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Chiral symmetry in the linear sigma model in a magnetic environment
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We study the chiral symmetry structure in a linear sigma model with fermions in the presence of an external,
uniform magnetic field in the “effective potential” approach at the one loop level. We also study the chiral
phase transition as a function of density in the core of magnetized neutron stars.
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In the absence of a quark mass matrix, QCD is invarianmagnetic field increases the condensate.
under chiral transformation at the Lagrangian level. How- A particularly attractive framework to study such systems
ever, the dynamics of QCD are expected to be such thas the linear sigma model originally proposed as a model for
chiral symmetry is spontaneously broken with the vacuumstrong nuclear interactiorjd4]. We will consider this as an

state having a nonzero quark-antiquark conden&ztgg|0) effective model for low energy phase of QCD and will ex-
and the Goldstone theorem then requires the existence @mine the chiral symmetry properties at finite density and in
approximately massless pseudoscalar mesons in the hadrBif presence of external magnetic field. To fix ideas we con-
spectrum. At high temperatures and/or at high densities, théider a two flavoiSU(2) <X SU(2) chiral quark model given
quark condensates are expected to melt at some critical poifly the Lagrangian

and chiral symmetry is restoréd]. The chiral phase transi- 1 1

tion and phenomenological consequences in the form of X L=y, h—g(o+iysT )+ 5(,0)%+ 5 (d,m)?
perimentally observable signatures have been extensively 2 2

discussed in the literaturg2]. It has also been suggested -

[3,4] that systems with spontaneously broken symmetries —U(o,m), @
may make a transition from a broken symmetric to restore

symmetric phase in the presence of external fields. It h Q/vherezp is the quark fieldr and  are the set of four scalar

been shown[5,6] that there exist some realistic modelsaﬁelds and g is the quark meson coupling constant. The po-

where the symmetry restoration takes place. In QED uni{éntial U(o,m) is given by

form, external static magnetic field is known to break chiral 1 1

symmetry dynamically at weak gauge couplin@s U(o,m)=— = p2(0?+ 72 + N (o2 + 72)2 )
Large magnetic fields with strengths up to'8@ have 2 4

been conceived to exi$B,9] at the time of supernova col- Pf,u2>0 chiral symmetry is spontaneously broken. The

lapse inside neutron stars and in other astrophysical compa;
objects and in the early Universe. Effect of such a stron leld can be used to represent the quark condensate, the order

magnetic field on chiral phase transition is thus of great in arameter for chiral phase transition and the pions are the

terest for baryon free quark matter in the early universe ang;oldstone bosons. At the tree level the sigma, pion and the
quark masses are given by

for high density baryon matter in the core of neutron stars.
To study chiral phase transition in QCD we need a nonper-
turbative treatment. Lattice techniques and the Schwinger-

Dyson equgtions provide specially powerful methods to\Nhereoé:MZ/)\:ff,.An elegant and efficient way to study
study the chiral structure of QC[10]. Klevansky and Lem-  qymmetry properties of the vacuum at finite temperature,
mer [11] studied the chiral symmetry behavior of hadronic yensity and in the presence of external fields is through the
system described by Nambu—Jona-LasifJL) model  «ggfactive potential” approach discussed extensively in the
minimally coupled to a constant electromagnetic field. Solv4jiarature [15]. We will compute here, in the one loop ap-
ing the gap equation they found that whereas a constant eleg,yimation, the effective potential in the presence of exter-
tric field restores chiral symmetry, a constant magnetic field, magnetic field which is defined through an effective ac-
inhibits the phase transition by stabilizing the chirally brokeny;, I'(#,B) which is the generating functional of the one

vacuum state. This conclusion was confirmed by later studiegaticle irreducible graphs. The effective potential is then
of the NJL mode[12]. Shushpanov and Smilga3] consid- (f;iven by

ered QCD with the massless flavors in the leading order o
chiral perturbation theory and studied the dependence of Vetf(0,B)=Vo(0)+V4(0,B), (4)
guark condensate on an external magnetic field by studying
the Schwinger-Dyson equation and showed that an externathere V,(o,B) is obtained from the propagator function
G(o,B) by the usual relation V,(o,B)
=—(1/2i) Trlog G(o,B).
*Email address: agoyal@ducos.ernet.in Alternatively one can compute the shift in the vacuum
"Email address: meenu@ducos.ernet.in energy density due to zero-point oscillations of the fields

m2=3\o3— u?, mi=\o?—pu? m2¢,=goc|, (€]
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considered as an ensemble of harmonic oscilldtbss We eB J (2eB)l@
thus require energy eigenvaluésxcitations of particles in V(M2 B)=— 2Iim— T
the magnetic field, which can be easily obtained, and in the 32m 00 (a)
absence of anomalous magnetic moment for uniform static
Co T 9 : —(M?/2eB)t
magnetic field in the z-direction for a particle of mass M, f dtte— ze— 9)
charge g, and spin J, are given 6]

smhi

which converges for Re>2. We analytically continue the

result in the complexx-plane and use dimensional regular-
where n represents the Landau level. Contribution of scalazation technique to extract the finite contribution. To pro-
particles of mass M to/;(M?) after Wick rotation is thus ceed further we first consider the cag/2eB<1, expand

E(K,,n,J,)=(K:+M?2+[2n+1-sgr(q)j,l|q|B)? (5

given by e~ (M*2B)t and formally integratd9) to obtain[17]
|q| * M2 atrv—1
2 Ry _
V(M 2f = In(ki+M2—ie). (6) ViM%B) 327 H,aa ,120 2eB
(_1)V (2a+v—l_l)
In the presence of magnetic field, all we need to do is to vi(M2)e 1 I'(a)
replace the phase space integrfi[d*k./(27)*] by
(eBi2w)=7_,[d%k./(2m)?] and the energy by expression XF(atv=1){(atrv—1). (10
(5) for charged patrticles. For a scalar field of charge, we ) ) o )
thus have Keeping leading terms iivi</2e B we obtain
eZBZ 2
eB Vi(M2B)=— { £(2)log2eB+ log2
Vl(Mz,B)—4—2 f In(k2+(2n+1)eB+M2) ! 1672| 2

o
eB 9 T'(a—d/2) —M“ElogZeB+-~'] (1)

47 da r(a)(477)d/2

The leading term for the contribution of charged Goldstone

i 1 bosons relevant for symmetry considerations is
= 2 a—d/2
=0 (M“+eB+2neB) a=0d=2 ,
e
eB 9 T(a—d2) Vi(M?B)~ — ——log2, (12)
Am, oda I'a)(4m)*™ drz

250 T T T T

a=0d=2
™ 150

200 -

" 1 d M?+eB
(ZGB)afd/zg 2" 2eB

where{(z,q) is the generalized Riemann zeta function 100 |

Veff

« tZ*le*qt o ]
z, dt . 8
{za)= 2o (q+n)Z 1ﬂ(Z)fo 1-et . 0
The potential7) has poles atr=0, 1 and 2 for &2 which 0, pos 200 150 200 250

can be absorbed in the counter terms. The finite part depends sigma(MeV)

on the exact renormalization conditions that are imposed. In £ 1. Effective potential in units of (100 Me%gs a function
what follows we would use the modified minimal subtraction ¢ o(MeV) for different values of the magnetic field. The curves a,

(MS) renormalization scheme. From E¢#) and(8) we can b, ¢, d and e are for B0, 10 10 10" and 3x 10" G, respec-
write tively.
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FIG. 2. (a) Chiral condensate(MeV) as a function of baryon density i‘r;;?’ for magnetic field B=0. (b) Chiral condensate(MeV) as
a function of baryon density ih;]3 for magnetic field B=10'° G. (c) Chiral condensate(MeV) as a function of baryon density i‘r}]3 for
magnetic field B=10'® G. (d) Chiral condensate-(MeV) as a function of baryon density if},> for magnetic field B=10° G.

which agrees with the earlier resu[,13] up to a factor of The factor of 4 and positive sign account for the spinor na-
order one. For the case df2/2eB>1 we write Eq.(9) as ture of the Fermi field. In the limits mentioned above, we

obtain
V1(M2,B) l i |q|BM?
,B)=— im-— ——
! 3272, oda I'(a) Vi (M2B)= a >—(1—logM?) (16)
a
- -3 7M2X 1e+20 T T T T T

Xfo dxx e sinheBXx (13
and keeping leading terms obtain et 1
) 4 ) 3 2 ) ) 1le+18 | E

V(M ,B)~647T2[M (IogM —2)—3(eB) logM } g
(14) & 1e+17 | -
m

which agrees with the result obtained by Salam and Strath- ., o[ i

dee[5]. Likewise for the charged fermion fields using E§).

we obtain
1e+156 | E
4/q/B 9 (2|q|B)""“
\Y MZ,B = im——— + I 1 1 1 1
ul ) 3272 ,_oda  T'(a) fertd g 0.05 0.1 0.15 0.2 025 03
number density
" jwdttm2e7(M2/2\q\B)tC0th;,_ (15) FIG. 3. Phase diagram as a plot of magnetic field versus baryon
0 density in units of fm 2.
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and lytically. The baryon number density corresponding to the
chemical potentiak is given by the usual thermodynamical
V- (M2.B 1 M4l loaM? 3 2 B)2loaM? relations:
UMEB)=—T— ogM*— 5|+ 3(|a[B)"log
(17) 1
Y
, | No(u0)=3 > —(u’-g%0)¥ (1)
for 2|q|BM?>1 and<1, respectively. flav 67
The totalV.¢;(o,B) for the sigma model at the one loop
level is thus given by
and
Veif(o B)=—£,u202+£0'4+ (3No?— u?)?
e 2 47 " bar? 1 9B

Ne(w.B)=3 2 = —5-(2= 0,0 u’~g?o*~2n[q[B

2
3ANo?—pu?® 3 7
No2—pu? 3 e for zero and finite magnetic field respectively. Herg,,
xlog| ———~ 5) — 2()\0-2—M2)|og2 =Int|(u?—g20?)/2|q|B|. To study chiral symmetry behav-
m 6 ior at finite density in the presence of uniform magnetic field,
s we minimize effective potential with respect to the order
_ N E gt Iogg g § parametewr for fixed values of chemical potential and mag-
1672 flav m? 2 netic field (which then fixes the baryon densityThe results
are shown in Fig. 2 where we have plotted the order param-
2 ) g%0? etero as a function of density at=0 for different values of
+ §(|CI| B) |09m—f2 : (18 magnetic field. The solution indicates a first order phase tran-

sition. The actual transition takes place at the point where the
two minima of the effective potential abr=0 and o
=o(u,B) nonzero become degenerate. The lower values of
o (shown by dotted curveésre unphysical in the sense that
they do not correspond to the lowest state of energy. We find
at magnetic field continues to enhance chiral symmetry
reaking at low densities as expected but as the magnetic
field is raised the chiral symmetry is restored at a much
lower density compared to the free field finite density case.
his can be clearly seen from Fig. 3 where we have plotted
e phase diagram in terms of baryon density and magnetic
field.

For|q|B/M?>1, the last term in Eq(18) is replaced by
Eq. (16) summed over flavors. In Fig. 1, we plot(o,B)
as a function ofo for different values of magnetic field and
compare it with the case of zero magnetic field by ignoring
the B independent one loop terms. As input parameters w
choose the constituent quark mass=500 MeV, sigma
massm,=1.2 GeV andf =93 MeV. We find that in the
presence of intense magnetic fields the chiral symmetr
breaking is enhanced. For magnetic field large compared t
m?, from Eq. (16) we observe that though the fermionic
contribution is towards symmetry restoration, it is not ; : ; )
enough to offset the contribution of charged goldstone pionﬁ,1 In conclusion we have examined the chiral symmetry be

| der to studv chiral i toration in th avior of the linear sigma model in the presence of static,
n order fo study chiral Symmetry restoration in IN€ Cas§, sy, magnetic field at the one loop level at zero density
of neutron stars as a function of chemical potentiadsso-

. ) o 8 and at densities relevant in the core of neutron stars. We find
ciated with finite baryon number density we employ the

. ) . ) . that the contribution of scalar and fermion loops leads to an
Imaginary time formalism by summing over Mgtsubara fre'increase in chiral symmetry breaking. At high densities too,
quencies. This amounts to add!ng . fermlonlc free ENeO%is effect persists and for magnetic fields of strength upto
to the one loop effective potential and is given by 10'® G, there is enhancement in chiral symmetry breaking
K resul'ging in the re_sto_ration of symmetry at densi;ies higher
Vf(cr)= Y In(1+e AE- M) (19) than if no magnetic field were present. However, in the case
Bl (2m)3 ' of high magnetic fieldB=10"° G the chiral symmetry is
restored at lower densities. Thus in the core of neutron stars,
which in the presence of static uniform magnetic field be-if the nuclear matter undergoes a transition to deconfined
comes quark matter, the presence of magnetic field would imply the
existence of massive quark matter due to enhancement in
y eB chiral symmetry breaking. This would affect the equation of

Vio)=—=—2 fx%m(lJreﬂ(E“)) (200 state and will have astrophysical implications
1 B2m &y Jo 2m phy p :

©
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