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Chiral symmetry in the linear sigma model in a magnetic environment
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We study the chiral symmetry structure in a linear sigma model with fermions in the presence of an external,
uniform magnetic field in the ‘‘effective potential’’ approach at the one loop level. We also study the chiral
phase transition as a function of density in the core of magnetized neutron stars.

PACS number~s!: 11.30.Rd, 11.30.Qc, 97.60.Jd
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In the absence of a quark mass matrix, QCD is invari
under chiral transformation at the Lagrangian level. Ho
ever, the dynamics of QCD are expected to be such
chiral symmetry is spontaneously broken with the vacu
state having a nonzero quark-antiquark condensate^0uq̄qu0&
and the Goldstone theorem then requires the existenc
approximately massless pseudoscalar mesons in the ha
spectrum. At high temperatures and/or at high densities,
quark condensates are expected to melt at some critical p
and chiral symmetry is restored@1#. The chiral phase transi
tion and phenomenological consequences in the form of
perimentally observable signatures have been extensi
discussed in the literature@2#. It has also been suggeste
@3,4# that systems with spontaneously broken symmet
may make a transition from a broken symmetric to resto
symmetric phase in the presence of external fields. It
been shown@5,6# that there exist some realistic mode
where the symmetry restoration takes place. In QED u
form, external static magnetic field is known to break chi
symmetry dynamically at weak gauge couplings@7#.

Large magnetic fields with strengths up to 1018 G have
been conceived to exist@8,9# at the time of supernova col
lapse inside neutron stars and in other astrophysical com
objects and in the early Universe. Effect of such a stro
magnetic field on chiral phase transition is thus of great
terest for baryon free quark matter in the early universe
for high density baryon matter in the core of neutron sta
To study chiral phase transition in QCD we need a nonp
turbative treatment. Lattice techniques and the Schwing
Dyson equations provide specially powerful methods
study the chiral structure of QCD@10#. Klevansky and Lem-
mer @11# studied the chiral symmetry behavior of hadron
system described by Nambu–Jona-Lasinio~NJL! model
minimally coupled to a constant electromagnetic field. So
ing the gap equation they found that whereas a constant e
tric field restores chiral symmetry, a constant magnetic fi
inhibits the phase transition by stabilizing the chirally brok
vacuum state. This conclusion was confirmed by later stu
of the NJL model@12#. Shushpanov and Smilga@13# consid-
ered QCD with the massless flavors in the leading orde
chiral perturbation theory and studied the dependence
quark condensate on an external magnetic field by stud
the Schwinger-Dyson equation and showed that an exte
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magnetic field increases the condensate.
A particularly attractive framework to study such system

is the linear sigma model originally proposed as a model
strong nuclear interactions@14#. We will consider this as an
effective model for low energy phase of QCD and will e
amine the chiral symmetry properties at finite density and
the presence of external magnetic field. To fix ideas we c
sider a two flavorSU(2)3SU(2) chiral quark model given
by the Lagrangian

L5 i c̄gm]mc2gc̄~s1 ig5tW•pW !c1
1

2
~]ms!21

1

2
~]mpW !2

2U~s,pW !, ~1!

wherec is the quark fields andp are the set of four scala
fields and g is the quark meson coupling constant. The
tential U(s,pW ) is given by

U~s,pW !52
1

2
m2~s21pW 2!1

1

4
l~s21pW 2!2. ~2!

For m2.0 chiral symmetry is spontaneously broken. Thes
field can be used to represent the quark condensate, the
parameter for chiral phase transition and the pions are
Goldstone bosons. At the tree level the sigma, pion and
quark masses are given by

ms
253lscl

2 2m2, mp
2 5lscl

2 2m2, mc
25gscl , ~3!

wherescl
2 5m2/l5 f p

2 . An elegant and efficient way to stud
symmetry properties of the vacuum at finite temperatu
density and in the presence of external fields is through
‘‘effective potential’’ approach discussed extensively in t
literature @15#. We will compute here, in the one loop ap
proximation, the effective potential in the presence of ext
nal magnetic field which is defined through an effective a
tion G(s,B) which is the generating functional of the on
particle irreducible graphs. The effective potential is th
given by

Ve f f~s,B!5V0~s!1V1~s,B!, ~4!

where V1(s,B) is obtained from the propagator functio
G(s,B) by the usual relation V1(s,B)
52(1/2i ) Tr logG(s,B).

Alternatively one can compute the shift in the vacuu
energy density due to zero-point oscillations of the fie
©2000 The American Physical Society22-1
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considered as an ensemble of harmonic oscillators@15#. We
thus require energy eigenvalues~excitations! of particles in
the magnetic field, which can be easily obtained, and in
absence of anomalous magnetic moment for uniform st
magnetic field in the z-direction for a particle of mass M
charge q, and spin J, are given by@16#

E~kz ,n,Jz!5„kz
21M21@2n112sgn~q! j z#uquB…2, ~5!

where n represents the Landau level. Contribution of sc
particles of mass M toV1(M2) after Wick rotation is thus
given by

V1~M2!5
1

2E d4ke

~2p!4
ln~ke

21M22 i e!. ~6!

In the presence of magnetic field, all we need to do is
replace the phase space integral*@d4ke /(2p)4# by
(eB/2p)(n50

` @d2ke /(2p)2# and the energy by expressio
~5! for charged particles. For a scalar field of charge6e, we
thus have

V1~M2,B!5
eB

4p (
n50

` E d2ke

~2p!2
ln„ke

21~2n11!eB1M2
…

52
eB

4p

]

]a

G~a2d/2!

G~a!~4p!d/2

3 (
n50

`
1

~M21eB12neB!a2d/2U
a50,d52

52
eB

4p
lim
a→0

]

]a

G~a2d/2!

G~a!~4p!a2 d/2

3
1

~2eB!a2d/2
zS a2

d

2
,
M21eB

2eB DU
a50,d52

,

~7!

wherez(z,q) is the generalized Riemann zeta function

z~z,q!5 (
n50

`
1

~q1n!z
5

1

G~z!
E

0

`

dt
tz21e2qt

12e2t
. ~8!

The potential~7! has poles ata50, 1 and 2 for d52 which
can be absorbed in the counter terms. The finite part dep
on the exact renormalization conditions that are imposed
what follows we would use the modified minimal subtracti
(MS) renormalization scheme. From Eqs.~7! and~8! we can
write
02502
e
ic
,

ar

o

ds
In

V1~M2,B!52
eB

32p2
lim
a→0

]

]a

~2eB!12a

G~a!

3E dtta22
e2(M2/2eB)t

sinh
t

2

, ~9!

which converges for Rea.2. We analytically continue the
result in the complexa-plane and use dimensional regula
ization technique to extract the finite contribution. To pr
ceed further we first consider the caseM2/2eB,1, expand
e2(M2/2eB)t and formally integrate~9! to obtain@17#

V1~M2,B!52
uquB

32p2
lim
a→0

]

]a (
n50

` S M2

2eBD a1n21

3
~21!n

n! ~M2!a21

2

G~a!
~2a1n2121!

3G~a1n21!z~a1n21!. ~10!

Keeping leading terms inM2/2eB we obtain

V1~M2,B!52
1

16p2 Fe2B2

2p
z~2!log2eB1

eBM2

2
log2

2M4
p

2
log2eB1•••G . ~11!

The leading term for the contribution of charged Goldsto
bosons relevant for symmetry considerations is

V1~M2,B!;2
eBM2

32p2
log2, ~12!

FIG. 1. Effective potential in units of (100 MeV)4 as a function
of s(MeV) for different values of the magnetic field. The curves
b, c, d and e are for B50, 1016,1018,1019 and 331019 G, respec-
tively.
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FIG. 2. ~a! Chiral condensates(MeV) as a function of baryon density inf m
23 for magnetic field B50. ~b! Chiral condensates(MeV) as

a function of baryon density inf m
23 for magnetic field B51016 G. ~c! Chiral condensates(MeV) as a function of baryon density inf m

23 for
magnetic field B51018 G. ~d! Chiral condensates(MeV) as a function of baryon density inf m

23 for magnetic field B51019 G.
at

a-
e

yon
which agrees with the earlier results@6,13# up to a factor of
order one. For the case ofM2/2eB.1 we write Eq.~9! as

V1~M2,B!52
1

32p2
lim
a→0

]

]a

1

G~a!

3E
0

`

dxxa23e2M2x
eBx

sinheBx
~13!

and keeping leading terms obtain

V1~M2,B!.
1

64p2 FM4S logM22
3

2D2
2

3
~eB!2logM2G ,

~14!

which agrees with the result obtained by Salam and Str
dee@5#. Likewise for the charged fermion fields using Eq.~5!
we obtain

V1~M2,B!5
4uquB

32p2
lim
a→0

]

]a

~2uquB!12a

G~a!

3E
0

`

dtta22e2(M2/2uquB)tcoth
t

2
. ~15!
02502
h-

The factor of 4 and positive sign account for the spinor n
ture of the Fermi field. In the limits mentioned above, w
obtain

V1~M2,B!5
uquBM2

8p2
~12 logM2! ~16!

FIG. 3. Phase diagram as a plot of magnetic field versus bar
density in units of fm23.
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and

V1~M2,B!.2
1

16p2 FM4S logM22
3

2D1
2

3
~ uquB!2logM2G

~17!

for 2uquBM2.1 and,1, respectively.
The totalVe f f(s,B) for the sigma model at the one loo

level is thus given by

Ve f f~s,B!52
1

2
m2s21

l

4
s41

1

64p2
~3ls22m2!2

3 logS 3ls22m2

ms
2

2
3

2D 1
1

64p2
~ls22m2!2

3 logS ls22m2

m2
2

3

2D 2
eB

16p2
~ls22m2!log2

2
Nc

16p2 (
f lav

Fg4s4S log
g2s2

mf
2

2
3

2D
1

2

3
~ uquB!2 log

g2s2

mf
2 G . ~18!

For uquB/M2.1, the last term in Eq.~18! is replaced by
Eq. ~16! summed over flavors. In Fig. 1, we plotVe f f(s,B)
as a function ofs for different values of magnetic field an
compare it with the case of zero magnetic field by ignor
the B independent one loop terms. As input parameters
choose the constituent quark massmf5500 MeV, sigma
massms51.2 GeV andf p593 MeV. We find that in the
presence of intense magnetic fields the chiral symm
breaking is enhanced. For magnetic field large compare
mf

2 , from Eq. ~16! we observe that though the fermion
contribution is towards symmetry restoration, it is n
enough to offset the contribution of charged goldstone pio

In order to study chiral symmetry restoration in the ca
of neutron stars as a function of chemical potentialm asso-
ciated with finite baryon number density we employ t
imaginary time formalism by summing over Matsubara f
quencies. This amounts to adding the fermionic free ene
to the one loop effective potential and is given by

V1
b~s!52

g

bE d3k

~2p!3
ln~11e2b(E2m)!, ~19!

which in the presence of static uniform magnetic field b
comes

V1
b~s!52

g

b

eB

2p (
n50

` E
0

`dkz

2p
ln~11e2b(E2m)! ~20!

whereg is the degeneracy factor and is equal to 2Nc for each
quark flavor. We consider cold dense isospin symme
quark matter for which the integrals can be performed a
02502
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t
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lytically. The baryon number density corresponding to t
chemical potentialm is given by the usual thermodynamic
relations:

NB~m,0!5
1

3 (
f lav

g

6p2
~m22g2s2!3/2 ~21!

and

NB~m,B!5
1

3 (
n50

nmax guquB

4p2
~22dm,0!Am22g2s222nuquB

~22!

for zero and finite magnetic field respectively. Herenmax
5Intu(m22g2s2)/2uquBu. To study chiral symmetry behav
ior at finite density in the presence of uniform magnetic fie
we minimize effective potential with respect to the ord
parameters for fixed values of chemical potential and ma
netic field~which then fixes the baryon density!. The results
are shown in Fig. 2 where we have plotted the order para
eters as a function of density at T50 for different values of
magnetic field. The solution indicates a first order phase tr
sition. The actual transition takes place at the point where
two minima of the effective potential ats50 and s
5s(m,B) nonzero become degenerate. The lower value
s ~shown by dotted curves! are unphysical in the sense th
they do not correspond to the lowest state of energy. We
that magnetic field continues to enhance chiral symme
breaking at low densities as expected but as the magn
field is raised the chiral symmetry is restored at a mu
lower density compared to the free field finite density ca
This can be clearly seen from Fig. 3 where we have plot
the phase diagram in terms of baryon density and magn
field.

In conclusion we have examined the chiral symmetry
havior of the linear sigma model in the presence of sta
uniform magnetic field at the one loop level at zero dens
and at densities relevant in the core of neutron stars. We
that the contribution of scalar and fermion loops leads to
increase in chiral symmetry breaking. At high densities t
this effect persists and for magnetic fields of strength u
1018 G, there is enhancement in chiral symmetry break
resulting in the restoration of symmetry at densities hig
than if no magnetic field were present. However, in the c
of high magnetic fieldB>1019 G the chiral symmetry is
restored at lower densities. Thus in the core of neutron st
if the nuclear matter undergoes a transition to deconfi
quark matter, the presence of magnetic field would imply
existence of massive quark matter due to enhancemen
chiral symmetry breaking. This would affect the equation
state and will have astrophysical implications.

We would like to thank Professor J.V. Narlikar for pro
viding hospitality at the Inter-University Center for As
tronomy and Astrophysics, Pune 411 007, India where
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