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Static solutions in the U„1… gauged Skyrme model
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We use a prescription to gauge the SU~2! Skyrme model with a U~1! field, characterized by a conserved
baryonic current. This model reverts to the usual Skyrme model in the limit of the gauge coupling constant
vanishing. We show that there exist axially symmetric static solutions with zero magnetic charge, which can be
electrically either charged or uncharged. The energies of the~uncharged! gauged Skyrmions are less than the
energy of the~usual! ungauged Skyrmion. For physical values of the parameters the impact of the U~1! field is
very small, so that it can be treated as a perturbation to the~ungauged! spherically symmetric hedgehog. This
allows the perturbative calculation of the magnetic moment.

PACS number~s!: 12.39.Dc
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I. INTRODUCTION

For a long time now, much attention has been paid to
Skyrme @1# model in 3 dimensions. It is believed to be a
effective theory for nucleons in the largeN limit of QCD at
low energies. The classical properties as well as the quan
properties of the model are in relatively good agreement w
the observed properties of small nuclei@2–4#.

Gauged Skyrme models have been used in the past.
U~1! gauged model@2,5# was used to study the decay
nucleons in the vicinity of a monopole@5#, while the SU(2)L
gauged model@6,7# was used to study the decay of nucleo
when the Skyrme model is coupled to the weak interacti
@6,7#. The Skyrme model has also been used to compute
quantum properties of the Skyrmion@3# where the gauge
degrees of freedom are quantized to compute the low en
eigenstates of a Skyrmion. These states were identified a
proton, the neutron and the delta.

The aim of this work is to show that the Skyrme mod
can be coupled to a self-contained electromagnetic field
that this U~1! gauged model has stable classical solutions
addition to these solitons with vanishing magnetic and e
tric flux, we show that this system supports solutions w
nonvanishing electric flux which are analogous to the dy
solutions of the Georgi-Glashow model, just as the u
charged solitons are the analogues of the monoploles@8# of
that model. The electrically charged lumps have larger
ergy, or mass, than the uncharged soliton, just like the Ju
Zee dyon@9# has larger energy, or is heavier, than the~elec-
trically uncharged! monopole. We shall refer to these lump
ascharged U(1) Skyrmions.

In addition to its intrinsic interest as a soliton in the Ma
well gauged Skyrme model, the present work is also an
ample of a soliton in ad-dimensionalSO(N) gaugedSd
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model with N,d for the cased53, N52, extending the
results of Ref.@10# which were restricted to theN5d cases.
~The work of Ref.@10# consists of establishing topologica
lower bounds for the generic case, encompassing earlier
amples in two@11# and three@12,13# dimensions respec
tively.! The gauging prescription used here by us coincid
precisely with that used in Ref.@5# and permits the establish
ing of a topological lower bound which did not feature
Ref. @5# and which is carried out here to establish the sta
ity of the soliton. Such lower bounds are absent in the ot
prescription of gauging the Skyrme model as in Refs.@6,7#.
@Notice that we name the sigma models after the manifold
which the fields take their values rather than using the na
of the symmetry group for the model. Thus what is someti
called theO(d11) model in the literature will be refered t
as theSd model.#

The U~1! gauged SU~2! Skyrme model is described by th
Lagrangian@5#

L5
Fp

2

16
Tr~DmUDmU†!

2
1

32a2Tr„@~DmU !U†,~DmU !U†#…22
1

4
F mn

2

where the U~1! gauge covariant derivative is

DmU5]mU1 ieAm@Q,U#, ~1!

whereFmn5]mAn2]nAm and where the charge matrix o

the quarks is expressed asQ5 1
2 ( 1

3 11s3). This differs from
the covariant derivative of Ref.@5# only in the unimportant
matter of the sign ofi in Eq. ~1!, which we have chosen fo
consistency of the convention used in Ref.@10#.

In what follows it will be more convenient@10# to param-
etrize the Skyrme field as anS3 valued fieldfa5(fa,fA),
a51,2, A53,4 subject to the constraintufau251. The two
fields U and f are related to each other via the followin
expression:
©2000 The American Physical Society20-1
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U5fata, U215U†5fat̃a ~2!

where ta5( isa,is3,1) and t̃a5(2 isa,2 is3,1), in terms
of the Pauli matrices (s1,s2,s3).

The gauge covariant derivative now can be reexpresse

Dmfa5]mfa1Am«abfb, DmfA5]mfA, ~3!

whereAm5eAm andFmn5eFmn .
The Lagrangian for the U~1! gauged Skyrme model ca

then be written as

L52l0Fmn
2 1l1uDmfau22l2uD [mfaDn]f

bu2 ~4!

where the square brackets on the indices imply~total! anti-
symmetrisation and wherel0

2154e2, l15Fp
2 /8 and l2

21

58a2. The late Greek indicesm label the Minkowskian co-
ordinates, while the early Greek indicesa51,2 and the up-
per case Latin indicesA53,4 label the fieldsfa5(fa,fA).

The static Hamiltonian pertaining to the Lagrangian~4! is

H5l0Fi j
2 1l1uDif

au21l2uD [ if
aD j ]f

bu21 i2l0u] iA0u2

1A0
2$l1ufau2116l2@ ufau2u] if

Au21 1
4 u] i~ ufAu2!u2#%,

~5!

where the indicesi 5a,3 label the spacelike coordinates.
To find the static solutions of the model, one wou

usualy solve the Euler Lagrange equations which minim
the Hamiltonian~5!, but because of the electric potentialA0,
one must solve the Euler Lagrange equations derived f
the Lagrangian~4!. We then look for static solutions, but, a
for the Julia-Zee dyon@9#, we have to impose the prope
asymptotic behavior for the electric potential to obtain sta
solutions which are electrically charged~in the classical
sense, i.e. solutions where the flux of the electric field
nonzero!.

When the full equations of motion are written down, o
finds as expected that there are static solutions for wh
A050, i.e., solutions for which the electric field is ident
cally zero. For these solutions in the temporal gauge,
equations of motion reduce to the equations obtained
minimizing the Hamiltonian~5!. We study the solutions o
unit Baryon chargeof the U~1! gauged Skyrme model with
and without an electric field, for various values of the U~1!
coupling constant~or equivalently the Skyrme coupling!. For
physical values of these parameters in the model, we
that the energy~mass! of the gauged Skyrmion does no
differ significantly from that of the ungauged charged
Skyrmion, namely the familiar hedgehog@1#. This implies
that for these values of the physical parameters, the U~1!
gauged Skyrmion can be regarded as a perturbation of
~ungauged! hedgehog, enabling the computation of the ma
netic moments of the gauged Skyrmion~i.e. the Neutron! and
the shift of the energy of the gauged Skyrmion away fro
the energy of the hedgehog@1#, perturbatively using the
method employed by Klinkhamer and Manton@14# for the
sphaleron of the Weinberg–Salam model.
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In Sec. II, we define the topological charge and estab
the corresponding lower bound on the energy functional
Sec. III we present the solutions which have no electric fie
in the first subsection and electrically charged solutions
the second subsection. The perturbation analysis of
gauged Skyrmion around the~ungauged! hedgehog is carried
out in Sec. IV, and Sec. V is devoted to a discussion of
results.

II. THE TOPOLOGICAL CHARGE AND LOWER BOUND

The definition of the topological charge is based on
criterion that it be equal to the Baryon number, namely
degree of the map. For the gauged theory however,
quantity must begauge invariantas well. This requiremen
can be systematically@10# satisfied by arranging the gaug
invariant topological charge density to be the sum of
usual,gauge variantwinding number density

%05« i jk«abcd] if
a] jf

b]kf
cfd, ~6!

plus a total divergence whose surface integral vanishes
to the finite energy conditions, such that the combined d
sity is gauge invariant. In 3 dimensions, this is given expl
itly in Refs. @10,13# for theSO(3) gaugedS3 model, and for
the present case of interest, namely theSO(2) gaugedS3

model, the charge density can be derived from that of
SO(3) gauged model by contraction of the gauge gro
SO(3) down toSO(2). It canalso be arrived at directly. To
state the definition of the charge, we denote the gauge c
riant counterpart of Eq.~6! by

%G5« i jk«abcdDif
aD jf

bDkf
cfd, ~7!

so that using the notations~6! and~7! we have the definition
of the gauge invariant topological charge

%5%01] iV i , ~8!

5%G1
3

2
« i jkFi j ~«ABfBDkf

A!. ~9!

In Eq. ~8! the densityV i is the following gaugevariant
form:

V i53« i jk«ABAj]kf
AfB. ~10!

The flux of V i vanishes, as can deduced by anticipating
finite energy conditions to be stated later.

Note that the 3-volume integral of%0 in Eq. ~8! is the
degree of the map for the ungauged system namely
baryon number.

Identifying %, Eq. ~9!, with the naught componentj 0 of
the baryon current,j m is defined by

j m5«mnrs«abcd]nfa]rfb]sfcfd

13«mnrs]n~Ar«ABfB]sfA! ~11!
0-2
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5«mnrs«abcdDnfaDrfbDsfcfd

2
3

2
«mnrsFnr~«ABfBDsfA!. ~12!

The 4-divergence of Eq.~11! receives a contribution only
from its first term, which being locally a total divergenc
implies that the 3-volume integral ofj 0 is a conserved quan
tity. Alternatively we consider the 4-divergence of Eq.~12!,

]m j m56«mnrs«ab«ABDmfaDnfbDrfADsfB ~13!

which is analogous to the corresponding quantity in the w
of Goldstone and Wilczek@6#. This contrasts with the ex
pression for the total divergence of the topological curren
the work of D’Hoker and Farhi@7#, where a different gaug
ing prescription is used leading to that quantity being eq
to the local anomaly.

We now proceed to find a model whose HamiltonianH0
is bounded from below by the topological charge dens
defined by Eq.~9!. We will then show that the Hamiltonian
~5! is given byH0 plus certain positive definite terms.

First of all, we reproduce the density%G , Eq. ~7!, in Eq.
~9! by using the following inequality:

~k3Dif
a2« i jk«abcdk2

2D jf
bDkf

cfd!2>0 ~14!

where the two constantsk3 and k2 have the dimensions o
length. Expanding the square, we get%G on the right-hand
side of

k3
2~Dif

a!21k2
4~D [ if

aD j ]f
b!2>2k3k2

2%G . ~15!

To reproduce the other term in Eq. ~9!,
3
2 « i jkFi j («

ABfB]kf
A), we use the following inequality:

S k0
2Fi j 2

1

2
k4« i jk«ABfBDkf

AD 2

>0 ~16!

yielding

k0
4Fi j

2 1k4
2 1

4
~«ABfBDif

A!2>k0
2k4« i jkFi j ~«ABfBDkf

A!.

~17!

With the special choice for the relative values of the co
stants 3k3k2

25k4k0
2, the sum of Eqs.~13! and~15! yields the

following:

k0
4Fi j

2 1k3
2~Dif

a!21k2
4~D [ if

aD j ]f
b!2

1
9k3

2k2
4

4k0
4 ~«ABfBDif

A!2>2k3k2
2%. ~18!

The right-hand side of Eq.~18! is now proportional to the
topological charge density% defined by Eq.~9! so that the
inequality~18! can be interpreted as the topological inequ
ity giving the lower bound on the energy density function
if we define the latter to be the left-hand side of Eq.~18!,
namely
02502
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H05k0
4Fi j

2 1k1
2~Dif

a!21k2
4~D [ if

aD j ]f
b!2

1
9k3

2k2
4

4k0
4 ~«ABfBDif

A!2. ~19!

The Hamiltonian system~19! is almost the Hamiltonian of
the gauged Skyrme model~5! ~remember thatA050). It
differs from the latter only in its last term. Now we can u
the identity

~«ABfBDif
A!25~Dif

a!22F1

2
~f [aDif

b] !2

1~f [aDif
A] !2G ~20!

and add the positive definite term (k3
2k2

4/

9k0
4)@ 1

2 (f [aDif
b] )21(f [aDif

A] )2# appearing on the right-
hand side of Eq.~20! to H0 in Eq. ~19! to end up with the
Hamiltonian for the U~1! gauged Skyrme model:

H5k0
4Fi j

2 1k1
2~Dif

a!21k2
4~D [ if

aD j ]f
b!2>2k3k2

2%
~21!

which is nothing but the static Hamiltonian~5! in the tem-
poral gaugeA050, and where

l15k3
2S 11

9k2
4

4k0
4D , l05k0

4 , l25k2
4 . ~22!

By virtue of Eq.~18!, Eq. ~21! is also bounded from below
by 2k3k2

2%, namely by a number proportional to the top
logical charge density%.

We thus see thatH0 can be considered as a minimal@U~1!
gauged# model, but from now on, we will restrict our atten
tion to the physically more relevant model~21! and integrate
it numerically to find its topologically stable finite energ
solitons.

The soliton solutions to the system~21! can only be found
by solving the second-order Euler-Lagrange equations,
not some first-order Bogomol’nyi equations since saturat
the inequalities~14! and ~16! would not saturate the lowe
bound on the energy density functionalH. In this context we
note that saturating Eqs.~14! and ~16! does indeed saturat
the topological lower bound on the functionalH0 by virtue
of the inequality~18!, and should it have turned out that th
Bogomol’nyi equations arising from the saturation of Eq
~14! and~16! supported non-trivial solutions, thenH0 would
have been a very interesting system to consider. As it tu
out however, these Bogomol’nyi equations have only triv
solutions in exactly the same way as in the case of the~un-
gauged! Skyrme model@1#.

The energy for the static configuration, when the elec
field vanishes, is expressed as

E~l0 ,l1 ,l2!5E d3x@l0Fi j
2 1l1~Dif

a!2

1l2~D [ if
aD j ]f

b!2# ~23!
0-3
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and performing the dilationx→sx, Am→s21Am , we get

E~l0 ,l1 ,l2!5E d3xFl0

s
Fi j

2 1sl1~Dif
a!2

1
l2

s
~D [ if

aD j ]f
b!2G . ~24!

If we chooses5(l2 /l1)1/2 then we have

E~l0 ,l1 ,l2!5~l1l2!1/2ES l0

l2
,1,1D , ~25!

from which we see that we can setl15l251 without any
loss of generality. By virtue of Eqs.~21! and ~25!, we can
finally state

E~l0 ,l1 ,l2!>2S l1l2

11
9l2

4l0

D 1/2E d3x%. ~26!

Notice that for the usual Skyrme model we have

Esk~l1 ,l2!5E dx3@l1~] if
a!21l2~] [ if

a] j ]f
b!2#

5~l1l2!1/2Esk~1,1!>2~l1l2!1/2E dx3%0 .

~27!

We will use Eq.~27! to compare the numerical solutions
the gauged Skyrme model with the solutions of the~un-
gauged! Skyrme model.

We would like to point out that the topological stabilit
considerations discussed in this section apply only to
solutions with no electric field, i.e., withA050.

III. THE SOLITON AND THE CHARGED U „1… SKYRMION

To find the static solutions, we have to look for the larg
symmetry group of the functional to be subjected to
02502
e

t
e

variational principle, and look for solutions which are inva
ant under that symmetry group. For the solutions in theA0
50 gauge this is the static Hamiltonian~21!, while for the
solutions in theA0Þ0 it is the Lagrangian~4!. For our
choice of gauge group the largest symmetry is theSO(2)
group corresponding to an axial rotation in space-time an
gauge transformation on the gauge field. Defining the a
variablesr 5Ax1

21x2
2 andz5x3 in terms of the coordinates

xi5(xa ,x3), a51,2, the most general axially symmetric a
satz @15# for the fieldsfa5(fa,fA) ~with a51,2 andA
53,4), and,Ai5(Aa ,A3), is

fa5sin f singna, f35sin f cosg, f45cosf , ~28!

Aa5
a~r ,z!2n

r
«abx̂b1

c2~r ,z!

r
x̂a ,

A35
c1~r ,z!

r
, A05

b~r ,z!

r
, ~29!

with na5(sinnf,cosnf) in terms of the azimuthal anglef
and x̂a5xa /r . n in na is thevorticity, which for the nucle-
ons of interest to us here, equalsone, n51. The functions
a,b,c1 ,c2 , f andg both depend onr andz.

Our ansatz~29! for the U~1! field consists of decomposin
the latter in the most general tensor basis possible. We
find out below, when we compute the Euler-Lagrange eq
tions, that the functionsc1 andc2 vanish identically. Antici-
pating this, we suppress them henceforth. In its final fo
this ansatz agrees with that used in Ref.@15#, the latter being
arrived at by specializing the Rebbi-Rossi ansatz for the a
ally symmetricSO(3) field.

The static Hamiltonian, i.e., theT00 component of the
energy mometum tensorTmn , is then given by
atz when

ess
eld
H5E H l0

r 2 Far
21az

21S br2
b

r D 2

1bz
2G1

l1

2 F f r
21 f z

21sin2 f ~gr
21gz

2!1
a21b2

r 2 sin2 f sin2 gG
12l2 sin2f F~ f rgz2 f zgr !

21sin2 gFa21b2

r 2 „f r
21 f z

21~gr
21gz

2!sin2f …G GJ rdrdz. ~30!

The boundary conditions for the Skyrmion fields are the same as the boundary conditions for the hedgehog ans
expressed in the cylindrical coordinates whereg5p/21arctan(z/r) and definingR5(z21r 2)1/2, f [ f (R) with f (0)5p and
limR→` f (R)50. From this we can deduce that the functionf has a fixed value at the origin and at infinity. For smothn
along thez axis, each field, that isf , g andAa must satisfy the condition that the partial derivative with respect to of the fi
at r 50 vanishes. The boundary conditions and the asymptotic behaviors fora andb are chosen so that the gauge fieldsAm are
well defined andA0 looks asymptoticaly like a Coulomb field~i.e., with an electric charge but no magnetic charge!. We also
require that the total energy be finite. These conditions lead to the following constraints:
0-4



s take a

r,

e.,

rinciple

STATIC SOLUTIONS IN THE U~1! GAUGED SKYRME MODEL PHYSICAL REVIEW D62 025020
f ~0,0!5p, f ~r→`,z→`!50, f r~r 50,z!50,

g~r 50,z,0!50, g~r50,z.0!5p, gRuR→`50,

a~r 50,z!51, aru`50, azu`50,

ar~r 50,z!50, A0~r→`,z→`!5V01q/r, A0~r50,z! 50, ~31!

whereR5(z21r 2)1/2 and where we have used the notation]a/]r 5ar , etc. Note that the fieldg is undefined at the origin and
the resulting discontinuity ofg at that point is an artifact of the coordinate system used. The asymptotic behavior ofA0 at
infinity will be discussed in a later section. To solve the equations numerically, it is more conveniant to use the fieldA0 rather
thanb; this is why we have expressed the boundary condition in terms of that field. On the other hand, the equation
simpler form when written in term ofb, so we shall still use it below.

Now the volume integral~with the appropriate normalization of 12p2) of %0 given by Eq.~6! is the degree of the map, o
the baryon number. It is straightforward to verify that when the ansatz~28! is substituted in%0 and the volume integral is
computed subject to the boundary conditions given above, the result will equal the integern defined in Eq.~28!. Thus, the
baryon number of the field configuration~28! equals the vortex numbern. In what follows, we will restrict ourselves tounit
baryon number,n51, i.e., to the nucleons.

Before we proceed to substitute the anstaz~28!, ~29! into the field equations, we calculate the Baryon current~11! for the
field configurations~28!, ~29! described by the solutions we seek. We express the spacelike part of this currentj i in the radial
direction flowing out of the normal to the surface of the cylinder which we denote byj r , and in thez direction which we
denote byj z . The result is

j r5
6

r F ~ ḟ gz2ġ f z!a sin2 f sing1
1

2
~ ġaz2ȧgz!sin f cosf sing1

1

2
~ ȧ f z2 ḟ az!cosgG , ~32!

j z52
6

r F ~ ḟ gr2ġ f r !asin2 f sing1
1

2
~ ġar2ȧgr !sin f cosf sing1

1

2
~ ȧ f r2 ḟ ar !cosgG , ~33!

where we have denoted] f /]t5 ḟ , etc. Note that the baryon current~32!, ~33! arenot sensitive to the charge of the nucleon, i.
that the functionb(r ,z) does not feature in them.

We now turn to the equations to be solved, namely the Euler-Lagrange equations arising from the variational p
applied to the Lagrangian~4!, in thestatic limit. Substituting the ansatz~28!,~29! into these equations of motion leads to

arr 2
ar

r
2azz2a sin2~ f !sin2~g!F l1

2l0
1

2l2

l0
@ f r

21 f z
21~gr

21gz
2!sin2~ f !#G50,

brr 2
br

r
1

b

r 2 1bzz2b sin2~ f !sin2~g!F l1

2l0
1

2l2

l0
@ f r

21 f z
21~gr

21gz
2!sin2~ f !#G50,

D f 2S gr
21gz

21
a22b2

r 2
sin2 gD sin f cosf 14

l2

l1
sin f †„gr~ f zzgr2 f rgzz1 f zgrz2 f rzgz2 f z /rgz!

1gz~ f rr gz2 f zgrr 1 f rgrz2 f rzgr1 f r /rgz!…sin f 1~ f rgz2gr f z!
2cosf

1sing/r 2@~a22b2!„f r
21 f z

222~gr
21gz

2!sin2 f …cosf sing

1„~a22b2!~ f rr 1 f zz2 f r /r !12 f r~aar2bbr !12 f z~aaz2bbz!…sin f sing

12~a22b2!~ f rgr1 f zgz!sin f cosg#‡50,

Dg12~ f rgr1 f zgz!cot f 2
a22b2

r 2
sing cosg14

l2

l1
†f z~ f zgrr 2 f rr gz1 f rzgr2 f rgrz1 f zgr /r !

1 f r~ f rgzz2 f zzgr1 f rzgz2 f zgrz2 f zgz /r !1sing/r 2@~a22b2!„~gr
21gz

2!sin2 f 2 f r
22 f z

2
…cosg

1„~a22b2!~grr 1gzz2gr /r !12gr~aar2bbr !12gz~aaz2bbz!…sin2 f sing

1~a22b2!~ f rgr1 f zgz!cosf sin f sing#‡50. ~34!
025020-5
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FIG. 1. ~a! Energy and topo-
logical bound of the gauged Skyr
mion in units of 24p2. ~b! Ratio
of the electromagnetic and the to
tal energy as a function ofl0.
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In the case of theA050 gauge, Eqs.~34! coincide with
the Euler-Lagrange equations derived from the positive d
nite Hamiltonian density~5!. Moreover, in that case, thos
equations also coincide with the Euler-Lagrange equation
the reduced two dimensional Hamiltonian obtained by s
jecting Eq.~5! to axial symmetry by substituting the ansa
~28!,~29! into it. This is expected due to the strict impositio
of symmetry. In theA0Þ0 gauge, the Euler-Lagrange equ
tions are derived from the Lagrangian~4! which is not posi-
tive definite. Nonetheless these equations coincide with th
arising from the reduced two dimensional Lagrangian
tained by subjecting the Lagrangian~4! to axial symmetry.
~This happens also for the Julia Zee dyon@9#.!

A. A0Ä0: U„1… Skyrme soliton

It is easy to see from Eq.~34! that there are solutions fo
which b50 ~i.e., A050). As mentioned before, in that cas
Eq. ~34! can be obtained by minimizing the Hamiltonia
~30!. Notice also that settinga50 is not compatible with our
boundary conditions (Ai would not be well defined at the
origin!. We thus expect our gauged solution to carry a n
zero magnetic field.

To show this we have to solve Eq.~34! numerically for
the non-vanishing functionsf (r ,z),g(r ,z) anda(r ,z).

We have restricted our numerical integrations to the c
where the vortex numbern appearing in the axially symmet
ric ansatz~28! is equal to 1, i.e., our soliton carries un
baryon number.

Using Eq. ~30!, we have found numerically tha
E(1,1,1)524p21.01 whereas for those values ofl0 ,l1 ,l2
the lower bound for the energy given by Eq.~26! is
24p20.555. In Fig. 1, we present the total energy for t
gauged Skyrmion as a function ofl0, together with the
lower bound given by Eq.~26!. Note that the asymptotic
value ofE(l0,1,1) is 24p21.232 asl0→`. As a compari-
son, the energy~27! for the ungauged Skyrmion isEsk(1,1)
524p21.232 with a lower bound set at 24p2. We see that
E(l05`,1,1)5Esk(1,1) which means that asl0→`, the
gauge coupling 1/l0

1/2 goes to zero and the gauged Skyrmi
becomes in this limit the ungauged Skyrmion.
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It is interesting to note that the energy of gauged Sk
mion is smaller than the energy of the ungauged Skyrmi
as expected, but that on the other hand, the amount by w
the energy of the gauged Skyrmion exceeds its topolog
lower bound is larger than the excess of the energy of
ungauged Skyrmion above its respective topological low
bound. For example we can clearly see from Fig. 1~a! that at
l0520, the energy of the gauged Skyrmion 1.22~in units of
24p2) exceeds the lower bound 0.95 by 0.27. This is larg
than 0.232, the excess of the ungauged Skyrmion ene
over its lower bound. For smaller values ofl0 Fig. 1~a!
shows that the excess of the energy of the gauged Skyrm
over its lower bound is even larger, hence this is a gen
feature.

In Fig. 1~b!, we also see that the Maxwell energy, i.e., t
term proportional tol0 in Eq. ~30!, is decreasing asl0 in-
creases. Notice that we could have used for the Maxw
energy the sum of all the terms involving the gauge fie
functionsa andb in Eq. ~30!, but this would lead to a figure
similar to Fig. 1~b!.

In Fig. 2, we show the profile and the level curve for t
energy density of the Skyrmion in ther ,z plane forl051.
One sees clearly that the effect of the gauged field is to m
the Skyrmion elongated along thez axis. The magnetic field
vectors of the Skyrmion are parallel to ther ,z plane. In Fig.
3, we show the configuration of magnetic field using arro
to represent the magnetic field vector at each point on
grid. Notice that there is a vortex around the pointr 52,z
50. The magnetic field is thus generated by a current flo
ing on a ring centered around thez axis.

In terms of the usual physical constants@3#, we have
l0

2154e2, l15Fp
2 /8 andl2

2158a2 where we usea instead
of the traditionale for the Skyrme coefficient to avoid con
fusion with the electric charge.

In our units, c5\51, we havee5(4pa)1/2 where a
51/137 is the fine structure constant. ChoosingFp

5186 MeV, we can find the value fora by requiring that the
energy of the neutronMn5939 MeV matches the energy o
the Skyrmion:

Mn5
Fp

8a
ES 2a2

e2 ,1,1D .
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FIG. 2. ~a! Energy density for
the gauged Skyrmion in the (r ,z)
plane (l05l15l251). ~b! En-
ergy density level curve for the
gauged Skyrmion (l05l15l2
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In Fig. 1~a!, we can read the value ofE(l0,1,1) ~given in
units of 24p2 MeV) with l052a2/e2. We now have to
find the value of l0 for which 24p2E(l0,1,1)
52(2l0)1/2eMn /Fp . The intersection between the curv
(eMn /6p2Fp)(2l0)1/2 and the curveE(l0,1,1) in Fig. 1~a!
is located in the region where the energy is virtually equa
the asymptotic valueE(l0,1,1)51.232. This means thata
'3p21.232Fp /Mn'7.2 and thatl0'1138. We can thus
conclude that the effective impact of the Maxwell term w
have added to the Skyrme model is relatively small.

This justifies the procedure used in@5# where the Skyr-
mion was coupled with an external magnetic field of a m
netic monopole. Indeed, as the Maxwell field generated b
Skyrmion is very small~for the parameters fitting the actu
mass of the nucleons! the external field is much larger tha
the Skyrmion’s magnetic field.

It would be interesting to find the differences between
electromagnetic quantities obtained from the ungau
model, as in@3#, and our U~1! gauged model. We are no
able to compute the solutions of the U~1! gauged model for
the physical value of the parameterl0 as this is too large, bu
as we now know that the influence of the gauge field is v
small, we can compute the latterperturbativelyaround the
~ungauged! Hedgehog as an induced field. This enables
evalution of the energy correction and the induced magn
moment. This perturbative analysis will be be carried out
Sec. IV.

It can also be concluded that if the U~1! gauged Skyrme
model were quantized as in@3# ~by quantizing the zero
modes corresponding to the global gauge transformation! but
taking into account the electromagnetic field generated c
sically by the Skyrmion, the result would not differ ver
markedly from what was obtained in@3#.

B. A0Å0: charged U„1… Skyrmion

We can now look for solutions with a non-zero elect
charge by requiring that the fieldb in our ansatz~29! does
not vanish. To do this we follow the same procedure as J
and Zee@9# and require that the electric field be asympto
cally of the formA05V01q/(r 21z2)1/2 whereV0 andq are
two constants. In practice, one computes solutions for dif
ent values ofV0 and evaluatesq by computing the electric
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flux. We sought only those solutions, for which the elect
flux equals 4p times the charge of the electron.

It is important to realize that in this case, Eqs.~34! are
obtained after minimizing the action and thus they do n
minimize the Hamiltonian~30!.

In our units, the charge of the electron is 0.303. In Fig
we show the energy as a function ofl0, as well asV0 as a
function of l0, so thatq50.303.

One can see that, for a fixed value ofl0, the energy of the
charged gaugedSkyrmion is smaller than the energy of th
ungaugedSkyrmion whenl0,7 but it is always larger than
the energy of theuncharged gaugedSkyrmion. If the ener-
gies of the electrically charged and uncharged gauged S
mions were interpreted as the the masses of the proton
the neutronmP and mN , then on this purely classical leve
we would have to conclude that (mP2mN).0 which is not
correct. This is expected on the basis of its analogy with
dyon @9#. Clearly, to calculate this mass difference correc
one would have to perform the collective coordinate qua
zation as in Ref.@3#, which we do not do here.

The energy of the charged Skyrmion increases withl0. It
is unfortunately very difficult to carry out the numeric
computations accurately whenl0 is very large.

FIG. 3. Magnetic field of the gauged Skyrmion (l05l1

5l251).
0-7
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FIG. 4. ~a! Energy of the
charged Skyrmion.~b! V0 as a
function of l0.
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At this stage, it is worth saying a few words about t
numerical methods we have used. To compute the static
lutions, we have employed a relaxation method using fin
differences on a regular grid (dr5dz). This discretization
method is similar to the one employed in the numerical co
putation of the solutions of Skyrme models in 211 and 3
11 dimensions @16–18#. To compute the electrically
charged solutions, we have imposed the boundary cond
b(`,`)5V0 for different V0 and using a dichotomic
method, we have determined the values that give a solu
with the same electric flux as the proton. Most of the sim
lations where done on 2003400 or 3003600 grids. By com-
puting the same solution for various lattice sizes, we h
empirically obtained the following relation for the expressi
of the energy of a solution:E5E01Kdr2 whereE0 is the
exact solution,dr5dz the lattice spacing andK is a constant
which depends onl0 but takes values between 1 and 0
We see thus that the energies we have obtained are acc
to within one or one half of a percent. This inaccuracy in t
value of the energy is comparable to that of many ot
similar works on 2 dimensional systems@17,18#, and though
it might look large, it does not affect any of the conclusio
we have drawn.

IV. PERTURBATION AROUND THE HEDGEHOG

We have seen from the work of Sec. III A above that t
energy of the U~1! gauged Skyrmion for the physical value
of the parameters, namely of the pion decay constant and
U~1! coupling, does not differ significantly from that of th
ungauged Hedgehog. It is therefore justified, for these va
of the parameters, to treat the U~1! field as a perturbation to
the Hedgehog in the same way as Klinhamer and Man
@14# treat the U~1! field as a perturbation to the SU~2! sphale-
ron. We will then be able to compute the magnetic mom
of the neutron, as well as the~small! deviation of its mass
from that of the Hedgehog.

The equations for the fields (fa,Am) are derived from the
Lagrangian~1!. The equation forAm will be of the form

l0]nFmn5 j m . ~35!

The method consists of setting the gauge fieldAm to zero in
the currentj m in Eq. ~35! ~and in the equation forfa) and
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calculating the resulting induced electromagnetic field Am .
The gauge field computed this way can then be interpete
the U~1! field generated by the~ungauged! Hedgehog
Skyrme field. With this perturbative procedure, it is possib
to calculate the induced static magnetic potential Ai ( i
51,2,3), but not the static electric potential A0, which in this
scheme vanishes and can only be calculated n
perturbatively. The reason simply is that restricting to the u
of the static Hedgehog, the zeroth component of the cur
j 0 at Am50 vanishes, resulting in turn in vanishing induce
potential A0 according to Eq.~35!.

As a consequence the electric field will be identica
zero, which implies that we can derive the equation from
static Hamiltonian rather than from the Lagrangian. Not
also that we could try to compute perturbatively a soluti
for the electrically charges skyrmion by keeping inj 0 the
terms proportional toA0, instead of settingA0 to 0, and
impose the condition that the electric field is assymptotic
like that of the proton. This perturbation method would n
make much sense though as one would expect the ele
field to be quite large close to the skyrmion.

The relevant energy functional is Eq.~23!, and the result-
ing equation arising from the variation of the gauge fieldAi
is

l0] jFi j 5 j i ~36!

j i52«abS 1

2
l1fbDif

a1l2@~] j ufgu2!

3Dif
aD jf

b12fbD [ if
aD j ]f

AD jf
A# D . ~37!

We are concerned here with the case whereAi50 Eq. ~37!
and the chiral fieldfa5(fa,f3,f4) in Eq. ~37! describes
the Hedgehog, i.e.,

fa5sinF~R!x̂a, f35sinF~R!x̂3, f45cosF~R!,
~38!
0-8
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where nowx̂a5xa/R, with R5Ar 21z2. By virtue of Eq.
~36! the current~37!, given by Eq.~38! andAi50, will now
induce a ~small! U~1! field Ai , with curvature Fi j 5] iA j
2] jA i .

The shift in the energy of the Hedgehog due to the
duced U~1! field Ai is

DE5E d3x~l0Fi j Fi j 14Ai j i !, ~39!

in which ji5 j i(0) is the current~37! for Ai50. @Note that all
quantities evaluated atAi50 are denoted by Roman scrip
e.g., ji5 j i(0), aswell as the induced connection and curv
ture Ai and Fi j .# When Eq.~36! is satified for the induced
U~1! field,

DE52l0E d3xFi j Fi j ~40!

52E d3xA i j i , ~41!

which is, as expected, a strictly negative quantity.
The current ji5(ja , j3) in Eqs.~39! and~41! is given, for

the Hedghog field configuration~38!, by

ja5
sin2F

R Xl1

2
12l2S F821

sin2 F

R2 D C«abx̂b ~42!

j350. ~43!

We now note that] i j i50, which means that Eq.~36!, for
Ai50, takes the following form in terms of the induced U~1!
connection Ai5(Aa,0):

l0DAa52 ja . ~44!

The solution is well known and can be expressed, using
obvious notation ja(x)5 j(R)«abx̂b in terms of Eq.~42!, as

Aa~x!52
1

4pl0
«abE 1

ux2x8u
j~R8!x̂bdx8, ~45!

with @19#

1

ux2x8u
5(

l 50

`

(
m52 l

l
4p

2l 11

R,
l

R.
l 11

Ȳm
( l )~u8,f8!Ym

( l )~u,f!.

After performing the angular integrations we have

Aa~x!52I ~R!«abx̂b , ~46!

with I (l )(R) given by the integral

I ~R!5
1

3l0
S E

0

RR8

R2
j~R8!R82dR81E

R

` R

R82
j~R8!R82dR8D .

~47!
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Finally, in the R@1 region of interest, the induced U~1!
potential is

Aa~x!52
Î

R2
«abx̂b , with Î 5

1

3l0
E

0

`

s3j~s!ds,

~48!

to be evaluated numerically using the numerically co
structed hedgehog profile functionF(x) ~38!.

Comparing Eq.~48! with the usual Maxwell potential of a
magnetic dipolem

A~x!5
m3x

4pR3
,

we find thatm5(0,0,m) is

m54p Î . ~49!

We can evaluate the magnetic moment~49! and the en-
ergy correction~41! induced by the electromagnetic field b
evaluating the integral~47! and~48! numerically. If we take
the experimental valuesFp5186 MeV anda57.2 we ob-
tain

m50.01393 fm50.43 nm, ~50!

DE520.1 keV. ~51!

The experimental value for the magnetic moment of the p
ton and the neutron are respectivelymp50.0902 fm
52.79 nm andmn50.0617 fm521.91 nm. If, on the other
hand, we take the values of the parameters derived in@3#,
Fp5129 MeV anda55.45, we have

m50.0468 fm51.449 nm, ~52!

DE520.32 keV. ~53!

The magnetic moment of a particle is strictly speaking
quantum property and it should be computed by quantiz
the SU~2! gauge degree of freedom as in@3#. Nevertheless,
we see that if we take the parameters derived in@3# the
classical magnetic moment is of the correct order of mag
tude. The sign is of course undetermined as the class
magnetic moment is a vector. We can thus conclude that
model offers a reasonable classical description of nucle
and affords a method for computing the electromagnetic fi
generated by the Skyrmion, classically. It is quite surpris
to see that a quantum property like the magnetic moment
be reasonably predicted by a purely classical procedure.

V. SUMMARY AND DISCUSSION

We have shown that the SU~2! Skyrme model gauged
with U~1! has two types of finite energy static solution
electrically uncharged and charged respectively. Both
these solutions are axially symmetric and carry no magn
charge but support a magnetic field shaped like a torus c
tred around the axis of symmetry, albeit resulting in ze
0-9
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magnetic flux. The uncharged solutions, like the ungau
Skyrmion, have a topological lower bound. The electrica
charged solutions are the analogues of the Julia-Zee d
@9# of the Georgi-Glashow model.

Concerning the stability of the electrically neutral sol
tion, which is expected to be stable by virtue of the low
bound on the energy, we have not made any quantita
effort to test it. We expect however that the solitons of t
gauged Skyrme model are stable, or that at least they h
stable branches for all values of the parameters in the mo
This expectation is based on our knowledge of the co
sponding situation when the Skyrme model is gauged ins
with SO~3! @20,21#, in which case the equations arising fro
the imposition of spherical symmetry were one dimension
and hence technically much more amenable to the nume
integration. In that case it was found that in addition to sta
branches of solutions, there were also some unst
branches bifurcating from the former, the important mat
being that there were indeed stable branches of soluti
characterized by the~ranges of the! parameters of the mode
It would be very interesting to carry out the analysis cor
sponding to that of@20,21#, for the considerably more com
plex case of the axially symmetric equations at hand. T
however is technically beyond the scope of the present w

The energies of the gauged uncharged Skyrmions
smaller than the energy of the usual ungauged Skyrm
When the gauge coupling 1/l0

1/2 goes to 0, the uncharge
gauged Skyrmion tends to the ungauged Skyrmion. We
note that the energy of the electrically charged Skyrmion
higher than the uncharged one, just as the mass of the dy
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higher than that of the monopole of the Georgi-Glash
model.

Perhaps the most interesting physical result of the pre
work is that when parameters in the model are fitted to
produce physical quantities, it turns out that the effect of
Maxwell term in the Skyrme Lagrangian is very small. Th
is because for the physical value of the constantl051138,
the energy of the gauged uncharged Skyrmion differs li
from that of the ungauged Skyrmion, as seen from Fig. 1~b!.
The gauged Skyrmion field itself is thus nearly radially sy
metric ~though the gauge field is not!.

Having found that the influence of the electromagne
field on the Skyrmion is small, we were pointed in the dire
tion of treating the magnetic potential as an induced fi
perturbatively around the~ungauged! Hedgehog. We have
been able thus, to compute the classical magnetic mome
the ~uncharged! Skyrmion ofunit baryon charge, namely o
the neutron. The result is that the classical magnetic mom
of the Skyrmion matches surprisingly well to the experime
tal values of the magnetic moments of the nucleons.
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