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Thermodynamics of the„2¿1…-dimensional Gross-Neveu model with complex chemical potential
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We study the thermodynamics of the~211!-dimensional Gross-Neveu model by introducing a representa-
tion for the canonical partition function which encodes both real and imaginary chemical potential cases. It is
pointed out that the latter case probes the thermodynamics of possible anyon-like excitations in the spectrum.
It is also intimately connected to the breaking of the discreteZ-symmetry of the model, which we interpret as
signaling anyon deconfinement. Finally, the chiral properties of the model in the presence of an imaginary
chemical potential are discussed and analytical results for the free-energy density at the transition points are
presented.

PACS number~s!: 11.10.Wx, 11.30.Rd
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I. INTRODUCTION

Chiral symmetry and its realization at finite temperatu
have been matters of intense studies for a long time. On
the most extensively used laboratories for this purpose
been the Gross-Neveu model@1# both at zero and finite tem
perature@2,3#. In the large-N limit the ~211!-dimensional
version of this theory is renormalizable and provides a c
venient arena for the survey of chiral symmetry; for instan
its dynamical breakdown at zero temperature and its h
temperature restoration. Recently, there has been also
siderable interest in studying the properties of chiral symm
try at finite density, or equivalently in the presence of
chemical potential@4–6#. This is believed to be relevant t
the understanding of the physics of hot and dense ma
which is expected to be probed in the laboratory by the B
Relativistic Heavy Ion Collider~RHIC! experiments@7#.

In this work, we address the thermodynamics and ch
properties of the~211!-dimensional Gross-Neveu model
thecanonicalformalism. The use of the canonical formalis
follows naturally when one introduces a constraint on
fermion number. Our discussion, however, will be based
a generalized representation of the canonical partition fu
tion that encodes the presence of a real chemical potenti
a special case. It is shown that the approach yields sim
results to the grand canonical formalism outcomes, the la
being the natural framework for studying systems in
presence of a chemical potential@8,9#. This generalized par
tition function will also be studied for imaginary values
the chemical potential where it corresponds, rather surp
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ingly, to a real free-energy density.1

We argue that the presence of an imaginary chemical
tential is intimately connected to the possibility of havin
anyon-like excitations in the spectrum of the theory. We a
show that the imaginary chemical potential emerges na
rally in the ~211!-dimensional Gross-NeveuU(1) gauged
model at finite temperature. Such a theory has infinit
many Z-vacua@13# around which the gauge field may fluc
tuate. These fluctuations have been shown to be connect
peculiar excitations whose chargeis not an integer multiple
of the elementary charge of the theory. We interpret th
excitations as being anyon-like@14# and argue that our gen
eralized canonical partition function gives their free-ener
density. As the gauge field fluctuations around theZ-vacua
lead to the spontaneous breakdown of the discr
Z-symmetry, it appears that the latter is tied to ananyon
confinement/deconfinementtransition. Finally, we study the
chiral properties of the Gross-Neveu model in the prese
of an imaginary chemical potential. In this case the theory
chirally symmetric at high enough temperatures but it a
pears to be unstable atT50. For any non-zero value of th
imaginary chemical potential, chiral symmetry is broken a
certain temperature as the system cools down. This co
sponds to a second-order phase transition where the
energy density of the system is given by a remarkably sim
analytic expression. There also exists a particular value
the temperature at which the system appears to be
bosonic phase.

The paper is organized as follows. In Sec. II we brie
review the~211!-dimensional Gross-Neveu model at fini
temperature. In Sec. III we set the stage for studying

ro,

1The study of the thermodynamics of fermionic systems in
presence of an imaginary chemical potential has been consider
the past@10,12,11#. Such studies, however, have been primar
focused on the technical virtues of the imaginary chemical poten
formalism in lattice simulations.
©2000 The American Physical Society18-1
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CHRISTIANSEN, PETKOU, SILVA NETO, AND VLACHOS PHYSICAL REVIEW D62 025018
model with a constraint on the fermion number. Using
generalization of the well-known formula which gives th
canonical partition function@10,12,11# we derive analytic ex-
pressions for the free-energy density, the fermion num
density and the chiral order parameter. Our formalism co
cides with the standard grand-canonical approach when
chemical potential takes real values. In Sec. IV we study
model in the presence of an imaginary chemical poten
and show that it corresponds to a system possessing an
like excitations. We establish a connection with the bre
down of theZ-symmetry @13# of the U(1) gauged Gross
Neveu model at finite temperature. In this way we give
physical interpretation to the canonical partition functi
with imaginary chemical potential as representing the fr
energy needed to immerse an excitation of imaginary cha
in the spectrum. We argue that such excitations are any
like. Next, we present results related to the properties
chiral symmetry in the presence of an imaginary chem
potential at finite temperature. In Sec. V we summarize
discuss possible implications of our results.

II. THE „2¿1…-DIMENSIONAL GROSS-NEVEU MODEL
AT FINITE TEMPERATURE

The Euclidean Gross-Neveu model may be defined by
Lagrangian density2 @2,15#

L52c̄ i]”c i2
g

2
~ c̄ ic i !2, ~1!

wherec̄ i , c i , i 51,2, . . . ,N, are four-component Dirac fer
mions andg is the coupling. Ind53 the massless mode
above isU(2N)-invariant and possesses aZ2 discrete ‘‘chi-
ral’’ symmetry

c→g5c, c̄→2g5c̄. ~2!

This model has been extensively used as a testing groun
studying the mechanism of chiral symmetry breaking
QCD @6#.

For large-N, the model is studied in a 1/N expansion
where it is renormalizable@15#. One introduces an auxiliary
scalar fieldl(x) and integrates the fermions out. The par
tion function ~generating functional! reads

Z5E ~Dl!e2NIe f f(l,G), ~3!

I e f f~l,G!5
1

2GE d3xl2~x!2Tr@ ln~]”1l!#, ~4!

where the rescaled couplingG5gN is kept finite asN→`.

2For the Euclidean gamma matrices we use the Hermitian re

sentationg i5(0
s i

2s i
0 ) with s i , i 51,2,3 the usual Pauli matrice

andg0[g3. In this reducible representation there existtwo g5-like
matrices (1

0
0
1) and (21

0
0
1).
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To leading order in 1/N the renormalized theory manifes
itself in two different phases distinguished by a zero o
non-zero expectation value of^l&. This manifestation de-
pends on the value of the renormalized coupling 1/Gr as
compared to the critical coupling 1/G* 54(2p)23*d3p/p2.
For 1/Gr.1/G* , ^l&50 and the theory is in a weakly
coupled phase where chiral symmetry is unbroken.
1/Gr,1/G* , ^l&Þ0 and the theory is in a strongly-couple
phase where chiral symmetry is broken. In the latter case
fermions acquire a mass proportional to^l&. Clearly, ^l&
plays the role of an order parameter for the chiral ph
transition.

From the Euclidean formulation above one straightf
wardly switches over to thermodynamics at temperatureT
51/b by makingx0 finite with length3 L51/T and imposing
periodic~antiperiodic! boundary conditions over the interva
@0,L# for bosonic~fermionic! variables. In this way the bulk
theory in 211 dimensions corresponds to a two-dimensio
quantum system at zero temperature. It then follows that
T50 system can be ‘‘prepared,’’ by appropriately tuning t
coupling constant, to be either in the chirally symmetric or
the chirally broken phase. Had it been ‘‘prepared’’ to be
the broken~ordered! phase, one would expect that there e
ists a high temperature phase transition to the symme
~disordered! phase. Such a transition is allowed~not forbid-
den! by the Mermin-Wagner-Coleman theorem as the r
evant symmetry is discrete.4

To study the chiral symmetry restoration one calcula
the partition function~3! by the steepest descent method f
large-N. This amounts to performing a 1/N expansion forZ
around its saddle-points, which correspond to uniform val
of ^l&. The latter are obtained from the gap equation

1

G
5

4

L (
n52`

` E d2p

~2p!2

1

p21vn
21^l&2

,

~5!

vn5~2n11!
p

L
, n50,61,62, . . . .

This expression is divergent but all UV divergences at fin
temperature are the same as at zero temperature@15#. There-
fore, one can renormalize Eq.~5! by substituting for 1/G its
corresponding renormalized value atT50. For the system to
be in the chirally broken phase atT50 one sets

1

G
→ 1

Gr
52

m

p
, ~6!

e-

3In the following we shall invariably useT, b and L bearing in
mind the relationsb5L51/T.

4Compare this situation to the~211!-dimensionalO(N) vector
model @16,17#. In that case, the bulk theory again corresponds t
two-dimensional quantum system atT50 which can be ineitheran
O(N)-symmetric phaseor an O(N)-broken phase. However, th
T.0 theory can only be in theO(N)-symmetric phase as th
relevant O(N) symmetry is continuous and cannot be brok
in d52.
8-2
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THERMODYNAMICS OF THE ~211!-DIMENSIONAL . . . PHYSICAL REVIEW D 62 025018
wherem.0 is the dynamically induced mass of the eleme
tary fermions atT50. Then, from Eq.~5! one obtains

^l&5
2

L
lnFeLm/21AeLm24

2 G , ~7!

which gives the dependence of the order parameter^l& on
the temperature. In particular,^l& vanishes at the second
order phase transition point 1/Lc5Tc5m/2 ln 2 where chiral
symmetry is restored. At this point and for higher tempe
tures, the free-energy density is given to leading-N by5

f

N
52

3z~3!

2pL3
, ~8!

and coincides with the free-energy density of 2N massless
four-component Dirac fermions@19#.

III. THERMODYNAMICS OF THE „2¿1…-DIMENSIONAL
GROSS-NEVEU MODEL IN THE CANONICAL

FORMALISM

A. General setting

The canonical formalism for the analysis of the therm
dynamics of a system has been recently employed in stu
of fermionic systems at finite baryon density@11,12#. The
reason is that it bypasses the usual sign problem of the
clidean fermion determinant for real values of the chemi
potential. Since the three-dimensional Gross-Neveu mo
does not undergo this sign problem, it has been extensi
studied in the standard grand-canonical formalism both a
lytically and numerically@4,5#. Nevertheless, it would still be
interesting to perform a direct analysis in the canonical f
malism in order to test results obtained previously. Furth
more, in doing so, we obtain some surprising new res
which shed new light into the thermodynamics of the mod

The canonical partition function can be obtained as
thermal average over eigenstates of the number operatN̂
5*d2xc†(t,x)c(t,x) with fixed eigenvaluesB. Namely,@8#

Z~T,V,B!5Tr„e2bĤd~N̂2B!…, ~9!

where Ĥ is the Hermitian Hamiltonian. As usual,N̂ mea-
sures the excess of fermions over anti-fermions in the sp
trum.

If one anticipates that for certain physical conditions t
spectrum contains free fermions or anti-fermions, thenB
must be an integer. This then leads to the following rep
sentation for the canonical partition function@10#:

Z~T,V,B!5
1

2pE0

2p

dfe2 ifBZ~T,V,if!, ~10!

5In our calculations we always normalize the free-energy den
in such a way that it vanishes in the bulk, i.e. at T50 @18#.
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where,Z(T,V, if) is the grand-canonical counterpart wi
imaginary chemical potential. If on the other hand one
interested in physical situations whereB is the mean fermion
~anti-fermion! density, thenB is real, not necessarily intege
and Eq.~10! is no more a valid representation.

In this work we propose a generalization of Eq.~10!
which is suitable for both analytic and numerical work. O
representation includes both cases of integer and non-int
real values ofB. Furthermore, it leads to some unexpect
new results whenB is imaginary. Our representation follow
from Eq.~9! if we write the delta-function constraint with th
help of an auxiliary Lagrange multiplier scalar fieldu(t) as

Z~T,V,B!5E ~Dl!~Du!e2NIe f f(l,g;u,B)5e2bF(T,V,B),

~11!

which enforces theaveraged fermion number constrain

^N̂&5B. Here,F(T,V,B) is the free-energy andIe f f is the
following effective action:

Ie f f~l,g;u,B!5 i
B

NE0

L

dtu~t!1
1

2GE
0

L

dtE d2xl2~t,x!

2Tr@ ln„]”1l~t,x!1 ig0u~t!…#L . ~12!

To evaluate the free energy in Eq.~11! for large-N, we ex-
pand I e f f around its stationary points assuming const
~translation invariant! ^l& and^u& configurations. These sat
isfy the following set of saddle-point equations:6

1

G
5

4

L (
n52`

` E d2p

~2p!2

1

p21~vn1^u&!21^l&2
, ~13!

i
B

N
5 lim

r→0

4

LE d2p

~2p!2 (
n52`

`
eivnr~vn1^u&!

p21~vn1^u&!21^l&2
,

~14!

wherevn5(2n11)p/L, n50,61,62, . . . @20,19#. We can
subtract the UV divergences in Eq.~13! @19# by adjusting the
renormalized coupling as in Eq.~6!. At the same time the
system atT50 can be arranged so as to break chiral sy
metry. After some algebra we obtain

05^l&2m1
1

L
@ ln~11e2L^l&2 iL^u&!1 ln~11e2L^l&1 iL^u&!#,

~15!

B̃

N
5

^l&
2pL F lnS 11e2L^l&1 iL^u&

11e2L^l&2 iL^u&D 2Li 2~2e2L^l&1 iL^u&!

1Li 2~2e2L^l&2 iL^u&!G , ~16!

ty

6As discussed in@19,20# the regulating parameterr in Eq. ~14! is
necessary in order to take care of the fact that the Tr@ . . . # and
(@ . . . # operations do not commute.
8-3
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CHRISTIANSEN, PETKOU, SILVA NETO, AND VLACHOS PHYSICAL REVIEW D62 025018
where B̃5B/V is the fermion density. From Eqs.~11! and
~12! we can now calculate the renormalized free-energy d
sity f 5F/V to leading-N and obtain

1

N
f ~b,m;^l&,B̃!5

^l&3

3p
2

m^l&2

2p
12iB̃^u&

1
1

6pL3
@Li 3~2e2L^l&1 iL^u&!

1Li 3~2e2L^l&2 iL^u&!2 ln~e2L^l&!

3„Li 2~2e2L^l&1 iL^u&!

1Li 2~2e2L^l&2 iL^u&!…#. ~17!

The functionsLi n(z) are the standard polylogarithms@21#.
In principle, the free-energy density~17! together with the

gap equations~15! and ~16! are sufficient for studying the
thermodynamic properties of the Gross-Neveu model
th
-

es
lu

02501
n-

o

leading-N. Before we proceed, however, we observe that
quiring the free-energy density in Eq.~17! to be real we are
naturally led to distinguish two cases. Namely, as the te
involving polylogarithms in Eq.~17! are real for both real
and imaginary values of̂ u&, we can haveeither ~1!

^u&5imaginary and B̃5real, or ~2! ^u&5real and
B̃5imaginary. Clearly,~1! would correspond to the usua
case of the Gross-Neveu model with real chemical poten
Nevertheless, we will show that case~2! probes some inter-
esting properties of the Gross-Neveu model too.

B. Relation to the grand-canonical formalism

For ^u&5imaginary Eq.~17! is the free-energy density o
the Gross-Neveu model with ordinary~real! chemical poten-
tial. Indeed, setting i^u&5m,m we find that Eqs.~15! and
~16! coincide with the corresponding expressions for the g
equation and the fermion density, the latter was obtained
the first time in@5#. Namely,
^l&5
1

L
lnFeLm22 cosh~Lm!1A„eLm22 cosh~Lm!…224

2 G , ~18!

B̃

N
5

^l&
2pL F lnS 11e2L^l&1Lm

11e2L^l&2LmD 2Li 2~2e2L^l&1Lm!1Li 2~2e2L^l&2Lm!G . ~19!
ure
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The thermodynamic properties here are well known. As
chemical potentialm increases from zero, the critical tem
peratureTc for the chiral symmetry restoration decreas
This critical temperature becomes zero at some critical va
of the chemical potentialmc[m where the chiral symmetry

FIG. 1. Critical lines in thê l&2m plane for variousT,Tc .
For simplicity we chosem51 such thatTc'0.72.
e

.
e

restoration is of first order. One can draw a physical pict
of the chiral symmetry restoration in terms of overlappi
composites. When the temperature is increased, chiral
densates begin to overlap as their radius grow up. At so
critical point the system is mainly composed of overlappi
condensates which, as a result, are no longer the good b
for describing the thermodynamic properties of the syst
and the fermionic constituents must be taken into accoun
is then reasonable to expect that by increasing the bar
density, which amounts to increasing the density of ch
condensates, a lower critical temperature would be nee
for the system to reach the critical point above. In Fig. 1
plot the critical lines in thêl&-m plane for various values o
T. In Fig. 2 we plot̂ l& vs T for various values ofm. In Fig.

3 we plot the fermion densityB̃/N vs T for various values of
m. Form.0 the fermion density is discontinuous at a critic
temperatureTc(m).

IV. IMAGINARY CHEMICAL POTENTIAL

A. The connection with an anyon-like system„anyon
confinement-deconfinement…

Consider the interaction of the Gross-Neveu model~1!
with an externalU(1) gauge potentialAm(x). The Euclidean
Lagrangian density reads
8-4
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THERMODYNAMICS OF THE ~211!-DIMENSIONAL . . . PHYSICAL REVIEW D 62 025018
L52c̄ i~]”2 ieA” !c i2
g

2
~ c̄ ic i !2, ~20!

where e is the electric charge. Let us consider a const
potentialA0[u along the ‘‘time’’ direction. We can imagine
embedding the model above into a 4-dimensional space.
to the finite length of thex0 dimension and the antiperiodi
boundary conditions of the fermions along it, the system m
be viewed as existing in a 3-dimensional hyper-cylind
whose axis is the 4th ~unobservable! dimension. The constan
potentialA0 may now be regarded as the ‘‘vector’’ potenti
generated by a thin solenoid of magnetic fluxF5uL along
the axis of the hyper-cylinder. Such a picture correspond
fermions encircling a thin solenoidal magnetic flux and o
might expect to encounter Aharonov-Bohm type phenom
@14#.

The potential in Eq.~20! may be gauged away by th
transformation

c→eieutc. ~21!

Such a transformation, however, ‘‘twists’’ the antiperiod
boundary conditions for the fermions unless

u5
2p

eL
k, k5061,62, . . . . ~22!

The configurations with ‘‘twisted’’ boundary conditions ma
be viewed as anyon-like excitations@14#. For instance, the
‘‘quasi-particle’’ propagator of the above model~20!

FIG. 2. ^l& vs T for variousm, whenm51.
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S~x0 ,x;A0 ,^l&!5~]”1 ieg0A01^l&!S0~x0 ,x;A0 ,^l&!,
~23!

has the following representation as a sum over non-triv
topological paths:

S0~x0 ,x;A0 ,^l&!5 (
l 52`

`

eip lei( lL 1x0)eA0P~x01 lL ,x;^l&!,

~24!

whereP(x0 ,x;^l&) are freebosonpropagators of masŝl&.
Furthermore, since in our generalized representation of
partition function~11! we imposed a constraint on theaver-
age fermion number, we can have local charge density fl
tuationsb(t,x) which give rise to the so-called statistic
gauge fieldam(t,x) as

b~t,x!5c†~t,x!c~t,x!2B̃

5]1a2~t,x!2]2a1~t,x!5e0i j ] iaj~t,x!. ~25!

This ~non-dynamical! field would be responsible for the
anyon dynamics@22#. Finally, the partition function of the
free theory, i.e., Eq.~20! at g50, has been shown to repro
duce the standard anyon virial coefficients@23#.

The existence of the anyonic excitations above may
tied to a discreteZ-symmetry of the~211!-dimensional
Gross-Neveu model interacting with a standardU(1) gauge
field Am(x) at temperatureT. The partition function in this
case is

FIG. 3. B̃/N vs T for variousm andm51. The baryon density
blows up atT→Tc(m).
Z5E ~DAm!~Dc!~Dc̄ !e2*T[(1/4)FmnFmn2c̄ i (]”2 ieA” )c i2(g/2)(c̄ ic i )2] , ~26!
8-5
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CHRISTIANSEN, PETKOU, SILVA NETO, AND VLACHOS PHYSICAL REVIEW D62 025018
whereFmn5] [mAn] as usual. This theory is invariant unde

Am~t,x!→Am~t,x!1]mx~t,x!, ~27!

c~t,x!→eiex(t,x)c~t,x!, ~28!

c̄~t,x!→c̄~t,x!e2 iex(t,x), ~29!

which are the usual small gauge transformations provi
they are periodic in Euclidean timet

x~0,x!5x~L,x! and ]mx~0,x!5]mx~L,x!. ~30!

In addition to these, the theory is also invariant under la
gauge transformations which are given by

x~0,x!5x~L,x!1
2p

e
k, k561,62, . . . ~31!

and represent a globalZ-symmetry. This symmetry implies
the existence of infinitely many equivalentZ-vacua in the
theory ~26!. Namely, the gauge field configurations

Am
Z~t,x!5S 2p

eL
k,0,0D , k50,61,62, . . . , ~32!

are lowest energy and equivalent since they are connecte
gauge transformations of the formx(t,x)5(2p/eL)t. Still,
such Z-transformations preserve the anti-periodic bound
conditions. We therefore conclude that Eq.~32! represents
equivalentvacuumconfigurations of Eq.~26!.

Going back to Eq.~20! provided condition~22! holds, the
theory can be interpreted as a Gross-Neveu model wi
U(1) gauge coupling at finite temperature and lying in o
of the Z-vacua. In this case there exist no anyon-like exc
tions in the spectrum. If condition~22! is relaxed, then Eq
~20! corresponds to the gauge theory above where the ga
field fluctuates around theZ-vacua. In the latter case ther
exist anyon-like excitations in the spectrum.

We can now construct an order parameter to distingu
the two cases as follows. Consider translational invari
fluctuations around theZ-vacua in Eq.~26! such that

Am5Am
Z1u~t!, u~0!5u~L !. ~33!

Take now the quantity

^Pẽ&5^eiẽ*0
Ldtu(t)& , ~34!

where ẽ/eÞ integer and the average is taken with resp
to the partition function~26!. It is not difficult to see
that Eq. ~34! is invariant under the strictly periodic gaug
transformations ~30!. It is not invariant, however,
under theZ-transformations~31!. To see this consider th
transformations

u~t!→u~t!1
2p

eL
k, k561,62, . . . , ~35!

which are symmetries of the theory~26! provided there is
Z-invariance. Under Eq.~35!
02501
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^P ẽ&→ei2pk(ẽ/e)^Pẽ&Þ^Pẽ&. ~36!

The physical interpretation of Eq.~34! is that Fẽ
52(1/b)ln^Pẽ& gives the free-energy necessary to imme
a configuration of chargeẽ in the spectrum of the system@3#.
If the theory ~26! is in a Z-vacuum, then the spectrum ca
contain only an integer number of fermions or antifermio
since, as explained earlier, it does not contain anyon-
excitations. In this case one clearly expects thatFẽ5` or
^Pẽ&50. If on the other hand the theory is not in
Z-vacuum, then there exist anyon-like configurations in
spectrum and one in general expects that^Pẽ&Þ0. We con-
clude that, in this sense, theZ-symmetry of the full gauge
theory ~26! is connected to the ‘‘confinement’’ or ‘‘screen
ing’’ of anyons, wherê Pẽ& is the relevant order paramete
The anyonic theory preservesZ-symmetry in the confined
phase wherê Pẽ&50 and violates theZ-symmetry in the
deconfined phase where^Pẽ&Þ0.

We are now in a position to give a physical interpretati
to the partition function~11! with real^u& ~imaginary chemi-
cal potential!, as a result of the following identity:7

Z~T,V,B!5e2bF(T,V,B)[^PB̃/N&. ~37!

Namely, the free-energy of the Gross-Neveu model w
imaginary chemical potential represents the free-energy
anyon-like configurations emerging in the spectrum when
model is coupled to aU(1) gauge field which fluctuate
around theZ-vacua.

The above discussion concerning the order parameter~34!
parallels the discussion in@13# of a similar order paramete
for the confinement or screening of incommensurate cha
in parity invariant QED3 ~see also@24#!. One of the new
observations here is the interpretation of theincommensurate
chargedconfigurations as being anyon-like. Another impo
tant point is that the order parameter^Pẽ& is in fact imagi-
nary for any real value ofẽ. This is also seen from Eq.~17!
or Eq. ~37!. If Eq. ~34! is to be interpreted as a physic
free-energy density, it is necessary thatẽ is imaginary. The
fact that we obtain an imaginary eigenvalueB5ẽ for the
Hermitian operatorN̂ means essentially that we are not usi
a positive definite density matrix to describe the fluctuatio
around theZ-vacua of the theory~26!. Nevertheless, even in
that case we will be able to extract useful results for
critical properties of the theory, assuming that the latter
universal.

B. Chiral symmetry and Z-vacua

The chiral symmetry restoration for real^u& can be in-
ferred from the gap equation~15!. The critical line separating
the chirally symmetric from the chirally broken phase in t
^u&-T plane is obtained by settinĝl&50 in Eq. ~15! as

7Here we usee51.
8-6
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^u&5
1

L
arccosFeLm

2
21G , ~38!

and is depicted for various values ofm in Fig. 4 when
^u&/TP@0,p#.

In order to discuss the chiral properties of the theory
shall henceforth consider, for concreteness, the massless
where the system is critical already atT50. In this case,
when the chemical potential is real one does not expect
phase transition as the temperature rises up. To put it dif
ently and in a more general ground, for real chemical pot
tial the system is chirally symmetric at some high tempe
ture and as it cools down chiral symmetry is, in gene
broken at some lower critical temperature. Having cho
m50 this critical temperature isT50. Consider now the
case when̂ u& is real, where this corresponds to an ima
nary chemical potential or some fluctuation around
Z-vacua as explained above. Again, at high enough temp
tures we expect the system to be chirally symmetric. Ho
ever, chiral symmetry is now broken at a non-zero tempe
ture T53^u&/2p. The important point is that as the syste
cools down, chiral symmetry remains broken in a ‘‘tempe
ture window’’ 3^u&/2p>T>3^u&/4p and then it is restored
again. Furthermore, asT→0, it passes through infinitely
many ‘‘windows’’ of the form

3^u&
2p

1

113k
>T>

3^u&
2p

1

213k
, k50,1,2, . . . , ~39!

in which chiral symmetry is always broken. This essentia
means that for any real non-zero^u& the T50 theory be-
comes unstable. The relevant physical picture can be rea
from Fig. 5 where we plot̂ l&/T vs ^u&/T in 0<m/T
<2 ln 2. Note that form/T.2 ln 2 the theory is always in a
chirally broken phase.

We can draw a physical picture for the chiral symme
restoration discussed above. The magnetic flux~25! associ-

FIG. 4. Critical lines in thê u&2T plane for variousm when
^u&/TP@0,p#. The line^u&5(2p/3)T is an asymptote.
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ated with local charge fluctuations catalyzes symme
breaking as it stabilizes the chiral condensates against t
mal fluctuations inside the ‘‘temperature windows’’~39!.8

The fact that in the high-temperature weakly coupled regi
even a small imaginary chemical potential induces ch
symmetry breaking, shows that the former plays the role o
strong catalyst of dynamical symmetry breaking, similar
that of a transverse external magnetic field@25# or a constant
negative curvature@26#. The chiral symmetry restoration
transition atT53^u&/2p is of the second-order with mea
field critical exponents@14,20# since the order parameter^l&
is continuous. The order parameter acquires its maxim
value for T5^u&/p and then starts to drop until it reache
zero again atT53^u&/4p. The same picture holds for a
chiral restoration ‘‘temperature windows’’~39!.

It is also interesting to study the behavior of the fre
energy density as a function of the temperature for non-z
^u&. This is depicted in Fig. 6 where we plot the free-ener
density vs^u&/T. For high enoughT the system is in the
chirally symmetric phase and to leading-N the free-energy
density equals that ofN massless free four-component Dira
fermions, e.g., Eq.~8!. At T53^u&/2p the free-energy
jumps discontinuously to a local minimum and then rais
until it reaches a local~positive! maximum atT53^u&/4p
where it drops again discontinuously to the value~8!. Similar
fluctuations occur for all the infinitely many temperatu
‘‘windows’’ ~39! asT→0.

It is rather intriguing that we are able to give analyt
expressions for the free-energy density of the system at
end points of the ‘‘temperature windows’’ of chiral symm
try breaking, 3̂u&/2p, 3^u&/4p @in fact this is possible for
the end-point of all the ‘‘windows’’~39!#. After some alge-
bra we obtain, respectively,

8This picture may be compared to the one of an external magn
field in finite temperature~211!-dimensional QED recently dis
cussed in@27#.

FIG. 5. ^l&/T vs ^u&/T for 0,m/T,2 ln 2. For fixed, non-zero
^u&, T decreases along the horizontal axis as one moves to the r
8-7
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f L

N
52

1

pL3 F4p

3
Cl2S p

3 D2
2

3
z~3!G , ~40!

f L

N
5

1

pL3 F8p

3
Cl2S p

3 D1
2

3
z~3!G , ~41!

where,Cl2(f)5Im@Li 2(eif)# is the Clausen function@21#.
Note thatCl2(p/3) is the absolute maximum of this functio
which is a well-documented irrational number@28#.

The results for the free-energy density have been on
pose written as above, in order to be compared with
expected scaling form of the free-energy density of a con
mal field theory~CFT!. The point is that the chiral phas
transition in the ~211!-dimensional model above is o
second-order and one would expect it to correspond to
universality class of a 3-dimensional CFT. When a CFT
put in a finite-size geometry~i.e. in a slab with one finite
dimension of lengthL), its free-energy density scales as@18#

f L52
c̃z~3!

2pL3
• ~42!

The quantityc̃ coincides with the central charge ind52 and
has been recently proposed@29# to be a possible generaliza
tion of a Cl-function in d.2. Clearly, from Eqs.~40!, ~41!
and~42! we see that the chiral transition above appears to
connected to new 3-dimensional CFTs. The fact thatc̃ in Eq.
~40! is less than the corresponding free-field theory value~8!
and it is negative in Eq.~41!, seems to imply that the abov
critical theories may not be unitary. Nevertheless, such th
ries may conceivably correspond to three-dimensional v
sions of the non-unitary two-dimensional Lee-Yang mo
@32#.

FIG. 6. The free-energy density vs^u&/T. As in Fig. 5,T de-
creases along the horizontal axis as one moves to the right.
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The middle point of the chiral transition ‘‘temperatur
window’’ ~39! is also interesting. At this point̂l& takes its
maximal value. From Eq.~15! we obtain for^u&5p/L,

^l&5
2

L
lnS 11A5

2 D . ~43!

This value equals the value one obtains for the mass of
elementary bosonic modes in the~211!-dimensionalO(N)
vector model at finite temperature, when the theory is criti
at T50 @30#. Plugging this into Eq.~17! we can calculate the
free-energy density which, by virtue of some non-trivi
polylogarithmic identities@30,31# is found to be

f L

N
5

16

5

z~3!

2pL3
. ~44!

This is exactlyminus the free-energy density of the~211!-
dimensionalO(4N) vector model at its non-trivial critica
point. In principle, a positive free-energy density whic
would correspond to negative pressure and negative ent
seems to be a rather unphysical result@33#. However, one
might try to construct a physical system where the result~44!
could make sense. This is theO(4N) N51 supersymmetric
sigma model@34,35# in the presence of an externalA0 po-
tential at finite temperature. To leading-N, the free-energy
density of this theory is simply given by the sum of th
free-energies of fermions and bosons. In general, supers
metry is expected to be broken at any finite temperature@36#.
Nevertheless, it may happen that for some temperature
fermion contribution, given by Eq.~44!, and the boson con
tribution cancel each other and the system becomes su
symmetric again. Note that the matching of the bosonic a
fermionic degrees of freedom is correct—theN51 super-
multiplet in three-dimensions requires 2N two-component
Majorana fermions. A similar bosonization of fermions h
been recently discussed in@37#.

V. SUMMARY AND DISCUSSION

In this work we studied the~211!-dimensional Gross-
Neveu model in the presence of an imaginary chemical
tential and argued that it provides an interesting ground
probing the properties of chiral symmetry at non-zero te
perature. In Sec. III we proposed a generalization of the w
known formula for the canonical partition function and pr
sented analytic expressions for the free-energy density,
fermion number density and the chiral order parameter^l&.
We demonstrated that this general formalism includes
standard grand-canonical formalism when the chemical
tential is real. In Sec. IV we focused on the case of imagin
chemical potential. We considered aU(1) gauge field
coupled to the Gross-Neveu model at finite temperatu
Such a theory possesses infinitely many equivalentZ-vacua.
We showed that when the gauge field fluctuates around th
Z-vacua, as given by Eq.~33!, anyon-like excitations mani-
fest themselves in the spectrum of the~211!-dimensional
Gross-Neveu model. This is established by showing that
free-energy necessary to immerse such an excitation is
8-8
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zero. Furthermore, we provided evidence that the expecta
value of the abelian Polyakov loop, which is the order p
rameter for establishing whether the aboveU(1) gauge
theory resides in one of theZ-vacua, coincides with theca-
nonical partition function for imaginary values of the fe
mion number density. This way we gave a physical interp
tation to the canonical partition function with imagina
chemical potential as being the free-energy needed to
merse an excitation of imaginary charge in the spectrum
the ~211!-dimensional Gross-Neveu model. The latter ex
tation is related to the anyon-like excitations discuss
above. Finally, we gave some results connected to the p
erties of chiral symmetry in the presence of an imagin
chemical potential at finite temperature.

Studies of the critical thermodynamic properties of a s
tem undergoing a phase transition are intimately conne
to the Lee-Yang zeros@38,39#. These are the zeros of th
partition function for imaginary values of the external ma
netic field, the latter being the ‘‘conjugate’’ variable of th
relevant order parameter. It is then conceivable that
could try to investigate the critical properties of a system
finite density by studying its partition function~or its free-
energy density!, at complex values of the number densi
the latter being the ‘‘conjugate’’ variable of the chemic
potential. In this sense, the results presented in this work
closely related to a Lee-Yang zeros analysis.

These results can be extended in several directions.
example,it is possible in principle to study numerically t
partition function~11! for complex chemical potential an
on
ro

,’’

c

-

02501
on
-

-

-
f

-
d
p-
y

-
d

-

e
t

re

or

establish the chiral symmetry restoration ‘‘windows’’ adv
cated above. It is also possible to numerically compute
free-energy densities at the critical points and compare th
with our analytic results~40! and~41!. Furthermore, it would
be interesting to compare the free energy density~17! to the
one recently proposed by Laughlin@40# in order to reproduce
the anomalous behavior of the thermal conductivity in so
high-temperature superconductors of the BSCCO fam
@41#.9 Since these compounds exhibit a new kind of pha
transition induced by strong catalysts of dynamical symm
try breaking, it is plausible that our generalized canoni
partition function formalism can be used to explain such u
usual behavior. Finally, based on the results of the pres
work, it may be interesting to explore the possibility of fini
temperature supersymmetry restoration inN51 supersym-
metric theories@43#.
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