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We use a prescription to gauge the (8USkyrme model with a (1) field, characterized by a conserved
baryonic current. This model reverts to the usual Skyrme model in the limit of the gauge coupling constant
vanishing. We show that there exist axially symmetric static solutions with zero magnetic charge, which can be
electrically either charged or uncharged. The energies oftthehargeglgauged Skyrmions are less than the
energy of thgusua) ungauged Skyrmion. For physical values of the parameters the impact of th&eld is
very small, so that it can be treated as a perturbation t@uhgaugey spherically symmetric hedgehog. This
allows the perturbative calculation of the magnetic moment.

PACS numbd(s): 12.39.Dc

[. INTRODUCTION model with N<d for the cased=3, N=2, extending the
P;esults of Ref[10] which were restricted to thl=d cases.
. . . . . The work of Ref.[10] consists of establishing topological
Sky”‘.‘e[” model in 3 d|men§|ons. It is t.)ell|eved to be an lower bounds for t[he ]generic case, encompagsing ea?lier ex-
effective theory for nuclgons in the_ largelimit of QCD at amples in two[11] and three[12,13 dimensions respec-
low energies. The classical _properpes as well as the quant.um,ew_) The gauging prescription used here by us coincides
properties of the model are in relatively good agreement W'”brecisely with that used in Ref5] and permits the establish-
the observed properties of small nudgi-4]. ing of a topological lower bound which did not feature in
Gauged Skyrme models have been used in the past. ThRef.[5] and which is carried out here to establish the stabil-
U(1) gauged mode[2,5] was used to study the decay of ity of the soliton. Such lower bounds are absent in the other
nucleons in the vicinity of a monopol&], while the SU(2)  prescription of gauging the Skyrme model as in R§8s7].
gauged modd]l6,7] was used to study the decay of nucleons[Notice that we name the sigma models after the manifold in
when the Skyrme model is coupled to the weak interactionsvhich the fields take their values rather than using the name
[6,7]. The Skyrme model has also been used to compute thef the symmetry group for the model. Thus what is sometime
quantum properties of the Skyrmidi3] where the gauge called theO(d+ 1) model in the literature will be refered to
degrees of freedom are quantized to compute the low energs theS? model]
eigenstates of a Skyrmion. These states were identified as the The U1) gauged SI2) Skyrme model is described by the
proton, the neutron and the delta. Lagrangian 5]
The aim of this work is to show that the Skyrme model 2
can be coupled to a self-contained electromagnetic field and ~ »— _"1yp yp u')
that this U1) gauged model has stable classical solutions. In 16 S
addition to these solitons with vanishing magnetic and elec- 1 1
tric flux, we show that this system supports solutions with - @Tr([(DMU)UT,(DMU)UT])Z— Zj:iv
nonvanishing electric flux which are analogous to the dyon
solutions of the Georgi-Glashow model, just as the un
charged solitons are the analogues of the monop[@gsf
that model. The electrically charged lumps have larger en- D,U=d,U+ieA,[Q,U], (D)
ergy, or mass, than the uncharged soliton, just like the Julia-
Zee dyon[9] has larger energy, or is heavier, than tekec-  Where 7,,=4d,A,—d,A, and where the charge matrix of
trically unchargefimonopole. We shall refer to these lumps the quarks is expressed @s=3(31+ o3). This differs from
ascharged U(1) Skyrmions the covariant derivative of Ref5] only in the unimportant
In addition to its intrinsic interest as a soliton in the Max- matter of the sign of in Eq. (1), which we have chosen for
well gauged Skyrme model, the present work is also an exeonsistency of the convention used in Rdf0].
ample of a soliton in ad-dimensionalSO(N) gaugedS® In what follows it will be more convenientl0] to param-
etrize the Skyrme field as &8 valued fieldp®= (¢, ¢™),
a=1,2, A=3,4 subject to the constraif$??=1. The two
*Email address: B.M.A.G. Piette@durham.ac.uk fields U and ¢ are related to each other via the following
TEmail address: tigran@thphys.may.ie expression:

For a long time now, much attention has been paid to th

‘where the 1) gauge covariant derivative is
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U=¢272, U l=UT=¢%72 ) In Sec. I, we define the topological charge and gstablish
the corresponding lower bound on the energy functional. In
Sec. Il we present the solutions which have no electric fields
in the first subsection and electrically charged solutions in
the second subsection. The perturbation analysis of the
uged Skyrmion around titengaugegihedgehog is carried
out in Sec. IV, and Sec. V is devoted to a discussion of our
results.

where 7= (i¢%ic?,1) and73=(—ic® —ic3 1), in terms
of the Pauli matricesd?,o?,0°).
The gauge covariant derivative now can be reexpressed

D,¢*=d,¢"+A,e*P¢P, D, p"=3,¢", ©)

whereA ,=eA, andF,,=eF,,.
The Lagrangian for the (1) gauged Skyrme model can Il. THE TOPOLOGICAL CHARGE AND LOWER BOUND

then be writien as The definition of the topological charge is based on the

criterion that it be equal to the Baryon number, namely the
degree of the map. For the gauged theory however, this
. i i quantity must begauge invariantas well. This requirement
where the square brackets on the indices impiya) anti- 5 pe systematicallj10] satisfied by arranging the gauge

iaati “1_402 \ —F2 -1
symmetrisation and wherk, “=4e°, \;=F7/8 and\, invariant topological charge density to be the sum of the
=8a?. The late Greek indiceg label the Minkowskian co- usual,gauge variantwinding number density

ordinates, while the early Greek indices=1,2 and the up-
in i H — 7 a_ a 4 A
per case L{itm |nd_|ceA_— 3,4 Iab_el_ the fieldsp®= (¢p“, ¢ ) Qozsijkgabcdai¢a(9j PLFWCCE (6)
The static Hamiltonian pertaining to the Lagrangidhis

L=—NoF%,+\1|D,¢%2=\,|D,,¢?D,14"%  (4)

plus a total divergence whose surface integral vanishes due
to the finite energy conditions, such that the combined den-
2 wl2 @l2] - A2, 1 Al2N (2 sity is gauge invariant. In 3 dimensions, this is given explic-
+AGIN| %[+ 160 [ [ @71 37"+ 3l (| 47D}, itly in Refs.[10,13 for the SO(3) gaugedS® model, and for
(5) the present case of interest, namely $6(2) gaugedS®
model, the charge density can be derived from that of the
where the indices= «,3 label the spacelike coordinates.  SO(3) gauged model by contraction of the gauge group
To find the static solutions of the model, one would SO(3) down toS((2). It canalso be arrived at directly. To
usualy solve the Euler Lagrange equations which minimizestate the definition of the charge, we denote the gauge cova-
the Hamiltonian(5), but because of the electric potentfg),  riant counterpart of Eq6) by
one must solve the Euler Lagrange equations derived from
the Lagrangiari4). We then look for static solutions, but, as 0c=¢ijke?"°D;¢°D; "Dy " 4", 7)
for the Julia-Zee dyori9], we have to impose the proper
asymptotic behavior for the electric potential to obtain staticsg that using the notatior{§) and(7) we have the definition
solutions which are EIECtrica”y Chargdd:h the classical of the gauge invariant top0|ogica| Charge
sense, i.e. solutions where the flux of the electric field is
nonzer. . . . 0=0o+ 3}, (8
When the full equations of motion are written down, one
finds as expected that there are static solutions for which
Ao=0, i.e., solutions for which the electric field is identi- =0+ Esiijij(SAsd’BDkd)A)- 9
cally zero. For these solutions in the temporal gauge, the 2
equations of motion reduce to the equations obtained by
minimizing the Hamiltonian(5). We study the solutions of In Eq. (8) the density(}; is the following gaugevariant
unit Baryon chargeof the U1) gauged Skyrme model with form:
and without an electric field, for various values of th€lJ
coupling constantor equivalently the Skyrme couplingFor 0= 3ee A 0" 9. (10
physical values of these parameters in the model, we find
that the energy(mas$ of the gauged Skyrmion does not The flux of ); vanishes, as can deduced by anticipating the
differ Significantly from that of the UngaUQEd Charged'lfinite energy conditions to be stated later.
Skyrmion, namely the familiar hedgehdg]. This implies Note that the 3-volume integral daf, in Eq. (8) is the
that for these values of the physical parameters, tiB) U degree of the map for the ungauged system namely the
gauged Skyrmion can be regarded as a perturbation of thgaryon number.
(ungaugegihedgehog, enabling the computation of the mag- |dentifying o, Eq. (9), with the naught componerif of
netic moments of the gauged Skyrmigre. the Neutronand  the paryon current” is defined by
the shift of the energy of the gauged Skyrmion away from

H:)\OFizj +X1|D; 3|2+ N5 Dyi 2D P2 +12X | 31Aq| 2

the energy of the hedgehdd], perturbatively using the . pvpo a5 P bCad
method employed by Klinkhamer and Mantpt4] for the V= et e ancdd v 70, 700470
sphaleron of the Weinberg—Salam model. +3e47779,(A,e"B¢Ba, ") (11
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= 4% pedD D, #°D , ¢ Ho=koF 5+ x5(D )2+ k3(D[; %D ¢°)?
3 2 4
— M, (ead®D 7). (12 94L( ABUBD, )2, (19
Ko

The 4-divergence of Eq11) receives a contribution only
from its first term, which being locally a total divergence
implies that the 3-volume integral ¢f is a conserved quan-
tity. Alternatively we consider the 4-divergence of Ef_2),

The Hamiltonian syster(i9) is almost the Hamiltonian of
the gauged Skyrme modéb) (remember thatA,=0).
differs from the latter only in its last term. Now we can use
the identity

d,j#=68"""¢ e pgD "D, "D, "D, ¢° (13 N i .

_ —(D. 62— | Z(bleD. b5

which is analogous to the corresponding quantity in the work (e7¢"Dig7)"=(Did") [2(¢ Di¢™)
of Goldstone and Wilczek6]. This contrasts with the ex-
pression for the total divergence of the topological current in + (¢leD; pM)2
the work of D’Hoker and Farhi7], where a different gaug-
ing prescription is used leading to that quantity being equal . . 4
to the local anomaly. and add the positive definite term Kifcz/

We now proceed to find a model whose Hamiltontdp ~ 9x3)[ 3 (4L2D;¢P)2+ (41D, ¢™)?] appearing on the right-
is bounded from below by the topological charge densityhand side of Eq(20) to H, in Eq. (19) to end up with the
defined by Eq(9). We will then show that the Hamiltonian Hamiltonian for the W1) gauged Skyrme model:

(5) is given byH, plus certain positive definite terms.

First of all, we reproduce the densibg, Eq.(7), in Eq. H=kgF 5+ Kk5(Di¢?) 2+ k3(D[1¢°Djy 6°) 2= 2350

(9) by using the following inequality: (21)

(20

(K3D¢a_8ijk8abcd ZD ¢bD $°¢%)2=0 (14) which is nothing but the static Hamiltonig®) in the tem-
poral gauge®A,=0, and where
where the two constantg; and «, have the dimensions of 9.t
length. Expanding the square, we on the right-hand 2
Sidg o panding q L 9 )\1—K3(1+4 3) No=ki Np=xi. (22
k2(D; )%+ k3D 2D 1 dP) 2= 2 k3K > (15) i i
3(Ui ARl il 3K20G - By virtue of Eq.(18), Eq. (21) is also bounded from below

by 2K3K§Q, namely by a number proportional to the topo-
logical charge densityp.

We thus see thdtl, can be considered as a mininfial(1)

To reproduce the other term in Eq.(9),
SeijkFij(e"BpPa ™), we use the following inequality:

1 2 gauged model, but from now on, we will restrict our atten-
K(Z)Fi,— - §K4gijk8AB¢,BDk¢A =0 (16)  tion to the physically more relevant mod@ll) and integrate
it numerically to find its topologically stable finite energy
solitons.

yielding The soliton solutions to the systei@l1) can only be found

1 by solving the second-order Euler-Lagrange equations, and
KoF i+ k57 (e"BpBD; ¢™)2= kGrqe ik Fij (6" BpPDy ™). not some first-order Bogomol'nyi equations since saturating
4 the inequalitieg(14) and (16) would not saturate the lower
17 bound on the energy density functiortdl In this context we
With the special choice for the relative values of the con-N0te that saturating Eqsl4) and (16) does indeed saturate

stants Fax2= 2 the sum of Eqs(13) and(15) yields the the topological lower bound on the functioridl, by virtue
3/ ™ Kako ! qs13) and(19) yi of the inequality(18), and should it have turned out that the

following: Bogomol'nyi equations arising from the saturation of Egs.
4|:i21_ + k(D) %+ k4(D id)a|3j]¢b)2 (14) and(16) supported non-trivial solutions, thét, would
have been a very interesting system to consider. As it turns
9k g out however, these Bogomol'nyi equations have only trivial
2 (6"BpBD, p*)?=2k3x20. (18)  solutions in exactly the same way as in the case of(time
Ko gauged Skyrme mode([1].

The energy for the static configuration, when the electric

The right-hand side of Eq18) is now proportional to the field vanishes, is expressed as

topological charge densitg defined by Eq(9) so that the

inequality (18) can be interpreted as the topological inequal-

ity giving the lower bound on the energy density functional E(Ao, A1\ z)—J dX[NoFf +\1(D;$?)?

if we define the latter to be the left-hand side of Eg8),

namely +\,(D[i¢°Dj 6" (23
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and performing the dilation— o'Xx, AM—nflAu, we get variational principle, and look for solutions which are invari-
ant under that symmetry group. For the solutions in Ae
No =0 gauge this is the static Hamiltonid@1), while for the
—Fﬁ+a)\1(Did>a)2 solutions in theA,#0 it is the Lagrangian(4). For our
g . .
choice of gauge group the largest symmetry is 8@(2)
A, group corresponding to an axial rotation in space-time and a
+ ?(D[id’aDj](ﬁb)z}- (24 gauge transformation on the gauge field. Defining the axial
variablesr = \/x?+x2 andz=x in terms of the coordinates
X;=(X,,X3), «=1,2, the most general axially symmetric an-
satz[15] for the fields 3= (%, ¢*) (with a=1,2 andA

E()\Ol)\l!)\Z)z f dSX

If we chooseo=(\,/\;)*? then we have

)\ :314)1 and!AI:(Aa’A3)’ lS
_ 2 0
E(\o. N1 A2)=(N1hp)? E()\—,l,l), (25
2
from which we see that we can set=\,=1 without any $*=sinfsingn®, ¢3=sinfcosg, ¢*=cosf, (29
loss of generality. By virtue of Eqg21) and (25), we can
finally state
Aok, |\ 172 a(r,z)-n . cy(r,z).
E(Ng A1 hp)=2 19)2\ f d’x0.  (26) A= EapXpt—Xa,
2
Notice that for the usual Skyrme model we have
Cy(r,2) b(r,z)
A3: y AOZ y (29)
_ 3 ay2 as b2 r r
Eaha o) = | D097+ o367 4%
=()\1)\2)1’2Esk(1,1)22()\1)\2)1’2f dx30,. with n®= (sinn¢,cosng) in terms of the azimuthal angle

andx,=x,/r. nin n® is thevorticity, which for the nucle-
(27) ons of interest to us here, equalse n=1. The functions

We will use Eq.(27) to compare the numerical solutions of &P:C1,C2,f andg both depend om andz .
the gauged Skyrme model with the solutions of tue- Our ansatZ29) for the U(1) field consists of decomposing
gauged Skyrme model. the latter in the most general tensor basis possible. We will

We would like to point out that the topological stability find out below, when we compute the Euler-Lagrange equa-

considerations discussed in this section apply only to th&ons, that the functions, andc; vanish identically. Antici-
solutions with no electric field, i.e., withy=0. pating this, we suppress them henceforth. In its final form

this ansatz agrees with that used in R&b], the latter being
arrived at by specializing the Rebbi-Rossi ansatz for the axi-
ally symmetricSQ(3) field.

To find the static solutions, we have to look for the largest The static Hamiltonian, i.e., th&,, component of the

symmetry group of the functional to be subjected to theenergy mometum tensdr,,, is then given by

IIl. THE SOLITON AND THE CHARGED U (1) SKYRMION

A b\?2 A aZ+p?
H=f {r—;’ a?+alt| b~ —| +bZ|+ S| 2 f2 i f(g7+ gl + sin2fsin2g}
H 2 H a2+b2 2 2 2 2\
+ 2\, sirff|(f,g,— f,9,)%+sif g 2 (fe+ 2+ (gf+g5)siréf)| | rdrdz. (30)

The boundary conditions for the Skyrmion fields are the same as the boundary conditions for the hedgehog ansatz when
expressed in the cylindrical coordinates whgre /2+ arctang/r) and definingR= (z?+r?)2, f=f(R) with f(0)== and
limg_,..f(R)=0. From this we can deduce that the functiohas a fixed value at the origin and at infinity. For smothness
along thez axis, each field, that i, g andA, must satisfy the condition that the partial derivative with respect to of the field
atr =0 vanishes. The boundary conditions and the asymptotic behavicasafuitb are chosen so that the gauge fiefigsare
well defined andA, looks asymptoticaly like a Coulomb fielde., with an electric charge but no magnetic chariée also
require that the total energy be finite. These conditions lead to the following constraints:
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f(0,0=m, f(r—w,z—»)=0, f (r=0z2=0,

g(r=0z<0)=0, gr=0z>0)=m, drlr_-=0,

a(r=02=1, al.=0, aj.=0,

a,(r=02)=0, Ay(r—ow,z—o)=Vy+glr, AyNr=0z =0, (3D

whereR=(z?+r?)Y? and where we have used the notatiaior =a, , etc. Note that the field is undefined at the origin and

the resulting discontinuity of at that point is an artifact of the coordinate system used. The asymptotic behavigraf

infinity will be discussed in a later section. To solve the equations numerically, it is more conveniant to use thg riatheer

thanb; this is why we have expressed the boundary condition in terms of that field. On the other hand, the equations take a
simpler form when written in term db, so we shall still use it below.

Now the volume integralwith the appropriate normalization of 43) of ¢, given by Eq.(6) is the degree of the map, or,
the baryon number. It is straightforward to verify that when the an@8ris substituted ino, and the volume integral is
computed subject to the boundary conditions given above, the result will equal the intdgéned in Eq.(28). Thus, the
baryon number of the field configuratid@8) equals the vortex number In what follows, we will restrict ourselves tanit
baryon numbern=1, i.e., to the nucleons.

Before we proceed to substitute the ang@8), (29) into the field equations, we calculate the Baryon curfédj for the
field configurationg28), (29) described by the solutions we seek. We express the spacelike part of this guimethie radial
direction flowing out of the normal to the surface of the cylinder which we denotg bwnd in thez direction which we
denote byj,. The result is

. . 1. . 1. .
(fg,—gf,)asir? f sing+ E(gaz—agz)sinf cosf sing+ E(afz— fa,)cosg|, (32

jr:F

: (33

6| . . 1. . 1. .
jZ=—F[(fgr—gfr)asinzfsinngE(ga,—agr)sinfcosf sing+§(af,—far)cosg

where we have denotetf/gt=f, etc. Note that the baryon curreid?), (33) arenotsensitive to the charge of the nucleon, i.e.,
that the functiorb(r,z) does not feature in them.

We now turn to the equations to be solved, namely the Euler-Lagrange equations arising from the variational principle
applied to the Lagrangiaf), in the static limit Substituting the ansai28),(29) into these equations of motion leads to

- i—azz—asin2<f)sin2<g>[£+ &[ff+f§+<g$+g§>sirﬁ<f)ﬂ=o,
r 2No  Ag

b, b e [A 2 _
by~ "+ 2 +b,,~ b S|n2(f)S|n2(g)L—)\lo+ )\—Oz[ff+ f2+ (g2+ gﬁ)smz(f)]} =0,

2 2

A
r2 sin? g) sinf cosf + 4)\_i3inf[(gr(fzzgr - frgzz+ fzgrz_ frzgz_ fz/rgz)

Af—| g?+g2+

+0,(fr 9~ F,9r + F,0;,— 1,0, + f, /rg,))sinf + (f,g,— g, f,)>cosf
+sing/r?[(a®—b?)(f2+ f2—2(g?+ g?)sir? f)cosf sing

+((a®—b?)(f, +f,,—f, /r)+2f,(aa,—bb,)+2f,(aa,— bb,))sinf sing
+2(a?—b?)(f,g,+f,g9,)sinf cosg]]=0,

a2 2

. A2
Ag"' Z(frgr+ fzgz)COtf - I’2 sSing C059+4)\_1[fz(fzgrr - frrgz+ frzgr_ 1Ergrz"' 1Ezgr /I’)

+fr(frgzz_ fzzgr+ frzgz_fzgrz_fzgz/r)+Sing/r2[(a2_bz)((gf—i_gg)smz f_frz_fi)COSg
+((a2_b2)(grr+gzz_ gr/r)+29r(aaf_bbr)+292(aaz_bbz))5in2 f Sing
+(a%2—b?)(f,g, + f,g,)cosf sinf sing]]=0. (34
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In the case of théd;=0 gauge, Eqs(34) coincide with It is interesting to note that the energy of gauged Skyr-

the Euler-Lagrange equations derived from the positive defimion is smaller than the energy of the ungauged Skyrmion,
nite Hamiltonian density5). Moreover, in that case, those as expected, but that on the other hand, the amount by which
equations also coincide with the Euler-Lagrange equations dhe energy of the gauged Skyrmion exceeds its topological
the reduced two dimensional Hamiltonian obtained by sublower bound is larger than the excess of the energy of the
jecting Eq.(5) to axial symmetry by substituting the ansatz ungauged Skyrmion above its respective topological lower
(28),(29) into it. This is expected due to the strict imposition bound. For example we can clearly see from Fig) that at

of symmetry. In theA,# 0 gauge, the Euler-Lagrange equa- o= 20, the energy of the gauged Skyrmion 1(22units of
tions are derived from the Lagrangia@) which is not posi- 247T2) exceeds the lower bound 0.95 by 0.27. This is Iarger
tive definite. Nonetheless these equations coincide with thos@an 0.232, the excess of the ungauged Skyrmion energy

arising from the reduced two dimensional Lagrangian obOVer its lower bound. For smaller values ®f Fig. (@
tained by subjecting the Lagrangid#) to axial symmetry. shows that the excess of the energy of the gauged Skyrmion
(This happens also for the Julia Zee dy®.) over its lower bound is even larger, hence this is a general

feature.
In Fig. 1(b), we also see that the Maxwell energy, i.e., the
A. A,=0: U(1) Skyrme soliton term proportional ta\, in Eq. (30), is decreasing ak, in-

) ) creases. Notice that we could have used for the Maxwell
It is easy to see from Eq34) that there are solutions for energy the sum of all the terms involving the gauge field
whichb=0 (i.e., Ag=0). As mentioned before, in that case, functionsa andb in Eq. (30), but this would lead to a figure
Eqg. (34) can be obtained by minimizing the Hamiltonian sjmilar to Fig. 1b).
(30). Notice also that setting=0 is not compatible with our In Fig. 2, we show the profile and the level curve for the
boundary conditions A; would not be well defined at the energy density of the Skyrmion in thez plane forng=1.
origin). We thus expect our gauged solution to carry a non-One sees clearly that the effect of the gauged field is to make

zero magnetic field. the Skyrmion elongated along tlzeaxis. The magnetic field
To show this we have to solve E34) numerically for  vectors of the Skyrmion are parallel to the plane. In Fig.
the non-vanishing function§r,z),g(r,z) anda(r,z). 3, we show the configuration of magnetic field using arrows

We have restricted our numerical integrations to the casé represent the magnetic field vector at each point on the
where the vortex number appearing in the axially symmet- grid. Notice that there is a vortex around the pairt2,z
ric ansatz(28) is equal to 1, i.e., our soliton carries unit =0. The magnetic field is thus generated by a current flow-
baryon number. ing on a ring centered around tkaeaxis.

Using Eg. (30, we have found numerically that In terms of the usual physical constari®], we have
E(1,1,1)=24721.01 whereas for those values o, N1, A, Ay =4e? \;=F2/8 and\, '=8a? where we usa instead
the lower bound for the energy given by E@6) is  of the traditionale for the Skyrme coefficient to avoid con-
247r%0.555. In Fig. 1, we present the total energy for thefusion with the electric charge.

gauged Skyrmion as a function of,, together with the In our units,c=%=1, we havee=(4mwa)'? where a
lower bound given by Eq(26). Note that the asymptotic =1/137 is the fine structure constant. Choosiffg,
value of E(\o,1,1) is 24721.232 asko—. As a compari- =186 MeV, we can find the value farby requiring that the

son, the energy27) for the ungauged Skyrmion Bg,(1,1)  energy of the neutroM ,=939 MeV matches the energy of
=247%1.232 with a lower bound set at 4. We see that the Skyrmion:
E(Ng=2,1,1)=E4(1,1) which means that as;,—, the

gauge coupling 1/%’2 goes to zero and the gauged Skyrmion M —EE
becomes in this limit the ungauged Skyrmion. " 8a

2(:1211
e
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FIG. 2. (a) Energy density for
the gauged Skyrmion in the (2)
plane fg=N;=A,=1). (b) En-
ergy density level curve for the
gauged Skyrmion Xg=A;=M\,
=1).
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In Fig. 1(a), we can read the value @&(\y,1,1) (given in  flux. We sought only those solutions, for which the electric
units of 2472 MeV) with No=2a%e?. We now have to flux equals 4r times the charge of the electron.
find the value of \q for which 247%E(\y,1,1) It is important to realize that in this case, Eq34) are
=2(2:\o)Y%e M, /F .. The intersection between the curve obtained after minimizing the action and thus they do not
(eM,/67°F )(2\o)*? and the curvéE(\o,1,1) in Fig. 18  minimize the Hamiltoniar(30).
is located in the region where the energy is virtually equal to In our units, the charge of the electron is 0.303. In Fig. 4
the asymptotic valu€(\y,1,1)=1.232. This means tha  we show the energy as a function 0§, as well asV, as a
~3721.23F ./M,~7.2 and that\y=1138. We can thus function of Ay, so thatq=0.303.
conclude that the effective impact of the Maxwell term we One can see that, for a fixed valueNgf, the energy of the
have added to the Skyrme model is relatively small. charged gauged®kyrmion is smaller than the energy of the
This justifies the procedure used [i6] where the Skyr- ungaugedSkyrmion when\ <7 but it is always larger than
mion was coupled with an external magnetic field of a magthe energy of theincharged gauge&kyrmion. If the ener-
netic monopole. Indeed, as the Maxwell field generated by gies of the electrically charged and uncharged gauged Skyr-
Skyrmion is very smallfor the parameters fitting the actual mions were interpreted as the the masses of the proton and
mass of the nucleonshe external field is much larger than the neutronmp and my, then on this purely classical level
the Skyrmion’s magnetic field. we would have to conclude thamg—my) >0 which is not
It would be interesting to find the differences between thecorrect. This is expected on the basis of its analogy with the
electromagnetic quantities obtained from the ungaugedyon[9]. Clearly, to calculate this mass difference correctly
model, as in[3], and our W1) gauged model. We are not one would have to perform the collective coordinate quanti-
able to compute the solutions of th€1)) gauged model for zation as in Ref[3], which we do not do here.
the physical value of the parametey as this is too large, but The energy of the charged Skyrmion increases wihlt
as we now know that the influence of the gauge field is veryis unfortunately very difficult to carry out the numerical
small, we can compute the lattperturbativelyaround the computations accurately whexy, is very large.
(ungaugedl Hedgehog as an induced field. This enables the
evalution of the energy correction and the induced magnetic Sl WY " Y = i = o e e e o
moment. This perturbative analysis will be be carried out in - N
Sec. IV. 3
It can also be concluded that if the(1) gauged Skyrme
model were quantized as i8] (by quantizing the zero

AAAAAAAAATTITITIYYIYIIIYIIY Y Y Y
[rrPARAAAA AT T T 12y Y Yy Yy Y > > > Y
2HL T P2 r A A A A sy 35y 3 5 > > 3

3 fff}ﬂﬂ?’ﬂ’l????))))))))));

modes corresponding to the global gauge transformakion 1 P2 Ana -
taking into account the electromagnetic field generated clas- - T 104 TTIII 22
sically by the Skyrmion, the result would not differ very N0 TAN Ay S A

,""('cwrrr((<<4LLLLLLL|_|_

markedly from what was obtained [3].
y 8] 1 \’\’\'\\RRRF\:((((((((((LLLT

-'Y",\'\'\r\'\‘\r\sﬁﬁﬁé((((((((((((-

B. Ag#0: charged U(1) Skyrmion L

We can now look for solutions with a non-zero electric 3 -_M FRRERERFTEFeEsFeeeeeeccs u.-

charge by requiring that the field in our ansat229) does N L R R R R R R
not vanish. To do this we follow the same procedure as Julia qloaa L L b

and Ze€[9] and require that the electric field be asymptoti- 0 1 2 3 4

cally of the formAy=V,+q/(r?+ z?) 2 whereV, andq are !

two constants. In practice, one computes solutions for differ- FIG. 3. Magnetic field of the gauged Skyrmiomg=A;
ent values oV, and evaluates| by computing the electric =x,=1).
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At this stage, it is worth saying a few words about thecalculating the resulting induced electromagnetic field. A
numerical methods we have used. To compute the static sqhe gauge field computed this way can then be interpeted as
lutions, we have employed a relaxation method using finitahe U1) field generated by thegungaugedl Hedgehog
differences on a regular gridd¢=dz). This discretization ~ Skyrme field. With this perturbative procedure, it is possible
method is similar to the one employed in the numerical comto calculate the induced static magnetic potential (iA
putation of the solutions of Skyrme models in-2 and 3 =1 2,3), but not the static electric potentia),Avhich in this
+1 dimensions[16-18. To compute the electrically scheme vanishes and can only be calculated non-
charged solutions, we have imposed the boundary conditioperturbatively. The reason simply is that restricting to the use
b(,»)=V, for different V, and using a dichotomic of the static Hedgehog, the zeroth component of the current

method, we have determined the values that give a solutiofy, at A,,=0 vanishes, resulting in turn in vanishing induced
with the same electric flux as the proton. Most of the simu-potential Ay according to Eq(35).

lations where done on 260400 or 300< 600 grids. By com- As a consequence the electric field will be identically
puting the same solution for various lattice sizes, we haveero, which implies that we can derive the equation from the
empirically obtained the following relation for the expressionstatic Hamiltonian rather than from the Lagrangian. Notice
of the energy of a solutiorE=E,+Kdr? whereEy is the  also that we could try to compute perturbatively a solution
exact solutiondr=dz the lattice spacing and is a constant  for the electrically charges skyrmion by keeping ji the
which depends o, but takes values between 1 and 0.5.terms proportional toA,, instead of settingd, to 0, and
We see thus that the energies we have obtained are accurat@pose the condition that the electric field is assymptoticaly
to within one or one half of a percent. This inaccuracy in thelike that of the proton. This perturbation method would not
value of the energy is comparable to that of many otheinake much sense though as one would expect the electric
similar works on 2 dimensional systerfis7,18, and though field to be quite large close to the skyrmion.
it might look large, it does not affect any of the conclusions  The relevant energy functional is E@3), and the result-
we have drawn. ing equation arising from the variation of the gauge fiald
is
IV. PERTURBATION AROUND THE HEDGEHOG

We have seen from the work of Sec. Il A above that the NodiFij =i (36)
energy of the 1) gauged Skyrmion for the physical values
of the parameters, namely of the pion decay constant and the
U(1) coupling, does not differ significantly from that of the 1
ungauged Hedgehog. It is therefore justified, for these values ji=—g% §A1¢3Di¢“+ Az[(aj|¢7|2)
of the parameters, to treat thg1) field as a perturbation to
the Hedgehog in the same way as Klinhamer and Manton
[14] treat the W1) field as a perturbation to the $2) sphale- XD;¢*D;pP+2¢PD}¢*Dj;¢"Dj¢"]|. (37)
ron. We will then be able to compute the magnetic moment
of the neutron, as well as thiemall) deviation of its mass

from that of the Hedgehog. _ We are concerned here with the case whre 0 Eq. (37)
The equations for the fieldssf,A,,) are derived from the  5ng the chiral fieldp?=(*, $% 4% in Eq. (37) describes
Lagrangian(1). The equation foA, will be of the form the Hedgehog, i.e.,
NodoF =] p- (35
The method consists of setting the gauge fi|dto zero in d*=sinF(R)X*, ¢3=sinF(R)x®, ¢*=cosF(R),
the currentj , in Eq. (35 (and in the equation fop®) and (39

025020-8
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where nowx?=x%R, with R=rZ+Zz2. By virtue of Eq.
(36) the current(37), given by Eq.(38) andA;=0, will now
induce a(smal) U(1) field A;, with curvature =dA;
—GiA; .

The shift in the energy of the Hedgehog due to the in-

duced U1) field A; is

AE=f d3*x(\oF;;Fij + 4Aj), (39

in which ji=j;(0) is the current37) for A;=0.[Note that all
guantities evaluated &;=0 are denoted by Roman script,
e.g., j=]j;(0), aswell as the induced connection and curva-
ture A and F;.] When Eq.(36) is satified for the induced

u(1) field,

AE:—)\of d3XFijFij (40)

=2f d3xAjj; (41)
which is, as expected, a strictly negative quantity.
The currentj=(j,,Jj3) in Egs.(39) and(41) is given, for
the Hedghog field configuratio{88), by
SR A SiPF R
i — R2 Sa,BXB (42)

- 12
Ja R 2 +2)\2 F'+

j3=0. (43

We now note thad; j;=0, which means that E¢36), for
A;=0, takes the following form in terms of the inducedlly
connection A=(A,,0):

NoAA, =], (44)

PHYSICAL REVIEW D62 025020

Finally, in the R>1 region of interest, the induced(l
potential is

o

3.
3nglo s’j(s)ds,

(48)

| ~ .
A, (X)=— Qsaﬁxﬁ’ with

to be evaluated numerically using the numerically con-
structed hedgehog profile functidf(x) (38).

Comparing Eq(48) with the usual Maxwell potential of a
magnetic dipoleu

XX
A(X)= —,
0 47R®
we find thatu=(0,0u) is
w=4ml. (49)

We can evaluate the magnetic momé#®) and the en-
ergy correction(41) induced by the electromagnetic field by
evaluating the integrad7) and (48) numerically. If we take
the experimental valueB =186 MeV anda=7.2 we ob-
tain

©=0.01393 fm=0.43 nm, (50)
AE=—-0.1 keV. (51)

The experimental value for the magnetic moment of the pro-
ton and the neutron are respectively,=0.0902 fm
=2.79 nm andu,=0.0617 fm=—1.91 nm. If, on the other
hand, we take the values of the parameters derive@Jn

F =129 MeV anda=5.45, we have

w=0.0468 fm=1.449 nm, (52

AE=-0.32 keV. (53

The solution is well known and can be expressed, using the

obvious notation j(x) =j(R) e ,sXs in terms of Eq.(42), as

1 1 -
A, (xX)=— “f j(R")xzdx", 45
(X) 477)\08 B |X—X'|J( )Xp (45)
with [19]

a7 R.

Ix—x'| =om=-12l+1 R

YR(0',6)YR(6,6).

After performing the angular integrations we have
AuX)=—1(R)s 4pXg, (46)

with 1,~(R) given by the integral

1
I(R)=3—)\O

JRR’ '(R')R'zdR'+F R j(R)R'2dR’
R’ rR2
(47)

The magnetic moment of a particle is strictly speaking a
quantum property and it should be computed by quantizing
the SU2) gauge degree of freedom as|i]. Nevertheless,
we see that if we take the parameters derived3hthe
classical magnetic moment is of the correct order of magni-
tude. The sign is of course undetermined as the classical
magnetic moment is a vector. We can thus conclude that our
model offers a reasonable classical description of nucleons
and affords a method for computing the electromagnetic field
generated by the Skyrmion, classically. It is quite surprising
to see that a quantum property like the magnetic moment can
be reasonably predicted by a purely classical procedure.

V. SUMMARY AND DISCUSSION

We have shown that the $2) Skyrme model gauged
with U(1) has two types of finite energy static solutions,
electrically uncharged and charged respectively. Both of
these solutions are axially symmetric and carry no magnetic
charge but support a magnetic field shaped like a torus cen-
tred around the axis of symmetry, albeit resulting in zero

025020-9
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magnetic flux. The uncharged solutions, like the ungaugetiigher than that of the monopole of the Georgi-Glashow
Skyrmion, have a topological lower bound. The electricallymodel.
charged solutions are the analogues of the Julia-Zee dyons Perhaps the most interesting physical result of the present
[9] of the Georgi-Glashow model. work is that when parameters in the model are fitted to re-
Concerning the stability of the electrically neutral solu- produce physical quantities, it turns out that the effect of the
tion, which is expected to be stable by virtue of the lowerpmaxwell term in the Skyrme Lagrangian is very small. This
bound on the energy, we have not made any quantitativgy pecause for the physical value of the constegt 1138,
effort to test it. We expect however that the solitons of thisipe energy of the gauged uncharged Skyrmion differs little
gauged Skyrme model are stable, or that at least they havygym that of the ungauged Skyrmion, as seen from Fig).1

stable branches for all values of the parameters in the modefne gauged Skyrmion field itself is thus nearly radially sym-

This expectation is based on our knowledge of the COremetric (though the gauge field is not

sponding situation when the Skyrme model is gauged instead paying found that the influence of the electromagnetic
with SQ(3) [20,21], in which case the equations arising from fig|g on the Skyrmion is small, we were pointed in the direc-
the imposition of spherical symmetry were one dimensionaliiony of treating the magnetic potential as an induced field
and hence technically much more amenable to the numericglarturbatively around théungaugesl Hedgehog. We have
integration. In that case it was found that in addition to stablg,een able thus, to compute the classical magnetic moment of
branches of solutions, there were also some unstablge (unchargeyl Skyrmion ofunit baryon charge, namely of
branches bifurcating from the former, the important mattefine neutron. The result is that the classical magnetic moment
being that there were indeed stable branches of solutiongs the Skyrmion matches surprisingly well to the experimen-

characterized by th@anges of theparameters of the model. 5] values of the magnetic moments of the nucleons.
It would be very interesting to carry out the analysis corre-

sponding to that of20,21], for the considerably more com-
plex case of the axially symmetric equations at hand. This
however is technically beyond the scope of the present work.

The energies of the gauged uncharged Skyrmions are We are grateful to Y. Brihaye and B. Kleihaus for enlight-
smaller than the energy of the usual ungauged Skyrmiorening discussions. We are particularly indebted to J. Kunz
When the gauge coupling )\13’2 goes to 0, the uncharged for suggesting to us the perturbative analysis of Sec. IV. This
gauged Skyrmion tends to the ungauged Skyrmion. We alsaork was supported under projects BCA 96/024 of Forbairt/
note that the energy of the electrically charged Skyrmion iBritish Council, as well as 1C/99/070 and [C/98/035 of
higher than the uncharged one, just as the mass of the dyonknterprise—Ireland.
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