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We study the thermodynamics of tli2+1)-dimensional Gross-Neveu model by introducing a representa-
tion for the canonical partition function which encodes both real and imaginary chemical potential cases. It is
pointed out that the latter case probes the thermodynamics of possible anyon-like excitations in the spectrum.
It is also intimately connected to the breaking of the discresymmetry of the model, which we interpret as
signaling anyon deconfinement. Finally, the chiral properties of the model in the presence of an imaginary
chemical potential are discussed and analytical results for the free-energy density at the transition points are
presented.

PACS numbs(s): 11.10.Wx, 11.30.Rd

I. INTRODUCTION ingly, to a real free-energy density.
We argue that the presence of an imaginary chemical po-

Chiral symmetry and its realization at finite temperaturetential is intimately connected to the possibility of having
have been matters of intense studies for a long time. One @nyon-like excitations in the spectrum of the theory. We also
the most extensively used laboratories for this purpose hashow that the imaginary chemical potential emerges natu-
been the Gross-Neveu modél both at zero and finite tem- rally in the (2+1)-dimensional Gross-NeveuU(1) gauged
perature[2,3]. In the largeN limit the (2+1)-dimensional model at finite temperature. Such a theory has infinitely
version of this theory is renormalizable and provides a conmany Z-vacua[13] around which the gauge field may fluc-
venient arena for the survey of chiral symmetry; for instancefuate. These fluctuations have been shown to be connected to
its dynamical breakdown at zero temperature and its higtpeculiar excitations whose chargenotan integer multiple
temperature restoration. Recently, there has been also coff the elementary charge of the theory. We interpret these
siderable interest in studying the properties of chiral symmeexcitations as being anyon-liké4] and argue that our gen-
try at finite density, or equivalently in the presence of aéralized canonical partition function gives their free-energy
chemical potentia]4—6]. This is believed to be relevant to density. As the gauge field fluctuations around Heacua
the understanding of the physics of hot and dense mattdead to the spontaneous breakdown of the discrete
which is expected to be probed in the laboratory by the BNLZ-symmetry, it appears that the latter is tied to @myon
Relativistic Heavy lon CollidefRHIC) experimentg7]. confinement/deconfinemetnansition. Finally, we study the

In this work, we address the thermodynamics and chirafhiral properties of the Gross-Neveu model in the presence
properties of thg2+1)-dimensional Gross-Neveu model in of an imaginary chemical potential. In this case the theory is
the canonicalformalism. The use of the canonical formalism chirally symmetric at high enough temperatures but it ap-
follows naturally when one introduces a constraint on thepears to be unstable @t=0. For any non-zero value of the
fermion number. Our discussion, however, will be based orimaginary chemical potential, chiral symmetry is broken at a
a generalized representation of the canonical partition funceertain temperature as the system cools down. This corre-
tion that encodes the presence of a real chemical potential &onds to a second-order phase transition where the free-
a special case. It is shown that the approach yields similagnergy density of the system is given by a remarkably simple
results to the grand canonical formalism outcomes, the latteanalytic expression. There also exists a particular value of
being the natural framework for studying systems in thethe temperature at which the system appears to be in a
presence of a chemical potentj8,9]. This generalized par- bosonic phase.
tition function will also be studied for imaginary values of ~ The paper is organized as follows. In Sec. Il we briefly

the chemical potential where it corresponds, rather surpriseview the(2+1)-dimensional Gross-Neveu model at finite
temperature. In Sec. Il we set the stage for studying the
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model with a constraint on the fermion number. Using a To leading order in M the renormalized theory manifests
generalization of the well-known formula which gives theitself in two different phases distinguished by a zero or a
canonical partition functiofir0,12,1] we derive analytic ex- non-zero expectation value ¢f). This manifestation de-
pressions for the free-energy density, the fermion numbepends on the value of the renormalized couplinG,1As
density and the chiral order parameter. Our formalism coincompared to the critical coupling G, =4(27) [ d®p/p2.
cides with the standard grand-canonical approach when theor 1/G,>1/G,, (\)=0 and the theory is in a weakly-
chemical potential takes real values. In Sec. IV we study theoupled phase where chiral symmetry is unbroken. For
model in the presence of an imaginary chemical potentiall/G,<1/G, , (\)#0 and the theory is in a strongly-coupled
and show that it corresponds to a system possessing anyophase where chiral symmetry is broken. In the latter case the
like excitations. We establish a connection with the breakfermions acquire a mass proportional ). Clearly, (\)
down of theZ-symmetry[13] of the U(1) gauged Gross- plays the role of an order parameter for the chiral phase
Neveu model at finite temperature. In this way we give atransition.

physical interpretation to the canonical partition function From the Euclidean formulation above one straightfor-
with imaginary chemical potential as representing the freewardly switches over to thermodynamics at temperaflire
energy needed to immerse an excitation of imaginary charge 1/8 by makingx,, finite with lengttf L=1/T and imposing

in the spectrum. We argue that such excitations are anyorperiodic (antiperiodi¢ boundary conditions over the interval
like. Next, we present results related to the properties of 0,L] for bosonic(fermionic) variables. In this way the bulk
chiral symmetry in the presence of an imaginary chemicatheory in 2+1 dimensions corresponds to a two-dimensional
potential at finite temperature. In Sec. V we summarize an@uantum system at zero temperature. It then follows that the

discuss possible implications of our results. T=0 system can be “prepared,” by appropriately tuning the
coupling constant, to be either in the chirally symmetric or in

Il. THE (2+1)-DIMENSIONAL GROSS-NEVEU MODEL the chirally broken phase. Had it been “prepared” to be in
AT FINITE TEMPERATURE the broken(ordered phase, one would expect that there ex-

_ i ists a high temperature phase transition to the symmetric
The Euclidean Gross-Neveu model may be defined by thgyisorderegi phase. Such a transition is allowéubt forbid-

Lagrangian densify{2,15] den by the Mermin-Wagner-Coleman theorem as the rel-
evant symmetry is discrefe.

L= _Wlpi_g(ﬁ W2, (1) To study the chiral symmetry restoration one calculates

2 the partition function3) by the steepest descent method for

o largeN. This amounts to performing aN/expansion forZ
wherey!, ¢', i=1,2,... N, are four-component Dirac fer- around its saddle-points, which correspond to uniform values
mions andg is the coupling. Ind=3 the massless model of (\). The latter are obtained from the gap equation
above isU(2N)-invariant and possesse¥a discrete ‘“chi-

ral” symmetry 1 4 i f d’p 1
— — G LnZ=xJ (2m)2 p?+ wﬁ-i—()\)z'
b=y,  —— ysi. (2 (5)
This model has been extensively used as a testing ground for wn=(2n+1)z, n=0,+1,+2,... .
studying the mechanism of chiral symmetry breaking in L
QCD[6].

This expression is divergent but all UV divergences at finite
temperature are the same as at zero tempergt&ieThere-
fore, one can renormalize E€p) by substituting for 16 its
corresponding renormalized valueTat 0. For the system to
be in the chirally broken phase @at=0 one sets

For largeN, the model is studied in a M/ expansion
where it is renormalizablgl5]. One introduces an auxiliary
scalar field\ (x) and integrates the fermions out. The parti-
tion function (generating functionalreads

Z=J (DN )e Ner0), ) it m
GG (6)

|eff(>\,G):% BxNZ(X) = Tr[In(d+N)], (4)

3In the following we shall invariably us&, 8 and L bearing in
mind the relationg3=L=1/T.

4Compare this situation to thé2+1)-dimensionalO(N) vector
model[16,17]. In that case, the bulk theory again corresponds to a
two-dimensional quantum systemTat 0 which can be ireitheran
%For the Euclidean gamma matrices we use the Hermitian repred(N)-symmetric phaser an O(N)-broken phase. However, the

where the rescaled coupling=gN is kept finite adN— .

sentationyiz(g' Eai) with o', i=1,2,3 the usual Pauli matrices T>0 theory can only be in th@©(N)-symmetric phase as the
and yo= 7ys. In this reducible representation there exigb ys-like relevant O(N) symmetry is continuous and cannot be broken
matrices £ 3) and ¢, 3). ind=2.
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wherem>0 is the dynamically induced mass of the elemen-where, Z(T,V,i¢) is the grand-canonical counterpart with
tary fermions aff=0. Then, from Eq(5) one obtains imaginary chemical potential. If on the other hand one is
interested in physical situations whedds the mean fermion
etm24 Jetm_74 (anti-fermion density, therB is real, not necessarily integer,
— | (7)  and Eq.(10) is no more a valid representation.

In this work we propose a generalization of HJd.0)
which is suitable for both analytic and numerical work. Our
) ) representation includes both cases of integer and non-integer
the temperature. In particulaf\) vanishes at the second- oo yajyes ofB. Furthermore, it leads to some unexpected
order phase transition pointll/=T.=m/2In 2 where chiral o\ resyits whe is imaginary. Our representation follows
symmetry is restored. At this point and for higher temperaf,m gq.(9) if we write the delta-function constraint with the
tures, the free-energy density is given to leadingy” help of an auxiliary Lagrange multiplier scalar fiefdr) as

2
()\>=Eln

which gives the dependence of the order paramgtgron

i =_ 35_(3) (8) Z(T,V,B)= f (D)\)(pg)e*NIen(k,g:0,B):e*BF(T,V,B),

N 273 1y
and coincides with the free-energy density df Znassless which enforces theaveraged fermion number constraint
four-component Dirac fermionsio]. (N)=B. Here,F(T,V,B) is the free-energy and,;; is the

following effective action:
Ill. THERMODYNAMICS OF THE (2+1)-DIMENSIONAL

GROSS-NEVEU MODEL IN THE CANONICAL ] Bt 1 (L o o
FORMALISM Zetd(N,0; H’B)_'NL dro(7)+ 5 . de d?x\2(7,x)
A. General setting TN+ A (7%) +iy08(7)] . 12

The canonical formalism for the analysis of the thermo-
dynamics of a system has been recently employed in studiek0 evaluate the free energy in E@.1) for largeN, we ex-
of fermionic systems at finite baryon densfty1,13. The Pand | around its stationary points assuming constant
reason is that it bypasses the usual sign problem of the Elﬁtranslation invariar)t(k) and<0> configurations. These sat-
clidean fermion determinant for real values of the chemicalsfy the following set of saddle-point equatiofs:
potential. Since the three-dimensional Gross-Neveu model .
does not undergo this sign problem, it has been extensively 1 4 E f d’p 1 13
studied in the standard grand-canonical formalism both ana- G L. ,“. (2m)2 P2+ (o +<9>)2+<)\>2! (13
lytically and numericallyf4,5]. Nevertheless, it would still be "

interesting to perform a direct analysis in the canonical for-

2 *° iopp
malism in order to test results obtained previously. Further- iE: lim ff d’p e“n’(wn +()) ,
more, in doing so, we obtain some surprising new results N o L) (27)2 05 p?+ (w,+(6))2+(\)?
which shed new light into the thermodynamics of the model. 14

The canonical partition function can be obtained as the

; - herew,=(2n+1)w/L, n=0,£1,=2,...[20,19. We can

thermal average over eigenstates of the number opekator w n _ ) 2
— (a2t ith fixed ei lues. N v I8 subtract the UV divergences in Ed.3) [19] by adjusting the
[y (7.x) (7.x) with fixed eigenvalue amely, (8] renormalized coupling as in E@6). At the same time the

Z(T,V B):Tr(e—ﬁ}:l S(N—B)) (9) system afT=0 can be arranged so as to break chiral sym-
Y ' metry. After some algebra we obtain

where H is the Hermitian Hamiltonian. As usual mea- 1 _ )
sures the excess of fermions over anti-fermions in the spe®=(\)—m+ [lin(1+e” LOVZILO) 4 In(1+ e~ LV HILO) )

trum. (15)
If one anticipates that for certain physical conditions the

spectrum contains free fermions or anti-fermions, ttgen B O 1+ e-LOV+iL(0)
must be an integer. This then leads to the following repre=_ ) In € : _Liz(_efL()\>+iL(0))
sentation for the canonical partition functighO]: N 27l 14 e HM—IL(6)
1 27 ) . B »
Z(T,V,B)=Ef dpe BZ(T \V,ig), (10 +Liy(—e ™ 'L<">)1, (16)
0

®As discussed 119,20 the regulating parameterin Eq. (14) is
SIn our calculations we always normalize the free-energy densitynecessary in order to take care of the fact that tHe. Tr] and
in such a way that it vanishes in the bulk, i.e. at@[18]. [ ...] operations do not commute.
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whereB=B/V is the fermion density. From Eq¢l1) and leadingN. Before we proceed, however, we observe that re-

(12) we can now calculate the renormalized free-energy denduiring the free-energy density in E€L7) to be real we are
sity f=F/V to leadingN and obtain naturally led to distinguish two cases. Namely, as the terms

involving polylogarithms in Eq(17) are real for both real
and imaginary values of #), we can haveeither (1)
(#)=imaginary and B=real, or (2) (#)=real and
B=imaginary. Clearly,(1) would correspond to the usual
+ 1 [Lig(—e LN +iL(o) case of the Gross-Neveu model with real chemical potential.
L3 Nevertheless, we will show that cag® probes some inter-
esting properties of the Gross-Neveu model too.

1 ~ (N3 N2 L
Nf(,@,m;()\>,B)=%—m;r> +2iB(6)

+Lig(—e MO —n(e M)
X (Liy(—e™ L) +iL(6)y B. Relation to the grand-canonical formalism

+Liy(—e HMTiLayy], (17) For (#)=imaginary Eq.(17) is the free-energy density of
the Gross-Neveu model with ordinafsea) chemical poten-
The functionsLi,(z) are the standard polylogarithri21]. tial. Indeed, setting(i¥) = x<m we find that Eqs(15) and
In principle, the free-energy densit¥7) together with the  (16) coincide with the corresponding expressions for the gap
gap equationg15) and (16) are sufficient for studying the equation and the fermion density, the latter was obtained for
thermodynamic properties of the Gross-Neveu model tdhe first time in[5]. Namely,

etM—2 costiL u) + \/(e"™—2 coshiL u))?— 4
(A\)=~—1In L) +( hLw)) , a8
L 2
B (n 1+e LNFLu
N~ 2<7Ti_ 1te LV La —Liy(—e MLy Ly (—eHM ey | (19)
+e

The thermodynamic properties here are well known. As theestoration is of first order. One can draw a physical picture
chemical potentiajw increases from zero, the critical tem- of the chiral symmetry restoration in terms of overlapping
peratureT, for the chiral symmetry restoration decreases.composites. When the temperature is increased, chiral con-
This critical temperature becomes zero at some critical valuglensates begin to overlap as their radius grow up. At some
of the chemical potentigh.=m where the chiral symmetry critical point the system is mainly composed of overlapping
condensates which, as a result, are no longer the good basis
T T T T 1 for describing the thermodynamic properties of the system
i and the fermionic constituents must be taken into account. It
is then reasonable to expect that by increasing the baryon
density, which amounts to increasing the density of chiral
s condensates, a lower critical temperature would be needed
for the system to reach the critical point above. In Fig. 1 we
plot the critical lines in thé\)-u plane for various values of
] T. In Fig. 2 we plot(\) vs T for various values of. In Fig.
3 we plot the fermion densit®/N vs T for various values of
. For >0 the fermion density is discontinuous at a critical
temperaturel o(w).

<A>

02 - . '._ -
N ] IV. IMAGINARY CHEMICAL POTENTIAL

TS T I A. The connection with an anyon-like system(anyon
0.0 0.2 0.4 0.6 0.8 1.0 confinement-deconfinement

Consider the interaction of the Gross-Neveu model

FIG. 1. Critical lines in the(\)— x plane for variousT<T..  With an externalJ(1) gauge potentiah ,(x). The Euclidean
For simplicity we chosen=1 such thafl,~0.72. Lagrangian density reads
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FIG. 2. (\) vs T for variousu, whenm=1.

FIG. 3. B/N vs T for variousu andm=1. The baryon density
blows up atT— T (u).

Ez_y(f)_ieA)l/li—g(wl/fi)zy (20) S(XOaX;AO’<7\>):(‘9+ie'}’OAO""<)\>)SO(XO’X;AO’<)\>)(’

wheree is the electric charge. Let us consider a constanhas the following representation as a sum over non-trivial
potentialA,= ¢ along the “time” direction. We can imagine topological paths:

embedding the model above into a 4-dimensional space. Due
to the finite length of thex, dimension and the antiperiodic
boundary conditions of the fermions along it, the system may Sy(xq,x;Aq,{\))=

©

> emelllt xR (xo+ 1L ,x;(\)),
be viewed as existing in a 3-dimensional hyper-cylinder I=—e
whose axis is the (unobservabledimension. The constant (24)
potentialA; may now be regarded as the “vector” potential

generated by a thin solenoid of magnetic flix= gL along ~ Wherell(Xo,x;(\)) are freebosonpropagators of mags\).

fermions encircling a thin solenoidal magnetic flux and onePartition function(11) we imposed a constraint on tlager-
might expect to encounter Aharonov-Bohm type phenomend@gde fermion number, we can have local charge density fluc-
[14].

tuationsb(r,x) which give rise to the so-called statistical
The potential in Eq(20) may be gauged away by the 9auge fielda,(7,x) as
transformation

b(7,x)= ¢ (7,X)¥(7,x)—B
¢.4> eief)’rw. (21)

= 9185(7,X) — doa1(7,X) = e”1 g;a;(7,X). (25

Such a transformation, however, “twists” the antiperiodic This (non-dynamical field would be responsible for the
boundary conditions for the fermions unless

anyon dynamicg22]. Finally, the partition function of the
free theory, i.e., Eq(20) atg=0, has been shown to repro-
2 duce the standard anyon virial coefficieh2s3].
= Ek’ k=0£1,%2,.... (22 The existence of the anyonic excitations above may be

tied to a discreteZ-symmetry of the(2+1)-dimensional
The configurations with “twisted” boundary conditions may Gross-Neveu model interacting with a standbek(l) gauge

be viewed as anyon-like excitatiofi$4]. For instance, the field A, (x) at temperaturd. The partition function in this
“quasi-particle” propagator of the above mod&0) case is

0

= f (DA#)(Dd,)(D@e—fﬂaM)FWFW—W(&—ieA)uf‘—(g/z)@w‘ﬁ, (26)
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whereF ,,=d;,A,; as usual. This theory is invariant under <7)-é>*>ei2wk(’é/e)<7>é>¢<7)é>_ (36)
A (7,X)—=A,(1,X)+3,x(7,X), (27)
, The physical interpretation of EQq.34) is that Fg
P(7,%)— €N y(7.x), (28)  =—(1/B)In(P;) gives the free-energy necessary to immerse
_ _ , a configuration of charge in the spectrum of the systej8].
Y7, )— (7, x)e ), (29 I the theory(26) is in a Z-vacuum, then the spectrum can

ontain only an integer number of fermions or antifermions
ince, as explained earlier, it does not contain anyon-like
excitations. In this case one clearly expects thgt~ or
x(0X)=x(L,x) and 2,x(0x)=d,x(L,x).  (30) (Ps)=0. If on the other hand the theory is not in a
Z-vacuum, then there exist anyon-like configurations in the
In addition to these, the theory is also invariant under largespectrum and one in general expects {72f) #0. We con-
gauge transformations which are given by clude that, in this sense, th&symmetry of the full gauge
theory (26) is connected to the “confinement” or “screen-
ing” of anyons, wherg/P;) is the relevant order parameter.
The anyonic theory preservessymmetry in the confined
phase wherdP;)=0 and violates theZ-symmetry in the
and represent a globa-symmetry. This symmetry implies deconfined phase whet@;)+0.
the existence of infinitely many equivaledtvacua in the We are now in a position to give a physical interpretation
theory (26). Namely, the gauge field configurations to the partition functior(11) with real( ) (imaginary chemi-
cal potential, as a result of the following identit{:

which are the usual small gauge transformations provide
they are periodic in Euclidean time

2
2 (00=x(L,x) + ?Wk, k=e=1+2,... (31

. k=0x1,+2,..., (32

. 2
AL(T,X)= ak,o,o
Z(T,V,B)=e FFTVEI=(Pg). (37)
are lowest energy and equivalent since they are connected by

gauge transformations of the forg(7,x) =(2m/eL)r. Still,  Namely, the free-energy of the Gross-Neveu model with

such _Z_-transformanons preserve the anti-periodic boundarﬁmaginary chemical potential represents the free-energy of

conditions. We therefore conclude that E§2) represents gy on.jike configurations emerging in the spectrum when the

equivalentvacuumconfigurations of Eq(26). model is coupled to dJ(1) gauge field which fluctuates
Going back to Eq(20) provided condition(22) holds, the around theZ-vacua.

theory can be interpreted as a Gross-Neveu model with @ tpe ghove discussion concerning the order parani@ter
U(1) gauge coupling at finite temperature and lying in On€haaiiels the discussion i3] of a similar order parameter

of the Z-vacua. In this case there exist no anyon-like excitayr the confinement or screening of incommensurate charges
tions in the spectrum. If conditiofR2) is relaxed, then Eq. in parity invariant QEQ (see alsg24]). One of the new
(20) corresponds to the gauge theory above where the gauggyseryations here is the interpretation of theommensurate
field fluctuates around th&-vacua. In the latter case there chargedconfigurations as being anyon-like. Another impor-

exist anyon-like excitations in the spectrum. ______tant point is that the order parametg?;) is in fact imagi-
We can now construct an order parameter to distinguish ~ .
ary for any real value oé. This is also seen from Eq17)

the two cases as follows. Consider translational invarianf' ; ; .
fluctuations around th&-vacua in Eq.26) such that or Eq. (37). If Eq. (34) is to be interpreted as a physical

free-energy density, it is necessary teas imaginary. The
A,=A%+0(7), 6(0)=0(L). (33 fact that we obtain an imaginary eigenvalBe=e for the
Hermitian operatoN means essentially that we are not using
a positive definite density matrix to describe the fluctuations
around theZ-vacua of the theory26). Nevertheless, even in
that case we will be able to extract useful results for the
critical properties of the theory, assuming that the latter are
bniversal.

Take now the quantity
(Po)= < eiéf5d70(7)> ' (34)
wheree/e# integer and the average is taken with respec

to the partition function(26). It is not difficult to see
that Eq.(34) is invariant under the strictly periodic gauge

transformations (30). It is not invariant, however, B. Chiral symmetry and Z-vacua
under theZ-_transformatlons(31). To see this consider the The chiral symmetry restoration for reab) can be in-
transformations

ferred from the gap equatiqd5). The critical line separating
2 the chirally symmetric from the chirally broken phase in the
0(1)—0(7)+ Ek’ k=+x1,+2,..., (35 (6)-T plane is obtained by setting\)=0 in Eq.(15) as

which are symmetries of the theo(26) provided there is
Z-invariance. Under Eq35) "Here we use=1.
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0.0 n [ M I’ 1 " [ " -' [l "
0.0 0.2 0.4 0.6 0.8 1.0 7
T <6>/T
FIG. 4. Critical lines in the/#)—T plane for variousm when FIG. 5. (\)/T vs{6)/T for 0<m/T<2 In 2. For fixed, non-zero
(6)ITe[0,7]. The line(#)=(2x/3)T is an asymptote. (6), T decreases along the horizontal axis as one moves to the right.

1 oLm ated with local charge fluctuations catalyzes symmetry
()= —arcco%— — 1}, (38)  breaking as it stabilizes the chiral condensates against ther-
L 2 mal fluctuations inside the “temperature window$39).2

The fact that in the high-temperature weakly coupled regime
and is depicted for various values af in Fig. 4 when even a small imaginary chemical potential induces chiral
() Te[0,m]. symmetry breaking, shows that the former plays the role of a

In order to discuss the chiral properties of the theory westrong catalyst of dynamical symmetry breaking, similar to
shall henceforth consider, for concreteness, the massless cahbat of a transverse external magnetic fig28] or a constant
where the system is critical already Bt=0. In this case, negative curvaturd26]. The chiral symmetry restoration
when the chemical potential is real one does not expect anyansition atT=23(6)/2x is of the second-order with mean
phase transition as the temperature rises up. To put it diffeffield critical exponent§14,2( since the order parametex)
ently and in a more general ground, for real chemical potenis continuous. The order parameter acquires its maximum
tial the system is chirally symmetric at some high temperavalue for T=(#6)/7 and then starts to drop until it reaches
ture and as it cools down chiral symmetry is, in generalZero again aff=3(6)/4w. The same picture holds for all
broken at some lower critical temperature. Having choser¢hiral restoration “temperature windows(39).
m=0 this critical temperature i§=0. Consider now the It is also _mterestlng t(_) study the behavior of the free-
case wher(6) is real, where this corresponds to an imagi_energy_dgnsny as a f.unc.tlon of the temperature for non-zero
nary chemical potential or some fluctuation around thel®)- This is depicted in Fig. 6 where we plot the free-energy
Z-vacua as explained above. Again, at high enough temper&lensity vs(6)/T. For high enoughT the system is in the
tures we expect the system to be chirally symmetric. How<hirally symmetric phase and to leadihgthe free-energy
ever, chiral symmetry is now broken at a non-zero temperadensity equals that dff massless free four-component Dirac
ture T=23(¢)/27. The important point is that as the system fermions, e.g., Eq.8). At T=3(6)/2m the free-energy
cools down, chiral symmetry remains broken in a “temperaJumps discontinuously to a local minimum and then raises
ture window” 3( 6)/2r=T=3(6)/4 and then it is restored Until it reaches a localpositive maximum atT = 3(6)/4w
again. Furthermore, a3 —0, it passes through infinitely where it drops again discontinuously to the val8e Similar

many “windows” of the form T‘Iuptt:jatior]’s (g;)cur _fror gll the infinitely many temperature
windows asT—0.
30 1 30y 1 It is rather intriguing that we are able to give analytic
57 173k~ 2+ 273k’ K=012.... (39  expressions for the free-energy density of the system at the

end points of the “temperature windows” of chiral symme-

in which chiral symmetry is always broken. This essentiallytry breaking, 36)/2m, 3(6)/4m [in fact this is possible for
means that for any real non-ze{@) the T=0 theory be- the end-point of all the “windows"(39)]. After some alge-
comes unstable. The relevant physical picture can be read opfa we obtain, respectively,
from Fig. 5 where we plot\)/T vs (6)/T in O=<m/T
<2In2. Note that fom/T>2 In 2 the theory is always in a
chirally broken phase. 8This picture may be compared to the one of an external magnetic

We can draw a physical picture for the chiral symmetryfield in finite temperaturg2+1)-dimensional QED recently dis-
restoration discussed above. The magnetic (R associ- cussed if27].
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3 T T T T 1T The middle point of the chiral transition “temperature
window” (39) is also interesting. At this poin\) takes its
maximal value. From Eq.15) we obtain for{6)= /L,

1+\/—

<>\>——| (43

This value equals the value one obtains for the mass of the
c/N | 1 elementary bosonic modes in ti2+1)-dimensionalO(N)
vector model at finite temperature, when the theory is critical
at T=0 [30]. Plugging this into Eq(17) we can calculate the
free-energy density which, by virtue of some non-trivial
polylogarithmic identitieg§30,31] is found to be

i 1 fL 16 (3
ho_1043) (44)
2 N 1 N 1 . 1 . 1 2 1 N 1 N 5 27T|-3
1 2 3 4 5 6
<0>/T This is exactlyminusthe free-energy density of th@+1)-

dimensionalO(4N) vector model at its non-trivial critical
FIG. 6. The free-energy density ¥9)/T. As in Fig. 5, T de-  point. In principle, a positive free-energy density which
creases along the horizontal axis as one moves to the right. would correspond to negative pressure and negative entropy
seems to be a rather unphysical reg@i8]. However, one
fL 1 (47 might try to construct a physical system where the regi4it
—=— —{ 3 CIZ( )— —5(3)} (40)  could make sense. This is t4N) N'=1 supersymmetric
sigma model 34,35 in the presence of an externap po-
tential at finite temperature. To leadihg-the free-energy
f, 1 [87 density of this theory is simply given by the sum of the
N 3{ 3 CIZ( += §(3)} (41)  free-energies of fermions and bosons. In general, supersym-
L metry is expected to be broken at any finite temperdtdég
Nevertheless, it may happen that for some temperature the
Where,CI2(¢>)=Im[Liz(ei‘f’)] is the Clausen functiofi21]. fermion contribution, given by Eq44), and the boson con-
Note thatCl,(7/3) is the absolute maximum of this function tribution cancel each other and the system becomes super-
which is a well-documented irrational numHea8. symmetric again. Note that the matching of the bosonic and
The results for the free-energy density have been on pufermionic degrees of freedom is correct—thé=1 super-
pose written as above, in order to be compared with thénultiplet in three-dimensions requiresN2two-component
expected scaling form of the free-energy density of a conforMajOI’ana fermions. A similar bosonization of fermions has
mal field theory(CFT). The point is that the chiral phase been recently discussed [i87].
transition in the (2+1)-dimensional model above is of
second-order and one would expect it to correspond to the V. SUMMARY AND DISCUSSION
universality class of a 3-dimensional CFT. When a CFT is
put in a finite-size geometr{i.e. in a slab with one finite
dimension of length.), its free-energy density scales[dS§)]

N L3

In this work we studied th&€2+1)-dimensional Gross-
Neveu model in the presence of an imaginary chemical po-
tential and argued that it provides an interesting ground for
- probing the properties of chiral symmetry at non-zero tem-
_ c{(3) 42 perature. In Sec. Il we proposed a generalization of the well-

23 (42 known formula for the canonical partition function and pre-

sented analytic expressions for the free-energy density, the
- fermion number density and the chiral order paramexer
The quantityc coincides with the central charged2 and  we demonstrated that this general formalism includes the
has been recently proposg2B] to be a possible generaliza- standard grand-canonical formalism when the chemical po-
tion of aCl-function ind>2. Clearly, from Eqs(40), (41)  tential is real. In Sec. IV we focused on the case of imaginary
and(42) we see that the chiral transition above appears to behemical potential. We considered @d(1) gauge field
connected to new 3-dimensional CFTs. The factthatEq.  coupled to the Gross-Neveu model at finite temperature.
(40) is less than the corresponding free-field theory v@Ble  Such a theory possesses infinitely many equivatewmacua.
and it is negative in Eq41), seems to imply that the above We showed that when the gauge field fluctuates around these
critical theories may not be unitary. Nevertheless, such theaZ-vacua, as given by Ed33), anyon-like excitations mani-
ries may conceivably correspond to three-dimensional verfest themselves in the spectrum of tte+1)-dimensional
sions of the non-unitary two-dimensional Lee-Yang modelGross-Neveu model. This is established by showing that the
[32]. free-energy necessary to immerse such an excitation is non-
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zero. Furthermore, we provided evidence that the expectatioastablish the chiral symmetry restoration “windows” advo-
value of the abelian Polyakov loop, which is the order pa-cated above. It is also possible to numerically compute the
rameter for establishing whether the aboud1l) gauge free-energy densities at the critical points and compare them
theory resides in one of thé-vacua, coincides with thea-  with our analytic result$40) and(41). Furthermore, it would
nonical partition function for imaginary values of the fer- be interesting to compare the free energy dendi) to the
mion number density. This way we gave a physical interpreone recently proposed by Laugh[i#0] in order to reproduce
tation to the canonical partition function with imaginary the anomalous behavior of the thermal conductivity in some
chemical potential as being the free-energy needed to imhigh-temperature superconductors of the BSCCO family
merse an excitation of imaginary charge in the spectrum of41].° Since these compounds exhibit a new kind of phase
the (2+1)-dimensional Gross-Neveu model. The latter exci-transition induced by strong catalysts of dynamical symme-
tation is related to the anyon-like excitations discussedry breaking, it is plausible that our generalized canonical
above. Finally, we gave some results connected to the progsartition function formalism can be used to explain such un-
erties of chiral symmetry in the presence of an imaginaryusual behavior. Finally, based on the results of the present
chemical potential at finite temperature. work, it may be interesting to explore the possibility of finite
Studies of the critical thermodynamic properties of a systemperature supersymmetry restorationNis=1 supersym-
tem undergoing a phase transition are intimately connectechetric theorieg43].
to the Lee-Yang zerof38,39. These are the zeros of the
partition function for imaginary values of the external mag-
netic field, the latter being the “conjugate” variable of the ACKNOWLEDGMENTS
relevant order parameter. It is then conceivable that one
could try to investigate the critical properties of a system a
finite density by studying its partition functiofor its free-
energy density at complex values of the number density,
the latter being the ‘“conjugate” variable of the chemical
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