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Pair correlation function of Wilson loops
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We give a path integral prescription for the pair correlation function of Wilson loops lying in the world
volume of D-branes in the bosonic open and closed string theory. The results can be applied both in ordinary
flat spacetime in the critical dimensiond or in the presence of a generic background for the Liouville field. We
compute the potential between heavy nonrelativistic sources in an Abelian gauge theory in relative collinear
motion with velocityv5tanh(u), probing length scales down tor min

2 52pa8u. We predict a universal2(d
22)/r static interaction at short distances. We show that the velocity-dependent corrections to the short-
distance potential in the bosonic string take the form of an infinite power series in the dimensionless variables
z5r min

2 /r 2, uz/p, andu2.

PACS number~s!: 11.25.2w, 12.38.Aw, 31.15.Kb
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I. INTRODUCTION

It is an old result due to Wilson@1# that the expectation
value of the loop observableW(C) in QCD has an effective
description at low energies as a sum over random surfa
with a fixed boundary:

^W~C!&[K tr P expS i R
C
dX•AD L ;Zstring@C#. ~1!

C is the closed world line of a heavy quark-antiquark pa
the angular brackets denote the averaging over gauge
configurations, and the quarks are treated as semiclas
sources in the gauge theory@1#. Zstring@C# denotes the sum
over world sheets terminating on a fixed curveC in the
spacetime of some string theory: an open string amplit
with a macroscopic hole in the world sheet. In the gau
theory ^W(C)&.e2Seff [C] is characterized by an area depe
dence in the effective action for large loops with wide
separated quark and antiquark worldlines, with crossover
perimeter growth of the effective action for large loops w
closely separated world lines at fixed spatial separation@1#.
This behavior is characteristic of the long distance effect
dynamics of a large class of phenomenological string th
ries including the Nambu-Goto and Eguchi-Schild strin
@1–3#. D-brane backgrounds of critical string theory in fl
spacetime and at weak coupling@5# enable a universal an
quantitative prediction of the short-distance dynamics
Wilson loops—a regime of QCD that remains largely une
plored by either analytic or lattice techniques. Our resul
extracted directly from a covariant path integral computat
for the critical Polyakov string with boundaries@4,6#, extend-
ing techniques developed in earlier works@7,8#. The key in-
gredient which enables this prediction is its relationship
the vacuum energy computation in string theory: unlike
quantum field theories, the one-loop cosmological cons
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in critical string theory can be unambiguously normalized,
observation due to Polchinski@7#.

Let us review some aspects of the equivalence in Eq.~1!
as known from previous work. The leading quantum corr
tion to the area law from the long-distance effective dyna
ics of the string theory yields an attractive and mod
independent 1/r term in the static potential between tw
heavy sources in gauge theory. The static coefficient is
coupling constant and cutoff independent, and was first
covered using the functional methods of Lu¨scher, Symanzik,
and Weisz@9# in a semiclassical quantization of the Eguch
Schild string. A model-independent argument based on
effective field theory governing the quantum dynamics
large distance scales of a thin flux tube linking the tw
sources gave the result@10#

V~r !5ar 1b2
p

24
~d22!

1

r
1O~1/r 2!, ~2!

where a,b are model-dependent nonuniversal coefficien
andd is the number of spacetime degrees of freedom of
collective coordinate for the thin flux tube. The linear ter
signaling confinement, dominates at large separations.
qualitative form of the static potential in Eq.~2! has been
extensively confirmed in lattice gauge theory analyses wh
a high precision measurement of the linear term is ea
performed. Recent work in string theory@11# has examined
the long-distance effective dynamics of Wilson loops in c
tain largeN gauge theories using a conjectured dual desc
tion as an effective limit of the type-IIB string theory in Ad
spacetimes@12#. In this limit, gravity decouples from the
gauge theory on the D-branes: for largeN, there is a clear
separation of scales between the gauge theory with effec
couplings of O(gsN) and supergravity with couplings o
O(gs). The leading gravitational corrections to the one-lo
amplitude we consider are ofO(gs

2), naturally suppressed a
short distances and at weak coupling, even at finiteN. On the
other hand, the long-distance gauge dynamics of Wils
loops cannot be directly explored by open and closed st
theory without taking an appropriate largeN limit. At long
distances, the bosonic pair correlation function we derive
instead to be interpreted in terms of a different low-ene
©2000 The American Physical Society04-1
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theory—gravity. Duality alters this interpretation conside
ably in nonperturbative string or M theory. We defer th
discussion to a consideration of the superstring@13#.

The idea of using the Polyakov string path integral
extend the analytic estimates for the leading quantum cor
tions to the static potential at long distance into the sh
distance regime is due to Alvarez@6#. The implications of a
1/r term in the short-distance potential between sources
non-Abelian gauge theory are discussed in Ref.@15#. At
short distances, the notion of a thin flux tube no longer ho
but a direct computation of the short-distance potential
tween sources can be performed in a renormalizable st
theory with boundaries. Unlike the Nambu-Goto and Eguc
Schild strings, the quantization of the bosonic Brink–
Vecchia–Howe–Deser–Zumino action@14# due to Polyakov
@31# treats the world-sheet metric as an independent dyna
cal field. The action is renormalizable, enabling in principle
closed form analysis of the string functional integral witho
the need to take an effective long-distance limit. We w
carry out that analysis in this paper forcritical string theory.
We show that D-brane backgrounds of open and clo
string theory in flat spacetime and at weak coupling@5# pro-
vide a calculable framework within which the short-distan
behavior of the static potential can be obtained directly fr
the Weyl invariant string path integral in the critical spac
time dimension. The results can also be adapted to gen
conformally invariant backgrounds of string theory withcm
matter fields coupled to a Liouville field with total centr
charge equal to the critical dimension, following Ref.@16#.
The loops are taken to lie in the (p11)-dimensional world
volume of a Dp-brane—a hypersurface in a highe
dimensional spacetime on which the gauge fields live. In
non-Abelian case each loop lives in anN index Chan-Paton
state of an open and closed string theory within the wo
volume of N coincident Dp-branes. Note that the shor
distance potential between semiclassical sources lying in
world volume of a single D-brane, or coincident D-branes
independent of the non-Abelian nature of the gauge theo
we neglect interactions: for free strings, the colorless am
tude will simply scale asN2 for N coincident D-branes. In
what follows, we derive an expression for the spatial cor
lation function of a pair of Wilson loops lying within the
world volume of a single D-brane in a generic flat spaceti
background of the bosonic open and closed string theory.
extract from this expression a prediction for the sho
distance potential between slow moving sources in the w
volume gauge theory with small relative velocityv5tanhu
.u and relative positionr. This gives

V~r ,u!52~d22!
1

r
@11O~z2!1O~uz/p!1O~u2!#.

~3!

The subleading terms in the potential will be obtained in
systematic expansion for small velocities and short distan
valid down to distances of orderr min

2 52pa8u. They are suc-
cinctly expressed as a convergent power series in powe
the dimensionless variablesz5r min

2 /r2, uz/p, and u2. Note
that the potential is a quantum effect accounting for the fl
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tuations about the minimum action surface which determi
the saddle point of the string path integral. It is time rever
invariant@17#: the power series only contains even powers
u. The numerical coefficient of the static term is a measure
the number of degrees of freedom in the theory describ
the short-distance dynamics. As with the Lu¨scher term in the
long-distance potential between sources in a gauge the
the static coefficient is free of both string coupling consta
and string cutoff dependence. In a theory with supersymm
try, the leading static term will be absent but there is a c
responding velocity-dependent potential@13#.

In this paper, we will give a prescription for the pair co
relation function of macroscopic loop observablesM (Ci),
M (Cf) in bosonic open and closed string theory using
covariant path integral technique for one-loop string amp
tudes developed by Polchinski@7#, which determines unam
biguously their normalization. This technique was applied
the covariant path integral for off-shell closed strings
amplitudes with macroscopic holes in the world she
mapped to fixed curves in spacetime, in Ref.@8#. Explicit
results were obtained for pointlike boundary states but
implementation of boundary reparametrization for fin
sized loops directly in the path integral has been lacking
far. We note that there exists a Becchi-Rouet-Stora-Tyo
~BRST! analysis of boundary reparametrization invarian
~see, for example, Ref.@18#! but BRST methods are unsui
able for addressing issues related to the normalization of
vacuum amplitude. The path integral implementation
boundary reparametrization invariance we will give
adapted from the work of Cohenet al. @8#, and also from the
earlier works@31,6,7#. We define the pair correlation func
tion of macroscopic loop observables as the covariant st
path integral

^M ~Ci !M ~Cf !&[E
[Ci ,Cf ]

@dg#@dX#

Vol~gauge!
e2S[X,gab ;m0 ,l0

( i , f )] ,

~4!

a reparametrization invariant sum over world sheets of cy
drical topology terminating on fixed boundary curvesCi ,
Cf , which are taken to lie in the world volume of
Dp-brane in flat spacetime. We will gauge both world-she
diffeomorphisms and Weyl transformations of the worl
sheet metric. Our results are derived for string theory ind
526 critical spacetime dimensions although they could
adapted to generic conformally invariant backgrounds
string theory withcm matter fields coupled to a Liouville
field, with total central charge equal to the critical dimensi
@16#, as outlined in Sec. III B.S@X,gab# is the bosonic
Brink–Di Vecchia–Howe–Deser–Zumino action@14# plus
appropriate bulk and boundary terms as necessary to
serve diffeomorphism and Weyl invariance. We compu
quantum fluctuations about a saddle point describing a
face of minimum action stretched between coplanar loops
fixed lengthLi , L f , with spatial separationR. The short-
distance potential between sources is extracted from the
loop length limit of this amplitude:Li , L f→` with R held
fixed.
4-2
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It should be noted that the one-loop amplitude with m
roscopic boundaries is free of any coupling constant dep
dence. Corrections to the leading term in string perturba
theory areO(gopen) from splitting, andO(gs) and higher
order from open and closed string loops. Heregs5gopen

2 ,
wheregopen is identified with the Yang-Mills coupling, and
gravitational corrections enter atO(gs

2) as closed string
loops—suppressed at weak coupling. Nevertheless, eve
Dp-brane backgrounds where the gauge fields live inp,d
21 spatial dimensions, evidence for the higher-dimensio
string theory in which the gauge fields live is present in
numerical coefficient of the leading term in the sho
distance potential. The reason is that the worldsheet flu
ates in all of the spacetime dimensions—both parallel
transverse to the world volume of the D-brane. From
viewpoint of a non-Abelian gauge theory, the transve
fluctuations arise from scalar fields in the adjoint represe
tion of the gauge group.

We begin in Sec. II with a discussion of classical boun
ary reparametrization invariance, explaining its implemen
tion in the string path integral. A boundary state in t
bosonic string is specified by an embedding and an einb
For fixed embedding of the loops, we give a boundary d
feomorphism invariant prescription for the measure in
path integral, summing over reparametrizations of
boundary. The gauge fixed path integral is derived in de
in Sec. III A. We determine the normalization of the pa
integral as in Polchinski’s analysis of the torus amplitude
the bosonic string theory@7#, extended to string amplitude
with boundaries@6,8,21#. For completeness, we retain th
Liouville dynamics although our main interest is in strin
theory in the critical spacetime dimension. Sec. III B is
aside explaining how this analysis can be applied to Po
kov strings with generic conformally invariant backgroun
for the Liouville field following Ref. @16#. Readers whose
main interest is in the potential calculation for string theo
in the critical spacetime dimension can skip this subsect
The modifications to the pair correlation function for gene
boundary conditions pertaining to slow-moving sources
relative motion within the world volume of the D-brane
derived in Sec. III C, an analysis similar to the scattering
slow moving D-branes in the bulk transverse spa
@19,20,17#.

The computation of the potential between slow movi
sources at short distances is given in Sec. IV. We cons
heavy sources in the gauge theory in relative collinear m
tion with r 25R21v2t2, v,,1, thus giving a simple real
ization of coplanar loops while mimicking nonrelativist
straight line trajectories in the EuclideanizedX0, Xp plane.
Herer is their relative position, andt is the zero mode of the
Euclideanized time coordinateX0. We will compute the
Minkowskian potential for two sources in relative colline
motion with nonrelativistic velocityv,,1 for small sepa-
rationsr. In Sec. IV A, we extract the short-distance pote
tial between two point sources traversing closed curves
spacetime for small separationsr from the large loop length
limit of the pair correlation function of Wilson loops. Th
scattering planeX0, Xp can be wrapped into a spacetim
cylinder by periodically identifying the coordinateX0. Then
02600
-
n-
n

in

al
e

u-
d
e
e
a-

-
-

in.
-
e
e
il

-

n.

n

f
e

er
-

-
in

the closed world lines of sources are loops singly wou
about this cylinder, where the relative position of the sour
at proper timet is r (t). We identify these closed world line
with Wilson loops. Define the effective potential as follow

^M ~Ci !M ~Cf !&52 i lim
T→`

E
2T

1T

dtVeff @r ~t!,u#, ~5!

where we have taken the large loop length limitLi.L f.T
→`, with R held fixed. The dominant contribution to th
potential between sources at short distances is from
massless modes in the open string spectrum. Restrictin
these modes, we can express the potential as a double ex
sion in small velocities and short distances@20# with the
result

V~r ,u!52
tanh~u!/u

r ~11uz/p!1/2H ~d22!
g @ 1

2 ,~p1uz!/z#

G~ 1
2 !

1O@z2/~11uz/p!2#J , ~6!

wherez is a dimensionless scale factor,z5r min
2 /r2, andr min is

the minimum distance that can be probed in the small ve

ity expansion at short distances@19#: r min
2 52pa8u. g @ 1

2 ,(p
1uz)/z# is the incomplete gamma function. The resumm
tion and systematics of the small velocity expansion are
cussed in Sec. IV A. The scale factorz determines the mag
nitude of the velocity-dependent corrections and, therefo
the accuracy of the expansion. For a given accuracy, w
fixed z value, we can probe arbitrarily short distancesr by
simultaneously adjusting the velocityu. Self-consistency of
the double expansion implies, however, an upper bound
the relative velocityu<u1 , thereby determining the regim
of validity for the small velocity approximation. It should b
noted that the leading terms in the potential can be obtai
without use of the small velocity expansion. The potentia
universal: independent of the dimensionality of the high
dimensional D-brane, the geometrical parameters of the l
configuration, and the string scale cutoff. We note that th
is no evidence for a departure from analyticity in the form
the potential between point sources in the bosonic string
short distances. The phase transition found in the largd
analysis of a class of phenomenological string models
cluding the Nambu-Goto string@22# appears to be a larged
artifact.

D0-branes are pointlike spacetime topological defe
present in the generic background of the open and clo
bosonic string theory. In Sec. IV B, we note that the sho
distance potential between two static D0-branes in boso
string theory gives a linear interactionVD0-brane52(d
22)r /2pa8. The static potential is the shift in the vacuu
energy due to a constant background electromagnetic po
tial, but with vanishing electric field strength@5,19,17#. The
D0-branes are assumed to have fixed spatial separation i
directionXd21, and to be in relative motion with nonrelativ
istic velocityv in an orthogonal directionXd @19,20,17#. The
4-3
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systematics of the small velocity short-distance double
pansion, and the value for the minimum distance probed
the scattering of D0-branes, is identical to the results
tained in Sec. IV A in general agreement with previo
work.

The bosonic string has a tachyon, formally suppresse
obtaining this result, which must be stabilized in order
obtain a theory with a sensible ground state~see, for ex-
ample, the recent discussion in Ref.@23#!. Alternatively, it
can be eliminated from the spectrum of physical states, a
possible in the fermionic type-I and type-II string theori
@17#. Evidence for distance scales in string-M theory shor
than the string scale down to the eleven-dimensional Pla
length was originally observed in the form of the velocit
dependent potential between D0-branes in relative motio
tachyon-free backgrounds of type-II string theory@19,20,17#.
D-branes correspond to BPS states in the typ
supergravity-Yang-Mills theory, solitons with masses
O(1/g). The observation that solitons with masses of or
1/g can probe shorter distance scales than ordinary fi
theory solitons is originally due to Shenker@24#. Our result
illustrates this principle directly in the gauge theory on t
world volume of a D-brane in the bosonic string. Stated
complete generality for open and closed string theories
weak coupling: a Dirichlet boundary, or Wilson loop, ca
probe distance scales arbitrarily shorter than the string sc
whether in the world volume of the D-brane or in the bu
space orthogonal to the brane. We conclude with a b
discussion of the implications of our result in the broad
context of gauge theory in generic backgrounds of string
theory.

II. BOUNDARY REPARAMETRIZATION INVARIANCE

Following Cohenet al. @8#, the tree correlation function
for a pair of macroscopic string loops can be represented
path integral over embeddings and metrics on world sh
of cylindrical topology terminating on fixed curvesCi , Cf ,
which lie within the world volume of a D-brane:

^M ~Ci !M ~Cf !&5E
[Ci ,Cf ]

@dg#@dX#

Vol@gauge#

3e2SP[X,gab] 2m0*d2sAg, ~7!

whereSP is the bosonic Brink–Di Vecchia–Howe–Deser
Zumino action@14# on a surface with boundaries terminatin
on fixed curves. Note that the amplitude is free of the str
coupling, since the Euler characteristicx equals zero, and the
boundary cosmological constant terms have been elimin
in favor of the bulk term since these are not independ
Lagrange multipliers on a surface of cylindrical topology.
this section, we discuss the boundary conditions on
world-sheet fields which determine the saddle point of
path integral about which we are to compute quantum fl
tuations.

Begin by considering the boundary conditions on the e
bedding coordinates. Setting the variation of the class
action with respect to theXM to zero on the boundary yield
02600
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~dXM !n̂a]aXMu]M50, M50, . . . ,d21. ~8!

We will require boundary reparametrization invariance of t
amplitude: each point on the physical boundaryC is identi-
fied with a point on the piecewise continuous world-sh
boundary]M , but only up to a boundary reparametrizatio
Classically, this is most succinctly expressed as the modi
Dirichlet boundary condition on the embedding functions@6#

dXmu]M} t̂ a]aXmu]M , m50, . . . ,p, and zero Dirichlet
boundary conditionsXmu]M50, m5p11, . . . ,d21 in di-
rections orthogonal to the brane volume. We can replace
~8! with the equivalent condition

n̂at̂ b]aXm]bXmu]M50, m50, . . . ,p. ~9!

Note that upon imposition of the modified Dirichlet boun
ary condition on alld coordinates of aspace-fillingD-brane,
the intrinsic world-sheet metricgab satisfies the same class
cal equation of motion as the embedding metricgab
5]aXM]bXM, summing onM50, . . . ,d21. As a conse-
quence, under the mapping of the world-sheet boundar
fixed curves in the world volume of the D-brane, classica
the physical length of any closed curve is identified with t
parameter length of a corresponding hole on the string wo
sheet.

Let s1 be the circle variable parametrizing any hole

the world sheet, andê5Aĝu]M be the einbein on the bound
ary, with fiducial metricĝ. The metric on an arbitrary surfac
with cylindrical topology can be brought to the fiducial form
ds25 l 2(ds1)21(ds2)2, where 0<s1<1, 0<s2<1, and
the area of the surface equalsl. A reparametrization of the
boundarySPDiff ]M , is a one-to-one invertible mapping o
holes on the world sheet into corresponding fixed curves
spacetime

S@Xm~s1!u( i , f )#5 x̃m
( i , f )@ f ( i , f )~s1!# 0<s1<1,

~10!

Thus, thex̃( i , f )(s1) are fiducial maps of the boundaries o
the world sheet into the spacetime curvesCi , Cf , and the
f ( i , f ) are arbitrary diffeomorphisms ofs1 parametrizing the
corresponding holes on the world sheet.

The path integral sums over quantum fluctuations abo
classical background determined by an extremum of the
tion. We look for minimum action configurations in the cla
sical phase space of the Polyakov string. We separate eaX

into a piecex̄ which solves the classical equation of motio
with fiducial metricĝ and assumes the functional formx̃( i , f )

on the boundary, and a quantum fluctuation which satis
the zero Dirichlet condition. In directions orthogonal to th
worldvolume of the D-brane, thex̃( i , f ) are identically zero.
Expanding the classical action in a complete set of mode

xn
( i , f )5E

0

1

ds1x( i , f )e2p ins1
, nPZ, ~11!

spanning the classical phase space of boundary config
tions, gives@8#
4-4
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SP@ x̄;ĝ#5
1

4pa8 (
n52`

`
2np

sinh~2np/ l !

3@~ uxn
i u21uxn

f u2!cosh~2np/ l !

22Re~xn
i
•xn

f* !#. ~12!

Since our interest is in the large loop length limit, where t
dynamics is hopefully universal and independent of the
tailed geometric parameters of the loops, we make a ju
cious guess for minimum action configurations,x̃( i , f ), obtain-
ing the saddle point action from Eq.~12!. A simple case is a
pair of circular Wilson loops of uniform radiusL/2p sepa-
rated by a distanceR. Align the circles parallel to theXp, X0

plane, with their axis in a perpendicular direction. HereX0 is
a Euclidean coordinate. The minimum area world sheet
catenoid@25#:

x̄5@a cos~2ps1!,a sin~2ps1!,h~a!#,

a25~Xp!21~X0!2, ~13!

with L8/2p<a<L/2p. The radial parametera is related to
the height of the catenoidh(a) by the equation a
5(L8/2p)cosh@2ph(u)/L8#. L8/2p is the minimum radius of
the cross section for the catenoid. It is straightforward
evaluate the Polyakov action for this surface. Consider
maps that must be included in the sum over reparametr
tions of the world-sheet boundary for this configuration
loops. In general, this is a sophisticated problem in the r
resentation theory of the group Diff(S1). However, in the
large loop length limit, the analysis is rather simple sin
winding number one maps with no self-intersections are
ergetically favored.

This feature of the large loop length dynamics is straig
forwardly captured by considering the simple problem
summing over the reparametrizations of loops with one
more marked points. For such maps, the sum over repa
etrizations of the boundary is easily implemented in clos
form prior to taking a large loop length limit. For notation
ease, letl denote the circle variable,s1. We consider non-
intersecting curves with the following characteristics: ea
C( i , f ) is piecewise smooth withK straight line intervals of
equal lengthsa

( i , f ) and K turning points, or corners,la
( i , f ) ,

a51, . . . ,K. Any curvature on the boundary of the wor
sheet, if present, is permitted only at the corners. As can
seen from the Gauss-Bonnet theorem, this would induc
non-vanishing Euler characteristic xcorner5
2( I 51

2 (a51
K da

( i , f )/2p, and consequently a dependence
the string coupling constant in the amplitude. The an
terms arise from the delta function in the geodesic curva
at the corners. Thebulk curvature is, however, required to b
smooth: this implies that if we consider loop configuratio
with corners, it is convenient to choose the loops to beco-
planar. For rectangular, or right-angled, loops, the turni
angle,da

(I )56p/2, for everyI, a. The simplest closed loop
with net turning angle 2p is a rectangular loop with fou
edges,K54. The example shown in Fig. 1 is a pair of c
planar nested rectangular loops, withI 52, K54. The net
02600
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turning angle forboth loops vanishes. Thus,xcorner50 for
Ci , Cf , and there is no dependence on the string coup
constant in the pair correlation function. It should be not
that, in general, the presence of corners would be a viola
of boundary Weyl invariance giving a correction to the Lio
ville action @26#. Any pair of coplanar nested loops with a
bitrary numbers of edges having net turning angle zero gi
a Weyl invariant loop configuration with a well-define
saddle configuration: the stretched world sheet in the pl
containing the loops. Smooth loops in this same class are
boundaries of an annulus—a pair of coplanar nested circ
loops

x̄5@~R01Rs2!cos~2ps1!,~R01Rs2!sin~2ps1!#,
~14!

whereLi52pR0 , L f52p(R01R), andR is their separation
in the radial direction. Periodically identifying Euclidea
time, X0 is the angular, andXp the radial, direction. Now
take the large loop length limit. Comparing with our discu
sion of the cylindrical spacetime in the introduction, the c
cular loops correspond to the closed worldlines of sta
sources with fixed spatial separationR. From Eq.~12!, and in
the limit l→`, we obtain the saddle point actionSP( x̄,ĝ)
52R2l /4pa8. It is easy to verify an identical result for
pair of coplanar nested right-angled loops with arbitra
numbers of edges.

III. MACROSCOPIC LOOP CORRELATION FUNCTION

We now present the derivation of the closed string am
tude linking fixed curvesCi , Cf of length Li , L f , in an
embedding spacetime with metricgab5]aXm]bXm , and spa-
tial separationR. We perform the sum over world sheet me
rics using an idea taken from Cohenet al. @8#. We begin with
the integration over all embeddings (Xm,Xm), with fixed fi-
ducial bulk metric, and fixed fiducial einbeins on the para
eter boundary. We choose a fiducial metric on the wo

sheet,ds25ĝabdsadsb, with ê5Aĝ. Next we sum over
world sheet metric deformations that leave fixed the para
etrization of the boundary. Finally, we perform an integ
over the ‘‘boundary data,’’ $e(l; l a

( i , f ))%, summing a
51, . . . ,K, for all 2K intervals, restoring boundary rep

FIG. 1. x̃(l) is a map from the boundaries of the annulus to
pair of coplanar nested rectangular loops which lie within t
worldvolume of a D-brane.
4-5
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arametrization invariance. This last sum is defined as follo
~see also the related ideas in Ref.@27,26#!.

A boundary state is specified by an einbein and an e
bedding function (e,x̃m). The embedding function is spec
fied by our choice of saddle configuration, but we wish
leave its parametrization unfixed. The sum over einbe
implements reparametrization invariance on the bound
and we must divide by the volume of the group of bound
diffeomorphisms Diff]M . Thus, we need a reparametrizatio
invariant measure for the path integration over einbeins.
unique choice is Polyakov’s quadratic form for metric defo
mations@31#, restricted to any given boundary interval. O
any interval, a boundary reparametrizationSPDiff ]M , acts
as

S@Xmus
a
( i , f )#5 x̃m

( i , f )@ f a
( i , f )~l!# la21<l<la ,

a51, . . . ,K, ~15!

where thela are points in the range 0<l<1, andl varies
continuously with l050 identified with lK51. Thus,
x̃m

( i , f )(l) is the fiducial map of theath interval on the circle
into theath interval of the curveC( i , f ) , and f a

( i , f )(l) is the
corresponding diffeomorphism ofl on the ath interval of
the circle. Schematically, the path integration over quant
fluctuations due to an arbitrary diffeomorphism of the wo
sheet has been decomposed:

1

order~D !
E @ddX#@ddg#

Vol@Diff #
→E @ddeI~l,ê!#

Vol@Diff ]M#

3E
[ ê]

@ddg#

Vol@Diff M#
E

[ ĝ;ê]
@ddX#,

~16!

where Vol@Diff M# denotes the volume of the group of di
feomorphisms vanishing on the boundary, and Vol@Diff ]M#
that of the group of boundary diffeomorphisms. We divi
by the order of the subgroup of the disconnected compon
of the diffeomorphism group, D˜ : discrete diffeomorphisms
of the world sheet left invariant under the choice of conf
mal gauge@7#. Thus, a factor of 2 in the denominator co
rects for the twofold invariance of the measure of the p
integral under the diffeomorphism

s1→2s1. ~17!

This symmetry will be left invariant under the gauge fixin
of reparametrizations of the world sheet to be described
low. The measure for embeddings and metrics do not in
vidually respect Weyl invariance but, in critical strin
theory, their combination is Weyl invariant, and we therefo
divide through by the volume of the Weyl group. In wh
follows, we will make this gauge fixing procedure explicit

A. Gauge fixing reparametrizations

The gauge fixing of world-sheet metrics and the path
tegration of metrics and embeddings proceeds as in Ref.@7#,
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except that all harmonic functions on the world sheet, s
lars, and vectors, (X,ha), are orthogonally decomposedC
5c̄1c8. The c8 vanish on the boundary, and thec̄ are
harmonic functions taking valuesc̄u]M5c̃ on the boundary.
The x̄ determine the saddle point configuration as descri
in the previous section. In general, we will allow for fluctu
tions of the world-sheet fields on]M , subject only to the
constraint that they preserve the normal direction to
brane, the fixed embedding of the spacetime curves, and
smoothness condition at any corners of the boundary
present. We will assume the reader is familiar with Ref.@7#
and simply assemble the different contributions to the p
integral.

Begin with the integration over embedding functions w
fixed fiducial world sheet metric. We choose nested copla
loops with physical lengthsLi , L f and fixed spatial separa
tion R. For each of thed scalar degrees of freedom, norma
izing the path integration over harmonic functions vanish
on the boundary as in Refs.@7,21# gives the result

e2R2l /4pa8~det8D0!2d/25e2R2l /4pa8FhS i l

2 D G2d

, ~18!

where the determinant of the Laplacian on scalars is co
puted with the zero Dirichlet boundary condition, andl is the
cylinder modulus defined by the fiducial metricds2

5 l 2(ds1)21(ds2)2, 0<s1<1, 0<s2<1. With this
choice, the area of the world sheet is normalized tol.

Next consider the integration over metric deformatio
vanishing on the boundary. As in Refs.@31,6,7,21#, we iso-
late the dependence on symmetric traceless variations o
metric and divide out by the volume of the gauge gro
@Diff M#0, diffeomorphisms of the world sheet continuous
connected to the identity and vanishing on the bounda
Normalize the path integrations on the cylinder as in Re
@7,21#:

E @ddĝ#e2udĝu2/2[)
s

E @ddĝ#se2udĝus
2 /251

5JM~f,ĝ!E @ddf#efĝ

3E @ddh# ĝ
8E

0

`

dle2udĝu2/2, ~19!

where udĝu2 is the quadratic form for metric deformation
andJM(f,ĝ) is the Jacobian from the change of variables
deformations of, respectively, the Liouville modedf, diffeo-
morphismsdha , vanishing on the boundary, and the cyli
der modulusl, computed in Ref.@7#. The basic assumption
underlying Eq.~19! is the locality of the measure: the inte
gral over elements@ddg# is a product of integrals over ele
ments@ddg#s at fixed values of the world-sheet coordina
s. The only reparametrization invariant local counterte
~free of derivatives of the world-sheet metric! is of the form
M*d2sAg, which can be absorbed in a renormalization
the bulk cosmological constantm0 present in the bare actio
4-6



nd
l-

ld
-
d
lt
n

a
r
s
th
l
in

b

lle
ur
.
n

m

t

th

a-

beins

.

e
s

-
th
n
te-
s
o-

a-

if

he
m-

gth
ings
lle
tric

PAIR CORRELATION FUNCTION OF WILSON LOOPS PHYSICAL REVIEW D62 026004
given in Eq.~7!. Thus, the Gaussian integral on the left-ha
side of Eq.~19! can be set to unity at the cost of renorma
izing m0 @7#. The same argument applies to any of the wor
sheet fields (dha,df,dX). The final value of the renormal
ized bulk cosmological constantmR is set to zero at the en
of the calculation, giving a manifestly Weyl invariant resu
for the bosonic string theory in the critical spacetime dime
sion d526.

Taking into account the contributions of the conform
Killing vector and zero modes of the Laplacian on vecto
D1 the infinity from the integration over diffeomorphism
@dh# ĝ

8 vanishing on the boundary is canceled against
volume of the gauge group@Diff M#0. The result is an integra
over the cylinder modulus times the quantum functional
tegral for Liouville field theory

JM~f,ĝ!E @ddf#efĝe2SL[f,ĝ] 2Sboundary[f,ê] , ~20!

whereSboundaryincludes any boundary terms necessitated
the world-sheet gauge symmetries.SL@f,ĝ# is the unrenor-
malized Liouville action@31#

SL@f,ĝ#5
d226

48p E
M

d2sAĝ@ 1
2 ĝab]af]bf1R̂f#

2m0E
M

d2sAĝef, ~21!

with an integration norm given by

udfu25E d2sAĝef~df!2. ~22!

We will treat the measure for the einbeins following@7,8#.
Note that the quantum functional integral in Eq.~20! denotes
all possible bulk and boundary deformations of the Liouvi
field. In particular, it receives corrections from the meas
for diffeomorphisms on the boundary as is shown below

We continue with the sum over metric deformations no
vanishing on the boundary, orthogonal to the modes sum
in Eq. ~19!. The metric on the world sheet isĝabe

f, and the

fiducial einbein induced on the boundary isê5Aĝ. The
length of either boundary in the cylinder metric*0

1dlê,
equalsl. A variation of the einbein on theath interval is the
result of a diffeomorphisml→ f a

( i , f )(l) and a possible shif
df in the Liouville field. Thus,

H $~ ê1de!@l1d f a
( i , f )~l!#%S 11

d

dl
~d f a

( i , f )! D1êdfJ ef

5H ê~l!1ê
d

dl
d f a

( i , f )1de~l!1O~d f a
( i , f )!21êdfJ ef

5$ l a
( i , f )1dra

( i , f )@ f a
( i , f )~l!#%ef, ~23!

where l a
( i , f ) is the length of theath interval of the corre-

sponding hole on the world sheet, anddr is a rescaling of
the einbein which can always be absorbed in a shift of
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Liouville field on the boundary. The restriction of the qu
dratic form for metric deformations to the boundary]M
gives a measure on the tangent space to the space of ein
on any given interval

udeu25E dl@ ê~l; l !#21@de~l; l !#2

5E dlF2ê~l!~d f !
d2

dl2 ~d f !1
$dr@ f ~l!#%2

ê
G ,

~24!

where the zero modedr0@ f (l)# is the functional change in
the length of the interval induced by a diffeomorphism1

Normalizing the path integrals as in Eq.~19!:

1[E @dde#e2udeu2/25J]M~ ê!E @dd f # ĝ@ddr# ĝefe2udeu2/2,

~25!

where the JacobianJ]M is obtained as before, from a chang
of variables to deformations of boundary diffeomorphism
d f and einbein rescalingsdr. Since a rescaling of the ein
bein is absorbed by a shift of the Liouville field we can, wi
no loss of generality, setr50. Consequently, the integratio
over @ddr# can be consistently dropped from the path in
gral. The infinity from the integration over diffeomorphism
will be canceled by the volume of the gauge group of diffe
morphisms on the boundary Diff]M , which has no discon-
nected part. Combining this analysis of boundary deform
tions with the bulk deformations in Eq.~19!, we can write

1[F ~A/2p!1/2~detxabxab!
1/2~det8D1!1/2

~detQab/2p!1/2 G
3)

I 51

2 S det8F2
1

l I
2

d2

dl2G D 1/2E @ddf# ĝefe2udgu2/2.

~26!

The factor in square brackets is the JacobianJM derived in
Ref. @7#. A is the world-sheet areaA5*d2sAg, and the term
in the denominator arises from conformal Killing vectors,
present. On the cylinder, the area,A5 l , in the metric defined
above, and we have a single conformal Killing vector. T
functional determinant of the Laplacian on vectors is co
puted as in Refs.@7,8#. With the fiducial cylinder metric
given above,

JM5

~ l /2p!1/2S 2

l 2D 1/2F S 1
2 l 2h4S i l

2 D G1/2

~ l 3/2p!1/2 , ~27!

1Note that the conformal class of the metric determines the len
of any boundary circle, a modulus of the surface. Thus, rescal
of the fiducial einbein must be absorbed in a shift of the Liouvi
field on the boundary in order that the conformal class of the me
is left unchanged.
4-7
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up to f-dependent terms absorbed in the Liouville action
The second term in Eq.~26! is the boundary JacobianJ]M

the product of independent determinants for each ofK inter-
vals,sa

I , a51, . . . ,K. Note that the diffeomorphism acts o
each circle as a whole, but independently on each of the
boundaries. Since the boundaries have a common param
length l we obtain

J]M5det8F2
1

l 2

d2

dl2G52l . ~28!

A similar path integration appears in the problem of obta
ing the off-shell propagator for a relativistic point particle,
discussion of which appears in Ref.@8#. See, also, the ansat
for a scalar quark loop given in Ref.@27#.

Assembling Eqs.~16!, ~18!, ~20!, ~21!, and~26!, our result
for the pair correlation function of piecewise smooth mac
scopic loopsCi , Cf at fixed separationR is

^M ~Ci !M ~Cf !&5E
0

`

dle2R2l /4pa8FhS i l

2 D G22d

3E @ddf# ĝef

Vol~Weyl!
eS[f;ĝ] , ~29!

where S@f;ĝ#5SL@f;ĝ#1Sboundary is the action for the
Liouville field including boundary terms. In the critica
spacetime dimensiond526, the Liouville dynamics entirely
decouples, and we can consistently setf to zero in Eq.~29!
while dividing out by the volume of the Weyl group.

B. Generic Liouville backgrounds

It is possible to consider the casescmatter,25 following
the method in Ref.@16#. We require that the path integra
expression for the loop correlation function preserve qu
tum conformal invariance. We begin by suppressing qu
tum fluctuations and restrict to the zero modef0 noting that
the classical equation of motion is that of a free scalar field
the regime f0→2`: the exponential potential is sup
pressed. We will preserve this asymptotic property in de
ing the quantum theory: the wave functions~operators! of
Liouville conformal field theory are required to matc
smoothly to free field states in thef0→2` regime, charac-
terized by momentum and occupation number alone.

Quantum Liouville conformal field theory can be defin
by a functional integral over a renormalized Liouville fie
fR , with conformally invariant free field norm

udfRu25E d2sAĝ~dfR!2. ~30!

The ansatz of Ref.@16# is that the effects of renormalizatio
can be lumped in the potential, leaving a kinetic term forfR
with the canonical normalization of a free scalar field theo
Thus, we write
02600
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E @ddf#efĝe2SL[f,ĝ] 1Sboundary[f,ê]

5E @ddf# ĝ
8E

2`

`

df0e2S[fR ,ĝ] , ~31!

whereS@fR# includes all possible renormalizable terms
the bulk, and on the boundary, that preserve both diffeom
phism and Weyl invariance. Note that a corner anomaly
spontaneous breaking of Weyl invariance on the bound
contributing an additional term not included inS@fR ,ĝ#.

In a Weyl invariant theory, the renormalized actio
S@fR ,ĝ# takes the general form

S@fR ,ĝ#5
1

8pEM
d2sAĝ@ 1

2 ĝab]afR]bfR1QR̂fR#

2mRE
M

d2sAĝeafR2(
I 51

2

lR
(I )E

CI

dlêeb(I )fR,

~32!

where Q, a, and b (I ), are constants determined by the r
quirement@16# that every term in Eq.~32! be a dimension
one primary field, in a conformal field theory of vanishin
total central chargecm1cf1cghosts50. The renormalized
bulk and boundary cosmological constantsmR , lR

(I ) are ar-
bitrary marginal couplings in the conformal field theor
With no loss of generality, we could set the boundary c
mological constant term on the cylinder to zero, retaini
mR .

The only mode offR that survives on the boundary isf0,
and the modesfR8 satisfy Dirichlet boundary conditions as i
Refs.@6–8,21#. Then, conformal invariance requires

Q5Acm225

3
, a5~6Acm212Acm225!/2A3,

~33!

the upper sign matching the dimension of the cosmolog
constant operator as computed in a semiclassicalcm→2`
saddle point evaluation of the path integral for the Liouvi
field f @27,16#. We will not pursue these cases further sin
our main interest in this paper is string theory in the critic
spacetime dimension which corresponds to the theory w
cm525, cfR

51.

C. Generic boundary conditions

Following Refs.@19,20#, it is an easy extension to com
pute the pair correlation function with boundary conditio
pertaining to closed world lines for a pair of slow movin
sources in relative motion. Consider a pair of coplanar nes
rectangular loops with the plane of the loops aligned para
to the (X0,Xp) plane.X0, Xp are both Euclidean coordinate
Let us rotate one of the loops relative to the other through
anglef in the (X0,Xp) plane, and take the large loop leng
limit Li . L f . T→`, with R held fixed. Upon analytic
continuationX0→ iXM

0 , the loops may be interpreted as th
4-8
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closed world lines of slow moving scalar quarks in colline
motion at short distancesr and with relative velocityv
5tanh(2if),,1.

Consider the boundary conditions onX0, Xp. We leave
the boundary conditions at one end-point fixed, and cha
the condition at the other end point toXpuCf

5vX0. Param-

etrize the world sheet with open string end pointss250,1 at
boundariesCi , Cf , respectively, and an open string loo
parametrized 0<s1<1. Recall thats1 is identified with the
fiducial circle variablel defined in the previous section. A
complete set of eigenfunctions of the scalar Laplacian
composed from the basis

c (n1 ,n2)
(a) 5e2n1p is1

sin~@n21a#ps2!, ~34!

wherea takes values2 iu/p or 11 iu/p. The velocity has
been parametrized asv5tanhu and we work in the smal
velocity approximation withv.u. The remainingd22 em-
bedding coordinates satisfy the zero Dirichlet boundary c
dition as in Sec. III A. The functional determinant ofD0
takes the form

detD0
(a)5 )

n1 ,n2
F S 4p2

l 2 D S n1
21

~n21a!2l 2

4 D G , ~35!

where l is the cylinder modulus defined above, and2`
<n1<`, n2>0. This is computed using zeta function reg
larization as in Ref.@7#:

ln detD52 lim
s→0

d

ds (
n1 ,n2

F S 4p2

l 2 D S n1
21

~n21a!2l 2

4 D G2s

.

~36!

The infinite sum overn1 is expressed as a contour integral
a Sommerfeld-Watson transform. The contourC runs coun-
terclockwise from`1 i e to 2`1 i e. The result is

2 lim
s→0

d

dsS 4p2

l 2 D 2s R
C

dz

2p i

3 (
n2>0

Fz21
~n21a!2l 2

4 G2s

cot~pz!. ~37!

Writing the cotangent as2 i cot(pz)52/(12e22p iz)21, we
can extract the contribution from the integral that is finite
the limit s→0:

2 (
n2>0

lnu12e2p l (n21a)u. ~38!

The term singular in the limits→0 has a finitel-dependent
remnant whose coefficient can be identified as the regul
vacuum energy of a complex scalar
02600
r

e
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ed

2p lE0[ lim
s→0

d

dsS 4p2

l 2 D 2s R
C
dz (

n2>0
Fz21

l 2~n21a!2

4 G2s

5 lim
s→0

d

dsH S 4p2

l 2 D 2s

l 122sz~2s21,a!

3
@G~12s!#2

G~222s!
2122s tan~ps!J

52p l @~a2 1
2 !22 1

12 #. ~39!

Combining Eqs.~38! and ~39!, and withq5e2p l , gives the
result

~detD (v)!21/25q21/121[u2/p22 i (u/p)]/2 )
n250

`

@~12qn22 iu/p!

3~12qn2111 iu/p!#21, ~40!

which can be written as the ratio of Jacobi theta functio
Setting u50 and suppressing then250 term in the result
recovers the cylinder determinant for a pair of real scal
with Dirichlet boundary condition@h( i l /2)#22.

Substituting in Eq.~29!, we obtain an analogous result fo
the pair correlation function of macroscopic loops in critic
string theory with boundary conditions pertaining to sourc
in slow relative motion:

^M ~Ci !M ~Cf !&52E
0

`

dle2R2l /2pa8h~ i l !222
h~ i l !e2u2l /p

iQ11~ul/p,i l !
.

~41!

For convenience, we have rescaledl→2l in the integral.

IV. SHORT DISTANCE POTENTIAL BETWEEN
SOURCES

We will now compute the potential between heavy no
relativistic sources in the gauge theory in relative colline
motion with velocity v5tanhu.u. Parametrize the close
world lines of the sources by the proper time variablet the
zero mode of the Euclidean embedding coordinateX0. Let
r (t)25R21v2t2 denote the relative coordinate of the tw
sources in theX0, Xp plane, whereR is their static separa
tion. We express the amplitude as an integral o
Minkowskian time2 i t. The loops are identified with the
closed world lines of a heavy quark-antiquark pair in t
gauge theory. This computation is described in Sec. IV
We emphasize that the open string theory results derive
Sec. IV A areonly to be applied to the short-distance limit o
the potential between heavy sources in the gauge theory

D0-branes are pointlike spacetime topological defects
the bosonic string theory@17#. Following Refs.@19,20,17#, in
Sec. IV B we compute the short distance interaction betw
two D0-branes in the bosonic string theory obtaining a lin
repulsivestatic interaction. The systematics of the small v
locity and short-distance double expansion yields sim
conclusions for the minimum distance as in Sec. IV A.
4-9
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A. Wilson loops and a short distance 1Õr potential

We define the potential between sources traversing fi
world lines,Veff@r (t),u# as follows:

^•••&52 i E
2T/2

T/2

dtVeff@r ~t!,u#, ~42!

and take the limitT→`, with r held fixed. Then,

Veff~r ,u!54~8p2a8!21/2

3E
0

`

dle2r 2l /2pa8l 1/2h~ i l !221
tanh~u!e2u2l /p

Q11~ul/p,i l !
.

~43!

In the limit of short distances, the amplitude is dominated
the exchange of the lowest lying modes in the open str
mass spectrum. We therefore expand in powers ofe22p l ,
organizing the integrand as an infinite summation over o
string modes, and restrict to the lowest lying states. We s
press the leading contribution from the open stri
tachyon—absent in any stable background, and focus on
subleading contribution from massless open string mod
We will show that the short distance potential betwe
sources in the bosonic string—analogous in some respec
a nonsupersymmetric background of the superstring, h
static remnant originating in the massless modes, a mea
of the degrees of freedom determining the short-distance
namics of Wilson loops. Consider

Veff~r ,v !522~8p2a8!21/2

3E
0

`

dle2r 2l /2pa8l 1/2
tanh~u!e2u2l /p

sin~ul !

3$e2p l1@2212 cos~2ul !#1O~e22p l !%,

~44!

where the restriction to massless modes gives

V~r ,u!522~8p2a8!21/2

3E
0

`

dle2r 2l /2pa8l 1/2
tanh~u!e2u2l /p

sin~ul !

3@2212 cos~2ul !#. ~45!

We will now assume small velocities and short distanc
performing a double expansion in the variablesr, u. The
regime of validity for the smallu expansion is determined b
the behavior of the cosecant function. We can perform
Taylor expansion in the first half-period of its argument,
<ul,p. Consider the corrections to this result from t
integration domainul>p. The sine function changes sign
every np, nPZ1, so that the regions,np6e, where the
integrand is singular can be excised from the domain of
tegration. This leaves the intervalsnp1e<ul<(n11)p
2e. For sufficiently smallu values the oscillations in the
integrand will be increasingly rapid, smearing out the in
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gral @17#. The result can always be bounded, or evaluated
numerical integration, as a self-consistency check on the
lidity of the small velocity short-distance approximatio
This check provides an upper limit,u1 , on the permissible
velocities. With this restriction, the contribution from th
domainl .p/u1 can be dropped and we will suppress it
what follows. Upon Taylor expansion of the periodic fun
tions in the integrand, the potential can therefore be writ
as

V~r ,u!522~8p2a8!21/2

3E
0

p/u1

dle2r 2l /2pa8l 21/2e2u2l /ptanh~u!/u

3F241 (
k51

`

Ck~ul !2k1 (
k51

`

(
m51

`

Ck,m~ul !2(k1m)G ,

~46!

where the coefficients of the expansion in powers oful take
the form

Ck5
~21!k22k11

2k!
1

48uB2ku
2k!

~22k2121!,

Ck,m5~21!m22(m11)
~22k2121!uB2ku

2k!2m!
, ~47!

and theB2k are the Bernoulli numbers. Integrating overl
gives a systematic expansion for the potential in powers
u2/r 4. Let us define a dimensionless scaling variablez
5r min

2 /r2, where r min
2 52pa8u. The velocity-dependent cor

rections to the potential are succinctly expressed as con
gent power series in the dimensionless variables,z, uz/p,
andu2:

V~r ,u!52
1

G~ 1
2 !

tanh~u!/u

r ~11uz/p!1/2

3H 24g@ 1
2 ,~p1uz!/z#

1 (
k51

`

Ckg@2k1 1
2 ,~p1uz!/z#

3@z/~11uz/p!#2k1 (
k51

`

(
m51

`

Ck,m

3g@2~k1m!1 1
2 ,~p1uz!/z#

3@z/~11uz/p!#2(k1m)J . ~48!

The g „n,(p1uz)/z…’s are incomplete gamma functions. I
writing Eq. ~48! we have assumedu/u1,,1. Note that if
the variablez is taken to zero, for distancesr 2..r min

2 , we
recover the ordinary gamma functionsG(n). The potential
4-10
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has a static remnant in the bosonic string. Settingu to zero in
Eq. ~48! gives the simple result

V~r !52~d22!
1

r
, ~49!

where d526 is the critical spacetime dimension of th
bosonic string. The velocity-dependent corrections have
analog in the type I8 superstring@13#. An analogous static
term is present in the contribution from the Neveu-Schw
sector@13#, prior to cancellation by other contributions to th
vacuum amplitude@17#. It is evident from Eq.~48! that our
result for the potential between slow moving sources ho
for arbitrarily short distance scales lower than the string sc
r min

2 ;2pa8u, limited only by the domain of validity for the
double expansion in small velocities and short distances

Let us compare the short distance static potential with
known form of the heavy quark-antiquark potential in QC
at long distances, a regime described by the effective dyn
ics of a thin flux tube linking the sources. The usual rou
from the Wilson loop expectation value to the static hea
quark-antiquark potential in gauge theory is as follows. C
sider a rectangular Wilson loopRT in the limit T/R→` with
R held fixed. The long legs of the rectangle are interpreted
the proper time world lines of a heavy quark and antiqua
and the loop expectation value takes the forma(T)e2V(R)T,
with V(R) interpreted as the static quark-antiquark poten
at fixed spatial separationR. a(T) is some function with
slower fall off than an exponential. The reader may won
why we considered a pair correlation function rather th
extract the potential from the expectation value of a sin
rectangular loop, as is usual in gauge theory. The reaso
Weyl invariance: the worldsheet spanning a single rectan
lar boundary loop has curvature singularities at the corn
leading to Weyl anomalies which would render a covari
path integral quantization untenable. The large loop len
limit hides this problem since the corners are pushed tt
→6`. The pair correlation function does not suffer fro
this problem. In particular, for any pair of coplanar nest
right-angled loops we had a well-defined expression for
string path integral evenprior to taking the large loop length
limit.

The heavy quark-antiquark potential at long distances
plays a confining linear plus attractive inverse power l
behavior

V~r !5ar 1b1
g

r
1O~1/r 2!. ~50!

a andb are known to be nonuniversal constants. Of grea
interest is the universal constantg first obtained by Lu¨scher
et al. using heat kernel methods in Ref.@9#: g52(d
22)p/24 in the effective theory of the Eguchi-Schild strin
@3#. Recall the model-independent argument for the coe
cient of the 1/r term @10# ~see, also, the discussion in Re
@28#!. Consider the quantum dynamics of a thin flux tu
linking quark and antiquark as described by an effective fi
theory. Letd be the number of degrees of freedom. Now t
fluctuations of a long thin flux tube ind21 spatial dimen-
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sions are described by a two-dimensional nonrenormaliza
effective field theory ofd22 collective modes, with univer-
sal behavior that ofd22 free scalar fields, each with vacuu
energy equal top/24. TheO(1/r 2) terms that are quartic an
higher order in the collective fields are irrelevant. T
vacuum energy arises from the infinite sum of free field h
monic oscillators in their ground state, with an independ
sum for each ofd22 degrees of freedom. Irrelevant cou
plings to higher dimensional operators can induce inter
tions; they determine the nonuniversal constantsa, b. Not
surprisingly, this long-distance result for the potential is
agreement with our expression forE0, the vacuum energy
from each ofd22 free world-sheet scalars given in Eq.~39!.

Our computation demonstrates that there is also a uni
sal 1/r static potential atshort distances: independent of the
dimensionality of the D-brane world volume, the geometric
parameters of the loops, and the string scale cutoff. As
can see from Eq.~49!, the numerical coefficient at short dis
tances predicted by string theory differs from Lu¨scher’s
long-distance result. This may be interpreted in the effect
field theory as a wave function renormalization for the W
son loop observable at short distances, an effect whichcan-
not be determined in a field theoretic analysis insensitive
boundary effects. Moreover, there is aninfinite number of
velocity-dependent corrections to the 1/r term which arealso
universal. We obtained these corrections by a system
double expansion in small velocities and short distanc
conveniently expressed as a convergent power series in
mensionless variables,z5r min

2 /r2, uz/p, andu2.
Our results can also be considered within the more tra

tional context of phenomenological models for short distan
nonperturbative dynamics in QCD~see, for example, Ref
@31#, and references therein!. The generic backgrounds fo
the Liouville field with cm,d described in Sec. III C could
be of interest in this context. We note that recent work2 on
the short-distance potential between heavy sources in Q
has examined modifications of the potential at short d
tances originating in nonperturbative instanton effects@32#.

B. Minimum distance and the short distance
scattering of D0-branes

D0-branes are pointlike topological defects in spaceti
present in the generic background of the bosonic str
theory. Consider the potential between two D0-bran
probed in their nonrelativistic scattering@19,29,20#. The D0-
branes are assumed to have fixed spatial separationb in the
direction Xd21, and are in relative slow motion in an or
thogonal directionXd with velocity v @19#. At long distances
their static interaction potential will take the Newtonia
form. The effective potential at long distances is domina
by the exchange of the lowest lying states in theclosedstring
spectrum. With no loss of generality, we can obtain the
tential between two D0-branes as a special case of the
eral expression for the scattering of two Dp-branesp,d.

2We would like to thank M. Eides for bringing this work to ou
attention.
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We will show that the systematics of the small veloc
short-distance double expansion and the value for the m
mum distance probed in the scattering,r min , is identical to
the result obtained above, in general agreement with pr
ous analyses@19,20,17#.

Adapting the computation of the bosonic string annu
amplitude between static Dp-branes@30,17# to the boundary
conditions pertinent to Dp-brane scattering, and restricting
massless modes gives

VDp-brane~r ,u!52Vp~8p2a8!2(p11)/2

3E
0

`

dle2r 2l /2pa8l 212p/2F tanh~u!

i sin~2 iu !

3@2212 cosh~2u!#G . ~51!

Notice that, unlike the expression for the short distance
tential, a Taylor expansion of the periodic functions in t
integrand for small velocities and long distances gives o
O(u2) corrections to the static potential. The integration d
main is unrestricted for small velocities. Performing the
tegration overl gives the simple result

VDp-brane~r ,u!52Vp~8p2a8!2p/2GS 232p

2 D
3~2pa8!(232p)/2r p223@241O~u2!#.

~52!

Settingp50 gives the Newtonian long distance interacti
for D0-branes in ad526 dimensional spacetime.

At short distances, we will find a crossover phenomen
analogous to what was found in the interaction potential o
Dp-brane with a Dp8-brane for dimensionalities,p2p8
Þ0 mod 4 @20#: the asymptotic long- and short-distan
forms of the pair potential between Dp-branes in the bosonic
string arenot identical. Consider the expression for the e
fective potential due to the exchange of massless mode
the open string spectrum

VD p-brane~r ,u!52Vp~8p2a8!2(p11)/2

3E
0

`

dle2r 2l /2pa8l 2(p11)/2

3F tanh~u!e2u2l /p

sin~ul !
@2212 cos~2ul !#G .

~53!

The small velocity short-distance double expansion can
performed as explained in the previous section. The resu
the expression
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VDp-brane~r ,u!52Vp~8p2a8!2(p11)/2tanh~u!/u

3H 24g F2
p11

2
,~11uz/p!/zG

3S r 2

2pa8D (p11)/2

~11uz/p!(p11)/2

1O~z2,uz/p,u2!J , ~54!

where the velocity-dependent corrections are obtained
systematic expansion in the same dimensionless variablez2,
uz/p, andu2 defined above. Forr 2..r min

2 , z→0, we re-
cover the gamma functionsG(2n). Recall that gamma func
tions with negative argument can be defined by iterating
well-known identity2nG(2n)5G(2n11). We note that
the short-distance static potential between D0-branes is
ear, andrepulsive

VD0-brane~r !52~d22!
r

2pa8
1O~z2,uz/p,u2!. ~55!

This result holds in a self-consistent small velocity sho
distance approximation with corrections ofO(z2,uz/p,u2).
It is valid for distances in the range 2pa8u,,r 2

!2pa8 and velocities in the rangeu,,u1 , where the
upper bound is estimated as described in Sec. IV A.

The static potential between D0-branes corresponds to
vacuum energy in a background of open string theory w
constant electromagnetic potentialAd21, but with vanishing
electric field strengthEd215]0Ad2150 @5,19,17#. The po-
tential is a measure of the shift in the vacuum energy rela
to that in the background with no D-brane sources.

V. CONCLUSIONS

Our computation in open and closed string theory is p
formed at weak coupling in flat spacetime backgrounds
in the critical spacetime dimension. There is a supersymm
ric analogue to this result which will be explored in forth
coming work@13#. We have demonstrated the validity of th
double expansion in small velocities and short distan
down to a minimum distancer min

2 52pa8u, in general agree-
ment with previous estimates@24,19,20,17#. Thus, string-M
theory predicts aninfinite number of velocity-dependent cor
rections to the potential between two heavy sources in r
tive slow motion in a gauge theory, the numerical coe
cients of which are predicted by a systematic expansion.
are not aware of a comparable theoretical analysis wh
reliably probes this regime of QCD. We note that there is
evidence of nonanalytic behavior in the potential betwe
sources at short distances, suggesting that the phase tr
tion at short distances previously found in Refs.@22,27# is a
larged artifact.

The numerical difference between the coefficient of t
1/r term we have found in the static potential at short d
tance and that given by Lu¨scher’s effective field theory
analysis for the QCD flux tube valid at long-distance sca
4-12
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deserves explanation. We should note that the flux tube
ture is inherently a long-distance concept whose predicti
cannot be naively extrapolated to short distances. Cons
the (d526)-dimensional bosonic string. At both long an
short distances there is a proportionality factor in ther
potential which equalsd22, the number of transverse mas
less gluon modes. The short-distance static potential betw
heavy point sources in the gauge theory is a measur
fluctuations in the vacuum energy density. It would be gra
fying if one could exploit the direct calculation of the sho
distance potential from string theory given in this paper
explore nonperturbative physics associated with the Q
vacuum at short distances, a subject rich in conjecture an
open questions@31#. This deserves further study.

We conclude by noting that the characteristic D0-bra
velocity in the supersymmetric theory is of orderu.gs

2/3

@29#, which implies a minimum distancer min
2 .a8gs

2/3. It is
interesting to note that at largeN, the shortest distances th
can be probed in the small velocity short-distance appro
mation are pushed down tor min

2 5geff
2/3/N @20#, where geff
ys

av
v-

la
v.

,
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5gsN. In the Introduction, we emphasized the importance
taking a largeN limit in order to keep gravitational correc
tions to amplitudes in the open string sector suppresse
long distances; this was also an essential observation un
lying Maldacena’s conjecture@12#. We see now that taking
the largeN limit extends the regime of weakly coupled ope
and closed string theoryboth in the directions of longer-and
of shorter-distance scales. We believe it would be of gr
interest to develop a systematic formulation of the largeN
limit of open and closed string theory.
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