowledge of these
ronic effective theory. couplings introduces additional uncertainties iRp .
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In addition to purely hadronic PV interactions, one may also write down PV EM interactions involving baryons and
mesong. The anapole interaction of E¢4) represents one such interaction, arisin@él//\i) and involving no7’s. There
also exist terms a®(1/A,) which include at least one:

X3 1.N. (21)

uv? uv?

UNPV—A—N oM F X3]+N+A—Na’”’F N+A—No-’“’[F

The corresponding PV Lagrangians involvindNa- A transition are somewhat more complicated. The analogues of Egs.
(18)—(20) are

L TN =116 Ni ys[ X2A, XD+ X3A XRITA+g;N[A, X2 ], TA+g,N[A, X2 ], T¢+H.c. (22)
LN =1, Niyg[ A, X3, Th+f36Niye[ A, X3 TE+gaN[(XFA,XE - XPA,XE)

— (XBA,LXB— XBA, XB) TTE+ g N[ 3XFAXXLTL+X2T2) + 3(X[ALXTL + XZALXPT2)

— 2(XPARX+ XEARXE = 2XPARXE) T3] = (L= R)}+H.c. (23
L TN, = 1,297 ys[ X2A, XD+ XEA XR]ITH + f5€22Ni y5[ X2A X3+ XA X2+ (L R) ] TH

+9sZN[A, X2 1, TE+g6Z2N[A,, X* ], TE+H.c., (24)

where the terms containinig andg; start off with single and two pion vertices, respectively.
Finally, we consider PWWAN interactions:

d;— d d
AN __; 1 v+ H 2 V 3 ; S3Tu. v 3
LBy _|eA—XT§y FMVN-HeA—XT [F”V'X+]+N+IGA_XT [FHV,X+]_N
e, ds— do
e Thy Yo N Hie o Thy el L, X 1N e 5Ty el P X 1N (25
X
i d7 V 3 ; ds_,u. 7 3
+|eA—T [F#V,X,]+N+|eA—T3y[FM,X ]-N+H.c. (26)
X X

The PV yAN verticesd; 3, d,_g andd;_g are associated at leading order it }/with zero, one and two pion vertices,
respectively. All the vertices in Eq§l8)—(25) are O(p) or O(1/A ) excepth ., which is Yukawa interaction and @(p°).
As we discuss in Appendix C, we do not require PV interactions involving Awfeelds.

IV. CHIRAL LOOPS

The contributions tag, arising from the Lagrangians of Eqd.8)—(20) are shown in Fig. 3. We regulate the associated
integrals using dimensional regularizatid@R) and absorb the divergent—il{- 4)—terms into the counterterm&;CT The
leading contributions arise from the PV Yukawa couplimgcontained in the loops of 3a-f. T@(l/Af() the dlagrams 3ef
containing a photon insertion on a nucleon line do not contribute. The reason is readily apparent from examination of the
integral associated with the amplitude of Fige)3

|M 3e=iethv - €

\/igAf d°k i(S-k) i i
Fr. ) 2mP vk v-(g+k) K>—mi+ie

ko

2./29, f fl f d°k Ky
=—jeyh,v-e——S, | sds| du ' 2
NBaU & o ) 0 (2m)° [K2+sp-k+usy - q+m2]® “

whereq,, is the photon momentuns;, is the photon polarization vectog,has the dimensions of mass, and we have Wick

°Note that the hadronic derivative interactions of Eq®)—(20) also containy fields as required by gauge invariance
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rotated to Euclidean momenta in the second line. From this . . 1., w2
form it is clear thatiM 3,xS-v=0. The sum of the non- as(A)+a,(A)ms=—z(Ma+ hAT3)In(m_) . (32
vanishing diagrams Figs.(8—3(d) yields a gauge invariant i
leading order result, which is purely isoscalar: ] )
a result first computed in Ref11].
n principle, a variety of additional contributions wi
2 A In principl iety of additional ibuti ill
ak(Y1)= —ﬁgAhvm—X. (28)  arise atO(1/A%). For example, insertion of the nucleon mag-

netic momentsi.e. the terms in Eq(13) containingcs ] into

) o the loops in Figs. @&),3(f)—resulting in the loops of Figs.
As the PV Yukawa interaction is of ord&(p°), we need 4(a),4(b)—would in principle generate terms ad(1/A2)

tp consider higher order corrections iqvolving this ir‘terac'when the PV Yukawa interaction is considered. As shéwn in

tion, which arise from the Iy expansion of the nucleon An endix C, however, such contributions vanish at this or-

propagator and various vertices. Siree-1-P_=0, there  yor gimjlarly, the entire set of intermediate state contri-

is no Ly correction to the PV Yukawa vertex. From the p .00« <hown in Fig. 5, as well as those generated B}

1/my NN terms in Eq.(13) we have and £ 2, in Fig. 6, vanish up ta)(1/A%). The reasons for
the vanishing of these various possible contributions is dis-
72 A w2 cussed in Appendix C. Thus, the complete set ofZUbop
L _ X ~ . . 2 . .
as(Y2)=7o— gAhme ln(m ) : (29 contributions up ta(1/A%) are given in Eqs(28)—(32).

Becausem;.—mg>mg—m, 4 and A, >mg, it may be ap-
propriate to treat the lightest strange and non-strange hadrons
on a similar footing and extend the foregoing discussion to
SU(3) chiral symmetry. A similar philosophy has been
adopted by several authors in studying the axial charges and
magnetic moments of the lightest baryofi,22—-25. In
L V2 Ay [ 2 what follows, we consider the possibility that kaon loop con-
a5(Y3)=—75—gah,—In (30 tributions, introduced by the consideration of @Usymme-

487T mN . f
try, may further enhance the anapole contributioiRfa
These terms are also isoscalar, and the results in (Egs- _Beforei proceeding along these lines, however, one must
raise an important caveat. When kaon loop corrections are

ESO; fjrf fully contained in the previous analyses of Refs'included in a HBChPT analysis, higher order chiral correc-

For the interactions in Eq$18)—(20) containinghi\,, the tions may go afs rﬁ)owgrs ﬂ‘.ﬁKl/AXNO'S.' Consequently, ghe
eight diagrams in Figs.(8)—3(h) must be considered. Their convergence of the 3B chiral expansion remains a su ject
A > ' of debate[26]. Fortunately, no such factors appear in the
contribution is purely isovector—

present analysis throug@(l/Af() so that at this order, we
find that kaon loop effects iR, are generally tiny compared

where u is the subtraction scale introduced by DR. Finally,
the 1y correction to the strongrNN vertex, contained in
the termecg, in Eq. (13), yields

m

w

1 4 w\? to those involving pion loops. Whether or not higher-order
L _ 0, "h2 ’
3,(V)=g9a| v+ 3hv)ln mw) BD  terms [e.g., those of O(L/A2xmy/A,] contribute as
strongly as those considered here remains a separate, open
—and was not included in previous analyses. question.

The contribution generated from the two-pion PV axial ~TO setour notation, we give the leading strong-interaction
vertices in Egs(19),(20) comes only from the loop in Fig. SU(3) Lagrangian. Since th&° and » are neutral, loops
3(i) and contains both isovector and isoscalar components:containing these mesons do not contribute to the AM through

O(l/A)Z() and we do not include their strong couplings be-

Y
Mwwy
d

“\ ~\\ ~\\ ﬁ\\
M‘Mi \ “"Mir ] ﬂﬂﬂﬂ/& ] ,‘Mﬂir \
I I 1 1
/’ I’ ’I' ‘I'
a c € g
~\\ ~\\ ~\\ ~\\
\ 1 1 1
WW{; 4 WN{F 1 “wﬂF ! u““‘i !
I, /' ’/' _I’
FIG. 3. Meson-nucleon intermediate state contributions to the b d f h
nucleon anapole moment. The shaded circle denotes the PV vertex.
The solid, dashed and curly lines correspond to the nucleon, pion FIG. 4. Anapole moment contributions generated by insertions

and photon respectively. For ti$8J(3) case the intermediate states of the baryon magnetic moment operator, denoted by the cross, and
can also be hyperons and kaons. the PV hadronic couplings, denoted by the shaded circle.
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“\ ‘\\ ~\\
pww y '
J —’/ "/
a € a
"\\ ‘\\ "\\‘
Mmvw ;
’I "I
b f
FIG. 5. The contribution to the nucleon anapole moment from FIG. 6. PV electromagnetic insertions, denoted by the overlap-
PV wAN vertices. The double line is the intermediate state. ping cross and shaded circle.
low. For the proton the possible intermediate states are h\P/mT*_ h{)/EOK*_
30K, AK* while for the neutron only®, “K* can appear. LyT=— F py“nD, " — or py*3°D K*
The necessary vertices derive from m m
o o - h{}E*K*_ h\p/AK*_
L=29gsNS-AN+2 NS -K)A+A(S-K'N - ny*s D, K*— py*AD K™
9a Inakl( ) ( )] \/EF,T © \/EFTT w
KISN+NSS.
+2gnsk[ S KTEN+NISK], (33 Hod . (36

wheregyak=—[(1+2a)/\6]ga, Onsk=(1—2a)ga with  and for the axial PV two pion and kaon interactions
ga=D+F, a=F/(D+F) and D,F are the usuaSU(3)

symmetric and antisymmetric coupling constants. hR™_

The general pesudoscalar octet and baryon octet PV /,‘,i”:i—Zpy“yg,p(q-r*DMrr‘—w‘DMrr*)
Lagrangians are given in Appendix B. They contain four Fa
independent PV Yukawa couplings, 20 axial vector cou- bK
plings (ha-type), and 22 vector couplingsh(-type). For LA K'D K —K D K*
simplicity, we combine the S(3) couplings into combina- Fipy V5P # K

tions specific to various hadrons—e.g. the leading PV
Yukawa interactions are

nm
A — _ —
+|?ny“y5n(w+DMw - D,U~7T+)
w

L \1(Zkawa: —ih 7(Bn77+ —pr_)

nK
J— — A — _ _
—ihpsoc(pSOK " =3%pK") +I§n7“75n(K*DMK K™D K"+
—ihys k(NS K* =3 7nK") (37)
—ihpAk(PAKT —ApK )+, (34 Expressions for these PV vector and axial coupling constants

in terms of SWY3) constants appear in Appendix B. For illus-
In terms of the S(B) couplings listed in Appendix B, the trative purposes, it is useful to express the nucleon-pion cou-
hggm have the form plings in terms of thdn'\,,A of Egs. (18)—(20) for the SU2)
sector:

h,=—2v2(h;+h,) A
hg™™" =h3+ 3hf
hpsok=—[h1—hy+V3(h3—h,)]
hR"=hj+h3 (38)
hnsz= \/EhpEOK
hi"=h%—h3.

hpak= h—\/% + \/§h2+ hy+3hy]. (35 The_ Ieading order contributions & , arise only from the
loops in Fig. 3 where a photon couples to a charged meson.
The charged kaon loop contributions to thg, can be ob-
Similarly, we write for the vector PV interaction tained from the corresponding formulas for thdoop terms
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by making simple replacements of couplings and masses. Fatate for the neutron case. Similar replacements hold for the
example, for the PV Yukawa interactions, these replacevector PV coupling contributions. For the axial PV two-pion

ments are:(a) for the proton casem,—my,h,—hpsox, contribution we need only make the replacemerft”
Ja—Onsok+ =gnsk/ V2 for 3K ™ intermediate states and —hR<,m,—m.
h.—hpak, 9a—9nak for AK™; (b) for the neutron case, Upon making these substitutions, we obtain the complete

h,—hps-k, 9a—0Ons-k+=0nsk for 7K™ intermediate  heavy baryon loop contribution t@(llAf{) in SU(3):

2 A, 3A, [p\? 3 A, 3A, [ p)\?
L_'"— X T X ) _ XL X 2
as= 24gAh” m, mNI (mw) 144(1+2a)gAhpAK My = mNIn( mK)
V2 Ay, 3 A, w\?l 1 wl? 1 w\?
AT Xy T X o~ A N ofJ nw ) _ Z/heK nK .
+32(1 2a)gahns -« mK+ - mNI (mK) 6(hA +h} )In(mw) 6(hA +hi )In(mK)
Oy +
1 Kt \p/2 « M 2 \/6 + M 2
(11— nE KT, V. I B pAK ~
+ 12(1 Za)gA< hy + 7 In -~ 72(1+2a)gAhV In -~ (39
V2 A, 3A w'\? 3 A, 3A w\?
L _ Y71 [ I O, O 1™ I [ D _ X T X
au— 96(1 Za)gAhng K mK p mNI (mK) 144(1+2a)gAhpAK mK+ p mNIn(mK>
1 wl\? 1 wl\? 1 A
_ = pm__ N N = pK_ |/nK A pnm .
6(hA ha )|n< mw) 6(hA ha )ln( mK) 6gAhv In m.
1 - hpEOK+ 2 \/g 2
Z - _pns okt TV ol B pAk*t [ H
+ 12(1 2a)gA( hy + 2 In(mK) 72(1+2a)gAhV In(mK) . (40
I
V. LOW-ENERGY CONSTANTS AND VECTOR MESONS With these observations in mind, we estimate the coeffi-

A pure ChPT treatment of the anapole contributionRto cients aSCJ in the approximation that they are saturated by
would use a measurment of the axial termAipg(ep) and  t-channel exchange of the lightest vector mesons, as shown
A r(QE), together with the non-analytic, long-distance loopin Fig. 7. Here parity-violation enters through the vector
contributions,agyv, to determine the low-energy constants, meson-nucleon interaction vertices. We also use a similar
agI. In the present case, however, we wish to determindicture for the electromagnetic nucleon form factors to de-
whether there exist reasonable hadronic mechanisms whidgrmine the overall phase aﬁl in the vector meson domi-
can enhance the low-energy constants to the level suggestgénce approximation. To that end we require the PC and PV
by the SAMPLE results. Thus, we attempt to estimal¢ ~ Vector meson-nucleon Lagrangigis]:
theoretically. io. o

Because they are gov_erne(Cij part_ b_y the short-distance E,fr\?N:gpNNN{ Yat K, 2/”
(r>1/A,) strong interactionag, are difficult to compute My
from first principles in QCD. Nevertheless, experience with . ,
ChPT in the pseudscalar meson sector and with the phenom- PC _ ‘{ 104,49

L ,Nn=9onnN| vt K,
enology of nucleon EM form factors suggests a reasonable w 2my
model approach. It is well known, for example, that in the
O(p*) chiral Lagrangian describing pseudoscalar interac- pC i0,,9"
tions, the low-energy constants are well-described by the ex- L yNn=9annN| ¥t kg 2my
change of heavy mesofi27]. In particular, the charge radius
of the pion receives roughly a 7% long-distance loop contri-and
bution, while the remaining 93% is saturated tghannel

7 p*N (42

"N (42)

#*N (43)

exchange of the®. Similarly, in the baryon sector, disper- Py — ol L1 0 hi

sion relation analyses of the isovector and isoscalar nucleon Lonn=Ny*ysp,| hy+| hy+ % 73|N (44)
electromagnetic form factors indicate important contribu-

tions from the lightest vector mesof28]. Thus, it seems —

reasonable to assume thathannel exchange of vector me- Lonn=Nr*yso,[hg+h, 75N (45)
sons also plays an important role in the short-distance phys- by — —

ics associated with the anapole moment. L ynn=Ny*ys, [hy+hym3]N. (46)
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N where theh, have are expressed in units@f and where a
positive sign has been assumed frpyy. Given this con-
straint, it is very unlikely that the product hg
+ hi/\/é)gpNN>0 unless the corresponding products involv-

F——vwwww ing h’ andh* in Eq. (50) obtain anomalously large, nega-
tive values. In fact, a fit to hadronic and nuclear PV observ-
ables in Ref[19] strongly favors a phase difference between
the strong and weak NN couplings.

N Experimentally, one also knows the isovector nucleon

charge radius

FIG. 7. Vector meson contribution to the anapole moment.

Shaded circle indicates PV hadronic coupling.
AT=1 dFl(qz)

(Note that we have adopted a different convention fgr (r9exp=6 dqz
than used in Refl16].) The coupling constanﬂs'p,a,’d) were
estimated in Refd.16,29 and have also been constrained by
a variety of hadronic and nuclear parity-violating experi-
ments(for a review, see Ref.19)).

For theV— v transition amplitude, we use

>0, (52)
q2=0

where

<p’|jL1(0)|p>=eU(p’){F1(q2)+ %Fz(qz) u(p).

e , 53
Lvy =57, F* Vo, @7 (

. e . One may reasonably approximate th2 contribution to
wheree is the charge unitfy, is they-V conversion constant (rT=1 using VMD [28]. The calculation is the same as

_ 0 - .
(V=p",0,9), andV,, is the corresponding vector meson apoye byt with the weak hadronic coupling replaced by the
field tensor.(This gauge-invariant Lagrangian ensures thatStrong coupling. The result is

the diagrams of Fig. 7 do not contribute to the charge of the
nucleon) The amplitude of Fig. 7 then becomes

0 gonn 0
1 0 0 SACHE : (54)
Ty = (M), M (A, 4,2 L ham
alT(VMD)= + + , (48
fp m, f,\m, f¢ My
Then we have
0 2 2 1 2 1 2
aST(VMD)=M(&| +:'_w &) -I—?(ﬁ) . VMD, .2
o m, o\ My ¢ m(/,( dF; (g% _ _ 9NN (55)
dg? 42— f,m?

The parity violating rho-pole contribution was first derived

in [5,7]. However, the relative sign betwedfnj,]N andf, is . . 0
. . ) Comparing Eqs(52) and(55), and noting that the" gener-
undetermined from the diagram of Fig. 7 alone. Neverthe:,ites a positive contribution t6r2)T-1 [28], we arrive at

less, we can fix the overall phase using two phenomenologi- o . : i i
cal inputs. Parity violating experiments in the p-p systemgPNN/fP<0' E:omblmr?g this result WIthNNhPéo as fa
constrain the sign of the combinatigyh,y [30,31,19. In vored by thepp exiperlmenti(iso,Sl,lQ we obtain the rela-
particular, the scale of the longitudinal analyzing powlgr, ~ tive sign betweer, andf,: h /f,>0. Accordingly we de-
is set by the combination of constants termine the relative signs for P\b,$-nucleon coupling
constants.
ALxg,nn(2+ ky)[ N0+ Nl +h%/ 6]

+gunn(2+ k9 [G+h5 ], (50) VI THE SCALE OF Ra

) o N Expressions for the anapole contributionsRg ° and
where the constant_ of proportionality is positivey=3.7 RI\Zl in terms of thea , appear in Eq(9). We may now use
and KS=—Q.12. Usmg the standard values for the strongipese expressions, along with the results in E§),(40)
VNN couplings, one f'i”ds thak,_has roughly the same sen- anq (48),(49), to obtain a numerical estimate for the
sitivity to each of th‘;"v appearing in Eq(50) (modulo the  g1=04_ ' "To do so, we use the global fit value for the
1/\/6 coefficient ofhp). From the 45 MeV experiment per- \eak mixing angle in the on-shell schenve=0.2230[3],
formed at SIN[32], for example, one obtains the approxi- g,=1.267+0.004[3], f,=5.26[33], f,=17, f,=13[34],

mate constrainf15] a=F/(D+F)=0.36, u=A . We express all the PV cou-
pling constants in units af,=3.8x 10 8 as is traditionally
hO+hi+h2/J6+h0+h}~—28+4, (51)  done[29,16. We obtain
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p3Ok
RA~lanapole 102‘0.17hw+ h,i—o.oosmnz—K—o.os:( hi K 4 = 5 +0.2hR"+h)
—O.OOG’IPAK+0.0881{’,AK+—O.261h2|—0.0&h2|—0.05h9¢|J (56)
4 . \p/2°K+
RX:Hanapole:lO_2 hi_O.G( h3+§h\2/)_0-0012]n2K_0-03 _hC/E T+ \/5 +0'2(h2K_h2K)
~0.0061,,,+0.08810* "~ 0.2 |hp|+% —0.087h,|+0.05hg] (57)

where we have set the phase of the vector meson contribuve use the ranges of Refd.6,29.2 In contrast to the situa-

tions as discussed above, and used the relations it38g.  tion with the h,? contribution, however, the variation in the
The expressions in Eq§56),(57) illustrate the sensitivity 1! | over their “reasonable ranges” has negligible impact

of the radiative corrections to the various PV hadronic couyn'our estimated theoretical uncertainty.

plings. As expected on general grounds, the overall scale of Estimating values for the Yukawa coupliniggy « and for

RA~""is at about the one percent_le\,{e_!}ti% Ea.(12]. In ihep, , is more problematic—to date, no calculation on the
terms of the conventional PV coupling®, ™ is most sen-  jeve| of Ref.[16] has been performed for such couplings.
sitive toh, andh;,, while Ry~ is most strongly influenced  Estimates forh,, A, based on dimensional and factorization
by h2+h?/\6. The corrections also display strong depen-arguments, were given in Ref11] and generally yielded
dences on the couplings, , not included in the standard values forhy , in the non-strange sector on the ordeigof.
analysis of nuclear and hadronic PV. In particular, the coutor our central values, then, we takg ,=g, , resulting in
plings h4 andh)+4h2/3 are weighted heavily ifRy~*. In  roughly 1% contributions from the PV vector and axial vec-
general, the sensitivity to the PN'Y K couplings is consid- tor interactions. Without performing a detailed calculation as
erably weaker than the sensitivity to ttheN7 and NNp in Ref.[16], one might also attempt to determine reasonable
couplings. ranges for these parameters by looking to phenomenology.
In order to make an estimate BFAzo'l, we require inputs  To that end, the authors of Rdfl1] considered analogies
for the PV couplings. To that end, we use the “best values’between the axial vector PV operators of E(),(20) and
for h,, h'p, and h!  given in Ref.[29]. These values are contact operators needed to explain the sizé bf 1/2 hy-
consistent with the fit of Ref{19]. For theh!, we use the ~Peron P-wave decay amplitudes. From this analogy, these
“pest values” of Ref.[16]. The analyses given in Refs. authors conclude thahj,|~10g, may be reasonable. How-
[16,19,29, together with experimental input, also allow for €ver, whether such large ranges are consistent with nuclear
the standard Coup”ngs to take on a range of values. Fd?V dat_a rem_ains to be determined. In the absence of such an
example, the ranges for the given in Refs[16,29 corre- ~ analysis, which goes beyond the scope of the present work,

spond to we adopt the range-10g,.<h),<10g, suggested in Ref.
[11]. The corresponding uncertainties in th&, %! are
—-33<h’+hl<13. (58)  roughly +10%.

The implications of phenomenology for trhé, are even
In order to maintain consistency with the experimental condess clear than for tha), . However, we note that large val-

straint of Eq.(51), one then requires ueshi,~+10g, do not appear to be ruled out by hadronic
and nuclear PV data. At the tree level, for example, the vec-
0<hS+hl+h?/\J6=<—45. (59  tor terms inL {}_o  ,do not contribute to the PV NN inter-

action through the one-exchange amplitudes of Fig(a. It
We adopt this range even though it is smaller than the rangis straightforward to show that the corresponding amplitude
given in Ref.[29]. Indeed, allowing thdé‘l'p to assume the full  vanishes for on-shell nucleofisThus, at this level, purely
ranges given in Ref.29] would require then!, to vary out-  hadronic PV processes are insensitive totieand provide
side their corresponding theoretical “reasonable ranges” if
the constraint of Eq51) is to be satisfied. Since one expects
|hzl<Ihp [16,29, we have a reasonable range of values for 3Allowing the h!, to assume positive values would require a sign
the important isoscalap contribution in Eq.(57), and the  change on the corresponding terms in E&§),(57).
rather broad range of values allowed for thie contributes  “The on-shell approximation is generally used in deriving the PV

significantly to our estimated uncertainty®},~*. Forhl, ,, NN potential from Feynman diagrams.
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amplitude is correspondingly smalfer.
Adding the one-quark and anapole contributions yields a
""""" large, negative value fdR;~*. This result contains consid-
erable theoretical uncertainty, mostly due to our liberal as-
signment of reasonable ranges to thg,. Even with this
generous theoretical uncertainty, howev&, * is still
FIG. 8. Contributions t¢a) PV NN interaction andb) PV two- roughly a factor of two away from the apparent SAMPLE
body current generated by the vector terms in Ei§)—(20). result. Compared with the one-quark SM contribution, the
many-quark anapole contribution is relatively small—though
no constraints on these couplings. In PV electromagnetiit does push the total in the right direction. The isoscalar
processes, however, th®, do contribute through PV two- correction,RL~?, is considerably smaller in magnitude than
body currents, such as those shown in Figh) 8Neverthe- RI\:l yet retains a sizeable theoretical uncertainty.
less, one expects the impact of PV two-body currents to be
considerably weaker than that of the PV NN potential. The
PV y-decay of®F, for example, is dominated by the mixing VII. CONCLUSIONS
of a nearly-degenerate pair o7, T)=(0",0) and (0",1)
states. The small energy denominator associated with thi |
parity-mixing enhances the relative importance of the P
NN potential by roughly two orders of magnitude over the

neric situation with typical nuclear level cings. By con- A
generic ato yp ce €’ spacings. By €0 puted all many-quark anapole contributions through

trast, the PV two-body currents do not participate in parity- 2 . I . .
mixing and receive no such enhancements. A similar situa®(1/A})- We include new one-loop contributions involving

. | .
tion holds for PV electromagnetic processes in other nuclei’® PV vector couplingshy and estimate the scale of the
of interest. Hence, we expect the BMiecays of light nuclei analytic, low-energy constants using resonance saturation.
to be relatively insensitive to thd, , even if the latter are on Ve fix the sign of the latter using the phenomenology of PV

the order of 16,.. Consequently, we rather generously takePp scattering and of nucleon EM form factors. We also show
—10g,<h%+4h2/3<10g,,, yielding a+7% contribution that large classes of loops involving decuplet intermediate
to the uncertainty irRlel Allowing similarly large ranges states, magnetic insertions, and PV EM insertions vanish
for the PVNYK couplings has a negligible impact on the through(’)(l/Af(). Finally, we extend the previous analyses
uncertainty in theRro'l. to include SU3) symmetry, and determine that the impact of

With these input values for the PV couplings, we arrive atkagn loops is generally negligible. In the end, we find that
'=1_though large and negative—is still a factor of two or

the anapole contributions &}~ °* shown in Table I. The Ra ; > S
latter must be added to the one-quark standard model cont$® @way from the suggestion tha&, "~-1 from the
butions, also shown in Table I. We compute the one-quarl®AMPLE experiment. Even allowing for considerable theo-
corrections using the on-shell parameters given in Refgetical uncertainty—dominated by the PV couplirttjs,—
[3,35. We emphasize that the quoted values for 'ﬂiéo’l there remains a sizable gap between our result and the pre-
are renormalization scheme-dependent. The relative size dfninary experimental value. - o
the isovector one-quark corrections are smaller, for example, TNere exist a number of possible additional contributions
in the modified minimal subtractioMS) scheme, where 10 R, not con5|derec_JI here which may ultimately qccou_nt
one hasRT~1(SM)= —0.18 andR}~°(SM)=0.07. The cor- for the apparent experimental result. The most obvious in-
A o A S clude higher-order chiral corrections. This appears, however,
responding tree-level amplitude, however, is also smaller b¥ . o
. 0 be an unlikely source of large contributions. On general
a factor of ~1.44 than the on-shell tree-level amplitude. A . 3 _—
o grounds, we expect the size of tti§1/AY) contributions to
reader working in the MScheme should, therefore, take

di h level litud d SM radiati be suppressed bg/A , relative to those considered here,
car? to adjust t (?ttrele- feve ?an Itu eha|r|1 I ra 'at'(\j’ehcor\'/vherem denotes a pseudoscalar mass. For kaon loops, this
rections appropriately irom the on-she VaTL)JeS. use ereSUppression factor is only 1/2; however, at)(1/A2) kaon
Moreover, the anapole contributions to tR8" will be a X

Atdakte . loops generate at most a few percent contributioR0%".
factor of 1.44 larger in the MScheme since the tree-level The suppression factor for the next order pionic contribu-
tions is closer to 0.1. Hence, it would be surprising if the
TABLE |. One-quark standard modé¢5M) and many-quark next order in the chiral expansion could close the factor of
anapole contributions tw/(A) X A(N) radiative corrections. Values two gap with experiment.
are computed in the on-shell scheme usivig 0.2230 . More promising sources of sizeable contributions include
Z— v box graph contributions, where the full tower of had-

In view of the preliminary SAMPLE result for PV quasi-
astic electron scattering frorfH, we have up-dated our
previous calculation of the axial vector radiative corrections
RA~%. Using the framework of HBChPT, we have com-

Source Ry ! Ry °
One-quark(SM) —-0.35 0.05
Anapole —0.06+0.24 0.0r-0.14 ®Note thatR}~° gives the ratio of the isoscalar, axial vector am-
Total —0.41+0.24 0.06-0.14 plitude to the tree-level isovector, axial vector amplitude. The sign

of Ry~° as defined here is opposite that of Ref].
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ronic intermediate states is included, as well as parity-mixing 0.0026<2.6A ], (dk)— 2.0A " (aj )<0.015, (65
in the deuteron wave function. At a more speculative level, IR B ’
one might also consider contributions from physics beyonq_at 95 % C.L.(for m,,=300 Ge\J. Thus, it appears unlikely

the standard model. For example, the presence of an adq‘ﬁat the second term in EG61) could enhanck~* by a
tional, relatively light neutral gauge boson might modify thefactor of two A

SM V(e)xA(q) amplitudes and contribute t&;"". A In short, two of the most popular new physics scenarios
popular class oz’ models are generated by Bymmetry  paying implications for low-energy phenomenology appear
[36]. The contribution of an extra, neutral weak Bauge plikely to enhanceR}~* significantly. Thus, if more con-
bosonZ’ is given by ventional hadronic and nuclear processes cannot account for

4 . o the SAMPLE result, one may be forced to consider more

T=1 _ : ¢ exotic alternatives.
Ry (new = 1_4szHWsm2¢GM, (60)
ACKNOWLEDGMENTS

where¢ is a mixing angle which governs the structure of an . .
additional U1) group in E theories[36] and G;) is the We wish to thank D. Beck, E.J. Beise, and R. McKeown

Fermi constant associated with the newllUgroup [37]. for useful discussions. This work was supported in part un-

Note that this contribution has the wrong sign to account fOtder U.S. Departmen_t of Ene_rgy Contract _NO' DE-ACO5-
the large negative value =1 g9 84ER40150, the National Science Foundation and the Na-
A .

Alternatively, one might consider new tree-level interac—tlonal Science Foundation Young Investigator program.

tions generated by supersymmetric extensions of the SM.

Such interactions arise when R-parity, or equivalenBy, APPENDIX A: FORMALISM
—L, is not conservedR and L denote baryon and lepton
number, respectively The contribution from R-parity violat-
ing SUSY interactions is given by88,37,39

In this section we first review the general parity 2D&
conserving Lagrangians including, =, A,y in the relativis-
tic form. We follow standard conventions and introduce

= 1 A ’ ~j
Rll(neV\l)Z(m [Alﬂ((dé)—Aljl(qD 2252, é;:eiﬂ'/F,T, = %ﬂ_aq.a (Al)
_ Ky (1 —
Arad €R) (1 =AM ], (61) with F .=92.4 MeV being the pion decay constant. The chi-
wherex = sir26,, ral vector and axial vector currents are given by
i D,
Xd—9( 1 Au==5(ED,E"=¢'D 8=~ L—+0(n%)
= ~ 1 © 2
Ax 1—2x (1—Ar) 0.3, (62 2 F.

(A2)

; it ; 1
Ar is a radiative correction, and where VM=§(§D#§T+ fTDﬂg)

~ 1 |\l?
Ajp () =—= L 5 (63)  and we require also the gauge and chiral covariant deriva-
4\2 GuM7 tives
with T denoting the superpartner of fermiérandi,j k la- D,m=d,m—ieA,[Q,]
beling fermion generations. The terms having a prime are (A3)
semileptonic whereas the un-primed terms are purely lep- D,=D,+V,,

tonic. In principle, the correction in E¢61) could generate a
negative contribution t&R;~*. However, the various other with
electroweak data constrain the terms appearing in this ex-

pression. For example, relations betwegp and other SM 2 0
parameters require Q= 0 . (A4)
-3
—0.0023< A 15 (ef)=<0.0028, (64)

and. A, being the photon field. The chiral field strength ten-

at 90 % C.L., so that the first term in E@1) cannot provide SOIS are
the large negative contribution needed to explain the
SAMPLE result. Similarly, assuming only the semileptonic
R-parity violating interactions modify the weak charge of

nuclei, the recent determination of the cesium weak charge

by the Boulder group40,1Q implies that with

L1
Frv=5 (0, A= 0,A,)(£Q'€'£'Q"8)  (AS)

033008-12



NUCLEON ANAPOLE MOMENT AND PARITY-VIOLATING . .. PHYSICAL REVIEW D 62 033008

1 0 TABLE lI. Parity (P) andCP transformation properties of chi-
Q'= ( (AB) ral fields. Here, T denotes the transpdSés the charge conjugation
00 matrix (C=1ivy,7, in the Dirac representatiorand 5(i)=1,i=1,3
I . andd(2)=—1.
acting in the space of baryon isodoublets.
For the moment, we restrict our attention to (8Uflavor Field p cp
space and consider just N, andA degrees of freedom. We
represent the nucleon as a two component isodoublet field, A, —A* —A;
while for the A, we use the isospurion formalism, treating N voN ¥oCNT
the A field T'_#(x) as a vectc_)r spinor in both spin and isospin T, — yoTH — 5(a) yoCﬂa
space[17] with the constraint' T, (x) =0. The components xa Xa s(a)x’?
of this field are Xa Xa S(a)X2
T3 =—1/3 T!=
” 3(A°)M' SRV NCY
_ ¢k kj
(A7) A= 512Ru €3l
_ (Aolﬁ)
LA M' where ¢J,= 58— (i/3)€;; 7 is the isospin 3/2 projection
_ operator.
The field T'M also satisfies the constraints for the ordinary

Schwinger-Rarita spii-field,
9 pé APPENDIX B: THE SU(3) PARITY VIOLATING

VMTLLZO and DMTLZO. (A8) AND CP CONSERVING LAGRANGIAN

We evertually conert t the heavy baryon exparsion, i 1S SPRENCT e Il e parly volaing € con
which case the latter constraint becomed’, =0 with v, g greng P

the h b locit and baryon octet. We are interested in the diagonal case of
€ heavy baryon velocity. . . the parity violating electron nucleon scattering. Hence, we
It is useful to review the spacetime and chiral transforma

i " f th . fields. Und hiral t f include only those interaction terms that ensure strangeness
10N properties ot the various hields. Under a chiral transtory g charge conservation at each vertex. In the following we

mation, use é=e'™Fr =172 X2=¢gN\3g, XB=anagh, X2
LUt =UgRT =X *Xg, [A,B]l.=AB*+BA,
We classify the parity violating Lagrangian according to
A,— UAMUT (A9) isospin violationAT=0,1,2, which arises from the operators
of X{',Xg&, their combinations and products. THeT=2
D,—UD U, piece comes from the operatdf8”( X7 OX? + (L« R)} with
and O=N,N,A, and
N—UN, T,-UT,, 2-L3IR' etc. (A10) . 10 0
b_
In the SU(2) sector parity violating effects are conve- 7 3 01 0/, (B1)
niently described by introducing the operatftd]: 0 0 -2

a_ ¢t a a_ g agt a _ya ya
X=¢me, Xg=Emg, Xe=Xi+=Xg (ALl where a,b=1,2,3. Several operators contribute to tha
which transform as =1 part, like X2 ,f3XEOXP = (L= R)}d*P{XEOX?
) +(L—R)} wherefa¢ d"¢ are the antisymmetric and sym-
Xf,RHUXf’RUT, (A12) mgtric structure constants cBU(3). algebra. WiFh the re-
quirement that the final Lagrangian be hermitian, parity-
with the index a rotating like a vector 0cBU(2), and violating and CP-conserving, the operator withf32°

SU(2)g respectively. vanishes. For theAT=0 part relevant operators are
The P and CP transformation properties of these fields 1,X% ,f88P[X2OXP+(L—~R)},  d®P(XEOXP+(L—R)},
are shown in Table 1. 5P(X2OXP + (L—R)}. For the same reason ti&*® struc-
Finally, we note that in the Lagrangians of Sec. Ill, oneture does not contribute. Note the matrix identi§g\PA2
has the following definitions: =4(C,(3)— 3C,(8))\", whereC,(3),C,(8) are the Casimir
i i ik k invariants of the basic and adjoint representationS 0f3)
D,=0"D,—2ie"V, group respectively. Hence, the operator containiiig is
i , identical to the unit operator.
w,=Tr[7A,] (A13) Based on these considerations, we obtain
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LYY _g=hsF  TIN[X® N]; +h,F  TrN[XE N]_+0v, TrNy#[A, N1, +v,TrNy#[A, ,N]-

OT TNy A NXE + B TINYAXE NA, + DTNy (X8 A, ] N
+§r7,u++_r'y+,u+?r7[ ]++

> ZOTINyANIXE LA,

2
+asTrNy#ysA NXE +agTrNy ysXENA, +a, TrNy ys[ X2 A, T N+agTrNy“ ysN[ X2 A 1,

+ /30 1,08 TN YN XEA XP + (L R)}+ V30 1,083 Tr{Ny*X2A XN+ (L~ R)}

+ /30052 T NP XEN[XD A T4 + (L R} 30 1,08 Tr{Ny#[ X2 A, 1. NXP+ (L R)}

+ /39 Tr{Ny* ysNX2A X2 — (L= R)} + /32,0025 Tr{Ny* ysX2A XPN— (L~ R)}

+ V323,07 TH{Ny* ysXENIXE A, L4 — (Lo R+ 3ay 8 Tr{Ny# v XE AL NXC = (L=R)}, (B2)

LRV =hF TrN[X3 N, +hF TrN[X3 N]_ +7TrNy"A NX3+7TrN7"X3NA

+7TrN7“[X3, #]+N+ 5 2TINyEN[XE A Al +a TNy ysA NXE +a,TrNy# X3 NA,

+ag TNy ys[ X3, A, 1 N+a,TrNy“ysN[XE A T, + 010320 Tr{Ny*NXCA X2+ (L R)}
+0 16T H{NY#XZA XPN+ (L R)} + 01435 Tr{Ny#XEN[ X A, ], + (L= R)}

+0 13T N YA XE AT NX + (L R) 215030 Tr{Ny# ysN XA X2 — (L= R)}

+ag 0BT r{N Y ysXPA, XPN— (Lo R)}H 2550 Tr{Ny# ys XENLXP LA, 1, — (L R)}

+a;60%2 T r{Ny 5[ X2 A, ] NXP— (L—R)}, (B3)
£PY_ —UI07ab N AN XEA, XO 4 (L R) + 222730 FINyAX3A. XON+ (LR
AT=27"5 HNYNXCA XL+ (L= R)F+ "I T Ny XA XN+ (L= R)}

_ v _
+ %IabTr{Nyf‘XfN[Xb A+ (LR 72213t’Tr{N«yﬂ[xa AL NX+(LoR)}

a — a _
+ flabTr{Nv“VSNXi‘A#XE—(LHR)}+ ?IabTr{Nv"VstAﬂXEN—(L<—>R)}
abTr{Ny ySXaN[Xb,A 1. — (L<—>R)}+ IabTr{Ny ys[ Xf A, 1 NXP—(LoR)). (B4)

These Lagrangians contain 4 Yukawa couplings, 20 axial vector couplings and 22 vector couplings, all of which should be
fixed from the experimental data or from model calculations. In reality, however, we have only limited information which
constrains a few of them. It is useful to expand the above Lagrangians to the order involving the minimum number of
Goldstone bosons and to collect those vertices needed in the calculatyt of

L3 awa=2\2i(hy+hy)(pna* —npm ) +i[h;—hy+y3(hg—hy) J(pS°K * — 30K ")

_ _ h _ _
+2i[h;—hy+3(h3—hy) (NS K =S "nK™)—i \/—%+\/§h2+h3+3h4 (PAK" —ApK )+ - --. (B5)
pm-r*_ hpE°K+_ hnE’K*_ hpAK*_
Lim—— ‘é py*nD, " — py*3oD K*— ny*s D ,K*— Py*AD K*+H.c.+ - (B6)

where
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o _U1t0 4( 6
v 2 (014 V1) T 3 7+U9)+?Uzo
pEOKJr_ Ug— le 2
hy —E(Ul_vz+v4+ve)+ e V117 V13 V15T V21T 5017 +2v4g
(B7)
N = (03— 0y o= 1)+ = (g 010) + 037+ D) 01— V13- U3)
\Y _\/E V1= VoTUg Uy \/608 Vio 3 V177 V2 3 U117 V137 V15
e 1 v 2 4 16 2 2 4 17 4 3 o, ve
hy :E T 5 T3luT glet glisT gl glist glieT glirt gligT SVt 5 T Ust
vg—v1g 2v07tUvg
6 3
pTF pK
L37= —if—zpy ysp(m D, 7~ —7 D 7T+)—|f—py ysp(K*D,K~—K™D,K")
n7r nK
—|f—2ny ysn(w*D, 7~ — 7 D 7T+)—If—ny YsN(K¥D K™ —K ™D K*)+ - (B8)
where
pm 4
hA = 233_ §a16+ §a14_ a18+ 2a13
hR=az—a,+ V3(a;—ag) +ag+asgt ay+ast 5(aret gy~ gt azz—age)
(B9)

nm__ 4 2
ha"=2a3—3a56t+ 5214t a1gt+2a;3

ha‘=a,+ V3ag+ag+ 3a50— 281~ a1s+ Ayt (@1g+ argt aga).

Note onlya, contributes toR, in the parity violating two  ish up to O(1/A%). The reason is as follows. Each of the
pions vertices. In the two kaons verticag_4,a7-g,810-19  parity violating andCP conserving single pion vertices has

all lead to nonzero contribution &, . the same Lorentz structurei+=. In the heavy baryon expan-
sion, the relevant vertices are obtained by the substitution
APPENDIX C: A INTERMEDIATE STATES P iysP, , which vanishes. The leading nonzero contribu-
AND EM INSERTIONS tion arises at first order in therh/, expansion. Consequently,

] ) ) _its contribution to the nucleon anapole moment appears only
As noted in Sec. IV, the amplitudes of Figs. 4—6 vanishy; O(l/AZmN) and since in this work we truncate at

throughO(l/Az) Below, we briefly summarize the reasons O(l/AZ) the PV 7AN vertices do not contribute.
behind this result

1. PV AN contribution 2. Magnetic moment insertions

In the case where th& enters as an intermediate state we The nucleon has a large isovector magnetic moment. We
have the Feynman diagrams shown in Fig. 5. Since the findhus consider associated possible PV chiral loop corrections
and initial states are both nucleons, the two-pion parity vio-which lead to a nucleon anapole moment. The relevant dia-
lating vertices in Eqs(22)—(24) arise first at two-loop order grams are shown in Fig. 4. KD(l/A)Z() there are only four
and contribute to the nucleon anapole moment at the order oélevant diagrams Figs.(@—4(d). Since the magnetic mo-
O(l/Af’(). Although the PVNAs interactions nominally mentis ofO(1/A,) and the strong pion baryon vertex is of
contribute at lower order, in this case such contributions van©(1/F ), the remaining PV vertex must be a Yukawa cou-
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pling if the loop is to contribute aD(1/A%) or lower. For the ~ Since the integrand is the same asNih the integral is

nucleon magnetic moment insertion we have, for example, proportional tov,. Moreover, v,P55=0, so thatMs.
+Ms4=0. Finally, theA magnetic insertions of Figs(€-

. . - uvap V2gaeunh oy 4(h) require the PVNAm vertex, which starts off at
iMga+iMg,=ie€ €,0,0 4 myF [Sp.So]+ O(1/m,F ). Thus, the latter do not contribute up to
o " O(l/Af(). In short, none of the magnetic insertions contribute
% d”k k_ 1 1 at the order to which we work in this analysis.
(2mP v-kv-(q+k) k2—mi+ie’
(Cy 3. PV electromagnetic insertions

wheree, is the photon polarization vector andy is the _Another possible source to the nucleon_ anz_ipole_moment
nucleon magnetic moment. The denominator of the integran@/ses from the PV magnetic moment like insertions as
in Eq. (C1) is nearly the same as fM4,. The numerator SNOWn in Fig. 6. All three PWNN verticesc, 5 in Eq. (21)
contains a single factor &- k. Hence, Figs. 4a and 4b van- @nd PV yAN verticesd, ¢ in Eq. (25 start off with one
ish for the same reason as ddds, . pion, so they are of ordei’D(l//ZXXF,T). Verticesd; g have two.
For the nucleon delta transition magnetic moment inserPions and are orde®(1/A F7). The corresponding contri-
tion we have butions to the nucleon anapole moment appear at order of
O(1/A3) or O(1/AY), respectively. The leading PWAN
) ) 2 ganaeuannn vertices d;_3 do not have pions and are of the order
IMsc+iIMgg=— NE —mE. o€ €00,) O(L/A,). In our case, however, the final and initial states are
N both nucleons. Thé can appear as the intermediate state
dPk kK inside the chiral loop, which leads to an additional factor
X[ P58+ Svpg/’é]f 2m)P v_ﬂk 1/F2 from two strong vertices. In the emtj _ 5 contributes to
the nucleon anapole moment @t(l/Ai). Finally, the PV
1 1 vAA vertices contain oner. Since theA can only appear as
X v-(q+k) K2—m2+ie’ €2 an intermediate state, this vertex contributes at two-loop or-
der and is of higher-order in chiral counting than we consider
where u,y is the nucleon delta transition magnetic momenthere (the corresponding diagrams are not showrhus, to
and P45s=g*"—vtv”+3S*S” is the spini projection op- O(l/A)Z(), the PV electromagnetic insertions do not contrib-
erator in the heavy baryon chiral perturbation framework.ute.
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