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Pair correlation function of Wilson loops
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We give a path integral prescription for the pair correlation function of Wilson loops lying in the world
volume of D-branes in the bosonic open and closed string theory. The results can be applied both in ordinary
flat spacetime in the critical dimensialor in the presence of a generic background for the Liouville field. We
compute the potential between heavy nonrelativistic sources in an Abelian gauge theory in relative collinear
motion with velocityv =tanhg), probing length scales down td,,,=27a’u. We predict a universat (d
—2)/r static interaction at short distances. We show that the velocity-dependent corrections to the short-
distance potential in the bosonic string take the form of an infinite power series in the dimensionless variables
z=r2,/r% uzl =, andu?.

PACS numbgs): 11.25-w, 12.38.Aw, 31.15.Kb

[. INTRODUCTION in critical string theory can be unambiguously normalized, an
observation due to Polchinskr].

It is an old result due to Wilsofil] that the expectation Let us review some aspects of the equivalence in(Ex.
value of the loop observabM/(C) in QCD has an effective as known from previous work. The leading quantum correc-
description at low energies as a sum over random surfacd#®n to the area law from the long-distance effective dynam-
with a fixed boundary: ics of the string theory yields an attractive and model-

independent 1/ term in the static potential between two
heavy sources in gauge theory. The static coefficient is the
<W(C)>E<tr P ex;{i fﬁ dX-A) > ~Zging[C]. (1) coupling constant and cutoff independent, and was first dis-
¢ covered using the functional methods ofscher, Symanzik,
and WeisZ 9] in a semiclassical quantization of the Eguchi-
C is the closed world line of a heavy quark-antiquark pair,Schild string. A model-independent argument based on an
the angular brackets denote the averaging over gauge fiekffective field theory governing the quantum dynamics at
configurations, and the quarks are treated as semiclassidarge distance scales of a thin flux tube linking the two
sources in the gauge theofy]. Zgying[C] denotes the sum sources gave the resiit0]
over world sheets terminating on a fixed curgein the
spacetime of some string theory: an open string amplitude
with a macroscopic hole in the world sheet. In the gauge
theory (W(C))=e %[l is characterized by an area depen-
dence in the effective action for large loops with widely where «,8 are model-dependent nonuniversal coefficients,
separated quark and antiquark worldlines, with crossover to andd is the number of spacetime degrees of freedom of the
perimeter growth of the effective action for large loops with collective coordinate for the thin flux tube. The linear term,
closely separated world lines at fixed spatial separdtign  signaling confinement, dominates at large separations. The
This behavior is characteristic of the long distance effectivequalitative form of the static potential in E¢2) has been
dynamics of a large class of phenomenological string theoextensively confirmed in lattice gauge theory analyses where
ries including the Nambu-Goto and Eguchi-Schild stringsa high precision measurement of the linear term is easily
[1-3]. D-brane backgrounds of critical string theory in flat performed. Recent work in string theof¥1] has examined
spacetime and at weak coupliff] enable a universal and the long-distance effective dynamics of Wilson loops in cer-
quantitative prediction of the short-distance dynamics oftain largeN gauge theories using a conjectured dual descrip-
Wilson loops—a regime of QCD that remains largely unex-tion as an effective limit of the type-IIB string theory in AdS
plored by either analytic or lattice techniques. Our result isspacetimeqd12]. In this limit, gravity decouples from the
extracted directly from a covariant path integral computationgauge theory on the D-branes: for larje there is a clear
for the critical Polyakov string with boundarig$,6], extend-  separation of scales between the gauge theory with effective
ing techniques developed in earlier woflks8]. The key in-  couplings of O(gsN) and supergravity with couplings of
gredient which enables this prediction is its relationship toO(gs). The leading gravitational corrections to the one-loop
the vacuum energy computation in string theory: unlike inamplitude we consider are (ﬂ(gﬁ), naturally suppressed at
quantum field theories, the one-loop cosmological constarghort distances and at weak coupling, even at fiit®n the
other hand, the long-distance gauge dynamics of Wilson
loops cannot be directly explored by open and closed string

T 1
V(r)=ar+pB- Zl(ol—z)F+0(1/r2), 2

*Email address: shyamoli@phys.psu.edu theory without taking an appropriate largelimit. At long
"Email address: ychen@phys.psu.edu distances, the bosonic pair correlation function we derive is
*Email address: novak@phys.psu.edu instead to be interpreted in terms of a different low-energy

0556-2821/2000/62)/02600413)/$15.00 62 026004-1 ©2000 The American Physical Society



SHYAMOLI CHAUDHURI, YUJUN CHEN, AND ERIC NOVAK PHYSICAL REVIEW D 62 026004

theory—qgravity. Duality alters this interpretation consider-tuations about the minimum action surface which determines
ably in nonperturbative string or M theory. We defer thatthe saddle point of the string path integral. It is time reversal
discussion to a consideration of the superstfihg]. invariant[17]: the power series only contains even powers of
The idea of using the Polyakov string path integral tou. The numerical coefficient of the static term is a measure of
extend the analytic estimates for the leading quantum corre¢he number of degrees of freedom in the theory describing
tions to the static potential at long distance into the shortthe short-distance dynamics. As with thescher term in the
distance regime is due to Alvar¢@]. The implications of a long-distance potential between sources in a gauge theory,
1/r term in the short-distance potential between sources in the static coefficient is free of both string coupling constant
non-Abelian gauge theory are discussed in Ré&b|. At and string cutoff dependence. In a theory with supersymme-
short distances, the notion of a thin flux tube no longer holddry, the leading static term will be absent but there is a cor-
but a direct computation of the short-distance potential beresponding velocity-dependent potentia8.
tween sources can be performed in a renormalizable string In this paper, we will give a prescription for the pair cor-
theory with boundaries. Unlike the Nambu-Goto and Eguchi+elation function of macroscopic loop observabM{C,),
Schild strings, the quantization of the bosonic Brink—Di M(C;) in bosonic open and closed string theory using a
Vecchia—Howe—-Deser—Zumino actiph?] due to Polyakov  covariant path integral technique for one-loop string ampli-
[31] treats the world-sheet metric as an independent dynamiudes developed by Polchingki], which determines unam-
cal field. The action is renormalizable, enabling in principle abiguously their normalization. This technique was applied to
closed form analysis of the string functional integral withoutthe covariant path integral for off-shell closed strings—
the need to take an effective long-distance limit. We willamplitudes with macroscopic holes in the world sheet
carry out that analysis in this paper fonitical string theory. mapped to fixed curves in spacetime, in Reé]. Explicit
We show that D-brane backgrounds of open and closedesults were obtained for pointlike boundary states but an
string theory in flat spacetime and at weak coup[igpro-  implementation of boundary reparametrization for finite
vide a calculable framework within which the short-distancesized loops directly in the path integral has been lacking so
behavior of the static potential can be obtained directly fromfar. We note that there exists a Becchi-Rouet-Stora-Tyotin
the Weyl invariant string path integral in the critical space-(BRST) analysis of boundary reparametrization invariance
time dimension. The results can also be adapted to generisee, for example, Ref18]) but BRST methods are unsuit-
conformally invariant backgrounds of string theory with able for addressing issues related to the normalization of the
matter fields coupled to a Liouville field with total central vacuum amplitude. The path integral implementation of
charge equal to the critical dimension, following REI6]. boundary reparametrization invariance we will give is
The loops are taken to lie in the ¢ 1)-dimensional world adapted from the work of Coheat al.[8], and also from the
volume of a [p-brane—a hypersurface in a higher- earlier works[31,6,7. We define the pair correlation func-
dimensional spacetime on which the gauge fields live. In théion of macroscopic loop observables as the covariant string
non-Abelian case each loop lives in Bhindex Chan-Paton path integral
state of an open and closed string theory within the world
volume of N coincident Op-branes. Note that the short- _
di : : : o B [dg][dX] _¢ NG
istance potential between semiclassical sources lying in the(M(ci)M(cf»: ——— g SXGapimorg" T
world volume of a single D-brane, or coincident D-branes, is [c; .cqVol(gauge
independent of the non-Abelian nature of the gauge theory if 4
we neglect interactions: for free strings, the colorless ampli-
tude will simply scale asN? for N coincident D-branes. In  a reparametrization invariant sum over world sheets of cylin-
what follows, we derive an expression for the spatial corredrical topology terminating on fixed boundary curves,
lation function of a pair of Wilson loops lying within the C,, which are taken to lie in the world volume of a
world volume of a single D-brane in a generic flat spacetimeDp-brane in flat spacetime. We will gauge both world-sheet
background of the bosonic open and closed string theory. Wgiffeomorphisms and Weyl transformations of the world-
extract from this expression a prediction for the short-sheet metric. Our results are derived for string theorg in
distance potential between slow moving sources in the world- 26 critical spacetime dimensions although they could be
volume gauge theory with small relative velocity=tanhu  adapted to generic conformally invariant backgrounds of
=Uu and relative positiom. This gives string theory withc,, matter fields coupled to a Liouville
field, with total central charge equal to the critical dimension
[16], as outlined in Sec. Il B.§X,g,,] is the bosonic
Brink—Di Vecchia—Howe—Deser—Zumino acti¢t4] plus
(3)  appropriate bulk and boundary terms as necessary to pre-
serve diffeomorphism and Weyl invariance. We compute
The subleading terms in the potential will be obtained in aquantum fluctuations about a saddle point describing a sur-
systematic expansion for small velocities and short distancefice of minimum action stretched between coplanar loops of
valid down to distances of ordef,,=2ma’u. They are suc- fixed lengthL;, L, with spatial separatiofR. The short-
cinctly expressed as a convergent power series in powers olistance potential between sources is extracted from the long
the dimensionless variablas:rﬁqin/rz, uz/7, andu®. Note loop length limit of this amplitudeL;, L{—o with R held
that the potential is a quantum effect accounting for the flucfixed

V(r,u)= —(d—2)%[1+O(22)+O(uz/77)+0(u2)].
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It should be noted that the one-loop amplitude with mac-the closed world lines of sources are loops singly wound
roscopic boundaries is free of any coupling constant deperabout this cylinder, where the relative position of the sources
dence. Corrections to the leading term in string perturbatiorat proper timer is r (7). We identify these closed world lines
theory areO(gqpen from splitting, andO(gs) and higher  with Wilson loops. Define the effective potential as follows:
order from open and closed string loops. Heye= ggpen,
whereggpen is identified with the Yang-Mills coupling, and
gravitational corrections enter a:D(gﬁ) as closed string
loops—suppressed at weak coupling. Nevertheless, even in

Dp-brane backgrounds where the gauge fields liv@ind  \yhere we have taken the large loop length litgit=L ;=T

—1 spatial dimensions, evidence for the hlgher-d|men3|onal_m, with R held fixed. The dominant contribution to the
string theory in which the gauge fields live is present in thepotential between sources at short distances is from the
numerical coefficient of the leading term in the short- passiess modes in the open string spectrum. Restricting to
distance potential. The reason is that the worldsheet fluctynege modes, we can express the potential as a double expan-

ates in all of the spacetime dimensions—both parallel andjon in small velocities and short distanck20] with the
transverse to the world volume of the D-brane. From thegqgt

viewpoint of a non-Abelian gauge theory, the transverse
f!uctuanons arise from scalar fields in the adjoint representa- tanh(u)/u v}, (m+uz)iz]
tion of the gauge group. V(ru)=——————n (d—2) ———————

We begin in Sec. Il with a discussion of classical bound- r(l+uz/m) r'(3)
ary reparametrization invariance, explaining its implementa-
tion in the string path integral. A boundary state in the
bosonic string is specified by an embedding and an einbein. +0[Z?/(1+ UZ/TF)Z]} , (6)
For fixed embedding of the loops, we give a boundary dif-
feomorphism invariant prescription for the measure in the ) ) ) > 2 )
path integral, summing over reparametrizations of theVherezisadimensionless scale factar; ri,/r*, andr i, is
boundary. The gauge fixed path integral is derived in detaifh® minimum distance that can be probed in the small veloc-
in Sec. Il A. We determine the normalization of the pathity expansion at short distanc€s9]: ra,,.=2ma’u. y[3,(7
integral as in Polchinski’s analysis of the torus amplitude in+uz)/z] is the incomplete gamma function. The resumma-
the bosonic string theor}y7], extended to string amplitudes tion and systematics of the small velocity expansion are dis-
with boundaries[6,8,21. For completeness, we retain the cussed in Sec. IV A. The scale factodetermines the mag-
Liouville dynamics although our main interest is in string nitude of the velocity-dependent corrections and, therefore,
theory in the critical spacetime dimension. Sec. Ill B is anthe accuracy of the expansion. For a given accuracy, with
aside explaining how this analysis can be applied to Polyafixed z value, we can probe arbitrarily short distancely
kov strings with generic conformally invariant backgroundssimultaneously adjusting the velocity Self-consistency of
for the Liouville field following Ref.[16]. Readers whose the double expansion implies, however, an upper bound on
main interest is in the potential calculation for string theorythe relative velocityu<u, , thereby determining the regime
in the critical spacetime dimension can skip this subsectionof validity for the small velocity approximation. It should be
The modifications to the pair correlation function for genericnoted that the leading terms in the potential can be obtained
boundary conditions pertaining to slow-moving sources inwithout use of the small velocity expansion. The potential is
relative motion within the world volume of the D-brane is universal: independent of the dimensionality of the higher-
derived in Sec. lll C, an analysis similar to the scattering ofdimensional D-brane, the geometrical parameters of the loop
slow moving D-branes in the bulk transverse spaceconfiguration, and the string scale cutoff. We note that there
[19,20,17. is no evidence for a departure from analyticity in the form of

The computation of the potential between slow movingthe potential between point sources in the bosonic string at
sources at short distances is given in Sec. IV. We consideshort distances. The phase transition found in the lafge
heavy sources in the gauge theory in relative collinear moanalysis of a class of phenomenological string models in-
tion with r’=R?+v?72, vy<<1, thus giving a simple real- cluding the Nambu-Goto strin{22] appears to be a largs
ization of coplanar loops while mimicking nonrelativistic artifact.
straight line trajectories in the EuclideanizXd, XP plane. DO-branes are pointlike spacetime topological defects
Herer is their relative position, and is the zero mode of the present in the generic background of the open and closed
Euclideanized time coordinatX®. We will compute the bosonic string theory. In Sec. IV B, we note that the short-
Minkowskian potential for two sources in relative collinear distance potential between two static DO-branes in bosonic
motion with nonrelativistic velocity <<1 for small sepa- string theory gives a linear interactioWpg.pane —(d
rationsr. In Sec. IV A, we extract the short-distance poten-—2)r/2wa’. The static potential is the shift in the vacuum
tial between two point sources traversing closed curves ienergy due to a constant background electromagnetic poten-
spacetime for small separationgrom the large loop length tial, but with vanishing electric field streng{b,19,17. The
limit of the pair correlation function of Wilson loops. The DO-branes are assumed to have fixed spatial separation in the
scattering planex®, XP can be wrapped into a spacetime directionX®"1, and to be in relative motion with nonrelativ-
cylinder by periodically identifying the coordina®®. Then istic velocityv in an orthogonal directioX® [19,20,17. The

+T
MCoM(C)==ilim [ drvlr(ul ©

T—oo
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systematics of the small velocity short-distance double ex- (5XM)ﬁa‘7aXM|¢9M:Ov M=0,...d—1. )
pansion, and the value for the minimum distance probed in
the scattering of DO-branes, is identical to the results obye will require boundary reparametrization invariance of the
tained in Sec. IV A in general agreement with previousamplitude: each point on the physical bound@ris identi-
work. fied with a point on the piecewise continuous world-sheet
The bosonic string has a tachyon, formally suppressed iBoundarysM, but only up to a boundary reparametrization.
obtaining this result, which must be stabilized in order toCjassically, this is most succinctly expressed as the modified
obtain a theory with a sensible ground stasee, for ex-  Dirichlet boundary condition on the embedding functipék
ample, the recent discussion in RE23]). Alternatively, it SXH, -y XH|, ©=0,...p, and zero Dirichlet
can be eliminated from the spectrum of physical states, as ﬁoun%Mary cgnditdign’yﬂ 0 m= p+1,...d—1 in di-
possible in the fermionic type-l and type-Il string theories .o ions ‘orthogonal to the brane volume. We can replace Eq.
[17]. Evidence for distance scales in string-M theory shorter8) with the equivalent condition
than the string scale down to the eleven-dimensional Planc&
length was originally observed in the form of the velocity- fath o yu _ _
dependent potential between DO-branes in relative motion in 00X X, m=0, #=0,... p. ©
tachyon-free backgrounds of type-Ii string thept,20,17.  Note that upon imposition of the modified Dirichlet bound-
D-branes correspond to BPS states in the type-llry condition on ald coordinates of @pace-fillingD-brane,

supergravity-Yang-Mills theory, solitons with masses ofthe intrinsic world-sheet metrig,,, satisfies the same classi-
O(1/g). The observation that solitons with masses of orderg] equation of motion as the embedding metrg,

1/g can probe shorter distance scales than ordinary field- 5 xM5, x™, summing onM=0, ... d—1. As a conse-

theory solitons is originally due to Shenki4]. Our result  guence, under the mapping of the world-sheet boundary to
illustrates this principle directly in the gauge theory on thefixed curves in the world volume of the D-brane, classically,
world volume of a D-brane in the bosonic string. Stated inthe physical length of any closed curve is identified with the

complete generality for open and closed string theories aarameter length of a corresponding hole on the string world
weak coupling: a Dirichlet boundary, or Wilson loop, can gheet.

probe distance scales arbitrarily shorter than the string scale, | et ¢! pe the circle variable parametrizing any hole on

whether in the world volume of the D-brane or in the bulk ~ [ L
space orthogonal to the brane. We conclude with a brie*he wgrld sheet, and= \/§|‘9"" be the einbein on the bound-

discussion of the implications of our result in the broaderd"y, With fiducial metriog. The metric on an arbitrary surface

context of gauge theory in generic backgrounds of String_M\Nlth cylindrical topology can be brought to the fiducial form,

theory. ds?=1%(dot)2+ (de?)?, where G<o'<1, 0<¢?<1, and

the area of the surface equadlsA reparametrization of the

boundaryZ, € Diff ,, , is a one-to-one invertible mapping of

holes on the world sheet into corresponding fixed curves in
Following Cohenet al. [8], the tree correlation function Spacetime

for a pair of macroscopic string loops can be represented as a N =~ 0 e(ify 1 .

path integral over embeddings and metrics on world sheets  =[X.(aM)¢.n]=X V[ f0D(ah)] O<o'<1,

of cylindrical topology terminating on fixed curves , Cs, (10

which lie within the world volume of a D-brane:

Il. BOUNDARY REPARAMETRIZATION INVARIANCE

Thus, thex(-N(g1) are fiducial maps of the boundaries of
dalrdX the world sheet into the spacetime curn@s C;, and the
[dg[dX] e et intc etime cu ar
m f1) are arbitrary diffeomorphisms af* parametrizing the
[ci.cqVollgaug corresponding holes on the world sheet.
« @~ SP[X.Gapl ~ 1ol 420§ % The path integral sums over quantum fluctuations about a
' classical background determined by an extremum of the ac-
tion. We look for minimum action configurations in the clas-

. : . . “=2=""" sical phase space of the Polyakov string. We separateXach
Zumino action14] on a surface with boundaries terminating P P y 9 P

on fixed curves. Note that the amplitude is free of the strindnto a pIecex Wh'ChA solves the classical equation Oim"“"”
coupling, since the Euler characteristiequals zero, and the With fiducial metricg and assumes the functional fond:"
boundary cosmological constant terms have been eliminate@ the boundary, and a quantum fluctuation which satisfies
in favor of the bulk term since these are not independenthe zero Dirichlet condition. In directions orthogonal to the
Lagrange multipliers on a surface of cylindrical topology. In worldvolume of the D-brane, the!:") are identically zero.
this section, we discuss the boundary conditions on th&xpanding the classical action in a complete set of modes
world-sheet fields which determine the saddle point of the
path integral about which we are to compute quantum fluc- (-0 — fldalx(iyf)ehml
tuations. n 0 '
Begin by considering the boundary conditions on the em-
bedding coordinates. Setting the variation of the classicaspanning the classical phase space of boundary configura-
action with respect to th¥M to zero on the boundary yields tions, gives8]

(M(C))M(Cy))=

whereSp is the bosonic Brink—Di Vecchia—Howe—Deser—

nez, (11)
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[

S reale 1 E 2nr
P[X’g]_4wa/n:f°c sinh(2na/l)

X[(|xL]2+|x!|?)cosh2n/1)

—2Re(X, ;). (12)

Since our interest is in the large loop length limit, where the
dynamics is hopefully universal and independent of the de-
tailed geometric parameters of the loops, we make a judi-

cious guess for minimum action configuratior$;”, obtain-
ing the saddle point action from E¢L2). A simple case is a
pair of circular Wilson loops of uniform radius/2# sepa-
rated by a distancB. Align the circles parallel to thXP, X°
plane, with their axis in a perpendicular direction. H¥feis

a Euclidean coordinate. The minimum area world sheet is

|
/
g
;
/
7

i

N

FIG. 1. X(\) is a map from the boundaries of the annulus to a
pair of coplanar nested rectangular loops which lie within the
worldvolume of a D-brane.

?urning angle forboth loops vanishes. Thugy.ome=0 for

catenoid25] Ci, C¢, and there is no dependence on the string coupling
x=[acog2mal),asin2wal),h(a)], const.ant in the pair correlation function. It should be.notgd

[ $2ma) (2mo).h(@)] that, in general, the presence of corners would be a violation
a2=(XP)2+(X%)?, (13) of boundary Weyl invariance giving a correction to the Liou-

ville action[26]. Any pair of coplanar nested loops with ar-

with L'/2r<a<L/2mx. The radial parameten is related to  bitrary numbers of edges having net turning angle zero gives
the height of the catenoich(a) by the equationa @ Weyl invariant loop configuration with a well-defined
=(L'/27)coshi2ah(u)/L']. L'/27 is the minimum radius of Saddle configuration: the stretched world sheet in the plane
the cross section for the catenoid. It is straightforward tocontaining the loops. Smooth loops in this same class are the
evaluate the Polyakov action for this surface. Consider th&oundaries of an annulus—a pair of coplanar nested circular
maps that must be included in the sum over reparametrizd00ps
tions of the world-sheet boundary for this configuration of
loops. In general, this is a sophisticated problem in the rep-  x=[(Ry+Ro?)cog2mo?),(Ro+ Ro?)sin(2mwot)],
resentation theory of the group DiSt). However, in the (14
large loop length limit, the analysis is rather simple since
winding number one maps with no self-intersections are enwhereL;=27R,, L;=2m(Ry+R), andRis their separation
ergetically favored. in the radial direction. Periodically identifying Euclidean

This feature of the large loop length dynamics is straighttime, X° is the angular, anXP the radial, direction. Now
forwardly captured by considering the simple problem oftake the large loop length limit. Comparing with our discus-
summing over the reparametrizations of loops with one opion of the cylindrical spacetime in the introduction, the cir-
more marked points. For such maps, the sum over reparargular loops correspond to the closed worldlines of static
etrizations of the boundary is easily implemented in closedources with fixed spatial separatiBnFrom Eq.(12), and in
form prior to taking a large loop length limit. For notational the limit | —c, we obtain the saddle point acti®p(x,q)
ease, let denote the circle variabler*. We consider non- = —R?/47a’. It is easy to verify an identical result for a
intersecting curves with the following characteristics: eachpair of coplanar nested right-angled loops with arbitrary
cl:D is piecewise smooth witlK straight line intervals of numbers of edges.
equal lengths"" and K turning points, or cornersy ("
a=1,... K. Any curvature on the boundary of the world | MACROSCOPIC LOOP CORRELATION FUNCTION
sheet, if present, is permitted only at the corners. As can be
seen from the Gauss-Bonnet theorem, this would induce a We now present the derivation of the closed string ampli-
non-vanishing Euler characteristic ~ xcome=  tude linking fixed curvesC;, C; of lengthL;, L¢, in an
—32 3% 80027, and consequently a dependence onembedding spacetime with metrjg,=d,X*3,X,,, and spa-
the string coupling constant in the amplitude. The angldial separatiorR. We perform the sum over world sheet met-
terms arise from the delta function in the geodesic curvatur&Cs using an idea taken from Cohehal.[8]. We begin with
at the corners. Thiulk curvature is, however, required to be the integration over all embeddingXT,X*), with fixed fi-
smooth: this implies that if we consider loop configurationsducial bulk metric, and fixed fiducial einbeins on the param-
with corners, it is convenient to choose the |00ps tocbe eter boundary. We choose a fiducial metric on the world
planar. For rectangular, or right-angled, loops, the turningsheet,d32:@abdcradab, with e= \/6 Next we sum over
angle,é(a"= + /2, for everyl, a. The simplest closed loop world sheet metric deformations that leave fixed the param-
with net turning angle 2 is a rectangular loop with four etrization of the boundary. Finally, we perform an integral
edgesK=4. The example shown in Fig. 1 is a pair of co- over the “boundary data,” {e()\;lg'f))}, summing «
planar nested rectangular loops, withk2, K=4. The net =1,... K, for all 2K intervals, restoring boundary rep-
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arametrization invariance. This last sum is defined as follow®xcept that all harmonic functions on the world sheet, sca-
(see also the related ideas in Rig#7,26)). lars, and vectors, X, 7,), are orthogonally decomposeH

A boundary state is specified by an einbein and an em= 1,1 ', The ' vanish on the boundary, and the are

bedding function ¢,x*). The embedding function is speci- harmonic functions taking valugs| ;=% on the boundary.

fied by our choice of saddle configuration, but we V‘.’iSh ©O7The x determine the saddle point configuration as described

) A . ¥n the previous section. In general, we will allow for fluctua-
implements reparametrization invariance on the boundary,[,ions of the world-sheet fields 0aM, subject only to the
and we must divide by the volume of the group of boundary '

diff hi Diff.. Th d trizati constraint that they preserve the normal direction to the

diffeomorphisms iffm . Thus, we need a reparametrization brane, the fixed embedding of the spacetime curves, and the
invariant measure for the path integration over einbeins. Thgmoothness condition at any comers of the boundary, if

unique choice is Polyakov’s quadratic form for metric defor- '

i 31 rricted t ) boundary int L O present. We will assume the reader is familiar with Réf.
ma |<_)ns[ ], restricted to any given boundary Interval. On 5, simply assemble the different contributions to the path
any interval, a boundary reparametrizatidre Diff ,, , acts

integral.
as Begin with the integration over embedding functions with
fixed fiducial world sheet metric. We choose nested coplanar
loops with physical lengthg;, L and fixed spatial separa-
tion R. For each of thal scalar degrees of freedom, normal-
a=1... K, (15 izing the path integration over harmonic functions vanishing

on the boundary as in Refg7,21] gives the result
iﬂ'f)()\) is the fiducial map of therth interval on the circle

il
N2
into the ath interval of the curveC; 1y, andf{:"(\) is the
corresponding diffeomorphism of on the ath interval of  where the determinant of the Laplacian on scalars is com-

the circle. Schematically, the path integration over quantunputed with the zero Dirichlet boundary condition, drid the
fluctuations due to an arbitrary diffeomorphism of the worldcylinder modulus defined by the fiducial metrids?

SIXulsan]=xXGPEP00T Ny 1=h=A,,

where the\ , are points in the rangesO\=<1, and\ varies
continuously with Ag=0 identified with Ax=1. Thus, -d

e—R2|/47ra’(deter)—d/2: e~ R2l/4ma’ . (189

sheet has been decomposed: =12(do)?+(do?)?, 0O=<ol<l, 0<o?<1. With this
. choice, the area of the world sheet is normalizedl to
1 [d6X][dog] [de(N,e)] Next consider the integration over metric deformations
ordeD) ) Vol[Diff] - Vol[ Diff ;] vanishing on the boundary. As in Ref81,6,7,2], we iso-
late the dependence on symmetric traceless variations of the
J' [dog] [doX] metric and divide out by the volume of the gauge group
1] VOI[ Diff 1) 1g:4 ’ [ Diff \y 1o, diffeomorphisms of the world sheet continuously

connected to the identity and vanishing on the boundary.
Normalize the path integrations on the cylinder as in Refs.

where Vo[ Diff,,] denotes the volume of the group of dif- [7.21]:

feomorphisms vanishing on the boundary, and[Ddff ), ]

that of the group of boundary diffeomorphisms. We divide f N1a—| 92— f 1 e l89l%2—

by the order of the subgroup of the disconnected component [ddgle 1;[ [dogl.e 1

of the diffeomorphism group, Ddiscrete diffeomorphisms

of the world sheet left invariant under the choice of confor- :JM(¢,§)J [dop]es;

mal gauge[7]. Thus, a factor of 2 in the denominator cor-

rects for the twofold invariance of the measure of the path o -

integral under the diffeomorphism xf [dén]éf dle~ 19972 (19
0

(16)

ot— —ot. (17) A
where | 5g|? is the quadratic form for metric deformations

This symmetry will be left invariant under the gauge fixing AL : :
of reparametrizations of the world sheet to be described begggo\]r';ﬂn(aqtsifr?sli; hrzgsggt?\LzTyfrt?]? E?()eu(\:/ti};nr%%g;\lgﬁ?ebfs o

low. The measure for embeddings and metrics do not indi- . o .
. . : . ” . morphismsédn,, vanishing on the boundary, and the cylin-
vidually respect Weyl invariance but, in critical string - . )
. A . : der modulud, computed in Ref[7]. The basic assumption
theory, their combination is Weyl invariant, and we therefore

divide through by the volume of the Weyl group. In what underlying Eq.(19) is the' locality of the measure: the inte-
follows, we will make this gauge fixing procedure explicit. gral over elementgdag] is a product of integrals over ele-

ments[d&g],, at fixed values of the world-sheet coordinate
o. The only reparametrization invariant local counterterm
(free of derivatives of the world-sheet mejris of the form
The gauge fixing of world-sheet metrics and the path in-M fd?¢\/g, which can be absorbed in a renormalization of
tegration of metrics and embeddings proceeds as in[REf. the bulk cosmological constapt, present in the bare action

A. Gauge fixing reparametrizations
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given in Eq.(7). Thus, the Gaussian integral on the left-handLiouville field on the boundary. The restriction of the qua-
side of EQ.(19) can be set to unity at the cost of renormal- dratic form for metric deformations to the bounda#iv

izing uo [7]. The same argument applies to any of the world-gives a measure on the tangent space to the space of einbeins
sheet fields §2?,5¢,5X). The final value of the renormal- on any given interval

ized bulk cosmological constapty is set to zero at the end

of the calculation, giving a manifestly Weyl invariant result |5e|2:j dr[e(n: )] Y se(n:1)T?

for the bosonic string theory in the critical spacetime dimen- ' '

siond=26.

2 2
Taking into account the contributions of the conformal :f d) _é()\)(gf)d_z(gf)+w ,
Killing vector and zero modes of the Laplacian on vectors dA e
A, the infinity from the integration over diffeomorphisms (24)

[d ﬁ]é vanishing on the boundary is canceled against the

volume of the gauge grouiff,]o. The result is an integral Where the zero modépo[ f(N)] is the functional change in
over the cylinder modulus times the quantum functional in-the length of the interval induced by a diffeomorphism.
tegral for Liouville field theory Normalizing the path integrals as in EQ.9):

Iu(4.9) f [ ]esge StI#8~Soouncad vl (20) 1= f [doele | 2=73 (&) f [dof1[dSplgese™ 72,
(25
where Sy ngaryincludes any boundary terms necessitated by

the world-sheet gauge symmetri&] ¢ 3] is the unrenor- where the Jacobiaby), is obtained as before, from a change
. Sheet gauge sy 9 of variables to deformations of boundary diffeomorphisms
malized Liouville action31]

of and einbein rescalingdp. Since a rescaling of the ein-
. d—26 _ R bein is absorbed by a shift of the Liouville field we can, with

S [¢.9]= pr dzo\/a[%gabaa¢ab¢+ Ro] no loss of generality, sgt=0. Consequently, the integration
M over[dép] can be consistently dropped from the path inte-

_ gral. The infinity from the integration over diffeomorphisms
—,uof dza\/ge‘ﬁ, (21)  will be canceled by the volume of the gauge group of diffeo-

M morphisms on the boundary Djff , which has no discon-

nected part. Combining this analysis of boundary deforma-

with an integration norm given b _ . . : )
¢ g y tions with the bulk deformations in E419), we can write

|6)?= f d20/ge?(54)2. (22) [(Ar2m) Y2 dety ™ xap) YA det A ) 2
1/2
We will treat the measure for the einbeins followifify8]. (detQap/2m)
Note that the quantum functional integral in E80) denotes 2 1 d27\12 )
all possible bulk and boundary deformations of the Liouville x[] | det| - Z a2 ) J [d5¢]§e¢e—\5g| 12
field. In particular, it receives corrections from the measure =1 !
for diffeomorphisms on the boundary as is shown below. (26)

We continue with the sum over metric deformations non- _ _ _ _
vanishing on the boundary, orthogonal to the modes summe#ihe factor in square brackets is the Jzacob]glnderlved in
in Eq. (19). The metric on the world sheet @ge?, and the Ref.[7]- Ais the world-sheet ared=[d°o Vg, and the term

. S - = in the denominator arises from conformal Killing vectors, if
fiducial einbein induced on the boundary és- \/a The present. On the cylinder, the arées1, in the metric defined

length of either boundary in the cylinder metrﬁ%dhe, above, and we have a single conformal Killing vector. The
equalsl. A variation of the elnbelfn on theth interval is the  functional determinant of the Laplacian on vectors is com-
result of a diffeomorphism —f{"”(\) and a possible shift puted as in Refs[7,8]. With the fiducial cylinder metric

d¢ in the Liouville field. Thus, given above,
n ) d . R 2 1/2 il 1/2
{(e+de)[ N+ 5fg'f)()\)]}( 1+ (o5 +e5¢] e? (|/2w)1’2(|—2) [( %lzn“(g)}
4, - = (72m) 7 @
- e()\)+eﬁ5f(a"f)+5e()\)+0(5f2'f))2+e5¢>]e¢
={100+8p0 014D (0 Tre?, (23 INote that the conformal class of the metric determines the length

in - ) of any boundary circle, a modulus of the surface. Thus, rescalings
wherel,'"’ is the length of theath interval of the corre- of the fiducial einbein must be absorbed in a shift of the Liouville
sponding hole on the world sheet, afd is a rescaling of field on the boundary in order that the conformal class of the metric
the einbein which can always be absorbed in a shift of thés left unchanged.
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up to ¢-dependent terms absorbed in the Liouville action. - .
The second term in E426) is the boundary Jacobiah,, f [d]esge St#a* Sooundarf €]

the prf)duct of independent determinants for eacK after-

vals,s,, a=1, ... K. Note that the diffeomorphism acts on _ [ —S[dn.g

each circle as a whole, but independently on each of the two _f [d5¢]§fﬂd¢0e or.dl, (3D

boundaries. Since the boundaries have a common parameter

lengthl we obtain where § ¢g] includes all possible renormalizable terms in
the bulk, and on the boundary, that preserve both diffeomor-
phism and Weyl invariance. Note that a corner anomaly is a

}:2|_ (29) spontaneous breaking of Weyl invariance on the boundary,

contributing an additional term not included $ﬁ¢R,§;].
In a Weyl invariant theory, the renormalized action
A similar path integration appears in the problem of obtain-g/ 4, g] takes the general form
ing the off-shell propagator for a relativistic point particle, a
discussion of which appears in RE8]. See, also, the ansatz A 1 5 [ 17ab N
for a scalar quark loop given in R4R27]. S ér.91= ﬁfmd Vo[ 1070 bripdrt QRAR]
Assembling Eqs(16), (18), (20), (21), and(26), our result
for the pair correlation function of piecewise smooth macro- 2
_ | , I _ 25\ Jgedr— (1) oef" R
scopic loopsC;, C; at fixed separatiolR is ,uRJMd ovge |21 AR fc d\ee ,
- |

1 d?

J(;M:det’ _FW

o 5 il 2—d (32)
<M(ci)M(cf>>=f dle R ”4”“/[77(—” .
0 2 whereQ, «, and B\, are constants determined by the re-
quirement[16] that every term in Eq(32) be a dimension
[d6]ges S[ ;9] (29) one primary field, in a conformal field theory of vanishing
Vol(Weyl) ’ total central chargee,+C,+ Cgnosts=0. The renormalized

bulk and boundary cosmological constapts, )\(R') are ar-
bitrary marginal couplings in the conformal field theory.
With no loss of generality, we could set the boundary cos-
mological constant term on the cylinder to zero, retaining
MR-

The only mode ofpg that survives on the boundary ¢,
and the modesgy, satisfy Dirichlet boundary conditions as in
Refs.[6—8,21. Then, conformal invariance requires

where S ¢;91=S.[ #;9]+ Spoundary i the action for the
Liouville field including boundary terms. In the critical

spacetime dimensiod= 26, the Liouville dynamics entirely
decouples, and we can consistently éeib zero in Eq.(29)
while dividing out by the volume of the Weyl group.

B. Generic Liouville backgrounds

It is possible to consider the casegye<25 following Q= Cm_25, a=(*\c,—1—Je,—25)/2/3,
the method in Ref[16]. We require that the path integral 3
expression for the loop correlation function preserve guan- (33
tum conformal invariance. We begin by SUPPTessing quang, . upper sign matching the dimension of the cosmological
tum fluctuations and restrict to the zero magig noting that : ; )
. . g . .. constant operator as computed in a semiclassigab —
the classical equation of motion is that of a free scalar field in X : ; o
. ) ; o saddle point evaluation of the path integral for the Liouville
the regime ¢y— —o0: the exponential potential is sup-

pressed. We will preserve this asymptotic property in defin—fleld ¢ [27,16]. We will not pursue these cases further since

! i . our main interest in this paper is string theory in the critical
ing the quantum theory: the wave functioteperators of . . . . .

g . . spacetime dimension which corresponds to the theory with
Liouville conformal field theory are required to match =25 c. =1
smoothly to free field states in thg,— —« regime, charac- ™™ TR
terized by momentum and occupation number alone.

Quantum Liouville conformal field theory can be defined C. Generic boundary conditions

by a functional integral over a renormalized Liouville field
¢Rr, With conformally invariant free field norm

Following Refs.[19,2(, it is an easy extension to com-
pute the pair correlation function with boundary conditions
pertaining to closed world lines for a pair of slow moving

| 8pr|?= J dzo\/g( Spr)?. (300  sources in relative motion. Consider a pair of coplanar nested

rectangular loops with the plane of the loops aligned parallel
to the (X°,XP) plane.X®, XP are both Euclidean coordinates.

The ansatz of Ref.16] is that the effects of renormalization Let us rotate one of the loops relative to the other through an
can be lumped in the potential, leaving a kinetic termdgr ~ angle in the (X% XP) plane, and take the large loop length

with the canonical normalization of a free scalar field theorylimit L; = L; = T—o, with R held fixed. Upon analytic

Thus, we write continuationX°—iX? , the loops may be interpreted as the
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closed world lines of slow moving scalar quarks in collinear - d [47m?\ s 5 12(n,+ a)?] S
motion at short distances and with relative velocityy ~ —mlEo=Ilim | -7 fﬁcdz 2)0 Y
=tanh(-ig)<<1. 50 n2=
Consider the boundary conditions &, XP. We leave _
e L d([47?\"S

the boundary conditions at one end-point fixed, and change _ Iim—[ (_) 11-257(25— 1,
the condition at the other end point 1(P|Cf=vX°. Param- ods|| 12 '
etrize the world sheet with open string end points=0,1 at 9

- i i [T(1-9)]
boundariesC;, C;, respectively, and an open string loop 21-2Stan( 7s)

i 1 lisi ifi ' I2-2s)
parametrized & o-=<1. Recall thato is identified with the (
fiducial circle variablex defined in the previous section. A to 1
complete set of eigenfunctions of the scalar Laplacian is =—7ll(a=3)"— 1] (39

composed from the basis o ) )
Combining Eqs(38) and(39), and withq=e~™, gives the

l//Eﬁi )= g2Mmm ”1sin([n2+ alma?), (34)  result

where « takes values-iu/# or 1+iu/s. The velocity has (detA®)) - V2= q- Va2t W/m® iz [T [(1—qn2~v/m)
been parametrized as=tanhu and we work in the small n2=0
velocity approximation withv =u. The remainingd—2 em- X (1—qn2titivimy -1, (40)
bedding coordinates satisfy the zero Dirichlet boundary con-
dition as in Sec. lll A. The functional determinant &f,  which can be written as the ratio of Jacobi theta functions.
takes the form Settingu=0 and suppressing the,=0 term in the result
recovers the cylinder determinant for a pair of real scalars
A2 (N,+ a)22 with Diri(_:hle_t bpundary condition _7;(i|/2)]*2.
detAg“)= 11 HI—Z) ( na+ T) } (35 Substituting in Eq(29), we obtain an analogous result for
NNz the pair correlation function of macroscopic loops in critical
string theory with boundary conditions pertaining to sources
where | is the cylinder modulus defined above, arde  in slow relative motion:
<n;=<ox, n,=0. This is computed using zeta function regu-

larization as in Ref{7]: I A (| ye~ulm
<M(Ci)M(Cf)>_2fO dle n(il) O ullmin
2 212\ 1-s 41
IndetAz—IimdiS D [(ﬂ—f)(nﬁ%)} . 0
s—0 ¥ ¥ N1.N2 36 For convenience, we have rescaled?2l in the integral.
IV. SHORT DISTANCE POTENTIAL BETWEEN
The infinite sum oven, is expressed as a contour integral by SOURCES
a Sommerfeld-Watson transform. The cont@uruns coun- ) .
terclockwise frome+ie to —+ie. The result is We will now compute the potential between heavy non-
relativistic sources in the gauge theory in relative collinear
ol s motion with velocity v =tanhu=u. Parametrize the closed
_ Iimi(ﬂ) E world lines of the sources by the proper time variablghe
<.ods| I? ¢ 2 zero mode of the Euclidean embedding coordinéte Let

r(7)2=R?+v?7? denote the relative coordinate of the two
sources in thex®, XP plane, whereR is their static separa-
comz). (37 tion. We express the amplitude as an integral over
Minkowskian time —ir. The loops are identified with the
" , B iy closed world lines of a heavy quark-antiquark pair in the
Writing the cotangent as i cot(m2)=2/(1—e )—1,We  gauge theory. This computation is described in Sec. IV A.
can extract the contribution from the integral that is finite inyyg emphasize that the open string theory results derived in
the limit s—0: Sec. IV A areonly to be applied to the short-distance limit of
the potential between heavy sources in the gauge theory.
DO-branes are pointlike spacetime topological defects in
22 Inj1—e m(M2ta), (38  the bosonic string theofyi 7]. Following Refs[19,20,17, in
n2=0 Sec. IV B we compute the short distance interaction between
two DO-branes in the bosonic string theory obtaining a linear
The term singular in the limis—0 has a finitd-dependent repulsivestatic interaction. The systematics of the small ve-
remnant whose coefficient can be identified as the regulateldcity and short-distance double expansion yields similar
vacuum energy of a complex scalar conclusions for the minimum distance as in Sec. IV A.

—S

n,+ a)?l?
X > {22+—( 2t @)
n,=0 4
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A. Wilson loops and a short distance & potential gral[17]. The result can always be bounded, or evaluated by
We define the potential between sources traversing fixeffumerical integration, as a self-consistency check on the va-
world lines, Ve r(7),u] as follows: idity of the small velocity short-distance approximation.
This check provides an upper limit,, , on the permissible
(T2 velocities. With this restriction, the contribution from the
()= _|f_T/2dTVeﬁ[r(T)’u]* (42 domainl>/u, can be dropped and we will suppress it in
what follows. Upon Taylor expansion of the periodic func-
and take the limifT— oo, with r held fixed. Then, tions in the integrand, the potential can therefore be written
as

Vei(r,u)=4(87%a’) "2
V(r,u)=-2(8n%a’)

xfwdle*rz"”m'I”z (iI)*ltanhu)eWZl/W o
0 7 O, (ul/m,il) - XJ dle=rilema’| - Veg- vl manpy)/u
0
“3 . -
In the limit of short distances, the amplitude is dominated by x| 24+ Z C(uh)®+ Z 2 Cim(uh2krm,
the exchange of the lowest lying modes in the open string k=1 k=1 m=1
mass spectrum. We therefore expand in powere o™, (46)

organizing the integrand as an infinite summation over open

string modes, and restrict to the lowest lying states. We supwhere the coefficients of the expansion in powersibfake
press the leading contribution from the open stringthe form

tachyon—absent in any stable background, and focus on the

subleading contribution from massless open string modes. (—Dk%H 48Byl L,y

We will show that the short distance potential between C= 2k! 2k! (2 -1,
sources in the bosonic string—analogous in some respects to

a nonsupersymmetric background of the superstring, has a (221 1)|Byy

static remnant originating in the massless modes, a measure Cum=(— 1)”‘22("““)W, (47)

of the degrees of freedom determining the short-distance dy-

namics of Wilson loops. Consider . .
P and theB,, are the Bernoulli numbers. Integrating oJer

Voelr,v)=—2(8m2a’) 12 gives a systematic expansion for the potential in powers of
effl! s 2,4 . . . . .

, u‘/r*. Let us define a dimensionless scaling variakle

= e pt@NHU)ET T =r2./r?, wherer2, =27a’u. The velocity-dependent cor-
X f 0 dle | T sinul) rections to the potential are succinctly expressed as conver-

gent power series in the dimensionless variabes)z/ ,
x{e?™ +[22+2 cog2ul)]+O(e 2™}, andu?:
(44) 1 tanHu)/u
V(r,u)y=—

where the restriction to massless modes gives ') r(l+uz m)?
V(r,u)=—2(8na’) 12
2 X1 24y[%,(m+uz)lz]
o —u“l/m
xf dle—r2|/277a'|l/2tanr(u)e
0 sin(ul) *
+ > Cef2k+ 3, (m+u2)lz]
X[22+2 cog2ul)]. (45) k=1

o )

We will now assume small velocities and short distances, X[2/(1+ uzl )]+ S Cem
k=1 m=1

performing a double expansion in the variablesu. The
regime of validity for the smalll expansion is determined by

the behavior of the cosecant function. We can perform a Xy[2(k+m)+3,(7m+uz)/z]
Taylor expansion in the first half-period of its argument, 0
<ul<m. Consider the corrections to this result from the X[2/(1+uz/m)2lrm | (48)

integration domaimul= 7r. The sine function changes sign at

everynm, neZ*, so that the regionsh7= €, where the

integrand is singular can be excised from the domain of inThe y (v,(w+uZz)/z)’s are incomplete gamma functions. In
tegration. This leaves the intervalsr+e<ul<(n+1)w writing Eq. (48) we have assumed/u, <<1. Note that if
— €. For sufficiently smallu values the oscillations in the the variablez is taken to zero, for distance$>>rZ.,, we
integrand will be increasingly rapid, smearing out the inte-recover the ordinary gamma functiob»). The potential
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has a static remnant in the bosonic string. Setting zero in ~ sions are described by a two-dimensional nonrenormalizable
Eq. (48) gives the simple result effective field theory ofl—2 collective modes, with univer-
sal behavior that ofi— 2 free scalar fields, each with vacuum
energy equal tar/24. TheO(1/r?) terms that are quartic and
higher order in the collective fields are irrelevant. The
vacuum energy arises from the infinite sum of free field har-
where d=26 is the critical spacetime dimension of the monic oscillators in their ground state, with an independent
bosonic string. The velocity-dependent corrections have asum for each ofd—2 degrees of freedom. Irrelevant cou-
analog in the type’l superstring[13]. An analogous static plings to higher dimensional operators can induce interac-
term is present in the contribution from the Neveu-Schwarzions; they determine the nonuniversal constants3. Not
sector{13], prior to cancellation by other contributions to the surprisingly, this long-distance result for the potential is in
vacuum amplitudg17]. It is evident from Eq(48) that our agreement with our expression f&, the vacuum energy
result for the potential between slow moving sources holdsrom each ofd— 2 free world-sheet scalars given in Eg§9).
for arbitrarily short distance scales lower than the string scale  Our computation demonstrates that there is also a univer-
r2..~2ma'u, limited only by the domain of validity for the sal 1f static potential ashort distancesindependent of the
double expansion in small velocities and short distances. dimensionality of the D-brane world volume, the geometrical
Let us compare the short distance static potential with thparameters of the loops, and the string scale cutoff. As we
known form of the heavy quark-antiquark potential in QCD can see from Eq49), the numerical coefficient at short dis-
at long distances, a regime described by the effective dynamances predicted by string theory differs from scher's
ics of a thin flux tube linking the sources. The usual routelong-distance result. This may be interpreted in the effective
from the Wilson loop expectation value to the static heavyfield theory as a wave function renormalization for the Wil-
quark-antiquark potential in gauge theory is as follows. Conson loop observable at short distances, an effect wtéch
sider a rectangular Wilson lodRT in the limit T/R—o with  not be determined in a field theoretic analysis insensitive to
R held fixed. The long legs of the rectangle are interpreted aboundary effects. Moreover, there is afinite number of
the proper time world lines of a heavy quark and antiquarkyelocity-dependent corrections to the 1érm which arealso
and the loop expectation value takes the far()e V(RT, universal. We obtained these corrections by a systematic
with V(R) interpreted as the static quark-antiquark potentialdouble expansion in small velocities and short distances,
at fixed spatial separatioR. a(T) is some function with conveniently expressed as a convergent power series in di-
slower fall off than an exponential. The reader may wondemensionless variables=r2, /r?, uz/ m, andu?.
why we considered a pair correlation function rather than Our results can also be considered within the more tradi-
extract the potential from the expectation value of a singleional context of phenomenological models for short distance
rectangular loop, as is usual in gauge theory. The reason isonperturbative dynamics in QCxee, for example, Ref.
Weyl invariance: the worldsheet spanning a single rectangy31], and references therginThe generic backgrounds for
lar boundary loop has curvature singularities at the cornerghe Liouville field with c,,<d described in Sec. Ill C could
leading to Weyl anomalies which would render a covariantoe of interest in this context. We note that recent ak
path integral quantization untenable. The large loop lengthhe short-distance potential between heavy sources in QCD
limit hides this problem since the corners are pushed to has examined modifications of the potential at short dis-
— *o0, The pair correlation function does not suffer from tances originating in nonperturbative instanton eff¢8&].
this problem. In particular, for any pair of coplanar nested
right-angled loops we had a well-defined expression for the
string path integral eveprior to taking the large loop length
limit. o ) i i
The heavy quark-antiquark potential at long distances dis- DO-branes are pointlike topological defects in spacetime

plays a confining linear plus attractive inverse power lawPresent in the generic background of the bosonic string
behavior theory. Consider the potential between two DO-branes

probed in their nonrelativistic scatterifn@9,29,20. The DO-
y branes are assumed to have fixed spatial separhtiorthe
V(r)=ar+,8+r+0(1/r2). (500 direction X4~ 1, and are in relative slow motion in an or-
thogonal directiorX® with velocity v [19]. At long distances

« and 8 are known to be nonuniversal constants. Of greatefh€ir static interaction potential will take the Newtonian
interest is the universal constaptfirst obtained by Lacher ~form. The effective potential at long distances is dominated
etal. using heat kernel methods in Ref9]: y=—(d by the excha_nge of the lowest Iymg states in ¢Iused_str|ng
—2)w/24 in the effective theory of the Eguchi-Schild string SPectrum. With no loss of generality, we can obtain the po-
[3]. Recall the model-independent argument for the coeffilential between two DO-branes as a special case of the gen-
cient of the I/ term [10] (see, also, the discussion in Ref. €ral expression for the scattering of twopibranesp<d.
[28]). Consider the quantum dynamics of a thin flux tube

linking quark and antiquark as described by an effective field

theory. Letd be the number of degrees of freedom. Now the 2we would like to thank M. Eides for bringing this work to our
fluctuations of a long thin flux tube id—1 spatial dimen- attention.

1
V(r)=-(d-2)

B. Minimum distance and the short distance
scattering of DO-branes
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We will show that the systematics of the small velocity VDp.bran&r,U)=—Vp(8w2a’)‘(p+1)’2tanl”(u)/u
short-distance double expansion and the value for the mini-
mum distance probed in the scatterimgy,, is identical to

the result obtained above, in general agreement with previ-
ous analysef19,20,17.

p+1
X< 24y —T,(1+UZ/7T)/Z

Adapting the computation of the bosonic string annulus rz |+ 14Uzl ) (P12
amplitude between static fpbraneq 30,17 to the boundary X 2mal (1+uzfm)
conditions pertinent to Pp-brane scattering, and restricting to
massless modes gives ) )

+0(Z,uzm,u?)t, (54
\/Dp—brane(r )= _Vp(8772a,)_(p+l)/2
o tanh(u) where the velocity-dependent corrections are obtained in a
dle roiema’|21-p2f T . L : : :
X . e isin—iu) systematic expansion in the same dimensionless variahles
2

uz/m, andu? defined above. For?>>r7. , z—0, we re-
cover the gamma functiods( — »). Recall that gamma func-

: (51)  tions with negative argument can be defined by iterating the
well-known identity —vI'(—v)=T(—v»+1). We note that
the short-distance static potential between DO-branes is lin-

Notice that, unlike the expression for the short distance po€ar, andepulsive

tential, a Taylor expansion of the periodic functions in the "

integrand for _small velocities_ and Iong distan_ces givgs only Viobrandl) = —(d—2) +0O(2,uzmu?). (55
O(u?) corrections to the static potential. The integration do- 27a’

main is unrestricted for small velocities. Performing the in-__ . ) )
tegration ovell gives the simple result This result holds in a self-consistent small velocity short-

distance approximation with corrections ©{z?,uz/ ,u?).
It is valid for distances in the range m'u<<r?
<2ma’ and velocities in the ranga<<u,, where the
upper bound is estimated as described in Sec. IV A.
The static potential between DO-branes corresponds to the
X(2ma') 2 PV2rP=23 24+ O(u?)]. vacuum energy in a background of open string theory with
(52) constant electromagnetic potent# 1, but with vanishing
electric field strengtfE® = 9,A%"1=0 [5,19,17. The po-
tential is a measure of the shift in the vacuum energy relative
to that in the background with no D-brane sources.

X[22+2 coshi2u)]

23—p
2

Vop-brand I, U) = — Vp(8772a' ) p/ZF(

Settingp=0 gives the Newtonian long distance interaction
for DO-branes in al=26 dimensional spacetime.
At short distances, we will find a crossover phenomenon V. CONCLUSIONS

analogous to what was found in the interaction potential ofa computation in open and closed string theory is per-
Dp-brane with a [p'-brane for dimensionalitiesp—p’  formed at weak coupling in flat spacetime backgrounds and
#0 mod 4[20]: the asymptotic long- and short-distance i the critical spacetime dimension. There is a supersymmet-
forms of the pair potential betweengEbranes in the bosonic yic analogue to this result which will be explored in forth-
strlng arenot |_dent|cal. Consider the expression for the ef- coming work[13]. We have demonstrated the validity of the
fective potential due to the exchange of massless modes fuyble expansion in small velocities and short distances
the open string spectrum down to a minimum distana€,,,=27«'u, in general agree-
ment with previous estimatd®4,19,20,17. Thus, string-M
theory predicts amfinite number of velocity-dependent cor-
rections to the potential between two heavy sources in rela-

o ) , tive slow motion in a gauge theory, the numerical coeffi-
XJ dle™"V2me’ | ~(p+1)2 cients of which are predicted by a systematic expansion. We
0 are not aware of a comparable theoretical analysis which

Vp p—branér )= _Vp(8772a,)7(p+1)/2

tanH(u)e~ wll/ reliably probes this regime of QCD. We note that there is no
—————[22+2cog2ul)]|. evidence of nonanalytic behavior in the potential between
sin(ul) sources at short distances, suggesting that the phase transi-

(53  tion at short distances previously found in R¢®2,27 is a
larged artifact.
The numerical difference between the coefficient of the
The small velocity short-distance double expansion can bé/r term we have found in the static potential at short dis-
performed as explained in the previous section. The result imance and that given by ‘lsecher’s effective field theory
the expression analysis for the QCD flux tube valid at long-distance scales
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deserves explanation. We should note that the flux tube pic=ggN. In the Introduction, we emphasized the importance of
ture is inherently a long-distance concept whose predictiontaking a largeN limit in order to keep gravitational correc-
cannot be naively extrapolated to short distances. Considé¢ions to amplitudes in the open string sector suppressed at
the (d=26)-dimensional bosonic string. At both long and long distances; this was also an essential observation under-
short distances there is a proportionality factor in the 1/ lying Maldacena’s conjecturgl2]. We see now that taking
potential which equald— 2, the number of transverse mass- the largeN limit extends the regime of weakly coupled open
less gluon modes. The short-distance static potential betweend closed string theotyothin the directions of longerand
heavy point sources in the gauge theory is a measure aff shorter-distance scales. We believe it would be of great
fluctuations in the vacuum energy density. It would be grati-interest to develop a systematic formulation of the lakge
fying if one could exploit the direct calculation of the short- limit of open and closed string theory.
distance potential from string theory given in this paper to
explore nonperturbative physics associated with the QCD
vacuum at short distances, a subject rich in conjecture and in ACKNOWLEDGMENTS
open question31]. This deserves further study. S.C. would like to thank M. Douglas, N. Drukker, M.
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