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Consistent Batalin-Fradkin quantization of infinitely reducible first class constraints

Stefano Bellucci* and Anton Galajinsky†
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We reconsider the problem of Becchi-Rouet-Stora-Tyutin~BRST! quantization of a mechanics with infi-
nitely reducible first class constraints. Following an earlier recipe@Phys. Lett. B381, 105~1996!#, the original
phase space is extended by purely auxiliary variables, the constraint set in the enlarged space being the first
stage of reducibility. The BRST charge involving only a finite number of ghost variables is explicitly
constructed.

PACS number~s!: 04.60.Gw, 12.60.Jv
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The problem of infinitely reducible first class constrain
originated from superstring theory where a fully satisfacto
covariant quantization seems to be an unsolved probl
Taking a simpler mechanics analogue in four dimensi
these look like

p250, ~pusnpn!ȧ50, ~snpūpn!a50, ~1!

where (pn ,pua ,pūȧ) are momenta conjugate to the variabl
parametrizing a conventionalR4u4 superspace (xn,ua,ū ȧ)
andsn

aȧ are the Pauli matrices. Owing to the null vectorpn
entering the problem, only half of the fermionic constrain
is linearly independent. In particular, the identity

~pusnpn!ȧZ1
ȧa1Z1

ap2[0, ~2!

where Z1
ȧa5(s̃npn) ȧa, Z1

b5pu
b holds. On the constrain

surface not all of the functionsZ1
ȧa prove to be indepen

dent:

Z1
ȧaZ2aḃ'0, Z2aḃ5~snpn!aḃ . ~3!

Apparently this process can be continued, the system at h
being an infinite stage of reducibility@1#. It is worth men-
tioning that, although the correct counting of degrees of fr
dom can be achieved in the course of Becchi-Rouet-St
Tyutin ~BRST! quantization by making use of Euler’
regularization@2#, the expression for the BRST charge i
volves an infinite ghost tower@3# and, hence, looks formal.

A recipe on how to supplement infinitely reducible fir
class constraints up to a constraint system of finite stag
reducibility has been proposed recently@4#. It suffices to ex-
tend the original phase space by purely auxiliary variab
(Ln, pLm), (xa, pxa), (x̄ ȧ , px̄

ȧ), with L being a real bo-
son and (x,x̄) a pair of complex conjugate fermions. The
are required to satisfy reducible constraints such as thos
Eq. ~1! ~one can check that the number and the class of
constraints are just enough to suppress dynamics in the
tor @4#!:

pxa50, ~xsnLn!ȧ50, ~4!
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px̄ȧ50, ~snx̄Ln!a50, ~5!

pLn50, L250, 12Lp50. ~6!

In the extended phase space the reducibility of the orig
constraints~1! can be compensated by that coming from t
sector of additional variables to put the fermionic constrai
in the irreducible form

F̄ȧ[~pusnpn1pxsnLn!ȧ50, ~7!

Fa[~pnsnpū1Lnsnpx̄ !a50, ~8!

C̄ȧ[~xsnLn1pxsnpn!ȧ50, ~9!

Ca[~Lnsnx̄1pnsnpx̄ !a50, ~10!

while in the bosonic sector one has

p250, ~11!

p̃Lm[pLm2~pLL!pm2~pLp!Lm50, ~12!

pLp50,L250,pLL50,12Lp50. ~13!

The equivalence to the initial constraint set seems to be m
transparent if one makes use of the identity

px
a52

1

2Lp
p2pu

a2
1

2Lp
L2xa2

1

2Lp
F̄ȧ~ s̃mpm!ȧ

2
1

2Lp
C̄ȧ~ s̃mLm!ȧa, ~14!

and its complex conjugate. In the new basis the constra
~7!, ~8!, ~11!, and~12! are first class, whereas Eqs.~9!,~10!,
and ~13! involve second class ones. In order to explicit
decouplep̃L

n50 from the second class fermionic constrain
it suffices to redefine them as p̃L

n50→ p̃L
n

2 1
2 xsns̃mpxpm2 1

2 px̄s̃msnx̄pm50. As the Dirac bracket
associated with the second class constraints is introdu
this seems to be inessential here.

Residual reducibility proves to fall in the bosonic secto
Due to the identities~in what follows the symbol ‘‘' ’’ de-
notes an equality up to a linear combination ofsecond class
constraints!
©2000 The American Physical Society01-1
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p̃LL'0, p̃Lp'0, ~15!

there are only two linearly independent components ente
Eq. ~12!, the system in the extended phase space being
stage of reducibility.

It is the purpose of this Brief Report to explicitly con
struct the BRST charge associated with the constraint
~7!–~13!, thus giving an efficient way to cure the infinit
ghost tower problem intrinsic to the original system~1!.

According to the general recipe@1# the nilpotency equa-
tion to determine the BRST charge should be solved un
the Dirac bracket associated to the second class constra
Evaluated in specific coordinate sectors this reads~only the
brackets to be used below are explicitly given here!

$xa,pxb%5
1

2
da

b2
2

D
Lp~snm!b

aLnpm,

$xa,xb%5
2

D
p2~snm!abLnpm,

$pxa ,pxb%5
2

D
L2~snm!abLnpm; ~16!

$Ln,pLm%5dn
m1

2

D
p2LnLm1

2

D
L2pnpm

2
2

D
Lp~pnLm1Lnpm!,

$pLn ,pLm%5
2

D
p2~LnpLm2LmpLn!1

2

D
ppL~pnLm

2pmLn!1
2

D
pL~pLnpm2pLmpn!

2
i

D
~x22x̄2!enmklL

kpl ,

$Ln,Lm%50; ~17!

$ua,pub%5da
b , $ua,ub%50,

$pua ,pub%50; $pn ,pm%50, ~18!

plus complex conjugate expressions for the pairs (x̄,px̄),
( ū,pū).

In the cross sectors the only nonvanishing brackets are~in
what follows we will not need the explicit form of the brack
ets involving thexn variable, these are omitted here!

$pLn ,xa%5
1

D
p2@Lnxa1~xsns̃kLk!

a#

1
1

D
pn~xskLks̃

mpm!a2
1

D
Lp~xsns̃kpk!

a,

~19!
02750
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$pLn ,pxa%5
1

D
L2~pnxa1~xsns̃kpk!a!

1
1

D
Ln~xskpks̃

mLm!a

2
1

D
Lp~xsns̃kLk!a , ~20!

plus complex conjugates.
Given the Dirac bracket, the algebra of the first class c

straints is easy to evaluate,

$ p̃Ln ,p̃Lm%'Unm
kp̃Lk1Unmp2,

$ p̃Ln ,Fa%'Una
b Fb1Unap2,

$ p̃Ln ,F̄ȧ%'Unȧ
ḃF̄ ḃ1Unȧp2, ~21!

with all other brackets vanishing. The structure functions
tering Eq.~21! are given by

Unm
k5

2

D
@~Lnp22pn!dm

k2~Lmp22pm!dn
k#,

Unm5
i

D
~pxx2px̄x̄ !enmklL

kpl ,

Una
b5

1

2
~sns̃kpk!a

b1
1

D
Lnp2da

b1
1

D
~Lnp22pn!

3~Lksks̃
l pl !a

b,

Una5
1

2
~snpū !a2

1

D
Ln~pkskpū !a1

1

D
~Lnp22pn!

3~Lkskpū !a , ~22!

and Unȧ
ḃ5(Una

b)* , Unȧ5(Una)* . Worth noting also is
the orthogonality of the structure functions obtained to
vectorspn , Ln which holds on the second class constrai
surface.

Having evaluated the structure functions, we are now i
position to construct the BRST charge. Associated with
first class constraints~7!, ~8!, ~11!, and~12! are the primary
ghosts ~minimal sector! (C ȧ,P̄ȧ), (Ca,P̄a), (C,P̄),
(Cn,P̄n). These have the standard properties

e~CA!5e~P̄A!5eA11,

gh~CA!52gh~P̄A!51. ~23!

To compensate the overcounting in the sector (Cn,P̄n) @only
two components entering Eq.~12! are linearly independent#

one further introduces the secondary ghosts@1# (C1,P̄1),
(C2,P̄2), these obeying
1-2



e

to

in

BRIEF REPORTS PHYSICAL REVIEW D 62 027501
e~C1,2!5e~P̄1,2!50,

gh~C1,2!52gh~P̄1,2!52. ~24!

The nilpotency equation on the BRST charge

$Vmin ,Vmin%'0, ~25!

should then be solved under the boundary condition

Vmin5FaCa1F̄ȧCȧ1 p̃LnCn1p2C1P̄nLnC1

1P̄npnC21•••, ~26!

which, through Eq.~25!, automatically generates both th
algebra~21! and the identities~15!.

Calculating the contribution of the boundary terms in
Eq. ~25!,

$Vmin ,Vmin%'2P̄m$Lm,p̃Ln%C
1Cn

22~Una
bFb1Unap2!CaCn

22~Unȧ
ḃF̄ ḃ1Unȧp2!CȧCn

2~Unm
kp̃Lk1Unmp2!CmCn1•••, ~27!
ns

n
o

02750
one can partially clarify the structure of the terms lacking
Eq. ~26!. In particular, extending the ansatz~26! by the three
new contributions

1
2 P̄kŨnm

kCmCn1P̄aUnb
a CbCn1P̄ȧUnḃ

ȧCḃCn, ~28!

with

Ũnm
k5Unm

k 2
2

D
pk~Lnpm2Lmpn!,

Ũnm
kLm'

2

D
$Lk,pLn%, Ũnm

k pm'0, ~29!

one can get rid of the first term~which is a manifestation of

reducibility of the constraints! and those involvingp̃L , F,

F̄

e

.

$Vmin ,Vmin%'2Unmp2CmCn22Unap2CaCn22Unȧp2CȧCn22P̄aUng
a Umb

g CmCnCb22P̄ȧUnġ
ȧUmḃ

ġCmCnCḃ1•••.
~30!

In order to verify Eq.~30! a number of Jacobi identities associated to the constraint algebra~21! should be used. These ar
omitted here.

It is instructive then to give the explicit form of the terms quadratic in the structure functions which enter Eq~30!

(Umȧ
ḃUnḃ

ġ2Unȧ
ḃUmḃ

ġ is obtained by complex conjugation!

Uma
bUnb

g2Una
bUmb

g 5H ~snm!a
b1

1

D
~Lnpm2Lmpn!~L ls

l s̃kpk!a
g1

1

D
Lm~sns̃kpk!a

g2
1

D
Ln~sms̃kpk!a

g2
1

D
~Lmp2

2pm!~sns̃kLk!a
g1

1

D
~Lnp22pn!~sms̃kLk!a

g1
1

D
~Lnpm2Lmpn!da

g J p2[Pmna
g p2. ~31!

Being factors ofp2 these suggest a further amendment:

P̄UnaCaCn1P̄UnȧCȧCn1 1
2 P̄UnmCmCn2 1

2 P̄P̄aPnmb
a CmCnCb2 1

2 P̄P̄ȧPnmḃ
ȧCmCnCḃ. ~32!

After tedious calculations with the extensive use of Jacobi identities one can verify that the complete BRST charge

Vmin5FaCa1F̄ȧCȧ1 p̃LnCn1p2C1P̄nLnC11P̄npnC21 1
2 P̄kŨnm

kCmCn1P̄aUnb
a CbCn1P̄ȧUnḃ

ȧCḃCn1P̄UnaCaCn

1P̄UnȧCȧCn1 1
2 P̄UnmCmCn2 1

2 P̄P̄aPnmb
a CmCnCb2 1

2 P̄P̄ȧPnmḃ
ȧCmCnCḃ, ~33!
on-

n-
of
t of
is nilpotent. Only a finite number of ghost generatio
proved to be needed in the extended phase space.

Finally, it is worth mentioning that a formal consideratio
of the present paper can be directly applied to specific m
els. In particular, the superparticle due to Siegel@5#, after a
proper Hamiltonian treatment, leads precisely to Eq.~1! that
d-

we started with. The latter theory has been previously c
sidered in the alternative harmonic superspace approach@6# .
This makes use of Lorentz harmonics@6# in order to extract
linearly independent components from the fermionic co
straints~1! in a covariant way. Having obtained a system
rank two, our result here is in perfect agreement with tha
1-3
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Ref. @6#. The present formulation, however, has the adv
tage that all the variables involved obey the standard sp
statistics relations. Furthermore, the scheme outlined in
article proves to admit a Lagrangian formulation@4,7#, the
latter seems to be problematic in the approach@6#.

Another related approach to be mentioned is that by D
and Zanelli @8# who improved an earlier~noncovariant!
quantization proposal by Kallosh@9# ~see also related work
@10#!. The infinite proliferation of ghosts has been trunca
, T

02750
-
–
is

z

d

there by imposing appropriate conditions on the ghosts v
ables, the latter involving specific~covariant! projectors. In
this respect, it would be interesting to consider the truncat
of the infinite ghost tower already at the second step, follo
ing the approach by Diaz and Zanelli. We expect that
result will agree with the outcome of our technique. This a
other questions related to possible applications to super
ticle, superstring will be considered in a forthcoming pub
cation @7#.
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